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ABSTRACT 

This thesis is devoted to the optimization of pacing strategies in two locomotive 

endurance sports; cross-country skiing and road cycling. It has been established that 

constant pace and variable power distributions are optimal if purely mechanical 

aspects of locomotion are considered in these sports. However, there is a lack of 

research that theoretically investigates optimal pacing for real world athletes who 

are constrained in their ability to generate power output through the bioenergetics 

of the human body. 

 

The aims of this thesis are to develop numerical pacing strategy optimization models 

and bioenergetic models for locomotive endurance sports and use these to assess 

objectives relevant in optimal pacing. These objectives include: Investigate the 

impact of hills, sharp course bends, ambient wind, and bioenergetic models on 

optimal pacing and assess the effect of optimal pacing strategies on performance.  

 

This thesis presents mathematical models for optimization of pacing strategies. 

These models are divided into mechanical locomotion, bioenergetic, and 

optimization models that are connected and programmed numerically. The 

locomotion and bioenergetic models in this thesis consist of differential equations 

and the optimization model is described by an iterative gradient-based routine. The 

mechanical model describes the relation between the power output generated by an 

athlete and his/her locomotion along a course profile, giving the finishing time. The 

bioenergetic model strives to mimic the human ability to generate power output. 

Therefore, the bioenergetic model is set to constrain the power output that is used 

in the mechanical locomotion model. The optimization routine strives to minimize 

the finishing time in the mechanical locomotion model by varying the distribution 

of power output along the course, still satisfying the constraints in the bioenergetic 

model. 

 

The studies contained within this thesis resulted in several important findings 

regarding the general application of pacing strategies in cross-country skiing and 

road cycling. It was shown that the constant pace strategy is not optimal if ambient 

conditions change over the course distance. However, variable power distributions 

were shown beneficial if they vary in parallel with course inclination and ambient 

winds to decrease variations in speed. Despite these power variations, speed 

variations were not eliminated for most variable ambient conditions. This relates to 

the athlete’s physiological restrictions and the effect of these are hard to predict 

without thorough modeling of bioenergetics and muscle fatigue. Furthermore, it 
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was shown that substantial differences in optimal power distributions were attained 

for various bioenergetic models. 

 

It was also shown that optimal braking and power output distributions for cycling 

on courses that involve sharp bends consisted of three or four phases, depending on 

the length of the course and the position of the bends. The four phases distinguished 

for reasonably long courses were a steady-state power phase, a rolling phase, a 

braking phase, and an all-out acceleration phase. It was also shown that positive 

pacing strategies are optimal on relatively long courses in road cycling where the 

supply of carbohydrates are limited. Finally, results indicated that optimal pacing 

may overlook the effect of some ambient conditions in favor of other more 

influential, mechanical or physiological, aspects of locomotion. 

 

In summary, the results showed that athletes benefit from adapting their power 

output with respect not only to changing course gradients and ambient winds, but 

also to their own physiological and biomechanical abilities, course length, and 

obstacles such as course bends. The results of this thesis also showed that the 

computed optimal pacing strategies were more beneficial for performance than a 

constant power distribution. In conclusion, this thesis demonstrates the feasibility of 

using numerical simulation and optimization to optimize pacing strategies in cross-

country skiing and road cycling. 

 

Keywords: Pacing strategy, optimization, numerical simulation, equations of 

motion, method of moving asymptotes, cross-country skiing, cycling 
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SAMMANDRAG 

Avhandlingen handlar om optimering av farthållningsstrategier inom 

längdskidåkning och landsvägscykling. Det finns ett utbrett stöd för att konstant fart 

och varierande effektfördelningar är optimala om endast mekaniska aspekter 

beaktas i dessa sporter. Ändå saknas teoretiska studier som undersöker optimal 

farthållning för verkliga idrottsutövare som är begränsade i sin förmåga att generera 

effekt genom kroppens bioenergetiska system. 

 

Målen med den här avhandlingen är att utveckla metoder för bioenergetik och 

optimering av farthållningsstrategier i uthållighetsidrott. Dessutom är målet att 

undersöka påverkan av backar, svängar, omgivande vind och bioenergetisk 

modellering på den optimala farthållningsstrategin samt att utreda potentialen till 

prestationsförbättring med optimala farthållningsstrategier. 

 

Avhandling presenterar matematiska modeller för optimering av 

farthållningsstrategier. Dessa modeller delas in i en mekanisk modell för 

förflyttning, en bioenergetisk modell och en optimeringsmodell. De mekaniska och 

bioenergetiska modellerna som presenteras i avhandlingen består av 

differentialekvation och optimeringsmodellen utgörs av en gradient-baserad 

algoritm. Den mekaniska modellen beskriver förhållandet mellan utövarens effekt 

och den resulterande rörelsen längs banan som ger tiden mellan start och mål. Den 

bioenergetiska modellen beskriver människokroppens olika energisystem och dess 

begränsningar att generera effekt. Den bioenergetiska modellen interagerar med 

optimeringsmodellen genom att utgöra dess begränsningar för vad den mänskliga 

kroppen klarar av. Sammanfattningsvis försöker optimeringsmodellen minimera 

tiden mellan start och mål i den mekaniska modellen genom att variera effekten 

längs banan. Samtidigt ser optimeringsmetoden till att denna effektfördelning inte 

kränker den bioenergetiska modellen. 

 

Studierna som ingår i avhandlingen resulterade i flera viktiga upptäckter om 

generella tillämpningar av farthållningsstrategier inom längdskidåkning och 

landsvägscykling. Det visade sig att konstant fart inte är optimalt om omgivande 

betingelser varierade längs banans sträckning. Däremot var varierande 

effektfördelning fördelaktig om den varierar parallellt med banlutning och 

omgivande vindpåverkan för att minska fartens variationer. Trots denna variation, 

visade resultaten att fartvariationerna inte eliminerades helt.  Detta har att göra med 

utövarens fysiologiska begränsningar, vars påverkan är svår att förutspå utan 

genomgående modellering av bioenergetik relaterat till muskeltrötthet. Dessutom 
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visade resultaten att olika bioenergetiska metoder gav upphov till betydande 

skillnader i de optimala farthållningsstrategierna.  

 

Resultaten i avhandlingen visade också att optimal effektfördelning vid 

kurvtagning i landsvägscykling innehåller tre eller fyra faser. The fyra faser som var 

utmärkande på relativt långa banor var en tröskelfas, en rullfas, en bromsfas och en 

maximal accelerationsfas. Resultaten visar också att positiv farthållning är optimal 

på relativt långa banor i landsvägscykling där tillgången på kolhydrater är 

begränsad. Samtidigt visade resultaten på optimala farthållningsstrategier ibland att 

inverkan av omgivande betingelser förbisågs till fördel för med inflytelserika 

betingelser som påverkar framdrivningen.  

 

Sammantaget visar resultaten i denna avhandling att utövare gagnas av att anpassa 

effekten med hänsyn till varierande terräng, omgivande vind, atletens egen 

fysiologiska och biomekaniska förmåga, banans längd och hinder såsom kurvor. 

Resultaten visar också att de optimala farthållningsstrategier med varierande 

effektfördelning som beräknats i denna avhandling förbättrar prestationen jämfört 

med konstanta effektfördelningar.  Sammanfattningsvis visar denna avhandling på 

möjligheterna att använda numerisk simulering och optimering för att optimera 

farthållningsstrategier i längdskidåkning och landsvägscykling. 

 

Nyckelord: Farthållningsstrategi, optimering, numerisk simulering, 

rörelseekvationer, method of moving asymptotes, längdskidåkning, cykling 
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ABBREVIATIONS 

2-D two-dimensional 

𝐴 projected frontal area 

𝐴1 cross-sectional area of the first compartment in a compartment 

model 

𝐴2 cross-sectional area of the second compartment in a compartment 

model 

𝐴𝐴𝐿  cross-sectional area of the alactic compartment in Margaria’s model 

and the M-M and M-M-S models 

𝐴𝐴𝑊𝐶   cross-sectional area of the anaerobic compartment in the CP model 

𝐴𝐶𝐻𝑂  cross-sectional area of the carbohydrate compartment in the M-M-S 

model 

𝐴𝐿  cross-sectional area of the lactic compartment in Margaria’s model 

and the M-M and M-M-S models 

𝐴𝑡𝑜𝑡  total amount of adenosines 

ADP adenosine diphosphate 

AMP adenosine monophosphate 

ATP adenosine triphosphate 

𝐴𝑊𝐶  anaerobic work capacity 

𝑎1, 𝑎2, 𝑎3 constants in the Hill equation  

𝑎𝑡𝑜𝑡  athlete’s total horizontal acceleration 

𝑎𝑡𝑜𝑡
𝑚𝑎𝑥  maximal horizontal acceleration attainable without slipping 

𝑎𝑠, �̈� athlete’s acceleration in the course direction 

𝑎𝑧  athlete’s acceleration in the 𝑧-direction 

𝐵 shape parameter for 𝜑 

BE I-VI bioenergetic models, see section 2 

𝐵𝐴𝐿   ventilation tube for the alactic compartment  

𝐵𝐿   ventilation tube for the lactic compartment 

𝑏1  static component of wheel bearing friction 

𝑏2  dynamic coefficient of wheel bearing friction 

𝐶𝐷 drag coefficient 

𝐶𝐷𝐴𝑆𝑆𝑃 drag area of a skier in the semi-squatting posture 

𝐶𝐷𝐴𝑈𝑅𝑃 drag area of a skier in the upright posture 

𝐶𝐷𝐴𝜑 continuous function of drag area with respect to 𝜑  

𝐶𝑅𝑅 coefficient of rolling resistance 

CLNW constant power simulation on 100 km course without ambient wind 

CLW  constant power simulation on 100 km course with ambient wind 

CSNW constant power simulation on 2 km course without ambient wind 

CSW  constant power simulation on 2 km course with ambient wind 
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𝐶𝑃  critical power 

CP model critical power model 

CPIE critical power model for intermittent exercise 

CPS constant power strategy 

𝐶𝑟  creatine 

𝐶𝑟𝑡𝑜𝑡  total amount of creatines 

𝑐  parameter determining the available energy of carbohydrates 

𝑐∞  straight course 

𝑐7.5  course with bend of 7.5 m turning radius 

𝑐10  course with bend of 10 m turning radius 

𝐷  number of equally spaced 𝑥-coordinates where the constraints were 

evaluated 

DH double hill course 

𝐸𝑒𝐴𝐷𝑃  energy equivalent of one mole ADP 

𝐸𝑒𝐴𝑇𝑃  energy equivalent of one mole ATP 

𝐸𝑒𝑃𝐶𝑟  energy equivalent of one mole PCr 

𝐹 net force 

𝐹𝐵𝑅 bearing friction force 

𝐹𝐷 drag force (air resistance) 

𝐹𝑔 gravity force 

𝐹𝑅𝑅 rolling resistance 

𝐹𝑠 propulsive force generated by the athlete 

𝐹𝑠
𝑚𝑎𝑥  maximal propulsive force generated by the athlete 

𝐹𝜇𝑘  kinetic frictional force 

𝐹𝜇𝑠  static frictional force 

𝑓(𝑥) equation for the course section, i.e. 𝑦 =  𝑓(𝑥) 

GNSS  global navigation satellite systems 

𝑔  acceleration of gravity (9.81 m·s-2) 

𝐻  height measure of compartment model 

𝐻+ hydrogen ion 

ℎ  parameter determining the available anaerobic work or alactic 

energy 

ℎ1  fluid height in the first compartment of a compartment model 

ℎ2 fluid height in the second compartment of a compartment model 

𝐼 mass moment of inertia of the bicycle wheels 

𝐽 number of optimization variables 

𝐾 number of distance steps for solving the motion equation 

𝐾1 - 𝐾10  dissociation constants of the alactic compounds in the M-M-S model 

𝐿  length of a tube connecting two fluid compartments 

𝑙  parameter determining the available lactic energy 
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𝑀𝐿  maximal lactic power 

𝑀𝑂  maximal oxidative power 

𝑀𝑃  initial maximal power output 

𝑀𝑅  maximal lactic replenishment power 

𝑀𝑔2+ magnesium ion 

M-M Margaria-Morton 

M-M-S Margaria-Morton-Sundström 

𝑚 total mass of the athlete and equipment 

𝑁  normal force between the athlete-equipment system and the ground 

𝑛 local coordinate normal to course direction  

ODE ordinary differential equation 

OLNW optimal power simulation on 100 km course without ambient wind 

OLW  optimal power simulation on 100 km course with ambient wind 

OSNW optimal power simulation on 2.0 km course without ambient wind 

OSW  optimal power simulation on 2.0 km course with ambient wind 

𝑃  power output 

�̅� maximal power output average  

𝑃𝐿   lactic power 

𝑃𝑚  maximal power output 

𝑃𝑚𝑖𝑛 global minimal power output for optimization problem formulation 

𝑃𝑚𝑎𝑥  global maximal power output for optimization problem formulation 

𝑃𝑂  aerobic power 

𝑃𝑅  lactic replenishment power 

PCr phosphocreatine 

𝑃𝐼 inorganic phosphate 

PSO I-VI pacing strategy optimization models, see section 2 

𝑝𝐻 − log10[𝐻
+] 

𝑄 number of intersections between 𝐶𝑃 and the power distribution 

QH quadruple hill course 

𝑅𝑒 Reynolds number  

𝑟𝐸𝐶𝐴𝐿   rate of energy conversion due to alactic degradation  

𝑟𝐸𝐶𝐶𝐻𝑂  rate of energy conversion due to carbohydrate oxidation 

𝑟𝐸𝐶𝐹𝐴𝑇   rate of energy conversion due to fat oxidation 

𝑟𝐸𝐶𝐹𝐴𝑇 ′  rate of energy conversion due to fat oxidation according to the 

modified Chenevière model 

𝑟𝐸𝐶𝐹𝐴𝑇1
𝑚𝑎𝑥   maximal rate of energy conversion due to fat oxidation at full 

carbohydrate stores 

𝑟𝐸𝐶𝐹𝐴𝑇2
𝑚𝑎𝑥   maximal rate of energy conversion due to fat oxidation at empty 

carbohydrate stores 

𝑟𝐸𝐶𝐿  rate of energy conversion due to sole anaerobic glycolysis 
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𝑟𝐸𝐶𝐿
𝑚𝑎𝑥   maximal rate of energy conversion due to sole anaerobic glycolysis 

𝑟𝐸𝐶𝑂
𝑚𝑎𝑥   maximal rate of energy conversion due to oxidative phosphorylation 

𝑟𝐸𝐶𝑅
𝑚𝑎𝑥   maximal rate of energy expenditure due to lactic replenishment 

𝑟𝐸𝐶𝑅  rate of energy conversion due to lactic replenishment 

𝑟𝐸𝐸 rate of energy expenditure 

𝑟𝐸𝐸0 𝑦-intercept of the physiological and biomechanical efficiency 

relationship 

𝑟𝐸𝐸0
𝑚𝑎𝑥 initial maximal rate of energy expenditure 

𝑟𝐸𝐸𝑚𝑓
𝑚𝑎𝑥 maximal rate of energy expenditure due to muscle fatigue 

𝑟𝑛 course curvature radius in the vertical plane 

𝑟𝑡  tube radius in a compartment model 

𝑟𝑤 wheel radius 

𝑟𝑧  course curvature radius in the horizontal plane 

SP  single plateau course 

𝑠 local coordinate tangential to course direction 

𝑇 finishing time (time between start and finish) 

TTE  time to exhaustion 

𝑡  time 

𝑢 resulting wind speed  

�̇�  volumetric flow rate 

�̇�𝑚𝑎𝑥 maximal flow through a tube connecting two compartments 

𝑉𝑚 active muscle volume 

�̇�𝑂2  volumetric rate of oxygen consumption 

�̇�𝑂2𝑚𝑎𝑥 maximal volumetric rate of oxygen consumption  

𝑣, �̇� athlete´s ground speed in the course direction 

𝑣𝑙𝑖𝑚 limit speed where 휂𝐺𝐸 is reduced to the half 

𝑣𝑚𝑎𝑥  maximal speed attainable without slippage due to normal 

acceleration  

𝑤 ambient wind speed 

𝑥 global horizontal coordinate of the course profile 

𝑦 global vertical coordinate  

𝑧  global horizontal coordinate normal to the 𝑥- and 𝑦-coordinates 

 

𝛼 course incline 

𝛽 resulting wind’s yaw angle 

𝛾  ambient wind angle 

∆ℎ𝑚𝑎𝑥 maximal attainable difference between ℎ1 and ℎ2 

Δ𝑝 pressure difference between the ends of a tube 

𝛿1 dilatation parameter of the fat oxidation relationship (𝑟𝐸𝐶𝐹𝐴𝑇 ′) for 

full carbohydrate stores 
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𝛿2 dilatation parameter of the fat oxidation relationship (𝑟𝐸𝐶𝐹𝐴𝑇 ′) for 

empty carbohydrate stores 

휀 function dependent on adenosine concentrations in the alactic 

compound model 

휁 bearing angle of locomotion 

휂𝐺𝐸 gross efficiency 

휂𝑃𝐵 slope of the physiological and biomechanical efficiency relationship 

휂𝑡𝑟 transmission efficiency of the bicycle  

휃  geometrical constant in the M-M and M-M-S model 

𝜅𝑡, 𝜅𝑑, 𝜅𝑚, 𝜅𝑐 constants in the alactic compound model 

Λ 
𝑑𝑡

𝑑𝑥
 

𝜆  geometrical constant in the M-M and M-M-S model 

𝜇𝑘 kinetic friction coefficient 

𝜇𝑠  static friction coefficient 

𝜇𝑣𝑖𝑠  dynamic viscosity of a fluid 

𝜈𝑣𝑖𝑠 kinematic viscosity of a fluid 

𝜉  geometrical constant in the M-M-S model 

𝜌 air density 

𝜌𝑓𝑙 fluid density in a compartment model 

𝜎1 symmetry parameter of the fat oxidation relationship (𝑟𝐸𝐶𝐹𝐴𝑇′) for 

full carbohydrate stores 

𝜎2 symmetry parameter of the fat oxidation relationship (𝑟𝐸𝐶𝐹𝐴𝑇′) for 

empty carbohydrate stores  

𝜏1 translation parameter of the fat oxidation relationship (𝑟𝐸𝐶𝐹𝐴𝑇′) for 

full carbohydrate stores 

𝜏2 translation parameter of the fat oxidation relationship (𝑟𝐸𝐶𝐹𝐴𝑇′) for 

empty carbohydrate stores 

𝜑 reducing function dependent on athlete’s speed for gross mechanical 

efficiency and drag area 

𝜙  geometrical constant in the M-M and M-M-S model 

 

Each single dot over the parameter denotes a differentiation by time, and square 

brackets applied to any chemical substance denote molar concentration of that 

substance. Vectors are denoted in bold typeface. 
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1. INTRODUCTION 

In this thesis, the locomotive endurance sports cross-country skiing and road cycling 

are studied. Cross-country skiing is studied because of its locomotive nature and as 

a continuation of previous studies of the author’s research group. Furthermore, road 

cycling is studied because of the author’s own interest and active career in the sport. 

