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ASSESSMENT OF MULTI-CAMERA CALIBRATION ALGORITHMS 
FOR TWO-DIMENSIONAL CAMERA ARRAYS RELATIVE TO GROUND 

TRUTH POSITION AND DIRECTION  

Elijs Dima, Mårten Sjöström, Roger Olsson 

Dept. of Information and Communication Systems, Mid Sweden University  
SE-851 70 Sundsvall Sweden 

ABSTRACT 

Camera calibration methods are commonly evaluated on cumula-
tive reprojection error metrics, on disparate one-dimensional da-
tasets. To evaluate calibration of cameras in two-dimensional ar-
rays, assessments need to be made on two-dimensional datasets 
with constraints on camera parameters. In this study, accuracy of 
several multi-camera calibration methods has been evaluated on 
camera parameters that are affecting view projection the most. As 
input data, we used a 15-viewpoint two-dimensional dataset with 
intrinsic and extrinsic parameter constraints and extrinsic ground 
truth. The assessment showed that self-calibration methods using 
structure-from-motion reach equal intrinsic and extrinsic parame-
ter estimation accuracy with standard checkerboard calibration al-
gorithm, and surpass a well-known self-calibration toolbox, 
BlueCCal. These results show that self-calibration is a viable ap-
proach to calibrating two-dimensional camera arrays, but im-
provements to state-of-art multi-camera feature matching are nec-
essary to make BlueCCal as accurate as other self-calibration 
methods for two-dimensional camera arrays. 

Index Terms — Camera calibration, multi-view image da-
taset, 2D camera array, self-calibration, calibration assessment 

1. INTRODUCTION 

For accurate sampling of a scene’s light field, systems composed 
of multiple digital cameras must undertake a camera calibration 
process. Calibration provides information on each camera’s inter-
nal (intrinsic) parameters and their relative positions (extrinsic pa-
rameters), forming pinhole camera matrices [1] that are used in 
rendering new virtual views. Although various calibration tech-
niques exist in the light field and computer vision community, it 
has not been reported how calibration techniques perform for two-
dimensional camera arrays, in particular relative to ground truth 
camera intrinsic and extrinsic parameters. 

Existing calibration techniques were evaluated on disparate 
datasets in [2][3][4][5] without an available ground truth for cam-
era placement and properties, instead relying on reprojection er-
rors. Some techniques have publicly available implementations 
[2][3][6], and some are theoretically described [5] in academic lit-
erature. Therefore, when constructing light field capture systems 
with two-dimensional multi-camera layouts, existing methods 
need to be evaluated for suitability on common grounds. 

In this paper, freely available calibration implementations 
were assessed with focus on determining their suitability for use 
in our upcoming Light Field Evaluation System (LIFE). LIFE’s 
capture component will consist of a 2-dimensional array of syn-
chronized, coplanar color cameras, and is intended for use in in-
door teleconferencing scenarios. Implementations of multi-cam-
era calibration methods were assessed on a common dataset with 

3 vertical by 5 horizontal viewpoint positions and known ground 
truth constraints on camera intrinsic and extrinsic parameters. The 
calibration methods’ estimates were compared against each other 
and against the dataset’s ground truth. 

The novelties of this paper are following: (1) we evaluated 
several multi-camera calibration methods on a common, two-di-
mensional dataset representing a typical use-case scenario, (2) we 
conducted our evaluation based on known ground truth values and 
parameter equality constraints, and (3) we introduced a dataset for 
calibration evaluations of two-dimensional multi-camera arrays, 
with ground truth knowledge. The rest of the article is organized 
as follows: we describe existing calibration methods and motivate 
our selections in Chapter 2. Chapter 3 describes our experimental 
setup and dataset, and Chapter 4 describes the evaluation method-
ology. We present our results and analysis in Chapter 5, and con-
clude our work in Chapter 6. 

