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Abstract. In this work, the use of electrophoretic deposition to modify the surface of Ti6Al4V 

alloy fabricated via additive manufacturing technology is reported. Poly(vinylpyrrolidone) 

(PVP)-stabilized silver nanoparticles (AgNPs) had a spherical shape with a diameter of the 

metallic core of 100±20 nm and ζ -potential -15 mV. The AgNPs- coated Ti6Al4V alloy was 

studied in respect with its chemical composition and surface morphology, water contact angle, 

hysteresis, and surface free energy. The results of SEM microphotography analysis showed 

that the AgNPs were homogeneously distributed over the surface. Hysteresis and water contact 

angle measurements revealed the effect of the deposited AgNPs layer, namely an increased 

water contact angle and decreased contact angle hysteresis. However, the average water contact 

angle was 125° for PVP-stabilized-AgNPs-coated surface, whereas ethylene glycol gave the 

average contact angle of 17°. A higher surface energy is observed for AgNPs-coated Ti6Al4V 

surface (70.17 mN/m) compared with the uncoated surface (49.07 mN/m). 

1. Introduction 

Titanium alloy foams have significant application potential due to their light weight and exceptional, 

isotropic mechanical properties as well as high corrosion resistance [1]. These include multiple 

structural applications in aerospace, aeronautics and automotive systems which take advantage of 

density-compensated strength and stiffness at elevated temperatures [1]. Murr et al. [2] have also 

recently demonstrated that Ti6Al4V cellular foams produced by additive manufacturing (AM) using 

electron beam melting (EBM®) technology have innovative applications in the “next generation 

biomedical implants”.  

The AM allows to create customized implants individual for the patients and clinical cases[3]. 

These applications are utilizing strongest advantages of the AM technologies such as freedom of 

component shapes, possibilities of computer optimization of the manufactured-to-be component 

functionality and properties, and good value for money in manufacturing one-off or small series of 

products [4]. These benefits are already recognized by medical implant manufacturers and practical 

surgeons[5]. There are certain medical applications, such as acetabular cups mass-produced in 
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Ti6Al4V by EBM®, which have been successfully implemented for years [6, 7]. There is also a wide 

variety of biomedical implants manufactured by EBM® technology that are under investigation, as for 

example, customized hip and knee implants or bone grafting, including craniofacial and maxillofacial 

replacements [2, 6, 8]. 

Electrophoretic deposition can be used to fabricate well-distributed particles layers on metallic 

surfaces [12]. The aim of this study is to generate the silver nanoparticles assembly on the as-

manufactured Ti64 surfaces via electrophoretic deposition and investigate the wettability and surface 

free energy of the developed surface.  

2. Materials and methods 

2.1. Samples preparation 

All the samples used were fabricated using Ti6Al4V ELI powder in ARCAM A2 EBM® machine 

(Arcam AB, Mölndal, Sweden) [13]. The Arcam machine also makes it possible to produce implants 

with designed porosity and cellular lattice surface structures that stimulate the osteointegration in the 

single process procedure[7]. All samples were coin-like discs 10 and 30 mm in diameter with flat 

surfaces. These discs were manufactured in a single batch with their surfaces normal to the melt layer 

h. The 3D-scaffolds were made in two different batches with identical parameter settings and same 

diamond-shaped basic lattice cells. All samples were carefully blasted in the ARCAM powder 

recovery system using the same precursor powder. Electrochemical etching was carried out at 30° C in 

the ethanol and 2-propanol solution of the aluminum chloride and zinc chloride  with the stabilized dc 

current density 0.2 A/cm
2
[14]. 

2.2. Synthesis and deposition of silver nanoparticles 
The surfaces of as-manufactured Ti6Al4V samples were modified by electrophoretic deposition of 

silver nanoparticles. Wet chemical synthesis and characterization of Poly(vinylpyrrolidone) (PVP)-

stabilized silver nanoparticles were reported elsewhere [15]. Prior to electrophoretic deposition, the 

silver nanoparticles were dispersed in ethanol. Electrophoretic deposition was carried out at a constant 

voltage of 50 V for 30 min. The distance between the two electrodes was maintained at 3 mm. The 

concentration of AgNPs in the dispersion was 60 mg L-1. PVP-stabilized silver nanoparticles had a 

spherical shape with a diameter of the metallic core of 100±20 nm and ζ -potential of -15 mV. 

2.3. Characterization 
The morphology and composition of the surfaces were determined using an ESEM Quanta 400 FEG 

scanning electron microscope (SEM), equipped with energy-dispersive X-ray spectroscopy unit (EDX; 

Genesis 4000, SUTW-Si(Li) detector) operating in a high vacuum. 

Contact angle analysis was performed with an optical contact angle apparatus (OCA 15 Plus Data 

Physics Instruments GmbH, Germany), using the SCA20 software (Data Physics Instruments GmbH, 

Germany). The contact angle of water in air was measured by the sessile drop method. A minimum of 

10 droplets (2 µL, 5 µLs-1) of water, 3 droplets of diiodomethane or ethylene glycol were examined 

for each sample, and the resulting mean values of the contact angles were used for the calculations. 

The surface free energy was calculated using Owens-Wendt-Rabel-Kaelble (ORWK) method. Three 

different media (water, diiodomethane and ethylene glycol) were used for these calculations. 