Road cycling is also a suitable field of study considering the rigorous scientific 

literature available, in which the subject areas of locomotion simulation and pacing 

strategy optimization are most important to this thesis. Since the present thesis work 

is preceded by the work in a licentiate thesis (Sundström, 2013), many of the 

approaches and theories described in the present doctoral thesis were at least in part 

described in the author’s licentiate thesis. 

 

1.1 Demands of locomotive endurance sports  

In locomotive sports like cross-country skiing and road cycling, there are both mass 

start races and individual start races, called time-trials in road cycling. Individual 

start races minimize the interaction with other competitors while mass start races 

often involve drafting and the corresponding tactical context. The winner in both 

types of competition is the one travelling the set distance in less time than the other 

competitors. Therefore, the most usual performance measure in endurance sports is 

the duration of travel between start and finish on the race course (finishing time). 

Thus, the ability to travel at a high average speed for the course distance is a decisive 

property among endurance athletes. According to the mechanics of locomotion 

(described in more detail in section 3), average speed depends on a variety of forces 

that may be formally represented as propulsive and resistive forces. Resistive forces 

may be friction, rolling resistance, air drag, and gravity. However, for downhill and 

tailwind locomotion, air drag and gravity correspondingly can act to propel the 

athlete along with other propulsive forces that the athlete might generate. The ability 

to generate propulsive forces at speed is referred to as the power output, which is 

the scalar product of propulsive forces and velocity. Therefore, high locomotive 

speeds are characterized by high propulsive powers and low restricting forces. The 

athlete’s ability to generate propulsive power output can be trained through various 

types of physical exercises and will both improve the magnitude of power output 

that can be maintained and the duration for which that power can be sustained 

(endurance). These abilities stem from the human body and they are generally 

studied in the fields of human exercise physiology and biomechanics.  
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Figure 1.  Schematic of the pacing strategy or power distribution role in a physiological 

and mechanical performance model for endurance sports. This illustration is 

based on the work of Joyner and Coyle (2008).  

 

Athletes generate power output using coordinated muscle contractions. These 

contractions rely on several processes that operate in parallel to satisfy the energy 

requirements of each muscle. Some of these processes, anaerobic ones, do not rely 

on the availability of oxygen and are specialized in short bursts of high intensity 

work, while other processes, aerobic ones, rely on oxygen delivery and operate to 

maintain sufficient energy availability for prolonged endurance exercise at lower 

intensity (section 4.1). In endurance sports, aerobic ability is a key property in 

keeping a high average speed throughout the course distance. However, anaerobic 

capacity is also very important for shorter courses and in situations where exercise 

intensity varies substantially. Gastin (2001) reported that aerobic contribution to 

total energy requirements averaged 6% for the first 10 s of maximal work rate, while 

a duration of 180 s resulted in an aerobic contribution of 79%. The remainder of the 

energy requirements were of course supplied by the anaerobic processes and it is 

evident that higher relative aerobic contributions are realized in prolonged exercise. 

Therefore, the measurable aerobic property called the maximal oxygen consumption 
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rate (�̇�𝑂2𝑚𝑎𝑥), is identified as a marker of performance in endurance sports 

(Robinson et al., 1937). Furthermore, according to Joyner and Coyle (2008), lactate 

threshold and gross efficiency are also major determinants of endurance sports 

performance. The lactate threshold is the highest oxygen consumption rate 

attainable that is still equivalent to steady state lactate production, and efficiency is 

the ratio between work and energy expenditure. Another performance element is 

the pacing strategy that is further discussed in section 1.4 and contextualized in 

Figure 1. This illustration shows a schematic  performance model based on the work 

of Joyner and Coyle (2008). It describes physiological and mechanical properties 

together with pacing strategy or power distribution.  

 

1.2 Locomotion simulation and performance prediction 

Understanding the locomotion of athletes is key to the proper analysis of endurance 

sports performance. Di Prampero et al. (1979) introduced a motion equation for 

cycling after analyzing the towing of a cyclist at constant speed on a flat track. The 

force-speed relationship that was reconstructed with the help of data fitting consists 

of two terms: one independent of speed and one that depends on the square of 

speed. The first term was identified as rolling resistance and the second as the 

aerodynamic drag. Olds et al. (1993) introduced the gravity and inertia related terms 

into the equation for energy requirement in cycling. Olds et al. (1993) considered 

only constant acceleration and steady speed in their modeling. Further developing 

the mechanical model of cycling, Martin et al. (1998) introduced transmission 

efficiency and bearing friction. The model expressions relating power output to 

speed were also validated by experiments performed in real outdoor circumstances 

with power output measured at the cranks. Because the model of Martin et al. (1998) 

is thoroughly validated, it has been applied in many succeeding studies on road 

cycling performance (Dahmen and Saupe, 2011, Wells et al., 2013, Dahmen and 

Saupe, 2015) including revised and transformed versions in Papers II-IV and VI.  

 

In cross-country skiing, external forces acting on the athletes and their equipment 

are not the same as in cycling. There is of course no rolling resistance, no bearing 

resistance, and no transmission efficiency in the same sense as in cycling. Instead, 

biomechanical efficiency is likely to be more important and the glide friction 

between skis and snow provides a considerable resistance to the gliding (Moxnes 

and Hausken, 2008). Carlsson et al. (2011) introduced a numerical simulation model 

that solves the motion equations for cross-country skiing. By simulating athletes of 

different sizes and scaling their power output by allometric relationships, general 

conclusions of body mass’ and course profile’s effect on performance were 

investigated. Furthermore, Moxnes et al. (2013) simulated cross-country skiing on 

varying terrain and compared the simulation results to on-snow experiments. The 
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simulation model showed a good fit to experiments and therefore might be used for 

determining relative performance benefits when various factors change. A similar 

simulation model in cross-country skiing was introduced, in which the power 

output was expressed as a function of speed (Moxnes et al., 2014). In the same study, 

the simulation model was also subject to a sensitivity analysis that investigated the 

effect of different parameters on performance. 

 

1.3 Mathematical modeling of bioenergetics 

Monod and Sherrer (1965) introduced a simplified two-parameter model on fatigue 

in endurance exercise. This model consists of a constant work rate that is related to 

the athlete’s aerobic properties and a constant work capacity that is related to the 

anaerobic properties. 

 

Margaria (1976) was the first to introduce a whole body three compartment model 

to theoretically describe the energetic processes during muscular exercise. Further 

developments by Morton includes the questioning of Margaria’s model (Morton, 

1985, Morton, 1986a), the fundamental generalization of the model (Morton, 1986b), 

specification of its specific geometrical parameters, and the development of maximal 

power constraints (Morton, 1990). Additionally, Behncke further developed the 

three compartment model by introducing a shift between carbohydrate and fat 

oxidation and coupling the carbohydrate level to the glycolysis and lactate 

production. None of these models use empirical findings on substrate utilization to 

model separate rates of energy conversion from fats and carbohydrates. Also, none 

of these models include appropriate efficiency modeling or energy expenditure 

constraints based on empirical findings of the underlying mechanisms of muscle 

fatigue.  

 

1.4 Pacing strategy 

Pacing strategy in locomotive sports may be defined as the athlete’s conscious 

variation of speed along the course distance. Sometimes the terms pacing strategy 

and power output distribution are used interchangeably and although these 

concepts are strongly related, they are interpreted separately in this thesis. The 

relation between power output and speed makes it possible to adopt a pacing 

strategy by performing the corresponding distribution of power output. The relation 

between power and speed can be expressed mathematically as a motion equation. If 

the event is performed at a maximal power output throughout, it is usually termed 

an all-out strategy. Using an all-out strategy on a short course with a standstill start 

and high inertia, the power distribution will obviously be high initially and decrease 

towards the cessation of the exercise. Simultaneously, speed will increase 
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throughout this short exercise. With this reasoning, it is clear that a high power start 

is not necessarily equivalent to a fast start due to inertia or other mechanical 

constructs such as gravity or various resistive forces. Gradually decreasing speed 

throughout the duration of the event is termed positive pacing, while gradually 

increasing speed is referred to as a negative pacing strategy (Abbiss and Laursen, 

2008). The adoption of a more or less constant speed may be termed a constant or 

even pacing strategy. In contrast to a constant pacing strategy, variable pacing 

strategies involve substantial variations in speed, although many authors define 

variable pacing as a variable power distribution. For clarity, variable power 

strategies are termed variable power distributions in this thesis. This may be further 

conceptualized in cross-country skiing where substantial differences in efficiency 

between gears have been observed (Ainegren et al., 2013). This results in different 

rates of energy expenditure for the same mechanical power output in various gears. 

Therefore, it might be more intuitive to use energy expenditure distributions instead 

of power distributions in cross-country skiing.  

 

For performance enhancement, optimal pacing strategies aim to vary speed to 

minimize the time between start and finish. Accordingly, an optimal power 

distribution varies power output to minimize the finishing time. Furthermore, due 

to the restrictions on power output that athletes realize, the optimization of pacing 

strategies is a constrained optimization problem.  

 

To my knowledge the first study investigating pacing in sports was conducted on 

bipeds’ and quadrupeds’ locomotion more than 100 years ago and suggests that 

constant pace is optimal (Kennelly, 1906). This suggestion is based on the inverse 

polynomial relation between speed and world record times at the time, speculating 

that intervals with a speed higher than average cannot make up for the time lost in 

preceding periods of lower than average speed. This theory was later supported by 

a number of studies in running and cycling (Robinson et al., 1958, Foster et al., 1993, 

Atkinson et al., 2003). However, it was later shown that the optimal pacing strategy 

in cycling adapts to ambient conditions when external forces change (Swain, 1997, 

Atkinson and Brunskill, 2000, Atkinson et al., 2007, Cangley et al., 2011, Boswell, 

2012).  

 

By varying power in sync with ambient forces, Swain (1997) showed that variable 

power strategies are beneficial in variable terrain and ambient wind conditions in a 

numerical simulation of time-trial cycling. This variable power strategy was also 

shown to induce lower physiological stress, compared to self-paced strategies on a 

16.1 km time-trial experiment (Atkinson and Brunskill, 2000). Atkinson et al. (2007) 

conducted a similar study but with the mechanical model of Martin et al. (1998) and 
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confirmed the findings of Swain (1997) regarding variable power strategies in road 

cycling time-trials. But these predictions showed greater gains than Swain (1997) for 

varying power in wind and in variable terrain. Atkinson et al. (2007) concluded that 

this was related to the differences in mechanical models between the two studies. 

However, more time is spent in uphill and headwind compared to downhill and 

tailwind, even though power is varied to reduce this effect. So, in accordance with 

Swain (1997), power has to be compensated in either uphill/headwind or 

downhill/tailwind to accomplish constant average power or work in every 

simulation. Therefore, the lack of such compensation in the study of Atkinson et al. 

(2007) may also result in these greater time gains. Furthermore, these studies did not 

account for inertia, which explains why high power starts are optimal (de Koning et 

al., 1999). In addition, de Koning et al. (1999) also concluded that all-out power 

distribution is optimal in a 1000 m track cycling time-trial, while the 4000 m time-

trial benefits from a high power start followed by constant power to the finish line. 

This requires, of course, a flat track with no ambient wind. 

 

By using a mechanical multibody model of a bicycle and rider, Cangley et al. (2011) 

optimized the pacing strategy for a 4000 m road cycling time-trial with variable 

terrain. They used an average power constraint and a constraint on the power 

variability. Furthermore, they validated the optimal results by comparing 

experimental results on riders performing constant power and the calculated 

optimal power distribution. Normalized times were on average 2.9% faster for the 

optimal power distribution compared to the constant power trials.  

 

Boswell (2012) showed that previous simulation models in road cycling (Swain, 

1997, Atkinson et al., 2007) were underestimating the finishing times by excluding 

the inertial effect. This has a substantial impact when speed fluctuates extensively 

and therefore affects speed in the initial acceleration phase, when the course gradient 

is changing, and when decelerations are imposed due to sharp course bends, for 

instance. Moreover, Wells et al. (2013) confirmed that a high power start is beneficial 

in time-trial road cycling, through studying variable power distributions on flat 

courses with no ambient wind. 

 

Investigating the effect of various idealized power distributions (Abbiss and 

Laursen, 2008), Underwood and Jermy (2014) simulated the track cycling pursuit 

from experimentally obtained work outputs. Among these constant work 

simulations, the power strategies involving an all-out start followed by constant or 

variable power resulted in the fastest finishing time for most of the studied athletes. 

This partly confirms the findings of de Koning et al. (1999). In the simulation model 
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of Underwood and Jermy (2014), the mechanics of the course bends were considered 

and therefore variable power distributions were synchronized with course bends.  

 

Maroński (1994) pioneered the use of calculus of variations and optimal control 

theory to optimize the pacing strategy in cycling. He proved mathematically that 

optimal speed was constant for travelling a set course in a set time, regardless of 

course profile. Furthermore, he showed that the same solution of constant speed was 

applicable to the problem of minimal time traveling a set distance with fixed work. 

By applying a circular course with constant wind direction relative to the course, 

Maroński (1994) also calculated the optimal pacing strategy for variable winds. 

However, because of the lack of experimental data on the drag areas dependence on 

the yaw angle, constant drag area was considered. In addition to this limitation, the 

study of Maroński (1994) did not incorporate any physiological modeling into the 

optimization, implying that the derived solutions are purely mechanical effects of 

optimal pacing.  

 

Gordon (2005) introduced the constrained mathematical optimization of pacing 

strategy by using a simplified simulation model that neglected inertia but used the 

3-parameter critical power model (Morton, 1996) to simulate exertion of the rider in 

road cycling. Gordon (2005) confirmed the findings of Swain (1997) that variable 

power distribution is optimal for road cycling in varying terrain. However, he also 

concluded that there is no benefit to varying power in response to changes in 

ambient wind despite that time gains, albeit small, were achieved in the variable 

power simulations. 

 

By using an optimal control algorithm and the simulation model of Martin et al. 

(1998), Dahmen (2012b) performed optimization of the pacing strategy on a fictional 

2000 m course profile in road cycling. Three different bioenergetic constraint models 

were evaluated, including the 3-parameter critical power model (Morton, 1996) and 

a more realistic 6-parameter model. Furthering the methodological development of 

pacing strategy optimization, Dahmen (2012a) introduced a new approach by 

calculating a field of optimal power distributions. As uncertainty always applies to 

some of the parameters in the simulation models, this field of power distributions 

might work as a precaution for the rider if any parameter alters from the ideal value. 

 

In the experimental study of Andersson et al. (2010), a cross-country sprint skiing 

time-trial was investigated in the field with a differential global navigation satellite 

system on a homologated 1425 m course consisting of two identical laps. 

Participants opted for an overall positive pacing strategy, which implies that the first 

lap was run faster than the second lap. In detail, uphill and downhill sections were 
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faster in the first lap while the flat sections were run faster in the second lap. This 

may be because the flat sections appeared in the onset and end of each lap meaning 

that the initial acceleration and the end spurt might have greatly influenced the 

measured pacing pattern on the flat. Furthermore, Formenti et al. (2015) studied 

cross-country skiing in a 10 km simulated race where participants opted for a 

reverse J-shaped pacing strategy.  

 

1.5 Aims 

The general purpose of this thesis is to further the scientific knowledge of optimal 

pacing and ultimately support athletes in their strategical mindsets regarding pacing 

in locomotive endurance sports. To accomplish this purpose three aims are 

formulated in the field of pacing strategy optimization for locomotive endurance 

sports. These overall aims are to: 

 

a) Develop numerical models for optimization of the pacing strategy in 

cross-country skiing and time-trial road cycling, 

 

b) Develop more comprehensive bioenergetic models that are suitable for 

pacing strategy optimizations,  

 

c) Apply numerical optimization modeling to assess objectives related to 

pacing strategy optimization. These objectives are to:  

(i) Assess the effect of hills on optimal pacing.  

(ii) Investigate the impact of sharp course bends on optimal pacing.  

(iii) Investigate the impact of ambient wind with changing direction 

on optimal pacing. 

(iv) Assess various bioenergetic models’ effect on the results in 

pacing strategy optimization. 

(v) Assess the effect of optimal pacing strategies on performance.  

 

These objectives are further discretized into more explicit research 

questions for each paper. These questions include: 

 

(i) Paper I: How should power output and speed be distributed to 

optimize performance on a homologated cross-country skiing 

sprint course of 1425 m? 

 

Paper II: How do different hill set-ups with equal accumulated 

elevations affect optimal pacing on a 2000 m course in non-

drafted road cycling? 
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(ii) Paper IV: How should power output and speed be distributed 

on a 1000 m flat course with one sharp course bend to optimize 

performance in non-drafted road cycling?  

How does course bend and the corresponding racing line affect 

performance in non-drafted road cycling on a 1000 m flat 

course? 

 

(iii) Paper VI: How should energy expenditure rate and speed be 

distributed to optimize performance in non-drafted road 

cycling of 2 km and 100 km when ambient wind direction is 

changing relative to the direction of travel and when there is no 

ambient wind? 

 

(iv) Paper III: What are the differences in performance and optimal 

power distribution between the critical power model for 

intermittent exercise, the Margaria-Morton model, and a 

constant power strategy on a 2000 m hilly course in non-drafted 

road cycling? 

 

Paper VI: What are the performance differences between an 

optimized pacing strategy and a constant power strategy when 

constrained by the Margaria-Morton-Sundström model? 

 

(v) Papers I, II, III, and VI: How large is the performance 

enhancement from an optimal pacing strategy compared to a 

constant power strategy under the assumptions adhering to 

each paper? 