2. CAMERA CALIBRATION 

2.1 Overview of camera calibration methods 
 

Current approaches used for camera calibration are generally clas-
sifiable as object-calibration methods, which make use of special 
calibration objects [2][6] with known dimensions, and self-cali-
bration methods that rely on scene/image properties without a cal-
ibration object [3][5][7] and can be used in structure-from-motion 
reconstruction tools. 

A seminal work in object-based camera calibration is Z. 
Zhang’s proposition of the checkerboard calibration process 
[2][8]. The process involves capturing multiple images of a planar 
black-and-white checkerboard calibration object in different 
poses, taking up most of the camera’s view. Points-of-interest are 
extracted from images via locating straight-line intersections. A 
closed form homography is established between detected check-
erboard points and their relation to the absolute image conic in 
projective geometry. A Levenberg-Marquardt algorithm is em-
ployed to improve performance in noisy conditions and deal with 
nonlinear lens distortion. The general technique presented in [2] 
has been altered and reworked many times [6][9], with modifica-
tions ranging from changes to the calibration object/pattern, to ad-
aptations of the homography estimation or solution optimization.  

Self-calibration methods make use of alternate sources of 
feature correspondences for homography establishment. These 
correspondences can be obtained from image feature descriptors 
such as SIFT [10], or from forcing easy-to-detect dimensionless 
points into the scene, e.g. by using a light stick or a laser pointer, 
as suggested by T. Svoboda et al. [3]. Their method, implemented 
as “BlueCCal toolbox”, uses synchronized camera capture with a 
non-deterministically moved point-light source, creating easily 
identifiable feature-point locations in cameras. The locations are 
validated via pairwise RANSAC analysis, and missing point pro-
jections are filled via projective depth estimation and ranked 
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Figure 1. Left: A scene state captured in our dataset with 15 camera posi-

tions. Right: cameras c1, c2 and c3 on a moving dolly in position t = 1. 
 
matrix fitting to an incomplete noisy measurement matrix. Euclid-
ean stratification is used to obtain projection matrices that can be 
decomposed into intrinsic and extrinsic camera matrices. 

2.2 Selection of calibration methods 

Both object-calibration and self-calibration approaches are valid 
for our capture system’s use-cases. Ability to autonomously cali-
brate multiple (n>2) cameras in a system is a requirement for our 
application. We focused on calibration methods with freely avail-
able implementations to make our results more publicly useful, as 
motivated by Bakken et al. [9]. We avoided evaluating calibration 
methods with complex or unique calibration objects, or hundreds 
of synchronized captures, for the same reasons. 

We chose to include Z. Zhang’s checkerboard calibration al-
gorithm [2] in our evaluation because it serves the purpose of our 
research and is a standard method for this calibration class [9]. 
The AMCC toolbox [11] (an automation wrapper for Bouguet’s 
Matlab toolbox [6] of Zhang’s algorithm [2]) implementation was 
selected for evaluation because it fully automates the checker-
board corner identification. 

For the self-calibration class, we selected VisualSFM [4][12] 
and Bundler [7] Structure-from-Motion programs, which inher-
ently incorporate camera calibration, rely on SIFT, and are readily 
usable. Because of prominence of BlueCCal [3] in self-calibration 
literature, it was also included in our evaluation. We added a 
SIFT-based (using VLFeat’s [13] version of SIFT) feature multi-
matching and filtering algorithm, as described by Goorts et al. in 
[14] and Dwarakanath et al. in [15], to transform BlueCCal into a 
calibration method that works without a point-light source. 

3. EXPERIMENTAL SET-UP 

We created a dataset1 reflecting the intended scenarios for our up-
coming light field capture system in order to evaluate the perfor-
mance of the calibration methods. The properties of the dataset 
ensured that our evaluations were based on a 2D-array of high-
resolution consumer cameras with constraints on intrinsic and ex-
trinsic camera parameters, in an in-doors scene with and without 
a dedicated calibration object in n>10 positions and a non-uniform 
background environment.  