3. Results and discussion 

Figure 1 illustrates the morphology of the as-manufactured Ti6Al4V alloy samples. Because powder-

bed process is used for manufacturing, component surfaces have certain amount of partially-connected 

(fused) precursor powder grains (60-100 m in diameter), which resulted in a relatively rough surface 

morphology. As clearly visible from the images metal surface contains a number of powder grains 

strongly and rather loosely attached to the bulk metal (Figure 1) providing a roughness with the 

spectrum ranging from nanometers to about 100 m, a feature quite common for the powder bed AM 
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processes. It has been extensively reported that the microscale morphology significantly influences 

cell behavior such as adhesion, proliferation and differentiation in vitro and in vivo[16]. 

 

   
a b c 

Figure 1. SEM images of the as-manufactured Ti6Al4V sample surface morphology. Samples are 

additively manufactured using EBM® technology . Images are acquired using SE detector.  

Surfaces are also showing distinct roughness at the sub-micron scale (figure 1c). 

According to the DLS measurement, the PVP-functionalized AgNPs were negatively charged 

(ζ = −15 mV) particles with a hydrodynamic diameter of 100 ± 20 nm. The polydispersity index (PDI) 

was below 0.3, indicating the absence of large agglomerates.  

SEM images of the AgNPson deposited on the surface of Ti6Al4V substrate are shown in Figure 2. 

A uniform distribution of the AgNPs was observed across the surface. The surface morphology of the 

initial Ti6Al4V substrate was not changed by the deposition of AgNPs. The metallic core diameter of 

the AgNPs determined from the SEM analysis was 110 ± 30 nm. The ordered AgNPs with well-

defined two- (2D) and three-dimensional (3D) spatial configurations are expected to show the 

homogeneous and sustained release of Ag+ ions from nanoparticles to the surrounding tissue. These 

ions can reduce or even prevent colonization and subsequent biofilm formation on the surface of an 

implant. The further deposition of the hydroxiapatite (HA) film on the layer of AgNPs may improve 

this strategy since the release of silver ions from the AgNPs can be precisely controlled. It has already 

been shown that the use of HA film can help to control the Ag and Ni ions release [15, 17]. 
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Figure 2. SEM image (a-c) and EDX spectrum (d) of the Ti6Al4V alloy coated with AgNPs. 

EDX spectrum analysis of the coated samples revealed that the obtained composite contained free 

silver. EDX analysis revealed silver concentrations of 0.58 at% for the silver nanoparticles deposited 

on the surface of Ti6Al4V alloy. 

A detailed study of the wettability  of the scaffold surfaces was done using contact angle sessile 

drop method and the contact angles for the scaffolds after modification with AgNPs before and after 

treatment are summarized in Table 1. It should be noted that water contact angle revealed the 

significant effect from the AgNPs layer. The hydrophobic and super-hydrophobic surfaces can result 

from the increased surface roughness, for example, this effect occurs naturally on the lotus leaf [18]. 

The surfaces of these leaves possess a micrometer-level roughness and they are covered with 

nanosized crystals of wax [18]. 

The highest contact angles were obtained with water, whereas ethylene glycol gave the lowest 

contact angles for PVP-stabilized-AgNPs-coated surface. One of the possible reasons for this effect 

may be due to the lower surface tension of ethylene glycol as compared to water, and as the 

consequence the AgNPs-coated samples can display a lower wetting resistance against ethyleneglycol  

[19]. Water (surface tension 72.8 mN m-1), diiodomethane (50.8 mN m-1) and ethylene glycol (48.0 

mN m-1) were used as testing fluids. However, this must also be investigated in more details in the 

future[19]. The surface energy of materials is influenced by some surface characteristics like structure, 

morphology, roughness, chemical composition and surface charge, however, the correlation among 

them is not clear. 

Figure 3 shows the variation of dispersive, polar and total surface energy of as-manufactured and 

modified surfaces of scaffolds. The results presented in Figure 3 show that total surface energy of the 

coated surfaces significantly varied from 29.22 to 70.17 mN/m compared with as-received Ti6Al4V 

scaffold (49.07 mN/m).  
 

Sample Contact angle, degrees Contact angle 

hysteresis, 

degrees 
Water Diiodmethan Ethylene glycol 

Bare 

Ti6Al4V 

106±1 34±1 42±2 20±3 

HA-

coated 

Ti6Al4V 

109±2 56±2 80±1 16±1 
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Figure 3.Variation of the dispersive, polar and total surface energy 

of as-manufactured and AgNPs-coated scaffolds surfaces. 

 

A detailed comparison shows that a higher surface energy is observed for AgNPs-coated Ti6Al4V 

surface (70.17 mN/m) as compared to uncoated surface (49.07 mN/m). In nanoparticles, surfaces 

contribute to the chemical potential by creating surface free energy and surface stress [20]. 

Furthermore, the polar component of the surface energy is significantly higher for AgNPs-coated 

surface compared to the one of as-manufactured scaffolds. The dispersive component makes a major 

contribution of 0.1–8% to the total surface free energy for all the samples.  

4. Conclusion 

The Ti6Al4V alloy prepared via AM using EBM® technology was modified by electrophoretic 

deposition of AgNPs. The effect of the modification of the metallic scaffolds on the wettability and 

surface energy has been studied in details. The determined surface free energies of the AgNPs-coated 

Ti6Al4V scaffolds were significantly different from as-manufactured ones. A detailed comparison 

shows that a higher surface energy is observed for AgNPs-coated Ti6Al4V surfaces (70.17 mN/m) 

compared with uncoated ones (49.07 mN/m). The dispersive component made the major contribution 

to the total surface free energy for all the studied scaffolds. This resulted in the polar component 

making approximately a 0.1–8% contribution to the total surface free energy. 
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