 

Papers I, II, III, IV, and VI are all responsible to attain aim a), while Paper V is 

completely designated to aim b). 
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2. OUTLINE OF PACING STRATEGY OPTIMIZATION 
MODELS FOR LOCOMOTIVE ENDURANCE SPORTS 

Papers I-IV and VI deal with pacing strategy optimization and each of these papers 

includes certain models for pacing strategy optimization. Paper V, on the other 

hand, includes models on exercise bioenergetics that may be used in pacing strategy 

optimization. For simplicity, corresponding pacing strategy optimization models 

are referred to using the abbreviation PSO, and each bioenergetic model is BE. Each 

abbreviation is followed by the Roman numeral corresponding to the appended 

paper (e.g. PSO I corresponds to the pacing strategy optimization model in Paper I). 

In Papers III and VI there are several bioenergetic models and therefore a 

complimentary lower case letter is added at the end of the model name to refer to 

each of these.  

 

Each pacing strategy optimization model (PSO) consists of three integrated sub-

models; the mechanical locomotion model, the bioenergetic model (BE), and the 

optimization model. The locomotion and bioenergetic models in this thesis consist 

of systems of first-order ordinary differential equations (ODEs) and the optimization 

model is described by an iterative gradient-based routine. The mechanical model 

(section 3) describes the relationship between the power output generated by an 

athlete and his/her locomotion along a cubic spline course profile, giving the 

finishing time. The bioenergetic model (section 4) strives to mimic the human ability 

to generate power output and the occurrence of fatigue. Therefore, the bioenergetic 

model is set to constrain the power output that is used in the mechanical locomotion 

model to avoid exhaustion. The equations of the locomotion and bioenergetic 

models are solved using numerical differential equation solvers (section 5). The 

optimization routine (section 6 and 7) strives to minimize the finishing time in the 

mechanical locomotion model by varying the distribution of power output along the 

course, still satisfying the constraints in the bioenergetic model. 

 

All models are mathematical and are programmed using the MATLAB® software. 

Tables 1 and 2 present the main features of the PSO and BE models respectively, 

together with the indication on the number of variables and parameters involved, 

and the solvers used to treat the ODEs for finding corresponding solutions to the 

modeling equations. All PSO models used the method of moving asymptotes 

(MMA, section 6.2.4) (Svanberg, 1987, Svanberg, 1993) as optimization routine. 

 

These models are introduced to accomplish the aims of this thesis and to answer the 

research questions in section 1.5. Aims a) and b) are of course accomplished through 

the development of the PSO and BE models respectively, which are presented in this 
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thesis. Furthermore, the research questions of aim c) are answered by implementing 

the corresponding PSO models adhering to the paper in which the research question 

is addressed. The treatment of these research questions rely on assumptions 

regarding the parameters required in the PSO models (i.e. course profile, athlete’s 

mechanical and physiological properties). This means that the results of these 

studies are specific to certain circumstances and athletes. Therefore, conclusions 

drawn from these results cannot be universal. However, if representative 

parameters are applied, it is conceivable to assume that the calculated results are 

characteristic examples, which may indicate that the nature of the solution might not 

deviate substantially for similar parameter settings. Therefore, considering that the 

vast majority of parameters do not vary much in real-world settings, general 

conclusions might be drawn if changes in the parameters with the greatest variation 

span is considered. 

 
Table 1.  Main features of the pacing strategy optimization models presented in this 

thesis. 

Model Sport 
Course 
length 

Number of 
variables 

ODE solver 
Obstacle/Object 

investigated 

PSO I 
XC 

skiing 
1425 m 75 

Runge-Kutta-
Fehlberg 

Real sprint course 

PSO II 
Road 

cycling 
2000 m 80 

Runge-Kutta-
Fehlberg 

Hills 

PSO III 
Road 

cycling 
2000 m 81 

4th order 
Runge-Kutta 

Various bioenergetic 
models on hilly course 

PSO IV 
Road 

cycling 
1000 m 81 

4th order 
Runge-Kutta 

Course bends 

PSO VI 
Road 

cycling 
2000 m 
100 km 

1* or 81 
Runge-Kutta-

Fehlberg 
Ambient wind 

Note: *One optimization variable was used to assess constant power distribution. 
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Table 2.  Main features of the bioenergetic models presented in this thesis. 

Model 
Conventional 

name 

Number of 
dependent 
variables 

Number of 
parameters 

Comment 

BE I 
Average 
power 

1 1 
The total average power output 
was restricted by a constant value 

BE II 

Critical 
power for 

intermittent 
exercise 

1 2 
A single compartment model with 
constant anaerobic work and 
critical power 

BE III a 
Constant 

power 
0 1 

Pure mechanical simulation of 
constant power output 
No real constraint 

BE III b 

Critical 
power for 

intermittent 
exercise 

1 2 Same as BE II 

BE III c 
Margaria-

Morton 
2 10 

A three compartment model 
including a lactic fatigue constraint 
on the maximal power output 

BE IV 
Margaria-

Morton 
2 10 

Same as BE III c except for the 
fatigue constraint which was offset 
to allow full employment of the 
compartments 

BE V 
Margaria-
Morton-

Sundström 
3 43 

A four compartment model 
including a maximal power 
constraint dependent on the 
inorganic phosphate concentration 

BE VI a 
Margaria-
Morton-

Sundström 
3 40 

Constant power 
Same as BE V except for the 
propulsive force constraint 
 

BE VI b 
Margaria-
Morton-

Sundström 
3 43 Same as BE V 

Note: Power or energy expenditure rate are independent variables. 
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3. MECHANICS OF LOCOMOTION 

Classical mechanics is a subfield of the science of mechanics. It constitutes of a set of 

physical laws describing the motion of bodies under action of forces and uses 

systems of mathematical equations to describe static and dynamic events. Some 

early efforts in classical mechanics were carried out by Galileo Galilei (1564 – 1642), 

Tycho Brahe (1546 – 1601) and Johannes Kepler (1571 – 1630). However, potentially 

the greatest contributions to classical mechanics were probably made in parallel by 

Gottfried Wilhelm Leibniz (1646 – 1716) and Isaac Newton (1643 – 1727). The later 

published his work in Philosophiæ Naturalis Principia Mathematica, where the law of 

gravity and the three laws of motion are postulated.  

 

In contrast to quantum mechanics, classical mechanics assumes Galilean relativity, 

meaning time is considered to be absolute. Classical mechanics also assumes 

Euclidean geometry, which is a good approximation to the properties of physical 

space when the gravitational field is weak. These principals lay in the foundation of 

the mechanical simulation models presented in this thesis. The laws of classical 

mechanics are applicable to macroscopic bodies which are not travelling at speeds 

near the speed of light.  

 

3.1  Kinematics 

In all PSO models, the athlete and his/her equipment is obliged to follow the course 

that is set up for each model. The course profile is described by a 2-D profile 

consisting of a connected chain of cubical splines in Cartesian coordinates (𝑥, 𝑦), see 

Figures 2 and 3. This relationship is expressed as: 

 

𝑦 = 𝑓(𝑥), (1) 

 

where 𝑓 represents the cubical relationships of the spline functions connecting the 

vertical coordinates (𝑦) to the horizontal coordinates (𝑥). In PSO IV, the course 

bearing angle is also described by connected cubical splines, but in the horizontal 

plane only. The advantage of cubical splines is the fact that both the first and second 

derivatives of the relative coordinates are continuous, which also means that the 

inclination angle (𝛼) and curvature radii in the vertical and horizontal planes 

(𝑟𝑛 𝑎𝑛𝑑 𝑟𝑧) are all available for all points from start to finish in the course profile. The 

course inclination angle is expressed as: 

 

𝛼 = tan−1 (
𝑑𝑦

𝑑𝑥
). (2) 
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Figure 2.  Free body diagram of a cross-country skier and an arbitrary course section 

(𝑓(𝑥)) with local (𝑠, 𝑛)  and global (𝑥, 𝑦, 𝑧)  coordinates, inclination angle (𝛼), 

and curvature radius (𝑟𝑛). Forces acting on the athlete were the propulsive force 

(𝐹𝑠), the gravitational force (𝐹𝑔), the normal force (𝑁), the drag force (𝐹𝐷), and 

the glide friction (𝐹𝐵𝑅). Note: The athlete and equipment were considered as a 

point-mass travelling along the course profile. 

 

Furthermore, the curvature radius in the vertical plane is expressed as: 

  

𝑟𝑛 =
[1+(

𝑑𝑦

𝑑𝑥
)
2
]

3 2⁄

𝑑2𝑦

𝑑𝑥2

. (3) 

 

The conversion in speed and acceleration from local coordinates (𝑠) to global 

directions (𝑥) were made with the following geometrical conversion equations: 

 

�̇� = �̇� cos 𝛼 = 𝑣 cos 𝛼, (4) 

 

�̈� = �̈� cos 𝛼 = 𝑎𝑠 cos 𝛼, (5) 
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where each single dot over the parameter denotes a differentiation by time, 𝑣 is the 

tangential speed, and 𝑎𝑠 is the linear acceleration in the direction of locomotion 

tangential to the course profile. Scalar calculus is used throughout this thesis and 

therefore the scalar part of velocity is used in the mathematical description. For the 

modeling purposes, the athlete’s center of mass is set to follow the connected splines 

associated with both the course profile and, if applicable, the bearing angle splines. 

 

   
Figure 3.  Free body diagram of a road bicycle rider and an arbitrary course section (𝑓(𝑥)) 

with local (𝑠, 𝑛)  and global (𝑥, 𝑦, 𝑧)  coordinates, inclination angle (𝛼), and 

curvature radius (𝑟𝑛). Forces acting on the athlete were the propulsive force (𝐹𝑠), 

the gravitational force (𝐹𝑔), the normal force (𝑁), the drag force (𝐹𝐷), the rolling 

resistance (𝐹𝑅𝑅), and the bearing resistance (𝐹𝐵𝑅). Note: The rider, bicycle and 

all equipment were considered as a point-mass travelling along the course 

profile. 

 

3.2 Kinetics 

According to Newton’s second law, the acceleration of a body is parallel and 

proportional to the force acting on the body and is inversely proportional to the mass 

of the body. Mathematically, it is expressed as: 
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𝐹 = 𝑚 ∙ 𝑎𝑠 (6) 

 

where 𝐹 is the net force acting on the body and 𝑚 is the mass of the body. If only the 

linear acceleration is accounted for, this is a correct description. However, in PSO II-

IV and VI, the angular acceleration of the spinning wheels is accounted for as well 

and thus an extended version of equation (6) is to be used. Hence, the equation can 

be rewritten as: 

 

𝐹 = (𝑚 +
𝐼

𝑟𝑤
2) 𝑎𝑠 (7) 

 

where 𝐼 is the total mass moment of inertia of the wheels and 𝑟𝑤 is the wheel radius. 

The net force is the sum of the propulsive force and all the resistive forces acting to 

restrict motion.  

 

3.2.1 Propulsive force 

The propulsive force (𝐹𝑠) for skiing is expressed as: 

 

𝐹𝑠 =
𝑃

𝑣
 (8) 

 

where 𝑃 is the power output corresponding to the product of force and velocity 

generated in the direction of locomotion (Figure 2). The gross power output may 

also comprise the work done in the lateral direction, which may be substantial, not 

least in the skating technique. However, this lateral motion was not modeled in 

Paper I. Furthermore, the propulsive force (𝐹𝑠) for cycling (Figure 3) is expressed as: 

 

𝐹𝑠 =
𝑃∙ 𝑡𝑟

𝑣
 (9) 

 

where 𝑃 is the propulsive power output generated by the rider at the pedals and 휂𝑡𝑟 

is the mechanical efficiency of the bicycle’s transmission.  

 

3.2.2 Gravity 

The gravitational force is parallel and proportional to the acceleration of gravity 

which is directed to the center of the earth. The acceleration of gravity is considered 

to be constant for the area of interest in all simulation models and it is always acting 

downward in a vertical direction (negative 𝑦-direction). The gravitational force can 

therefore be expressed as: 

 

𝐹𝑔 = 𝑚 ∙ 𝑔 (10) 
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where 𝑔 is the acceleration of gravity.  

 

3.2.3 Ground reaction force 

Changes in the course inclination angle (𝛼) alter the ground reaction force, here 

referred to as the normal force (𝑁). This force between the ground surface and the 

means of locomotion (Figures 2 and 3) can be expressed as: 

 

𝑁 = 𝑚(𝑔 cos 𝛼 +
𝑣2

𝑟𝑛
) (11) 

 

where 𝑟𝑛 is the course curvature radius in the vertical (𝑥-𝑦) plane. 

 

3.2.4 Aerodynamics 

A reasonable approximation of the aerodynamic drag exerted on a blunt body 

travelling in a static fluid can be calculated by the equation: 

 

𝐹𝐷 =
1

2
𝐶𝐷𝐴 ∙ 𝜌 ∙ 𝑣

2  (12) 

 

where 𝐶𝐷 is the drag coefficient, 𝐴 is the projected frontal area and 𝜌 is the air density. 

This was the equation used for the aerodynamic drag force in PSO I-IV. The 

applicability of this equation fails when speeds are low, i.e. at low Reynolds numbers 

(𝑅𝑒 < ~1000), because of the relatively larger impact of skin friction. At the starting 

speed (minimal speed) of the slowest starting model (PSO VI), the Reynold’s number 

was about 𝑅𝑒 ≈ 60 000. 

 

Drafting is not considered in any of the models presented in this thesis. However, 

ambient wind velocity is the subject of evaluation in PSO VI. Ambient wind velocity 

affects the aerodynamic drag and thereby the locomotion of an endurance athlete. 

Variable strong winds are common in road cycling races located in open areas and 

therefore both the magnitude and the direction of ambient wind velocities are 

important. To account for variable wind conditions in PSO VI, the aerodynamic drag 

force in the direction of travel was expressed as: 

 

𝐹𝐷 =
1

2
𝐶𝐷𝐴 ∙ 𝜌 ∙ 𝑢

2 cos 𝛽  =
1

2
𝐶𝐷𝐴 ∙ 𝜌 ∙ 𝑢(𝑣 + 𝑤 cos 𝛾) =

1

2
𝐶𝐷𝐴 ∙ 𝜌[(𝑣 + 𝑤 cos 𝛾)

2 +

(𝑤 sin 𝛾)2]
1

2 (𝑣 + 𝑤 cos 𝛾)  (13) 

  

where 𝑤 is the ambient wind speed, 𝛾 is the ambient wind angle and 𝑢 is the 

resulting wind speed, see Figure 4. 
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Figure 4.  Geometrical description of wind speed due to locomotion (𝑣), ambient wind 

speed (𝑤), ambient wind angle (𝛾), resulting wind speed (𝑢), and resulting 

wind’s yaw angle (𝛽). It is assumed in this figure that air has a relative motion 

and the rider is the zero velocity reference. 

 

In PSO VI, the projected drag area 𝐶𝐷𝐴 is set to vary with the resulting wind’s yaw 

angle according to the findings of Fintelman et al. (2014). That study investigates the 

variation of 𝐶𝐷𝐴 at a wide range of yaw angles (𝛽) between 0 and 90°. The full range 

of yaw angles are then acquired by extrapolating the mirror image of 𝐶𝐷𝐴 values in 

the 0 to 90° range to the angles of 90 to 180°. In PSO VI, only the ambient wind 

direction is set to change, but equation (11) may also be used when variable wind 

speed is considered.  

 

In cross-country skiing, significant crosswinds are not very common because the 

courses are commonly set in the forested areas. However, it is common for cross-

country skiers to crouch, or assume a semi-squatting posture, at high speeds (Figure 

5) thus changing the effective drag area.  

 

 
Figure 5.  Upright (left) and semi-squatting (right) postures in cross-country skiing. 
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This reduces the drag area but restricts the athlete’s ability to generate power output. 

In PSO I, The effective drag area is calculated as: 

 

𝐶𝐷𝐴𝜑 = 𝐶𝐷𝐴𝑈𝑅𝑃 ∙ 𝜑 + 𝐶𝐷𝐴𝑆𝑆𝑃  (1 − 𝜑)  (14) 

 

where 𝐶𝐷𝐴𝑈𝑅𝑃 is the athlete’s drag area in the upright posture and 𝐶𝐷𝐴𝑆𝑆𝑃 is the drag 

area in the semi-squatting posture. The reducing function 𝜑 in equation (14) that is 

introduced in PSO I, is expressed as: 

 

𝜑 =
1

2
−

1

𝜋
tan−1(𝐵(𝑣 − 𝑣𝑙𝑖𝑚) ) (15) 

 

where 𝐵 was a parameter that controls the shape of the function and 𝑣𝑙𝑖𝑚 was the 

limit speed where the skier’s drag area assumes the mean value of drag areas in the 

upright and semi-squatting postures. A graphical representation of 𝜑 may be seen 

in Figure 6.  

 

 
Figure 6.  The reducing function plotted against speed of locomotion. 

 

In PSO II-IV, the drag area was estimated by the allometric scaling equations derived 

by Heil (2001, 2002).  

 

3.2.5 Coulumb friction and rolling resistance 

In PSO I, the glide friction between snow and skis is modeled as so-called Coulumb 

friction. This type of friction depends both on the normal force and the kinetic 
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friction coefficient. Usually, the friction coefficient varies between 0.02-0.10 

(Colbeck, 1994) for various snow conditions and ski properties. The expression for 

the kinetic friction force 𝐹𝜇𝑘 (Figure 2) is formulated as: 

 

𝐹𝜇𝑘 = 𝜇𝑘 ∙ 𝑁 = 𝜇𝑘 ∙ 𝑚 (𝑔 cos 𝛼 +
𝑣2

𝑟𝑛
) (16) 

 

where 𝜇𝑘 is the kinetic friction coefficient. For PSO II-IV and VI, the rolling resistance 

between the road and the tires was also set to be proportional to the normal force. 

The coefficient of rolling resistance is usually between 0.002 (Kyle, 1996) and 0.008 

(Pugh, 1974) on smooth asphalt roads, depending on the tire construction and 

material as well as the inflation pressure (Grappe et al., 1999). The rolling resistance 

(Figure 3) can be expressed as: 

 

𝐹𝑅𝑅 = 𝐶𝑅𝑅 ∙ 𝑁 =  𝐶𝑅𝑅 ∙ 𝑚 (𝑔 cos 𝛼 +
𝑣2

𝑟𝑛
) (17) 

 

where 𝐶𝑅𝑅 is the coefficient of rolling resistance. 

 

3.2.6 Wheel bearing friction 

The friction emerging from the wheel bearings creates a restricting torque on the 

bicycle wheels. Although, this resistance is inherent for the bicycle itself, bearing 

friction may be considered as an external force restricting locomotion. It has been 

shown that this force is nearly independent of the normal force acting on the bearing, 

but depends on the rotational speed and the type of bearing and lubricant (Dahn et 

al., 1991). According to the measurements by Dahn et al. (1991), the friction in 

greased cartridge bearings with a normal load of 27 kg on each wheel can be 

expressed as 

 

𝐹𝐵𝑅 = 𝑏1 + 𝑏2 ∙ 𝑣   (18) 

 

where 𝑏1 and 𝑏2 are constants derived from the study of Dahn et al. (1991).  