The capture unit consisted of a rigid vertical stack of 3 Canon 
EOS M cameras c1, c2, c3 (shown in Figure 1) mounted on a dolly 
with 5 equidistant horizontal translation positions (t = 1,..5). Be-
cause the same physical camera took images in each elevation 
level, there exists a constraint on intrinsic camera properties being 
identical in each camera ‘row’ in the dataset. The rigid vertical  

1 Available at www.miun.se/stc/Realistic3D/Dima-2016-1 

Distance (d1), top to middle cam-
eras (c1 to c2) 

0.352m ± 0.001m, fixed, 
identical for all horiz. 
positions (t = 1,..5) 

Distance (d2), middle to bottom 
cameras (c2 to c3) 

0.345m ± 0.002m, fixed, 
identical for all horiz. 
positions (t = 1,..5) 

Horiz. camera-to-camera distance 0.249m ± 0.001m 

Camera rotation 
Identical for each cam-
era row, static between 
cameras for (t = 1,..5) 

Camera intrinsic parameters Identical for each  
camera row 

Table 1: Known camera rig constraints. 
 
system and calibrated dolly provided constraints on cameras’ rel-
ative positioning, which was verified via a laser rangefinder be-
fore and after the capture session. For dataset details, see Table 1. 

The dataset consisted of 18 captured states of the same scene, 
each with the 15 predefined camera positions (ci,t, i = 1,..3, t = 
1,..5). 17 scene states contained a checkerboard placed in different 
positions and orientations throughout the scene. The remaining 
state was without a checkerboard as a self-calibration scenario. 

4. EVALUATION METHOD 

We evaluated the selected calibration methods based on their es-
timated camera parameter outputs relative to known ground 
truths, instead of their reported point reprojection errors. The point 
reprojection error in multi-sensor systems is a cumulative metric 
with multiple, non-equally contributing factors, as demonstrated 
by Schwarz et al. [16]. Our assessment focus was placed on cam-
era lens distortion, principal point, and extrinsic parameter esti-
mates, because these are the main contributors of position and 
depth rendering error in multi-sensor systems [16]. 

Object-based calibration methods were evaluated on all 
scene images with checkerboard present. Self-calibration methods 
were evaluated with no checkerboard present. Evaluations of self-
calibration methods were also conducted on scene captures with a 
single checkerboard present, to determine whether the presence of 
a checkerboard would affect the results of the calibration methods. 
Table 2 shows the full experimental setup variations. Calibration 
methods treated each translation t of cameras c1, c2, c3 as separate 
cameras. 

The lens distortion estimation was assessed based on first co-
efficient (k1) for each of c1, c2 and c3 (Figure 1). Each method es-
timated a different total number of distortion coefficients, reduc-
ing the significance of k1 relative to other parameters.  Each cali-
bration method estimated k1 five times, once for each horizontal 
translation of cameras in dataset. The distortion was expected to 
be identical for each lens at each t as per intrinsic constraint in 
Table 1. We measured the standard deviation (std) of k1 at each 
position of the cameras. The principal point (x0, y0) estimation was 
likewise assessed, relying on intrinsic parameter equality per cam-
era and evaluating std of x0, y0 at each position of each camera.  

The extrinsic parameter estimation was assessed based on 
Euclidean distances between cameras, described by the functions 
d1, d2. The function dn(cn,cn+1) equals the distance between cam-
eras cn and cn+1. We assessed the Mean Square Error (MSE) of d1, 
d2 respective to ground truth, and the std of d1 and d2 estimated 
for each translation of each camera. AMCC took world-scale into 
account from known checkerboard corner distances. The other 
calibration methods estimated d1, d2 up to an arbitrary global scale 
factor, which we then matched to the known world-scale to enable 
result comparison. Rotation estimations of cameras were assessed  

                                                 