 

3.2.7 Static tire friction 

While cornering the bicycle, friction between the tires and the road will keep the 

wheels on track through the corner. Without this frictional grip force the center of 

mass would continue in a straight line motion tangential to the horizontal plane 

curve. The frictional grip force will push the rider-bicycle system in the horizontal 

plane, executing the normal acceleration required to turn. This normal acceleration 

may be expressed as: 
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𝑎𝑧 =
𝑣2

𝑟𝑧
 (19) 

 

where 𝑟𝑧 is the turning radius in the horizontal plane describe as: 

 

𝑟𝑧 =
𝑑𝑠

𝑑
  (20) 

 

where 휁 is the bearing angle in radians. In PSO IV, the grip friction between the tires 

and the road (Figure 3) is described as Coulumb friction with constant friction 

coefficient: 

 

𝐹𝜇𝑠 ≤ 𝜇𝑠 ∙ 𝑁 = 𝜇𝑠 ∙ 𝑚 (𝑔 cos 𝛼 +
𝑣2

𝑟𝑛
) (21) 

 

where 𝜇𝑠 is the static friction coefficient. PSO IV only considers courses with no 

elevation variation and therefore 𝑟𝑛 ≈ ∞ and 𝛼 = 0. Furthermore, the static friction 

force (equation 21) is only responsible for the lateral acceleration (𝑧-direction) 

(equation 19) in PSO IV. Therefore a constraint on the maximal speed limit through 

the corner can be expressed as: 

 

𝑣 ≤ √𝑟𝑧𝜇𝑠𝑔 = 𝑣𝑚𝑎𝑥 (22) 

 

where 𝑣𝑚𝑎𝑥  is the maximal attainable speed possible without slipping. However, 

equation (22) does not account for the tangential acceleration due to pedaling or 

braking. To incorporate both acceleration components the constraint has to be 

expressed as: 

 

𝑎𝑡𝑜𝑡 = √𝑎𝑠
2 + 𝑎𝑧

2 = √𝑎𝑠
2 +

𝑣4

𝑟𝑧
2 ≤ 𝜇𝑠𝑔 = 𝑎𝑡𝑜𝑡

𝑚𝑎𝑥  (23) 

 

where 𝑎𝑡𝑜𝑡 is the total horizontal acceleration, and 𝑎𝑡𝑜𝑡
𝑚𝑎𝑥 is the maximal attainable 

horizontal acceleration possible without slipping (Paper b). A geometrical 

illustration of the acceleration components in equation (23) can be seen in Figure 7. 

The model in Paper b does not account for variable terrain and, therefore, the 𝑠- and 

𝑥-coordinates coincide in this grip constraint. 
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Figure 7.  The total acceleration (𝑎𝑡𝑜𝑡) in the horizontal plane involved in the grip constraint 

in Paper b (equation 23) is expressed as the vector sum of the tangential (𝑎𝑠) 

and lateral (𝑎𝑧) acceleration components. The lateral acceleration depends on 

the turning radius (𝑟𝑧) which depends on the change in bearing angle (휁). Note 

that the directions of the global coordinates 𝑥 and 𝑧 are only momentarily valid 

as the bicycle turns. 

 

3.3 Equations of motion 

All mechanical simulation models (PSO I-IV and VI) presented in this thesis describe 

the locomotion of a point particle. These mechanical simulation models work in a 

forward dynamics mode, meaning that the power output is predetermined and 

thereby the force and motion are simultaneously calculated by the model. The 

athlete and equipment masses (PSO I) along with the mass moment of inertia of the 

bicycle wheels (PSO II-IV and VI) are the only inertia considered for the particle 

traveling the course profile in these mechanical simulation models.  

 

Newton’s second law of motion (equation 7) can be used to formulate a motion 

equation in the direction of locomotion (𝑠) for road cycling: 

 

𝐹𝑠 − 𝐹𝑔 sin 𝛼 − 𝐹𝐷 − 𝐹𝑅𝑅 − 𝐹𝐵𝑅 = (𝑚 +
𝐼

𝑟𝑤
2) 𝑎𝑠.  (24) 

 

By introducing the expression for each external force (equations 9-10, 13, and 17-18) 

the motion equation may be rewritten as: 
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𝑃∙ 𝑡𝑟

𝑣
−  𝑚 ∙ 𝑔 sin 𝛼 −

1

2
𝐶𝐷𝐴 ∙ 𝜌[(𝑣 + 𝑤 cos 𝛾)

2 + (𝑤 sin 𝛾)2]
1

2 (𝑣 + 𝑤 cos 𝛾) − 𝐶𝑅𝑅 ∙

𝑚 (𝑔 cos 𝛼 +
𝑣2

𝑟𝑛
) − 𝑏1 + 𝑏2 ∙ 𝑣 = (𝑚 +

𝐼

𝑟𝑤
2) 𝑎𝑠.  (25) 

 

This equation can be further rewritten for the global coordinate 𝑥-direction as: 

 

[
𝑃∙ 𝑡𝑟

𝑣
−  𝑚 ∙ 𝑔 sin 𝛼 −

1

2
𝐶𝐷𝐴 ∙ 𝜌[(𝑣 + 𝑤 cos 𝛾)

2 + (𝑤 sin 𝛾)2]
1

2 (𝑣 + 𝑤 cos 𝛾) − 𝐶𝑅𝑅 ∙

𝑚 (𝑔 cos 𝛼 +
𝑣2

𝑟𝑛
) − 𝑏1 + 𝑏2 ∙ 𝑣 ] cos 𝛼 = (𝑚 +

𝐼

𝑟𝑤
2) 𝑎𝑠 cos 𝛼 = (𝑚 +

𝐼

𝑟𝑤
2) �̈�.  (26) 

 

3.3.1 Transformation of motion equations 

In all PSO models, the equations of motion were transformed so that the horizontal 

position (𝑥) was the independent variable while time was the dependent variable. 

This was done by using the following relationships between time, horizontal 

position, and course profile:  

 

�̈� = 𝑎𝑠 cos 𝛼 = �̈� cos 𝛼 = −
𝑑2𝑡

𝑑𝑥2
(
𝑑𝑡

𝑑𝑥
)
−3

, (27) 

 
�̇�

cos𝛼
= �̇� = 𝑣 = (

𝑑𝑡

𝑑𝑥
cos 𝛼)

−1

.  (28) 

 

The transformed motion equation was acquired through the substitution of 

equations (27) and (28) into equation (26), forming the following motion equation: 

 
𝑑2𝑡

𝑑𝑥2
= −(

𝑑𝑡

𝑑𝑥
)
4

 
𝑃∙ 𝑡𝑟

𝑚+𝐼𝑤 𝑟𝑤
2⁄
cos2 𝛼 +

𝐶𝐷𝐴∙𝜌

2(𝑚+𝐼𝑤 𝑟𝑤
2⁄ )
√(

𝑑𝑡

𝑑𝑥

cos𝛼
+ (

𝑑𝑡

𝑑𝑥
)
2

𝑤 cos 𝛾)

2

+ ((
𝑑𝑡

𝑑𝑥
)
2

𝑤 sin 𝛾)
2

(1 +
𝑑𝑡

𝑑𝑥
𝑤 cos 𝛾 cos 𝛼) +

𝑑𝑡

𝑑𝑥

𝑚

𝑚+𝐼𝑤 𝑟𝑤
2⁄
[(
𝑑𝑡

𝑑𝑥
)
2

𝑔 cos 𝛼 (𝐶𝑅𝑅 cos 𝛼 + sin 𝛼) +
𝑑𝑡

𝑑𝑥

𝑑𝑡

𝑑𝑥
𝑏1 cos𝛼+𝑏2

𝑚
+

𝐶𝑅𝑅

𝑅𝑣 cos𝛼
] +

𝑑𝑡

𝑑𝑥

tan𝛼

𝑅 cos𝛼
.  (29) 

Finally, to make the motion equation solvable, it was transformed into a system of 

first order ordinary differential equations, through introducing a new variable 

denoted Λ: 

 

𝑑Λ

𝑑𝑥
= −Λ4  

𝑃∙ 𝑡𝑟

𝑚+𝐼𝑤 𝑟𝑤
2⁄
cos2 𝛼 +

𝐶𝐷𝐴∙𝜌

2(𝑚+𝐼𝑤 𝑟𝑤
2⁄ )
√(

Λ

cos𝛼
+ Λ2𝑤 cos 𝛾)

2

+ (Λ2𝑤 sin 𝛾)2(1 + Λ ∙

𝑤 cos 𝛾 cos 𝛼) + Λ
𝑚

𝑚+𝐼𝑤 𝑟𝑤
2⁄
[Λ2 ∙ 𝑔 cos 𝛼 (𝐶𝑅𝑅 cos 𝛼 + sin 𝛼) + Λ

Λ∙𝑏1 cos𝛼+𝑏2

𝑚
+

𝐶𝑅𝑅

𝑅𝑣 cos𝛼
] +

Λ
tan𝛼

𝑅 cos 𝛼
,   

Λ =
𝑑𝑡

𝑑𝑥
.  (30) 
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The benefit of this transformation is that the differential equation solver stops at 

predetermined distances so that finishing time and split times can be more 

accurately calculated. In most cases, such as competitions in locomotive sports, 

athletes travel a preset distance rather than a preset duration. Therefore, 

transformed motion equations give the best congruence to real world conditions. 

This way of solving motion equations also facilitates the use of adaptive step-size 

determination for reduced calculation times and improved accuracy. The process of 

transforming motion equations is more thoroughly described in Paper I.  
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4. BIOENERGETICS AND BIOMECHANICS 

All endurance athletes rely on skeletal muscle contraction to generate the forces 

necessary for locomotion. The action of a resulting force in the direction of 

movement will perform work with a magnitude equal to the product of force and 

displacement. Furthermore, power output, which is an important determinant of 

performance, may be expressed as the derivative of work with respect to time. 

Therefore, the modeling of work and power output are critical parts in the 

formulation of mathematical pacing strategy optimization problems. In most cases, 

the natural restrictions adhering to the athlete’s biomechanical or bioenergetic 

properties are used as constraints in the formulation of the optimization problem. 

Hence, various biomechanical and bioenergetic models are presented along with 

their corresponding maximal power output or other expressions of mechanical or 

physiological derivatives.  

 

4.1  Bioenergetics 

Muscle contractions rely on an energetic substrate called adenosine triphosphate 

(ATP) to fuel the relative movement of muscle filaments in the myofibrils. This 

contraction is activated by the nervous system’s often conscious signals originating 

from the brain. As ATP is nearly exclusively the only immediate substrate for muscle 

contraction, ATP availability is critical to power output and thereby performance. 

 

In humans, ATP is provided to the cells by aerobic and anaerobic pathways. 

Anaerobic pathways include the alactic conversion of adenosine diphosphate (ADP) 

and phosphocreatine (PCr) into ATP and creatine. This is the fastest pathway for 

forming ATP, but its capacity is very limited. The anaerobic breakdown of 

carbohydrates into lactic acid through glycolysis (lactic pathway) is about 2 times 

slower (at maximal rate) but 2-15 times greater in capacity compared to the alactic 

pathway (Sahlin, 1986). The aerobic pathways depend on oxygen for the 

phosphorylation of mainly carbohydrates and fats. The maximal oxidative 

phosphorylation of carbohydrates is about 3 times slower than the maximal rate of 

the alactic pathway, while phosphorylating fats is about 6 times slower (Sahlin, 

1986). With “well filled stores”, total carbohydrate capacity is about 3 500 times 

greater than that of the alactic stores while the available fat reserves may be more 

than 20 000 times greater (Sahlin, 1986). These energetic processes work in parallel 

to satisfy the energy requirements of the muscles. The concentration of ATP is 

closely regulated in these energy supplying processes to satisfy the requirements of 

energy to the muscle. The wide range of maximal rates of energy conversion and 

total capacity for these energetic pathways is enough to fulfil the ATP requirements 
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of work ranging from short high intensity bursts of activity to prolonged medium 

and low intensity work.  

 

The studies contained within this thesis are all compartment models, in which each 

compartment comprises a specific category of energetic substrate for a specific 

energetic pathway. Compartment discretization into muscle fiber motor units and 

the order of fiber type activations (Liu et al., 2002, Xia and Fray Law, 2008, James 

and Green, 2012, Gede and Hubbard, 2014) are not considered in this thesis. 

 

4.1.1 The critical power model 

The critical power concept (CP model)  was first introduced by Monod and Sherrer 

(1965) to model muscular work and local muscular fatigue. The critical power model 

may be regarded as a hydraulic compartment model with a constant aerobic work 

rate (critical power, 𝐶𝑃) and a constant anaerobic work capacity (𝐴𝑊𝐶) available for 

exercise at intensities above 𝐶𝑃. A hydraulic two-compartment description of the 

critical power model is shown in Figure 8 (left). Mathematically, the original critical 

power model may be expressed with the following differential equation: 

 

𝑃 = 𝐶𝑃 + 𝐴𝐴𝑊𝐶  
𝑑ℎ

𝑑𝑡
 (31) 

 

where 𝐶𝑃 is the critical power, ℎ is the parameter determining the available 

anaerobic work, and 𝐴𝐴𝑊𝐶  is the cross-sectional area of the anaerobic compartment. 

The original critical power concept does not account for the replenishment of 

anaerobic energy at rest or low power outputs and therefore 
𝑑ℎ

𝑑𝑡
 cannot attain 

negative values.  

 

Morton and Billat (2004) introduced the critical power model for intermittent 

exercise (CPIE) (BE II and BE III b) (Figure 8, right). This model allows for the 

anaerobic work capacity to be restored when power is less than the critical power 

(𝐶𝑃). This model has the same expression for power output as the original critical 

power model (equation 31) and the associated bioenergetic constraint may be 

expressed as: 

 

0 ≤ ℎ ≤ 1.  (32)  

 

Morton (1996) also introduced a maximal power constraint for the CP model, but 

this expression was not applied in any of the author’s papers quoted in this thesis.  

 

 



29 

 
 

Figure 8.  Hydraulic representation of the original critical power model (left) and the critical 

power model for intermittent exercise (right). 𝑂 represents the store of fat and 

carbohydrate available for oxidative phosphorylation and 𝐴𝑊𝐶  represents the 

anaerobic energy store. 

 

4.1.2  Margaria’s model 

Margaria (1976) was the first to introduce a compartment model that distinguishes 

between alactic (𝐴𝐿) and lactic (𝐿) energy pathways. Furthermore, Margaria’s model 

incorporates the slow component of oxygen uptake kinetics and accounts for the 

slower nature of lactic replenishment (as compared to lactic production). The model 

of Margaria can be expressed by the following differential equations: 

 

𝑃 = 𝐴𝐴𝐿
𝑑ℎ

𝑑𝑡
 + 𝑃𝑂 + 𝑃𝐿 − 𝑃𝑅 = 𝐴𝐴𝐿

𝑑ℎ

𝑑𝑡
 + 𝑃𝑂 + 𝐴𝐿

𝑑𝑙

𝑑𝑡
   (33) 

 

where  ℎ and 𝑙 are the variables describing the energy content in the 𝐴𝐿 and 𝐿 

compartments respectively, 𝐴𝐴𝐿 and 𝐴𝐿 are the cross-sectional areas of these 

compartments, 𝑃𝐿 and 𝑃𝑅 are the powers associated with lactic formation and 

replenishment respectively, and 𝑃𝑂 is the power related to oxidative 

phosphorylation which is expressed as:  
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𝑃𝑂 = {
2𝑀𝑂ℎ, 0 ≤ ℎ <

1

2
 

𝑀𝑂,
1

2
≤ ℎ ≤ 1

  (34) 

 

where 𝑀𝑂 is the maximal oxidative power. Furthermore, the lactic energy flow, 𝐴𝐿
𝑑𝑙

𝑑𝑡
 

is expressed as: 

 

𝐴𝐿
𝑑𝑙

𝑑𝑡
=

{
 
 

 
 0,  0 ≤ ℎ <

1

2
 and 𝑙 = 0

𝑀𝐿(2ℎ − 1 − 𝑙),  𝑙 +
1

2
≤ ℎ ≤ 1 

 𝑀𝑅(2ℎ − 1 − 𝑙), ℎ ≤ 𝑙 +
1

2
≤ 1 and 𝑙 > 0

  (35) 

 

where 𝑀𝐿 is the maximal lacitic power and 𝑀𝑅 is the maximal rate of lactic 

replenishment. Further restrictions on the state variables (ℎ and 𝑙) must also apply. 

This includes equation (32) and the following equation: 

 

0 ≤ 𝑙 ≤
1

2
.  (36) 

 

A hydraulic representation of the Margaria model is shown in Figure 9. 

Furthermore, Margaria (1976) suggests a maximal power constraint that relates to 

variable ℎ according to: 

 

𝑃𝑚 = 𝑀𝑃(1 − ℎ)  (37) 

 

where 𝑃𝑚 is the maximal power output and 𝑀𝑃 is the initial maximal power output 

in a well-rested athlete. 

 

 

 

 



31 

 
Figure 9.  Hydraulic representation of Margaria’s original model. 