Name Applied algorithms Calibration input 
AMCC Zhang’s calibration 

AMCC automation 
17 checkerboard 

positions 
Bundler 1 Snavely’s calibration No checkerboard 
Bundler 2 Snavely’s calibration 1 checkerboard 

position 
BlueCCal 1 Svoboda’s calibration 

SIFT feat. matching 
Goorts’ filtering 

No checkerboard 

BlueCCal 2 Svoboda’s calibration 
SIFT feat. matching No checkerboard 

VisualSFM 1 Wu’s calibration No checkerboard 
VisualSFM 2 Wu’s calibration 1 checkerboard 

position 
Table 2: Experimental calibration tool test setups. 

 
based on the std of camera-to-camera relative rotations. We com-
pared angles a1, a2 between cameras, expecting a1, a2 to remain 
constant regardless of translation. The function an(cn,cn+1) equals 
the angular offset between cameras cn and cn+1.  

5. RESULTS AND ANALYSIS 

The calibration methods estimated k1 to be fairly constant for 
c1, c2 and c3, with a maximum std of 0.0113 (AMCC, c2). The 
presence or absence of a checkerboard changed the k1 estimate by 
a maximum of 0.0183 for VisualSFM. BlueCCal did not include 
distortion coefficients in its explicit output data, and thus is not 
part of Figure 2. The figure further shows that AMCC and Visu-
alSFM calibration estimated similar k1 values, whereas Bundler 
estimated larger k1 for all three cameras. Bundler and VisualSFM 
exhibited a more consistent behavior for the estimates of k1, when 
considering k1 of c1 relative to c2 and c3. 

 

 
Figure 2. Estimates of lens distortion coefficient k1 for top (c1), middle 
(c2), and bottom (c3) cameras. Box plots show median, 25th & 75th per-

centile, whiskers show min and max of k1 estimates, + are outliers. 
 
Bundler and VisualSFM bypass principal point x0, y0 estima-

tion by halving the image resolution. This implies that uncertain-
ties in measurements are translated to two parameters (focal 
length and distortion) and thus implies lower variances than if all 
three parameters had been estimated. However, Figure 2 shows 
that k1 variation was similar between the assessed methods.  

 

 
Figure 3. Estimated principal point pixel offset values for top (c1), mid-

dle (c2) and bottom (c3) physical cameras. 

 
Figure 4. Inter-camera Euclidean distance estimates d1(c1,c2), d2(c2,c3). 

Circle shows ground truth, box plots show median, 25th & 75th percentile, 
whiskers show minimum and maximum of d1, d2. 

 
BlueCCal and AMCC estimate x0, y0 based on internal esti-

mates of the lens distortion and point reprojections. As shown in 
Figure 3, BlueCCal and AMCC estimated different principal point 
values for the same cameras at different translations, with a max-
imum std(x0) = 32.3 and std(y0) = 82.0 by AMCC. 

For estimated camera-to-camera Euclidean distances d1, d2, 
all calibration methods exhibited inaccuracies ranging from 3mm 
to 25mm, with BlueCCal providing the least accurate position es-
timates in terms of variation. Figure 4 shows that presence or ab-
sence of checkerboard in the scene did not affect position estima-
tion accuracy for Bundler and VisualSFM. Likewise, there was no 
notable difference in accuracy between the checkerboard-calibra-
tion method and the better-performing self-calibration methods, 
with maximum inaccuracy of 8mm by VisualSFM.  

 

 
Figure 5. Mean Square Errors of Euclidean distances d1, d2 of esti-

mated camera positions with respect to measured ground truth. 
 
The MSEs of camera-to-camera distances in Figure 5 show 

that Bundler and VisualSFM were as accurate as AMCC with re-
spect to the ground truth. BlueCCal’s MSEs were larger by a fac-
tor of 11 to 20, indicating a lower position estimation precision. 

Estimated camera-to-camera angles a1, a2 show that all cali-
bration methods, except BlueCCal, were fairly constant in esti-
mating relative camera orientation. Maximum deviation for 
AMCC was 0.0049 rad. 