 

4.1.3 The Margaria-Morton model 

Morton solved Margaria’s model mathematically and showed its discordance with 

empirical findings (Morton, 1985, Morton, 1986a). Subsequently, Morton performed 

further developments of Margaria’s model to form the generalized Margaria-

Morton (M-M) model (Morton, 1986b, Morton, 1990). The M-M model presented in 

Figure 10 was used in BE III c and BE IV; mathematically it may be expressed by 

equation (33) together with the following differential equations: 

 

𝑃𝑂 = {
𝑀𝑂

ℎ

1−𝜙
, 0 ≤ ℎ < 1 − 𝜙 

𝑀𝑂 , 1 − 𝜙 ≤ ℎ ≤ 1
  (38) 

 

 

𝐴𝐿
𝑑𝑙

𝑑𝑡
=

{
 
 

 
 

0, 0 ≤ ℎ < 1 − 휃 and 𝑙 = 0

𝑀𝐿
ℎ− −𝑙

1− −𝜆
, 𝑙 + 휃 ≤ ℎ ≤ 1 − 𝜆

𝑀𝑅
ℎ− −𝑙

1−𝜆
, ℎ ≤ 𝑙 + 휃 ≤ 1 − 𝜆 and 𝑙 > 0

𝑀𝐿
1− −𝜆−𝑙

1− −𝜆
, 1 − 𝜆 ≤ ℎ

  (39) 
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In these equations, the geometrical parameters 𝜙, 휃, and 𝜆 are represented in Figure 

10. In addition to these equations, further restrictions are applicable to the state 

variables (ℎ and 𝑙): 

 

0 ≤ ℎ ≤ 1 − 𝜙, (40) 

 

0 ≤ 𝑙 ≤ 1 − 휃 − 𝜆.  (41) 

 

Morton (1990) also suggests expressions of the maximal power output for the M-M 

model. One expression relates the maximal power output to the level in the 𝐴𝐿 

vessel, similar to Margaria’s model (Margaria, 1976). Another suggestion is that 

maximal power output depends on the level in the 𝐿 compartment. Morton 

formulated this relation as: 

 

𝑃𝑚 = 𝑀𝑃
1− −𝜆−𝑙

1− −𝜆
. (42) 

 

This model was used in BE III c. However, a modified expression of the maximal 

power output for the M-M model was implemented into BE IV. This modified 

formulation takes care that the maximal power output will not fall below the lactate 

threshold in contrast to equation (43) which allows the maximal power output to 

reach zero at empty 𝐿 compartment. This modified formulation is expressed as: 

 

𝑃𝑚 = 𝑀𝑃 −
𝑙(𝑀𝑃−𝑀𝑂(1−𝜆))

1− −𝜆
. (43) 

 

Further extensions regarding that shift from carbohydrate oxidation to fat oxidation 

in prolonged exercise were introduced by Behncke (1993). However, empirical 

findings (Watt et al., 2002) indicate that the shift from carbohydrate to fat oxidation 

is more gradual than in the model by Behncke  (1993).  
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Figure 10.  Hydraulic representation of the generalized Margaria-Morton model. 𝐵𝐿 is a 

narrow tube with negligible volume. 

 

4.1.4 The Margaria-Morton-Sundström model 

The Margaria-Morton-Sundström (M-M-S) model is an extension to the M-M model 

that also incorporates the regulation of oxidative substrate utilization (BE V and BE 

VI). Therefore, the M-M-S model has separate fat and carbohydrate compartments 

where carbohydrate stores are finite, thus imposing further restrictions during 

prolonged exercise. Furthermore, regulation of the lactic energy flow is further 

adjusted by the variable carbohydrate store. In contrast to the previous models 

presented in this thesis, the M-M-S model describes the flow of chemical energy 

rather than work rate or power. This enables modeling of efficiency. A hydraulic 

representation of the M-M-S model is shown in Figure 11 and the mathematical 

description is based on the following differential equation: 

 

𝑟𝐸𝐸 = 𝑟𝐸𝐶𝐹𝐴𝑇 + 𝑟𝐸𝐶𝐶𝐻𝑂 + 𝑟𝐸𝐶𝐴𝐿 + 𝑟𝐸𝐶𝐿 − 𝑟𝐸𝐶𝑅 = 𝑟𝐸𝐶𝐹𝐴𝑇 + 𝑟𝐸𝐶𝐶𝐻𝑂 + 𝐴𝐴𝐿
𝑑ℎ

𝑑𝑡
+ 𝐴𝐿

𝑑𝑙

𝑑𝑡
 

 (44) 
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where 𝑟𝐸𝐸 is the rate of energy expenditure, 𝑟𝐸𝐶𝐹𝐴𝑇  and 𝑟𝐸𝐶𝐶𝐻𝑂 are the rates of 

energy conversion due to fat and carbohydrate oxidation respectively, and 𝑟𝐸𝐶𝐿 and 

𝑟𝐸𝐶𝑅 are the rates of energy conversion due to sole anaerobic glycolysis and 

gluconeogenesis respectively. Furthermore, 𝑟𝐸𝐶𝐴𝐿  is the rate of energy conversion 

due to alactic substrate degradation. In this equation, the rate of energy conversion 

due to fat oxidation is expressed as: 

 

𝑟𝐸𝐶𝐹𝐴𝑇 =

{
 
 

 
 

0, 𝑟𝐸𝐶𝐹𝐴𝑇
′ ≤ 0 and   0 ≤ ℎ + 𝜉 < 1 − 𝜙

𝑟𝐸𝐶𝐹𝐴𝑇
′, 0 ≤ 𝑟𝐸𝐶𝐹𝐴𝑇

′ < 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥  

ℎ

1−𝜙
  and   0 ≤ ℎ + 𝜉 < 1 − 𝜙

𝑟𝐸𝐶𝑂
𝑚𝑎𝑥  

ℎ

1−𝜙
, 𝑟𝐸𝐶𝑂

𝑚𝑎𝑥  
ℎ

1−𝜙
≤ 𝑟𝐸𝐶𝐹𝐴𝑇

′ and   0 ≤ ℎ + 𝜉 < 1 − 𝜙

𝑟𝐸𝐶𝑂
𝑚𝑎𝑥  , 𝑟𝐸𝐶𝑂

𝑚𝑎𝑥  ≤ 𝑟𝐸𝐶𝐹𝐴𝑇
′ and   1 − 𝜙 ≤ ℎ + 𝜉

  (45) 

 

 

where 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥  is the maximal rate of energy conversion using oxidative 

phosphorylation and 𝑟𝐸𝐶𝐹𝐴𝑇
′ is modelled as a modified version of the one suggested 

by Chenevière et al. (2009): 

 

𝑟𝐸𝐶𝐹𝐴𝑇
′ = 𝑟𝐸𝐶𝐹𝐴𝑇1

𝑚𝑎𝑥 1−𝜙−𝑐

1−𝜙
sin [(

ℎ+𝜉

1−𝜙
𝜋

𝜋

1
𝜎1

𝜋+2𝛿1
+ 𝛿1 + 𝜏1)

𝜎1

] +

𝑟𝐸𝐶𝐹𝐴𝑇2
𝑚𝑎𝑥 𝑐

1−𝜙
sin [(

ℎ+𝜉

1−𝜙
𝜋

𝜋

1
𝜎2

𝜋+2𝛿2
+ 𝛿2 + 𝜏2)

𝜎2

]  (46) 

 

where 𝑟𝐸𝐶𝐹𝐴𝑇1
𝑚𝑎𝑥  and 𝑟𝐸𝐶𝐹𝐴𝑇2

𝑚𝑎𝑥  are the maximal rates of energy conversion due to fat 

oxidation for full (𝑐 = 0) and empty (𝑐 = 1 − 𝜙) carbohydrate energy stores 

respectively. Furthermore, 𝛿1, 𝛿2, 𝜏1, 𝜏2, 𝜎1, and 𝜎2 are the dilatation, translation, and 

symmetry parameters of the fat oxidation model for full and empty carbohydrate 

stores respectively. The rate of energy conversion from carbohydrate oxidation is 

expressed as: 

 

𝑟𝐸𝐶𝐶𝐻𝑂 = {
𝑟𝐸𝐶𝑂

𝑚𝑎𝑥 ℎ

1−𝜙
− 𝑟𝐸𝐶𝐹𝐴𝑇 , 0 ≤ ℎ + 𝜉 < 1 − 𝜙 

𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 , 1 − 𝜙 ≤ ℎ + 𝜉

. (47) 

 

The resulting rate of lactic energy store depletion is expressed as: 
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𝐴𝐿
𝑑𝑙

𝑑𝑡
=

{
 
 

 
 

0, 0 ≤ ℎ + 𝜉 < 1 − 휃 and 𝑙 = 0

𝑟𝐸𝐶𝐿
𝑚𝑎𝑥 1−𝜙−𝑐

1−𝜙

ℎ+𝜉− −𝑙

1− −𝜆
, 𝑙 + 휃 ≤ ℎ + 𝜉 ≤ 1 − 𝜆

𝑟𝐸𝐶𝑅
𝑚𝑎𝑥 ℎ+𝜉− −𝑙

1− −𝜆
, ℎ + 𝜉 ≤ 𝑙 + 휃 ≤ 1 − 𝜆 and 𝑙 > 0

𝑟𝐸𝐶𝐿
𝑚𝑎𝑥 1−𝜙−𝑐

1−𝜙

1− −𝜆−𝑙

1− −𝜆
, 1 − 𝜆 ≤ ℎ + 𝜉

  (48) 

 

where 𝑟𝐸𝐶𝐿
𝑚𝑎𝑥  is the maximal rate of energy conversion due to sole glycolysis and 

𝑟𝐸𝐶𝑅
𝑚𝑎𝑥  is the maximal rate of energy conversion due to gluconeogenesis. Finally, 

the resulting rate of carbohydrate store depletion is expressed as: 

 

𝐴𝐶𝐻𝑂
𝑑𝑐

𝑑𝑡
= 𝑟𝐸𝐶𝐶𝐻𝑂 + 16𝐴𝐿

𝑑𝑙

𝑑𝑡
.  (49) 

 

 
Figure 11.  Hydraulic representation of the Margaria-Morton-Sundström model. The 𝐵𝐴𝐿 

and 𝐵𝐿 tubes are both narrow and have negligible volume. 

 

The state variables of the M-M-S model (𝑐, ℎ and 𝑙) must also obey the following 

restrictions to retain the physical properties of a hydraulic compartment model: 

 

0 < 𝑐 < 1 − 𝜙,  (50) 

 

0 < ℎ < 1 − 𝜉,  (51) 
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0 < 𝑙 < 1 − 휃 − 𝜆.  (52) 

 

Previous models’ expressions for maximal power output have been based on 

different assumptions of muscle fatigue. Among these, muscle fatigue is considered 

to depend on the remaining anaerobic work (equation 37), the remaining alactic 

work (equation 42), or the remaining lactic work (equation 43). However, empirical 

findings establish that inorganic phosphate concentration [𝑃𝐼] is a major cause of 

metabolic muscle fatigue (Westerblad et al., 2002). Therefore, the maximal energy 

expenditure in the M-M-S model is expressed as a function of [𝑃𝐼]: 

 

𝑟𝐸𝐸𝑚𝑓
𝑚𝑎𝑥 = 𝑟𝐸𝐸0

𝑚𝑎𝑥 (1 −
[𝑃𝐼] 

2[𝐴𝑡𝑜𝑡]
) (53) 

 

where 𝑟𝐸𝐸0
𝑚𝑎𝑥 is the initial maximal rate of energy expenditure, [𝐴𝑡𝑜𝑡] is the total 

concentration of adenosines and the concentration of inorganic phosphate is 

expressed as: 

 

[𝑃𝐼] = [𝐴𝐷𝑃] + 2[𝐴𝑀𝑃]  (54) 

 

where [𝐴𝑀𝑃] and [𝐴𝐷𝑃] are the concentrations of adenosine monophosphate and 

adenosine diphosphate respectively. The mentioned concentrations of alactic 

substances are available in the M-M-S model by adopting chemical equilibrium 

equations to the 𝐴𝐿 compartment. This assumption not only presupposes chemical 

equilibrium but also constant sarcoplasmic volume and minimal inter-muscle 

differences in alactic substances’ concentration.  

 

The total energy content in the 𝐴𝐿 compartment is built up by the concentrations of 

each substance, their energy equivalents, and the total muscle volume of the active 

muscles. Therefore, the total alactic energy may be expressed as: 

 

𝐴𝐴𝐿ℎ = (𝐸𝑒𝑃𝐶𝑟 ∙ [𝑃𝐶𝑟] + 𝐸𝑒𝐴𝑇𝑃 ∙ [𝐴𝑇𝑃] + 𝐸𝑒𝐴𝐷𝑃 ∙ [𝐴𝐷𝑃]) ∙ 𝑉𝑚  (55) 

 

where 𝐸𝑒𝑃𝐶𝑟, 𝐸𝑒𝐴𝑇𝑃, and 𝐸𝑒𝐴𝐷𝑃 are the energy equivalents (Gibb’s free energy to 

amount ratios) of PCr, ATP, and ADP respectively, [𝑃𝐶𝑟] is the concentration of PCr, 

and 𝑉𝑚 is the active muscle volume. The equilibrium equations utilized in the M-M-

S model were suggested by McGilvery and Murray (1974) and include not only the 

alactic substances but also the 𝑝𝐻 and magnesium ion concentration ([𝑀𝑔2+]) in the 

sarcoplasm. These equations are based on the following conservation laws: 

 

[𝐴𝑡𝑜𝑡] = [𝐴𝑇𝑃] + [𝐴𝐷𝑃] + [𝐴𝑀𝑃]  (56) 
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[𝐶𝑟𝑡𝑜𝑡] = [𝑃𝐶𝑟] + [𝐶𝑟]  (57) 

 

where [𝐶𝑟𝑡𝑜𝑡] is the total concentration of creatines and [𝐶𝑟] is the concentration of 

creatine. Furthermore, dissociation constants for each individual reaction in the 𝐴𝐿 

compartment may be expressed as: 

 

𝐾1 = [𝐻𝐴𝑇𝑃
3−] [𝐻+][𝐴𝑇𝑃4−]⁄ , (58) 

 

𝐾2 = [𝐻𝐴𝐷𝑃
2−] [𝐻+][𝐴𝐷𝑃3−]⁄ , (59) 

 

𝐾3 = [𝐻𝐴𝑀𝑃
−] [𝐻+][𝐴𝑀𝑃2−]⁄ , (60) 

 

𝐾4 = [𝐻𝑃𝐶𝑟
−] [𝐻+][𝑃𝐶𝑟2−]⁄ , (61) 

 

𝐾5 = [𝑀𝑔𝐴𝑇𝑃
2−] [𝑀𝑔2+][𝐴𝑇𝑃4−]⁄ , (62) 

 

𝐾6 = [𝑀𝑔𝐴𝐷𝑃
−] [𝑀𝑔2+][𝐴𝐷𝑃3−]⁄ , (63) 

 

𝐾7 = [𝑀𝑔𝐴𝑀𝑃] [𝑀𝑔
2+][𝐴𝑀𝑃2−]⁄ , (64) 

 

𝐾8 = [𝑀𝑔𝑃𝐶𝑟] [𝑀𝑔
2+][𝑃𝐶𝑟2−]⁄ , (65) 

 

𝐾9 =
[𝐴𝑀𝑃2−][𝐴𝑇𝑃4−]

[𝐴𝐷𝑃3−]2
, (66) 

 

𝐾10 = [𝐴𝑇𝑃
4−][𝐶𝑟] [𝐻+][𝐴𝐷𝑃3−][𝑃𝐶𝑟2−]⁄ . (67) 

 

In these expressions, [𝐻+] is the hydrogen ion concentration and the superscript 

indicates the ionic charge. These constants in combination with constant values of 

the concentrations [𝐻+]  and [𝑀𝑔2+] may form the following constants: 

 

𝜅𝑡 = 1 + 𝐾1[𝐻
+] + 𝐾5[𝑀𝑔

2+], (68) 

 

𝜅𝑑 = 1 + 𝐾2[𝐻
+] + 𝐾6[𝑀𝑔

2+],   (69) 

 

𝜅𝑚 = 1 + 𝐾3[𝐻
+] + 𝐾7[𝑀𝑔

2+],   (70) 

 

𝜅𝑐 = 1 + 𝐾4[𝐻
+] + 𝐾8[𝑀𝑔

2+],   (71) 

 

which are used to formulate the total concentrations of ATP, ADP, AMP, and PCr: 
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[𝐴𝑇𝑃] = 𝜅𝑡[𝐴𝑇𝑃
4−],  (72) 

 

[𝐴𝐷𝑃] = 𝜅𝑑[𝐴𝐷𝑃
3−],  (73) 

 

[𝐴𝑀𝑃] = 𝜅𝑚[𝐴𝑀𝑃
2−],  (74) 

 

[𝑃𝐶𝑟] = 𝜅𝑐[𝑃𝐶𝑟
2−].  (75) 

 

By combining these expressions (equations 72 to 75) with equations (56) to (71), 

expressions were derived for each substrate as a function of [𝐴𝑇𝑃4−]:  

 

[𝐴𝑇𝑃] = 𝜅𝑡[𝐴𝑇𝑃
4−],  (76) 

 

[𝐴𝐷𝑃] =
[𝐴𝑇𝑃4−]

2𝐾9𝜅𝑚
,  (77) 

 

[𝐴𝑀𝑃] =
[𝐴𝑇𝑃4−] 2 

4𝐾9𝜅𝑚
, (78) 

 

[𝑃𝐶𝑟] =
[𝐶𝑟𝑡𝑜𝑡]

1+
𝐾10[𝐻

+]𝜀

2𝐾9𝜅𝑐𝜅𝑚

, (79) 

 

where:  

 

휀 = (𝜅𝑑
2 − 4𝐾9𝜅𝑚𝜅𝑡 + 4𝐾9𝜅𝑚

[𝐴𝑡𝑜𝑡]

[𝐴𝑇𝑃4−] 
)

1

2
− 𝜅𝑑. (80)  

 

A plot of equations (77) to (79) is shown in Figure 12, in which constants and total 

concentrations of adenosine and creatine from Paper V are used. Although similar 

parameters were used, the appearance of Figure 12 is not entirely equal to the one 

presented in McGilvery and Murray (1974) where [𝐴𝐷𝑃] at one point reaches higher 

than both [𝐴𝑀𝑃] and [𝐴𝑇𝑃].  The original M-M-S model also incorporates restrictions 

on the maximal propulsive force and efficiency modelling. However, these 

functionalities are presented in sections 4.2 and 4.3. 
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Figure 12.  Equilibrium concentrations [PCr], [ATP], [ADP], and [AMP] as the function of 

total charged phosphate of all phosphagenes in muscle. The tissue has a 

total concentration of 24 mmol∙kg-1 of Cr and PCr, and a total concentration 

of 6 mmol∙kg-1 of ATP, ADP and AMP, with a pH of 7.05 and [Mg2+] of 0.5 

mmol∙l-1 

 

4.1.3  Fluid mechanics of hydraulic compartment models 

The dynamics of a full-body hydraulic compartment model are governed by the 

fluid mechanical law called the Hagen-Poiseuille equation. This equation is valid for 

incompressible Newtonian fluids in laminar flow through long tubes with constant 

cross-sectional areas.  

 

Suppose we have a hydraulic system that consists of two fluid filled compartments 

of constant cross-sectional area connected with a tube at the bottom. The fluid flow 

between compartments is then described by the following equation: 

 

∆𝑝 = �̇�
8𝜇𝑣𝑖𝑠𝐿

𝜋𝑟𝑡
4  (81) 
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where Δ𝑝 is the pressure difference between the ends of the tube, 𝐿 is the length of 

the tube, 𝜇𝑣𝑖𝑠 is the dynamic viscosity of the fluid, �̇� is the volumetric flow rate and 

𝑟𝑡 is the tube radius. The assumptions of the Hagen-Poiseuille equation are that the 

fluid is incompressible and Newtonian, the flow is laminar through a pipe of 

constant circular cross-section that is substantially longer than its diameter, and 

there is no acceleration of fluid in the tube. The pressure difference between the ends 

of the pipe can be expressed as: 

 

∆𝑝 = (
ℎ1

𝐴1
−

ℎ2

𝐴2
)𝜋𝑟𝑡

2𝜌𝑓𝑙𝑔 (82) 

 

where ℎ1 and ℎ2 are the fluid heights in the first and second compartments 

respectively, 𝐴1 and 𝐴2 are the cross-sectional areas of the first and second 

compartments respectively, 𝜌𝑓𝑙 is the fluid density, and 𝑔 is the acceleration of 

gravity. Substituting equation (81) into (82) gives the relationship for the volumetric 

flow �̇� as a function of the fluid level heights in the different compartments, ℎ1(𝑡) 

and ℎ2(𝑡): 

 

�̇� = (
ℎ1(𝑡)

𝐴1
−

ℎ2(𝑡)

𝐴2
)
𝜌𝑓𝑙𝑔𝜋

2𝑟𝑡
6

8𝜇𝑣𝑖𝑠𝐿
= (

ℎ1(𝑡)

𝐴1
−

ℎ2(𝑡)

𝐴2
)
𝑔𝜋2𝑟𝑡

6

8𝜐𝑣𝑖𝑠𝐿
  (83) 

 

where 𝜐𝑣𝑖𝑠 is the kinematic viscosity and the quotient outside of the brackets in 

equation (83) is constant. The direction of flow will always be from the higher level 

fluid compartment to the compartment with the lower fluid level (from high 

pressure to low pressure). If �̇� is positive, the flow will be from compartment 1 to 

compartment 2. The highest flow rate for constant compartment cross-sectional 

areas is achieved when the difference in level between the compartments is maximal. 

Hence, equation (83) may be expressed to depend on the maximal flow (�̇�) through 

the tube: 

 

�̇� = �̇�𝑚𝑎𝑥 (
ℎ1(𝑡)−ℎ2(𝑡)

∆ℎ𝑚𝑎𝑥
)  (84) 

 

where �̇�𝑚𝑎𝑥  is the maximal flow through the tube occurring at ∆ℎ𝑚𝑎𝑥 which is the 

maximal attainable difference between ℎ1 and ℎ2. 
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4.2  Efficiency 

The strict mechanical definition of efficiency is the ratio between work performed 

and energy expended. Therefore, the relationship between power output (𝑃) and 

rate of energy expenditure (𝑟𝐸𝐸) may be expressed as: 

 

𝑃 = 𝑟𝐸𝐸 ∙ 휂𝐺𝐸 (85) 

 

where 휂𝐺𝐸, by definition, is the gross efficiency. In cross-country skiing, the skier’s 

ability to generate power output will decrease at high speeds because of the 

equivalent increase in muscle contraction speed, which dramatically decreases the 

muscle force exerted by the athlete. In BE I this is modeled by reducing the 

mechanical efficiency at high speeds through multiplication by the same reducing 

function 𝜑 as in equation (15), section 3.2.4 (Figure 6). Concerning efficiency, 𝑣𝑙𝑖𝑚  in 

equation (15) is the limit speed where the efficiency is reduced to half of 휂𝐺𝐸. Varying 

mechanical efficiencies associated with different skiing techniques (classic or 

freestyle) and different gears (e.g. double poling and diagonal stride) (Sidossis et al., 

1992, Sandbakk et al., 2010) are not considered in BE I. 

 

In cycling, the speed at which efficiency falls is significantly higher than in cross-

country skiing. This is due to the use of chain wheel gearing in cycling that 

effectively enables a wide range of gears even at relatively high speeds. Therefore, 

no decrease in efficiency was programmed in BE II to BE VI. However, in BE V and 

VI efficiency was modeled using a linear relationship: 

 

𝑃 = (𝑟𝐸𝐸 − 𝑟𝐸𝐸0)휂𝑃𝐵  (86) 

 

where 휂𝑃𝐵 is the slope and 𝑟𝐸𝐸0 is the 𝑦-intercept of the physiological/biomechanical 

efficiency relationship. 휂𝑃𝐵 may be estimated by the delta efficiency which refers to 

the difference in work divided by the difference in energy expenditure between two 

different exercise intensities. This linear efficiency relationship is shown to adhere 

to the actual muscle efficiency better than a simple gross efficiency measure (Gaesser 

and Brooks, 1975). A graphical representation of the linear efficiency relationship is 

shown in Figure 13. 
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Figure 13.  Graphic illustration of the efficiency relationship in equation (86) with the 

power output (𝑃), the rate of energy expenditure (𝑟𝐸𝐸), the 𝑦-intercept (𝑟𝐸𝐸0), 

and the slope (휂𝑃𝐵) of the relationship. 

 

4.3   Force-velocity relationship 

A muscle’s ability to produce force in concentric contraction is dependent on the 

contraction velocity. The variation of maximal voluntary muscle contraction force 

with the contraction velocity may be described using the Hill equation (Hill, 1938). 

Assuming that the contraction velocity of the muscle is proportional to the 

translational speed (𝑣) in the initial part of a race, the Hill equation may be expressed 

as: 

 

𝐹𝑠
𝑚𝑎𝑥 = (

𝑎1

𝑣+𝑎2
− 𝑎3) (87) 

 

where 𝐹𝑠
𝑚𝑎𝑥  is the maximal propulsive force, while 𝑎1, 𝑎2, and 𝑎3 are constants. 

According to the Hill equation, the maximal propulsive power output (𝑃𝑠
𝑚𝑎𝑥) also 

varies with speed and assumes a maximum value at a certain speed, whereas lower 

and higher speeds result in lower maximal power outputs (Figure 14).  
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Figure 14.  A plot of the force-velocity (𝐹𝑠

𝑚𝑎𝑥) and power-velocity (𝑃𝑠
𝑚𝑎𝑥) relationships 

expressed as the Hill equation (equation 87) with 𝑎1 = 5600 kg·s-1, 𝑎2 = 16 

m·s-1, and 𝑎3 = 100 N.  
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5. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL 
EQUATIONS 

A differential equation is an equation for an unknown function of one or several 

variables that relates to the values of the function itself and its derivatives. Ordinary 

differential equations (ODE) are differential equations containing a function of one 

variable and its derivatives. In many practical applications, differential equations 

describe a course of events (dynamics). The motion equation derived in section 3.3 

describes the dynamics of an athlete’s locomotion on a two-dimensional course and 

the systems of differential equations for an athlete’s bioenergetics in section 4.1 

describe the dynamics of energy flow. However, to determine the locomotion and 

the flow of energy explicitly, these differential equations must be solved. This may 

or may not be done analytically, but in most cases a numerical solution may be used 

which is more practical and sometimes the only way to acquire a solution. The 

numerical differential equation solvers often use some iterative routines for solving 

discrete steps in the independent variable. 

 

For the motion equation solutions in PSO I-IV and VI, for every iteration the inverse 

of horizontal speed for the current position is calculated by using the step length 

(∆𝑥), the inverse of horizontal speed (
𝑑𝑡

𝑑𝑥
), and the inverse of horizontal acceleration 

(
𝑑2𝑡

𝑑𝑥2
) from the previous solution (at previous step). Furthermore, the duration of each 

step is calculated by the step length and the current inverse of horizontal speed. The 

process may be repeated for the new position, thus continuing the numerical 

solution. A system of two first order ODEs for the mechanics of the models 

presented in this thesis may be expressed as: 

 

{

𝑑Λ

𝑑𝑥
=
𝑑2𝑡

𝑑𝑥2
=𝑓1(𝑥,Λ(𝑥)) 

Λ=
𝑑𝑡

𝑑𝑥
=𝑓2(𝑥,𝑡(𝑥)) 

Λ(𝑥0)=Λ0
𝑡(𝑥0)=𝑡0 

 (88) 

 

where Λ is the extra variable introduced in section 3.3 to transform the second order 

differential equation into a system of two first order differential equations. 

Furthermore, 𝑥 is the horizontal coordinate, 𝑡 is time, 𝑓1 and 𝑓2 are the equations of 

motion that express the inverse of horizontal acceleration and the inverse of 

horizontal speed respectively (equation 30). 𝑥0, 𝑡0, and Λ0 are the initial values of 

horizontal position, time, and inverse of horizontal speed. 
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5.1  The Euler method 

A basic numerical method for solving an initial value ODE is the Euler method. It 

effectively uses an iterative process based on the finite difference approximations of 

the derivatives to solve the ODE. Thus we formulate these finite differences for the 

two coupled dependent variables: 

 
𝑑Λ

𝑑𝑥
= 𝑓1(𝑥, Λ(𝑥))  ≈

Λ(𝑥+∆𝑥)−Λ(𝑥)

∆𝑥
,  (89) 

 

Λ(𝑥) = 𝑓2(𝑥, 𝑡(𝑥))  ≈
t(𝑥+∆𝑥)−t(𝑥)

∆𝑥
,  (90) 

 

where ∆𝑥 is the horizontal distance step. One step is easily solved with the Euler 

method by solving equation (90) for 𝑡(𝑥 + ∆𝑥): 

 

𝑡(𝑥 + ∆𝑥) ≈ 𝑡(𝑥) + ∆𝑥 ∙ 𝑓2(𝑥, 𝑡(𝑥)).  (91) 

 

However, to be able to solve the next step we also need to solve equation (89) for 

Λ(𝑥 + ∆𝑥): 

 

Λ(𝑥 + ∆𝑥) = 𝑓2(𝑥 + ∆𝑥, 𝑡(𝑥 + ∆𝑥)) ≈ Λ(𝑥) + ∆𝑥 ∙ 𝑓1(𝑥, Λ(𝑥)).  (92) 

 

5.2  The 4th order Runge-Kutta method 

A method for solving ODEs that is more accurate than the Euler method is the 4th 

order Runge-Kutta method (R-K 4) (Kutta, 1901), which was used in PSO III and IV 

to solve the motion equation. Due to the formulation of the constraints (section 6.1.2) 

in PSO III and IV using linear regression, constant distance steps were required, 

which makes the R-K 4 a suitable solver with small errors. For the R-K 4, equation 

(91) may be rewritten as:  

 

𝑡(𝑥 + ∆𝑥) ≈ 𝑡(𝑥) +
∆𝑥

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4),  (93) 

 

where the coefficients are expressed as: 

 

𝑘1 = 𝑓2(𝑥, 𝑡(𝑥)), (94) 

 

𝑘2 = 𝑓2 (𝑥 +
∆𝑥

2
, 𝑡(𝑥) +

∆𝑥

2
𝑘1),   (95) 

 

𝑘3 = 𝑓2 (𝑥 +
∆𝑥

2
, 𝑡(𝑥) +

∆𝑥

2
𝑘2),   (96) 
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𝑘4 = 𝑓2(𝑥 + ∆𝑥, 𝑡(𝑥) + ∆𝑥 ∙ 𝑘3).   (97) 

 

The corresponding term for the inverse horizontal speed (equation 92) is also 

reformulated according to equation (93). 

 

5.3  The Runge-Kutta-Fehlberg method 

An even more sophisticated method than the 4th order Runge-Kutta method is the 

Runge-Kutta-Fehlberg method (R-K-F) (Fehlberg, 1969). This method was used for 

solving the motion equations in PSO I, II, and VI and is a combination of 4th and 5th 

order Runge-Kutta formulas. At the cost of only one additional computation, the R-

K-F can estimate the computation error, therefore allowing corrections in the step 

size (∆𝑥) that adapts to keep the error small. Therefore, R-K-F may have higher 

accuracy than the R-K 4 solver if step size is properly constrained. Equation (91) in 

the Euler method may be exchanged for the following two estimates:  

 

𝑡4(𝑥 + ∆𝑥) ≈ 𝑡(𝑥) + ∆𝑥 (
25

216
𝑘1 +

1408

2565
𝑘3 +

2197

4104
𝑘4 −

1

5
𝑘5),  (98) 

 

𝑡5(𝑥 + ∆𝑥) ≈ 𝑡(𝑥) + ∆𝑥 (
16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6),  (99) 

 

where 𝑡4 and 𝑡5 are the 4th and 5th order estimates of the time in each step, and the 

coefficients in these formulas are expressed as: 

 

𝑘1 = 𝑓2(𝑥, 𝑡(𝑥)),   (100) 

 

𝑘2 = 𝑓2 (𝑥 +
∆𝑥

4
, 𝑡(𝑥) +

∆𝑥

4
𝑘1),   (101) 

 

𝑘3 = 𝑓2 (𝑥 +
3∙∆𝑥

8
, 𝑡(𝑥) +

∆𝑥

32
(3 ∙ 𝑘1 + 9 ∙ 𝑘2)),   (102) 

 

𝑘4 = 𝑓2 (𝑥 +
12

13
∆𝑥, 𝑡(𝑥) +

∆𝑥

2197
(1932 ∙ 𝑘1 − 7200 ∙ 𝑘2 + 7296 ∙ 𝑘3)),   (103) 

 

𝑘5 = 𝑓2 (𝑥 + ∆𝑥, 𝑡(𝑥) + ∆𝑥 (
439

216
∙ 𝑘1 − 8 ∙ 𝑘2 +

3680

513
∙ 𝑘3 −

845

4104
∙ 𝑘4)),   (104) 

 

𝑘6 = 𝑓2 (𝑥 + ∆𝑥, 𝑡(𝑥) + ∆𝑥 (−
23

33
∙ 𝑘1 + 2 ∙ 𝑘2 −

3544

2565
∙ 𝑘3 +

1859

4104
∙ 𝑘4 −

11

40
∙ 𝑘5)).  (105) 
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The error of the 4th order formula in the R-K-F method which is in the order of 

𝑂(∆𝑥5), can be estimated by comparing the solution to the more accurate 5th order 

solution. The estimated error is expressed as: 

 

𝐸𝑟𝑡 = |𝑡5(𝑥 + ∆𝑥) − 𝑡4(𝑥 + ∆𝑥)| = ∆𝑥 |
1

360
∙ 𝑘1 −

128

4275
∙ 𝑘3 −

2197

75240
∙ 𝑘4 +

1

50
∙ 𝑘5 +

2

55
∙ 𝑘6|.   

 (106) 

 

Of course, equation (92) in the Euler method may as well be reformulated according 

to R-K-F (equations 98 and 99). 
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6. OPTIMIZATION 

Optimization is all about finding the best solution possible in a predetermined set of 

circumstances. The field of optimization research grew in the 1960s, along with 

advances in the area of transistor-based computers, which enabled high speed 

numerical computing. Optimization methods can be applied to almost every kind of 

engineering problem; even the field of economics assimilates the benefits of 

optimization. Mathematical optimization can be divided into analytical and 

numerical optimization. Analytical optimization (section 6.2.1) is constrained to 

simpler problems, while numerical optimization (section 6.2.2) can be applied to a 

much broader range of problems.  

 

In this thesis the term optimal is not interpreted as an absolute, but rather a relative 

term. The optimal solution is the best solution given by an optimization method 

under certain conditions and optimization assumptions including convergence 

criteria. Therefore, there may be better solutions to the pacing strategy optimization 

problems than the optimal solutions presented in this thesis. For reasons of 

simplicity, the variables and function denotations in this chapter will differ from the 

terms listed in the abbreviations section of this thesis.  

 

6.1 Formulation of a general optimization problem 

An optimization problem is generally formulated to minimize a certain quantity 

given a defined domain. The domain may be defined by variables (𝒙) and their 

domain as well as various constraints. Mathematically, a general constrained 

optimization problem may be formulated as: 

 

Minimize  𝑓(𝒙)  

Subject to 𝒉(𝒙) = 0 

 𝒈(𝒙) ≤ 0  (107) 

 

where 𝒙 is a vector of optimization variables, 𝑓(𝒙) is the objective function, while 

𝒉(𝒙) and 𝒈(𝒙) are vectors with equality and inequality constraints respectively. 

Problems that do not contain any constraints are called unconstrained problems. 

Many optimization problems have the same fundamental structure and can 

therefore be solved with various optimization methods. 

 

6.1.1 Optimization variables 

In order to optimize an objective function, some parameters inherent in such 

function must be allowed to change. These parameters are usually called 
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optimization variables to the problem and the number of variables must be finite. In 

many applications, optimization variables are allowed to attain continuous values 

within a specified range of variation.  

 

6.1.2 Constraints 

A set of optimization variables results in a measure of the objective function. 

However, not all sets of variables are practically possible. Hence, constraints are 

introduced to restrict the optimization variables. Constraints that only restrict the 

domain of the optimization variable are most commonly named geometrical or side 

constraints and constraints that limit the performance or behavior of the system are 

named functional or behavioral constraints. All constraints must be functions of the 

optimization variables to have an effect on the problem. A set of variables is termed 

a feasible solution if it lies within the defined domain of the system, with all 

constraints satisfied. Moreover, a set of variables that does not satisfy the constraints 

is termed an infeasible solution. If a variable set directly touches a constraint, this 

constraint is termed active. Most optimal solutions are located where two or more 

constraints are simultaneously active.  

 

Considering a hypothetical optimization problem with two variables (𝒙 = [𝑥1, 𝑥2]) 

and four inequality constraints (𝒈(𝒙) ≤ 0), the domain of the system can be divided 

into feasible and infeasible regions (Figure 15). 

 

 
Figure 15.  Inequality constraints plotted onto the surface of two variables. 
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6.1.3 Objective function 

Among the sets of variables that satisfy all constraints there may be sets that are 

better than others. To evaluate which variable set is the best one, an objective 

function is formulated as a function of the optimization variables. The objective 

function (which sometimes is termed cost function) describes the quantity to be 

optimized. In the majority of optimization problems, the objective function is set to 

be minimized. However, in some cases the purpose of the optimization is to 

maximize a function. Instead of reformulating the mathematics of optimization for 

maximization, the problem may be reformulated as a minimization of the negative 

equivalent of the original objective function.  