 

 
Figure 6. Estimates of inter-camera rotation difference a1 (between 

cameras c1,c2), a2 (between cameras c2, c3). Box plots show median, 25th 
& 75th percentile, whiskers show minimum and maximum of a1, a2. 



Figure 6 shows that BlueCCal was less accurate by a factor 
of 9 to 10, exhibiting a maximum deviation of 0.0472 rad. Pres-
ence or absence of checkerboard did not affect the rotation esti-
mation of Bundler and VisualSFM calibration, and both estimated 
identical a1, a2 with no notable deviations. 

The presence or absence of checkerboard in inputs to self-
calibration methods made no notable difference to parameter es-
timation accuracy. While checkerboard pattern corners are easier 
to detect than general image features, the self-calibration methods 
did not have the necessary detector optimizations to capitalize on 
this. Moreover, for all significant camera parameters as identified 
by Schwarz et al. [16], the assessed checkerboard-calibration 
method performed no better than the self-calibration methods in 
Bundler and VisualSFM. Self-calibration methods estimated 
more precise extrinsic parameters, as evidenced by distributions 
of d1, d2, a1, a2, whereas AMCC estimated additional intrinsic pa-
rameters x0 and y0, which likely caused greater estimation varia-
tions. AMCC’s execution time was several orders of magnitude 
greater than VisualSFM’s/Bundler’s, with the largest time spent 
on checkerboard corner detection. However, this may have been 
caused by differences in implementation or optimization, which 
we did not focus on. 

BlueCCal was consistently the least accurate of the assessed 
calibration methods. In particular, the estimate deviations in ex-
trinsic parameters indicated that BlueCCal would produce more 
erroneous virtual views in the assessed configuration. The other 
self-calibration methods also relied on SIFT feature detection, im-
plying that BlueCCal’s inaccuracy may be caused by differences 
in match filtering. Estimation differences in Figure 5 and Figure 
6 between BlueCCal 1 and BlueCCal 2 proved that pre-filtering 
of cross-camera feature matches can negatively affect estimation 
accuracy. We additionally tested BlueCCal with a Hessian-La-
place feature detector from VLFeat, which made BlueCCal grad-
ually discard all but 20 detected feature matches as ‘outliers’ and 
subsequently fail to converge on any acceptable camera parameter 
sets. 

6. CONCLUSIONS 

We selected and evaluated 4 freely available tools for the purposes 
of multi-camera calibration. To measure estimated camera param-
eter values from calibration directly against known constraints, 
we captured a dataset with 15 camera positions and 18 scene 
states, using 3 cameras in a controlled-motion rig. Ground truth 
and equality constraints from physical cameras were used to ver-
ify calibration method accuracy based on estimation errors for 
camera parameters that are most significant in view reprojection. 

Assessment results showed that SIFT-based self-calibration 
methods embedded in VisualSFM and Bundler structure-from-
motion tools are more accurate than traditional autonomous 
checkerboard calibration for two-dimensional camera arrays. The 
choice of checkerboard calibration vs. self-calibration can there-
fore be determined by practical aspects such as expected scene 
properties and ability and time to manipulate checkerboards in a 
scene prior to data capture. Our results also showed that the most 
widely available Matlab self-calibration toolbox, BlueCCal, re-
quires better than the existing, tested alterations in feature detec-
tion and matching in order to achieve acceptable accuracy in two-
dimensional multi-camera systems without resorting to a point-
light source in a dark room. 

Our future work involves designing an integrated variation 
of the calibration methods used in Bundler/VisualSFM, adapted 
for our planned multi-camera capture system. An extension to en-
able principal point estimation is also being considered. Alter-
nately, Zhang’s traditional checkerboard calibration method may 
be adapted, but significant improvements to autonomous execu-
tion speed are necessary for practical use. 
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