 

By adding an objective function into the constraints set illustrated by Figure 15, the 

optimization problem may be presented as depicted in Figure 16. Now the objective 

function contours increases in the same order as the subscript numerals, such that 

𝑓6 > 𝑓5 > 𝑓4 > 𝑓3 > 𝑓2 > 𝑓1. The optimal solution is to this optimization problem is 

available at 𝒙 = 𝒙∗ 

 

 
Figure 16.  Objective function contours plotted together with the constraints.  
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6.2 Solving an optimization problem 

6.2.1 Analytical optimization 

The most fundamental optimization example is to find the minimum of an ordinary 

analytical function without constraints. If it is possible to analytically differentiate 

the function, the solution is easy to find. For problems where there is more than one 

variable and non-linear constraints are considered, the solution is not that obvious. 

For such a problem, it is a good idea to use the method of Lagrange multipliers. 

Consider an optimization problem with only inequality constraints: 

 

Minimize  𝑓(𝒙) (108) 

Subject to  𝒈(𝒙) ≤ 𝟎 

 

With the use of the Lagrange multiplier vector 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑝), the Lagrangian 

function can be expressed as: 

 

𝐿(𝒙, 𝝀) = 𝑓(𝒙) + 𝝀 ∙ 𝒈(𝒙)  (109) 

 

It can be shown that a stationary point of equation (109) can be the solution of 

equation (108). The gradient of the Lagrangian function, along with some other 

conditions, creates the first order necessary conditions also called Karush-Kuhn-

Tucker conditions for an inequality constrained problem: 

 

∇𝑓(𝒙) + 𝝀 ∙ ∇𝒈(𝒙) = 𝟎  (110) 

 

𝝀 ∙ 𝒈(𝒙) = 𝟎  (111) 

 

𝒈(𝒙) ≤ 𝟎, 𝝀 ≥ 𝟎  (112) 

 

By rewriting equation (110) as 𝛻𝑓(𝒙)  = −𝝀 ∙ 𝛻𝒈(𝒙), one can see that the gradient of 

the objective function must be a linear combination of the active constraints’ 

gradients (Figure 17). 
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Figure 17.  Geometrical representation of the Karush-Kuhn-Tucker conditions including 

the gradients of the objective function and two active inequality constraints at 

the optimal solution.  

 

An alternative formulation of the Karush-Kuhn-Tucker conditions may be used for 

problems that also have to obey equality constraints. However, these analytical 

optimization methods are generally ineffective when functions are strongly 

nonlinear, or the number of variables or constraints is too high. Furthermore, many 

engineering applications are unable to create the objective function and/or the 

constraints in explicit form. These objective functions and constraints are perhaps 

only available by numerical simulation and therefore require numerical 

optimization routines to be applied. 

 

6.2.2 Numerical optimization 

There are various numerical optimization routines that can estimate the optimal 

solution with good accuracy. These methods are generally depending on iterative 

numerical computations ultimately leading to a minimum. Optimization methods 

may be categorized into gradient based methods and non-gradient based methods. 

Gradient based methods compute the gradients of the objective function and the 
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constraints to find the direction of improvement and therefore better estimate an 

improved solution in each iteration. Gradient based methods are favorable for 

problems that are continuously differentiable. On the other hand, non-gradient 

based methods are favorable when gradients are unattainable, as these methods only 

make use of function evaluations. A general description of a gradient based 

numerical optimization routine can be expressed as: 

 

Step I. Guess initial set of variables 𝒙(0) and calculate the solution. 

Step II. For 𝑘 = 0, 1, … , 𝑁 

 If 𝒙(𝑘) is optimal, stop. 

Step III. Calculate an improved estimate of the solution 

 𝒙(𝑘+1) = 𝒙(𝑘) + 𝛼𝑘 ∙ 𝒅
(𝑘). 

Step IV.  Repeat from Step II. 

 

Here, 𝒅(𝑘) is the search direction and 𝛼𝑘 is the step length in that direction. Usually, 

the optimality is determined by some kind of convergence criterion. A convergence 

criterion may be formulated as an inequality, where the norm of the step size vector 

or the relative step size decrement in each iteration must be lower than preset 

minimum values. Another convergence criterion defines how the relative objective 

function improvement must be lower than a threshold value. When the convergence 

criterion is satisfied, the optimization will stop and the best feasible solution (lowest 

objective function) is termed optimal. 

 

However, for some problems it is hard to create an adequate convergence criterion 

if, for instance, the solution is not gradually decreasing between every iteration. 

Furthermore, the decrease of the solution or the step-size decrease may fluctuate 

even between iterations of gradual decreasing objective function. One alternative 

formulation is therefore to program the model to compute a predetermined number 

of iterations 𝑁 and let the best solution out of these iterations be the optimal one.  

 

Even if a convergence criterion is used and the solution converges to a stationary 

solution, it cannot be put beyond doubt that the provided optimal solution 

represents nothing but a local minimum. A local minimum is a minimum lower than 

the nearby variable sets in the feasible region, yet higher than the true global 

minimum. Numerical gradient based optimization methods are incapable of 

distinguishing a local minimum from a global minimum and therefore the only way 

to be certain of the nature of the attained optimal solution is to use multiple starting 

values of the optimization variables. Even this method leaves room for uncertainty, 

but at least it reduces the risk of mistaking a local minimum for a global minimum. 

Some non-gradient based optimization methods, also called global optimization 
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methods are more reliable in distinguishing between local and global minima. 

However, they are usually not suitable for complex implicit simulation programs 

such as the ones presented in section 3 and 4. Global optimization methods usually 

require more function evaluations to be performed in order to attain the optimal 

solution however better suited for non-continuous functions. 

 

6.2.3 Approximated sub-problems 

There are numerical methods for constrained gradient-based optimization that use 

approximated sub-problems �̃� to estimate the real problem 𝑃. The sub-problems are 

created between Step II and Step III in the algorithm in the previous section. The 

approximations are obtained through linear Taylor series expansions for the 

objective function and constraints (termed 𝑓(𝒙) and �̃�(𝒙)). The problem in equation 

(108) can be approximated with the following linearized sub-problem (�̃�(𝑘)) using 

Taylor expansion around 𝒙(𝑘): 

 

�̃�(𝑘): (113) 

Minimize 𝑓(𝒙) = 𝑓(𝒙(𝑘)) + ∇𝑓(𝒙(𝑘)) ∙ (𝒙 − 𝒙(𝑘)) 

Subject to �̃�(𝒙) = 𝒈(𝒙(𝑘)) + 𝛻𝒈(𝒙(𝑘)) ∙ (𝒙 − 𝒙(𝑘)) ≤ 𝟎 

 

The above problem (equation 113) can easily be solved with linear programming 

methods such as the Simplex method. The original problem in equation (108) is 

solved as a sequence of linearized sub-problems, where the linearization is carried 

out for every iteration. However, the change of the optimization variables may not 

be too large, as the Taylor expansion is only valid in the vicinity of the original point 

of linearization. Hence, a concept called move limits is utilized. These limits are set 

to constrain the change of the design within each iteration and the limits are usually 

adjusted between iterations. The move limits may be expressed as: 

 

𝒙 ≤ 𝒙 ≤ 𝒙  (114) 

 

where 𝒙 is the lower limit of the optimization variables 𝒙 and 𝒙 is the upper limit. 

 

6.2.4 Method of moving asymptotes 

The method of moving asymptotes (MMA) (Svanberg, 1987, Svanberg, 1993) is 

based on approximated sub-problems. However, the approximated objective 

function 𝑓(𝒙) and the constraints �̃�(𝒙) of MMA are obtained through linearization 

in variables of the type 1 (𝑥𝑗 − 𝑙𝑗)⁄  and 1 (𝑢𝑗 − 𝑥𝑗)⁄ , where 𝑙𝑗 and 𝑢𝑗 are the lower and 

upper asymptotes of 𝑥𝑗, thus  𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗. Consequently, the approximated MMA 

sub-problem �̃�(𝑘) can be expressed as: 

 



56 

�̃�(𝑘): (115)

  

Minimize  

𝑓(𝑘)(𝒙) = 𝑓(𝒙(𝑘)) + ∑ [(
𝑝0𝑗

(𝑘)

𝑢𝑗
(𝑘)−𝑥𝑗

+
𝑞0𝑗

(𝑘)

𝑥𝑗−𝑙𝑗
(𝑘)) − (

𝑝0𝑗
(𝑘)

𝑢𝑗
(𝑘)−𝑥𝑗

(𝑘) +
𝑞0𝑗

(𝑘)

𝑥𝑗
(𝑘)−𝑙𝑗

(𝑘))]
𝐽
𝑗=1   

Subject to   

𝑔�̃�
(𝑘)(𝒙) = 𝑔𝑖(𝒙

(𝑘)) + ∑ [(
𝑝𝑖𝑗

(𝑘)

𝑢𝑗
(𝑘)−𝑥𝑗

+
𝑞𝑖𝑗

(𝑘)

𝑥𝑗−𝑙𝑗
(𝑘)) − (

𝑝𝑖𝑗
(𝑘)

𝑢𝑗
(𝑘)−𝑥𝑗

(𝑘) +
𝑞𝑖𝑗

(𝑘)

𝑥𝑗
(𝑘)−𝑙𝑗

(𝑘))]
𝐽
𝑗=1 ≤ 0  

 

If 
𝜕𝑓

𝜕𝑥𝑗
> 0 then 𝑝0𝑗

(𝑘) = (𝑢𝑗
(𝑘) − 𝑥𝑗

(𝑘))
2
∙
𝜕𝑓

𝜕𝑥𝑗 
 and 𝑞0𝑗

(𝑘) = 0 

If 
𝜕𝑔𝑖

𝜕𝑥𝑗
> 0 then 𝑝𝑖𝑗

(𝑘) = (𝑢𝑗
(𝑘) − 𝑥𝑗

(𝑘))
2
∙
𝜕𝑔𝑖

𝜕𝑥𝑗
 and 𝑞𝑖𝑗

(𝑘) = 0 

If 
𝜕𝑓

𝜕𝑥𝑗
< 0 then  𝑝0𝑗

(𝑘) = 0 and 𝑞0𝑗
(𝑘) = −(𝑥𝑗

(𝑘) − 𝑙𝑗
(𝑘))

2
∙
𝜕𝑓

𝜕𝑥𝑗
 

If 
𝜕𝑔𝑖

𝜕𝑥𝑗
< 0  then 𝑝𝑖𝑗

(𝑘) = 0 and 𝑞𝑖𝑗
(𝑘) = −(𝑥𝑗

(𝑘) − 𝑙𝑗
(𝑘))

2
∙
𝜕𝑔𝑖

𝜕𝑥𝑗
 

If 
𝜕𝑓

𝜕𝑥𝑗
= 0 then 𝑝0𝑗

(𝑘) = 0 and 𝑞0𝑗
(𝑘) = 0 

If 
𝜕𝑔𝑖

𝜕𝑥𝑗
= 0 then 𝑝𝑖𝑗

(𝑘) = 0 and 𝑞𝑖𝑗
(𝑘) = 0 

 

where 𝑗 = 1,… , 𝐽 (number of variables), 𝑖 = 1,… , 𝐼 (number of constraints) and all 

derivatives 
𝜕𝑓

𝜕𝑥𝑗
 and 

𝜕𝑔𝑖

∂𝑥𝑗
 are evaluated at 𝒙(𝑘). 
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7. THE PACING STRATEGY OPTIMIZATION PROBLEM 

7.1 Formulation of the optimization problem 

Pacing strategy optimization is the matter of finding the optimal way of varying 

speed in locomotion. Moreover, pacing strategy optimization in endurance sports is 

generally applied to optimize performance, which may be expressed in terms of 

finishing time. This formulation requires a specified course profile and many other 

parameters to be solvable. In mathematical terms, the objective function is the time 

duration between start and finish. This is calculated by the solution of the motion 

equation. Moreover, certain restrictions must apply so that the solution does not 

exceed reasonable limits. These restrictions are formulated as mathematical 

constraints dependent on quantities in the bioenergetic model and motion equation 

solutions. 

 

7.1.1 Objective function 

The objective function in all PSO models is formulated as:  

 

𝑇 = ∑ ∆𝑡𝑖
𝐾
𝑖=1    (116) 

 

where 𝑇 is the total time between start and finish, 𝐾 is the total number of discrete 

distance steps, and ∆𝑡𝑖 is the time corresponding to each distance step in the 

motion equation solution. 

 

7.1.2 Constraints 

The constraints for each pacing strategy optimization model are formulated as: 

 

PSO I: 

 
1

2𝑇
∑ (𝑃𝑖 + 𝑃𝑖+1)∆𝑡𝑘
𝐾−1
𝑖=1 ≤ �̅�,  (117) 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑗 ≤ 𝑃𝑚𝑎𝑥 ,  𝑗 = 1,… , 𝐽 (118) 

 

where  𝑃𝑖  and 𝑃𝑖+1 are the magnitudes of power output at steps 𝑖 and 𝑖 + 1 

respectively. These values are available through linear interpolation of the 

optimization variables. �̅� is the preset maximal average power output limit, 𝑃𝑚𝑖𝑛 and 

𝑃𝑚𝑎𝑥  are the preset minimal and maximal power output limits respectively, and 𝐽 is 

the total number of optimization variables. PSO I also included a constant power 

simulation to evaluate the effect of the optimal pacing strategy. 

 

PSO II: 
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0 ≤ ℎ𝑞 ≤ 1,  𝑞 = 1,… , 𝐽 + 𝑄 (119) 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑗 ≤ 𝑃𝑚𝑎𝑥 ,  𝑗 = 1,… , 𝐽  (120) 

 

where ℎ𝑞 is the variable determining the available anaerobic work in the CPIE model 

and 𝑄 is the number of intersections between the critical power and the linear 

interpolation of the optimization variables. PSO II also included a constant power 

simulation to evaluate the effect of the optimal pacing strategy. 

 

PSO III, BE III a: 

 

There was no optimization involved in the PSO III, BE III a. Therefore, only a 

constant power output simulation (with the same average power as PSO III, BE III 

b) was performed, and compared to the following bioenergetic models. 

 

PSO III, BE III b: 

 

Same as in PSO II. 

 

PSO III, BE III c: 

 

0 ≤ ℎ𝑖 < 1, 𝑖 = 1,… , 𝐾  (121) 

 

0 ≤ 𝑙𝑖 < 1 − 휃 − 𝜆,  𝑖 = 1,… , 𝐾  (122) 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑚𝑖
,  𝑖 = 1,… , 𝐾   (123) 

 

where ℎ𝑖 and 𝑙𝑖 are the variables determining the available alactic and lactic energies 

respectively and 𝑃𝑚𝑖 is the maximal instant power output limit in the M-M model. 

 

PSO IV: 

 

0 ≤ ℎ𝑖 < 1, 𝑖 = 1,… , 𝐾  (124) 

 

0 ≤ 𝑙𝑖 < 1 − 휃 − 𝜆,  𝑖 = 1,… , 𝐾  (125) 

 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑚𝑖
, 𝑖 = 1,… , 𝐾   (126) 

 

0 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥𝑖 ,   𝑖 = 1,… , 𝐾  (127)  
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where 𝑣𝑖 is the translational speed in the direction of travel and speed and 𝑣𝑚𝑎𝑥𝑖  is 

the maximal instant speed limit due to static grip friction. 

 

PSO VI, BE VI a: 

 

0 ≤ 𝑐𝑑 < 1 − 𝜙, 𝑑 = 1,… , 𝐷  (128) 

 

0 ≤ ℎ𝑑 < 1 − 𝜉, 𝑑 = 1,… , 𝐷  (129) 

 

0 ≤ 𝑙𝑑 < 1 − 휃 − 𝜆, 𝑑 = 1,… , 𝐷  (130) 

 

𝑟𝐸𝐸0 ≤ 𝑟𝐸𝐸𝑑 ≤ 𝑟𝐸𝐸𝑚𝑓
𝑚𝑎𝑥, 𝑑 = 1,… , 𝐷  (131) 

 

where 𝑐𝑑, ℎ𝑑, and 𝑙𝑑 are the variables determining the available carbohydrate, alactic, 

and lactic energies respectively, 𝑟𝐸𝐸0 is the minimal or resting rate of energy 

expenditure, 𝑟𝐸𝐸𝑚𝑓
𝑚𝑎𝑥  is the maximal instant power output of the M-M-S model and 

𝐷 is the number of equally spaced 𝑥-coordinates where the constraints were 

evaluated. 

 

PSO VI, BE VI b: 

 

BE VI b was also constrained by equations (128-131) in combination with the 

following maximal propulsive force constraint: 

 

0 ≤ 𝐹𝑠𝑑 ≤ 𝐹𝑠
𝑚𝑎𝑥, 𝑑 = 1,… , 𝐷  (132) 

 

where 𝐹𝑠
𝑚𝑎𝑥  is the maximal instant propulsive force.  

 

7.2 Numerical implementation 

All numerical expressions of every model presented in this thesis were implemented 

using the MATLAB® software and executed on a personal computer. Where 

possible, generic MATLAB® functions were utilized to simplify the source code. Due 

to copyright restrictions, no source code of the models presented in this thesis is 

publicly available, although research cooperation may be an exception. Depending 

on the parameter settings, large differences in computation times were obtained. 

Without going into detail and describing a thorough investigation on the sensitivity 

of various parameters’ impact on the calculation time, general correlations can be 

identified by the comprehensive simulation work that has been performed.  Some of 

the factors that have a major effect on the computation time are: the number of 
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optimization variables, course length, accuracy of the differential equation solvers 

for motion equation and bioenergetic model, distance between lower and upper 

asymptotes (section 6.2.4), and number of perturbations used in the numerical 

gradient calculation method.  

 

Previous experience has shown that similar optimization problems are successfully 

solved using MMA. Therefore, all models for the optimization of pacing strategies 

(PSO I-IV and VII) in this thesis use MMA (section 6.2.4) to optimize the pacing 

strategy. Other optimization routines embedded in the MATLAB® Optimization 

Toolbox™ and Global Optimization Toolbox, such as the interior point method, the 

sequential quadratic programming method, and the generalized pattern search 

method were also tested but without success.  

 

The partial derivatives building up the gradients of the objective function (∇𝑇), as 

well as the constraints (∇𝒈), are calculated numerically using either the forward 

difference approximation (PSO I and II) or the five-point stencil (PSO III, IV, and VI). 

The forward difference approximation for the objective function in pacing strategy 

optimization is expressed as: 

 
𝑑𝑇

𝑑𝑃𝑗
≈

𝑇(𝑃𝑗+∆𝑃𝑗)−𝑇(𝑃𝑗)

∆𝑃𝑗
,  𝑗 = 1,… , 𝐽 (133) 

 

where ∆𝑃𝑗  is the variable perturbation. The five-point stencil for the first derivative 

is formulated as: 

 
𝑑𝑇

𝑑𝑃𝑗
≈

−𝑇(𝑃𝑗+2∆𝑃𝑗)+8𝑇(𝑃𝑗+∆𝑃𝑗)−8𝑇(𝑃𝑗−∆𝑃𝑗)+𝑇(𝑃𝑗−2∆𝑃𝑗)

12∆𝑃𝑗
  𝑗 = 1,… , 𝐽.  (134) 

 

The five-point stencil approximates the derivative more accurately but needs about 

four times the computation time of the forward difference approximation due to 

three additional computations for every optimization variable (𝑇(𝑃𝑗 + 2∆𝑃𝑗), 

𝑇(𝑃𝑗 + ∆𝑃𝑗), 𝑇(𝑃𝑗 − 2∆𝑃𝑗)). A schematic description of the optimization process for 

pacing strategies is illustrated in Figure 18. The change in variables proposed by 

MMA is 𝑷𝒊𝒎𝒑 and 𝑷𝒐𝒑𝒕 for the improved and optimum solutions, respectively. The 

initial estimate of the variable values is set to 𝑷𝒊𝒏𝒊 (Figure 18). For most of the 

calculations presented in this thesis 𝑷𝒊𝒏𝒊 is set to a constant valued distribution 

within the feasible domain of the optimization problem. However, in PSO IV, 𝑷𝒊𝒏𝒊 is 

not feasible in the course bend calculations due to the constraint in equation (127). 

The magnitude of the constant valued 𝑷𝒊𝒏𝒊 is chosen with respect to the athlete’s 

physiological ability and the nature of the course and ambient circumstances. The 

final solution termed the optimal pacing strategy or optimal power distribution 
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(𝑷𝒐𝒑𝒕) is the best feasible solution among all suggested solutions in the optimization 

iterations. 

 

 
Figure 18.  Flow chart of the pacing strategy optimization problem where finishing time 𝑇 is 

the objective function, the power output 𝑷 is the vector of optimization variables 

and 𝒈 is the vector of constraints from the bioenergetic model. 𝑷𝒊𝒏𝒊, 𝑷𝒏𝒆𝒘, and 

𝑷𝒐𝒑𝒕 are the initial, improved and optimal vectors of optimization variables 

(power distributions). 

 

7.3 Model uncertainty and sensitivity 

No uncertainty analyses were conducted for any of the models presented in this 

thesis. Furthermore, no extensive sensitivity analyses were performed regarding the 

parameters associated with the pacing strategy optimization models discussed in 

this thesis. However, due to the formulation of these models, some general 

conclusions can be drawn regarding their sensitivity. In this analysis it is essential 

that both the absolute magnitude of each parameter is considered, as well as the 

potential of that parameter’s variation. Firstly, considering the expressions for the 

motion equation (e.g. equation 30) and the bioenergetic model (e.g. equations 45-80) 

and its restrictions (e.g. equations 128-132) in PSO VI, it can easily be concluded that 

some parameters have a great effect on the finishing time. The drag area of the 
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athlete may vary within a reasonably broad range and affects the aerodynamic drag 

force that assumes significant magnitudes at regular speeds, restricting speed and 

thereby performance. For the same reason, ambient winds may have a great effect 

on performance. Furthermore, the gravitational force is always of a constant 

magnitude, but will only affect the athlete’s locomotion during uphill and downhill 

sections (i.e. during nonzero course gradients). These gradients may vary only 

slightly, but nonetheless significantly affect performance due to the high magnitude 

of the gravitational force.  

 

The full model’s sensitivity to the bioenergetic model’s parameters is largely 

dependent on exercise duration. In the M-M-S model (section 4.1.4) for instance, the 

carbohydrate store, the maximal rate of oxidative phosphorylation, and the maximal 

rate of fat oxidation greatly influence performance in prolonged exercise. However, 

in short duration exercise, performance relies more on the anaerobic energy 

supplying systems. Therefore, performance in short duration exercise is more 

sensitive to changes in the energy of the lactic and alactic stores, and the maximal 

rate of energy expenditure and the rate of lactic energy conversion. Intermittent 

exercise may result from varying terrain or other ambient conditions and is 

characterized by recurring periods of high and low power outputs. The parameter 

that limits the replenishment of lactic energy is more sensitive to changes in 

intermittent exercise than to all-out exercise or exercise on flat and straight courses 

with a constant wind velocity. Furthermore, the anaerobic capacities in the alactic 

and lactic compartment also influence performance more in intermittent exercise 

than in steady power output exercise. 
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8. SUMMARY AND MAIN RESULTS  

8.1 Effect of hills on optimal pacing in cross-country skiing 

In Paper I, the pacing strategy was optimized for a cross-country skier travelling a 

sprint course of 1425 m. The optimal pacing strategy with the corresponding power 

distribution was compared to a simulation using constant power that was equal to 

the average power in the optimal pacing strategy. The optimization was run for 20 

iterations which resulted in a finishing time of 187.4 s that was 6.5% faster than the 

constant power simulation. The optimal power distribution showed great variability 

in parallel with course gradient. The optimal power distribution and the 

corresponding pacing strategy are illustrated in Figure 19.  

 

 
Figure 19.  Course profile, speed, optimal power output distribution and average power 

output for a world class male skier of 78 kg. Calculations are made using PSO 

I.  

 

8.2 Effect of hills on optimal pacing in road cycling 

In Paper II, the aim was to optimize pacing for road cycling, using the critical power 

model for intermittent exercise on three 2000 m hilly courses and compare the 

results for various hill set-ups. Furthermore, comparisons were also made between 

optimal pacing strategies and constant power strategies using the average power of 

the optimal strategies. The optimization routine completed 30 iterations for each 

course, and the finishing times were 𝑇𝑆𝑃 = 171.1 s, 𝑇𝐷𝐻 = 156.9 s, and 𝑇𝑄𝐻 = 151.9 s, 

for the single plateau (SP), double hill (DH), and quadruple hill (QH) courses 

respectively. The variances of speed for the optimal pacing strategies were 6.54%, 
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1.18%, and 0.84%, while the time gains of these pacing strategies compared to 

constant power simulations were 3.0%, 5.0%, and 2.3% for the SP, DH, and QH 

courses respectively. In comparison to the initial energy levels, the remaining 

energies in the anaerobic compartments (AWC) at the finish line were 0.041%, 

0.41%, and 0.22% for the SP, DH, and QH courses respectively. Course profiles, 

optimal pacing strategies and power output distributions are shown in Figure 20. 

 

 

 

 
Figure 20.  Optimal pacing strategies and power output distributions for the rider on the 

single plateau (SP), double hill (DH) and quadruple hill (QH) courses. Results 
are calculated by PSO II. 

 

SP 

DH 

QH 



65 

The optimal power distributions in Paper II varied in sync with course gradients in 

each optimal strategy, so different course profiles resulted in differing optimal 

pacing strategies. 

 

8.3 Impact of sharp course bends on optimal pacing in road 
cycling 

In Paper IV, the aim was to investigate how power output and speed should be 

distributed to optimize performance in non-drafted road cycling on a flat 1000 m 

course with one sharp bend. Furthermore, the aim was also to investigate the effect 

of racing line on performance. Therefore, optimal power distributions and the 

corresponding pacing strategies were calculated for three courses with the same 

length; two of the courses had a minimal turning radius of 7.5 (𝑐7.5) and 10 m (𝑐10) 

respectively and one course was straight (𝑐∞). The two different turning radii could 

be considered as two different racing lines through the same course bend. Bearing 

angle profiles, pacing strategies, power output distributions, and anaerobic 

compartments’ energy levels are illustrated in Figure 21. 

 

The finishing times were 𝑇∞ = 70.7 , 𝑇10 = 76.0, and 𝑇7.5 = 77.0 s, while the speed 

variances were 2.1, 3.3, and 3.9 m∙s-1, for 𝑐∞, 𝑐10, and 𝑐7.5 respectively. In comparison 

to the initial energy levels, the remaining alactic energies at the finish line were 10.1, 

9.93, and 10.2%, while the remaining lactic energies were 8.35, 15.7, and 15.5%, for 

𝑐∞, 𝑐10, and 𝑐7.5 respectively. The average power outputs were 691, 631, and 626 W 

while the kinetic energies spent due to braking were 0, 2522, and 3235 J for 𝑐∞, 𝑐10, 

and 𝑐7.5 respectively. Moreover, the minimal speeds due to braking were 8.28 and 

7.16 m∙s-1 for 𝑐10, and 𝑐7.5 respectively.  

 

Paper b is not one of the appended papers in this thesis because it is only a peer-

reviewed conference abstract that was presented orally. However, since this paper 

contributes to achieving the main aims of Paper IV, some of its results, including 

previously unpublished data, are presented here. Instead of just restricting the 

normal acceleration due to static friction, Paper b’s restriction accounted for the total 

horizontal acceleration including the tangential component that is directly 

influenced by the braking or propulsive force on the wheels. The course had a length 

of 500 m with a 90° course bend halfway through at a minimal turning radius of 6.5 

m. Moreover, the optimization completed 40 iterations, which resulted in the power 

output distribution shown in Figure 22. Furthermore, Table 3 summarizes a selection 

of results from this optimal solution.   
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Figure 21.  Optimal pacing strategies, power distributions, anaerobic thresholds, alactic 

and lactic compartment levels, maximal power constraints, and bearing 

angles, for the straight course (𝑐∞) and the curved courses with 7.5 m (𝑐7.5) 

and 10 m (𝑐10) radii in PSO IV. The Maximum power constraint was colored 

white in 𝑐∞, for visibility.  
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𝑐7.5 
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Table 3.  Results from Paper b and previously unpublished data from the same study. 

Finishing time [s] 40.5 

Propulsive time [s] 37.6 

Braking time [s] 1.9 

Freewheeling time [s] 1.0 

Speed variance [m∙s-1] 0.0038 

Average propulsive power [W] 829 

Average braking power [W] 1970 

Remaining alactic energy [%] 12.2 

Remaining lactic energy [%] 35.2 

Maximal frictional force [N] 576 

Maximal propulsive force [N] 220 

Average propulsive force [N] 73 

Maximal braking force [N] 539 

Average braking force [N] 197 

Tip over braking force [N] ~ 490 – 540 

 

The results presented in Figure 22, including the dynamics of braking, may also be 

more thoroughly observed in close proximity to the course bend. Figure 23 shows 

the acceleration components of the motion in this segment and the maximal 

attainable acceleration due to the maximal grip friction of the tires. The shark fin 

shaped graph in Figure 23 is the tangential acceleration component. Regarding the 

well-known relation between acceleration and force, this may be seen as 

representative of the optimal distribution of braking force.  

 

 
Figure 22.  Optimal pacing strategy and power output distribution including braking 

pattern for a corner with a minimal turning radius of 6.5 m. Negative power 

output is considered braking power. 
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Figure 23.  Tangential and normal acceleration components for optimal braking and 

maximal allowable acceleration due to static friction in a square corner with a 

minimal turning radius of 6.5 m. 

 

8.4 Impact of ambient wind with changing direction on 
optimal pacing in road cycling 

The aim of Paper VI was to investigate how energy expenditure rate and speed 

should be distributed to optimize performance in non-drafted road cycling on flat 2 

and 100 km courses when ambient wind direction is changing or when there are no 

ambient winds? Therefore, four different courses were simulated, two were 2 km 

long and two were 100 km long. Moreover, one of each course length contained 

ambient wind with constant speed but varying directions relative to the course.  The 

other two courses were simulated without the impact of ambient wind.  All four 

courses were simulated and optimized for both one and 81 optimization variables 

resulting in eight simulations. The 81-variable optimizations resulted in the optimal 

power distributions and the one-variable optimizations resulted in constant power 

distributions which did not violate the optimization constraints. The eight 

simulations were named CSNW, CSW, CLNW, CLW, OSNW, OSW, OLNW, and 

OLW, where C stands for constant power strategy (one variable), O denotes optimal 

power distribution (81 variables), S stands for short course (2 km), L is for long 

course (100 km), NW stands for no ambient wind, and W denotes a course where 

ambient wind is present. A full list of numerical outputs from the eight pacing 

strategy simulations in Paper VI are presented in Tables 4 and 5. Optimal pacing 

strategies and energy expenditure rate distributions for Paper VI are shown in 
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Figures 24-27. The energy expenditure rate distribution in Figures 24-27 are 

equivalent to the power distributions depicted in Figures 19-22 and 28-29.     

 

 
Figure 24.  Optimal pacing strategy, energy expenditure rate distribution, and relative 

metabolic subsystem contribution, in no ambient wind on a 2000 m course.  

 

The constant power strategies resulted in finishing times of 170.8, 177.4, 10351, and 

11188 s for the CSNW, CSW, CLNW, and CLW simulations respectively. 

Furthermore, the optimal power distributions resulted in finishing times of 161.0, 

168.6, 10146, and 11028 s for the OSNW, OSW, OLNW, and OLW simulations 

respectively. Consequently, the optimal power distributions gave time gains of 5.7, 

4.9, 2.0, and 1.4% compared to the constant power distributions for SNW, SW, LNW, 

and LW courses respectively.  
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Table 4.  Numerical results from simulation of the constant and optimal power 

distributions on the short courses with and without ambient wind (2000 m) in 
PSO VI. 

Simulation CSNW OSNW ∆ [%] CSW OSW ∆ [%] 

Ambient wind No  Yes  

Power distribution Constant Optimal   Constant Optimal  

Finishing time [s] 170.8 161.0 -5.7 177.4 168.6 -4.9 

Average speed [m·s-1] 11.71 12.42 6.1 11.28 11.86 5.2 

Maximal speed [m·s-1] 12.36 14.33 16.0 14.44 16.93 17.2 

Total work [kJ] 65.85 72.42 10.0 67.83 75.11 10.7 

Average 𝑃 [W] 385.6 449.8 16.7 382.4 445.5 16.5 

Total energy expenditure 
[kJ] 

284.9 311.5 9.3 293.5 323.2 10.1 

Total energy conversion 
from fat oxidation [kJ] 

42.75 11.15 -73.9 44.01 11.14 -74.7 

Total energy conversion 
from carbohydrate 
oxidation [kJ] 

158.6 213.9 34.9 165.7 225.5 36.1 

Total alactic energy 
conversion [kJ] 

11.48 11.67 1.6 11.50 11.67 1.5 

Total lactic energy 
conversion [kJ] 

72.11 74.85 3.8 72.38 74.88 3.4 

Average 𝑟𝐸𝐸 [W] 1668 1935 16.0 1655 1917 15.8 

Average 𝑟𝐸𝐶𝐹𝐴𝑇 [W] 250.3 69.23 -72.3 248.1 66.04 -73.4 

Average 𝑟𝐸𝐶𝐶𝐻𝑂 [W] 928.4 1328 43.0 934.0 1338 43.3 

Average 𝑟𝐸𝐶𝐴𝐿 [W] 67.23 72.49 7.8 64.85 69.23 6.7 

Average 𝑟𝐸𝐶𝐿 [W] 422.3 464.9 10.1 408.1 444.1 8.8 

Maximal relative constraint 
violation 

7.074e-07 1.378e-04 193.8 9.183e-04 1.060e-05 -98.8 

Relative objective function 
improvement in the last 
optimization iteration 

8.694e-07 8.759e-07 0.7 1.908e-04 2.294e-08 -100.0 

Note: ∆ is the relative difference between constant and optimal power distributions expressed 

as a percentage. 

 

The total energy expenditures were higher in each of the OSW, OLW, CSW, and 

CLW simulations compared to the OSNW, OLNW, CSNW, and CLNW simulations 

respectively. However, the average power outputs and energy expenditure rates 

were greater in all simulations, excluding ambient wind, compared to the equivalent 

power distributions on the ambient wind courses. 
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Table 5.  Numerical results from simulation of the constant and optimal power 

distributions on the long courses with and without ambient wind (100 km) in 
PSO VI. 

Simulation CLNW OLNW ∆ [%] CLW OLW ∆ [%] 

Ambient wind No  Yes  

Power distribution Constant Optimal   Constant Optimal  

Finishing time [s] 10351 10146 -2.0 11188 11028 -1.4 

Average speed [m·s-1] 9.661 9.856 2.0 8.938 9.068 1.5 

Maximal speed [m·s-1] 9.671 11.52 19.1 12.95 14.35 10.8 

Total work [kJ] 2056 2137 3.9 2192 2274 3.7 

Average 𝑃 [W] 198.6 210.6 6.0 196.0 206.2 5.2 

Total energy expenditure 
[kJ] 

9230 9551 3.5 9853 1018 3.3 

Total energy conversion 
from fat oxidation [kJ] 

6833 7016 2.7 7438 7648 2.8 

Total energy conversion 
from carbohydrate 
oxidation [kJ] 

2366 2514 6.3 2386 2512 5.3 

Total alactic energy 
conversion [kJ] 

6.588 5.840 -11.4 6.500 5.859 -9.9 

Total lactic energy 
conversion [kJ] 

21.52 12.20 -43.4 20.41 12.45 -39.0 

Average 𝑟𝐸𝐸 [W] 891.7 941.3 5.6 880.6 923.2 4.8 

Average 𝑟𝐸𝐶𝐹𝐴𝑇 [W] 660.1 691.4 4.7 664.7 693.5 4.3 

Average 𝑟𝐸𝐶𝐶𝐻𝑂 [W] 228.6 247.8 8.4 213.2 227.8 6.8 

Average 𝑟𝐸𝐶𝐴𝐿 [W] 0.6365 0.5756 -9.6 0.5809 0.5313 -8.5 

Average 𝑟𝐸𝐶𝐿 [W] 2.079 1.203 -42.1 1.824 1.129 -38.1 

Maximal relative constraint 
violation 

4.033e-04 0 -100 9.978e-04 0 -100 

Relative objective function 
improvement in the last 
optimization iteration 

6.943e-08 1.468e-06 2014 1.568e-08 1.308e-06 8242 

Note: ∆ is the relative difference between constant and optimal power distributions expressed 

as a percentage. 
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Figure 25.  Optimal pacing strategy, energy expenditure rate distribution, relative 

metabolic subsystem contribution, and course direction, on a 2000 m course 

with an ambient wind of 5 m·s-1 which changes from tailwind to headwind in 

five equal angle increments. 

 

 

Figure 26.  Optimal pacing strategy, energy expenditure rate distribution, and relative 

metabolic subsystem contribution, in no ambient wind on a 100 km course.  
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Figure 27.  Optimal pacing strategy, energy expenditure rate distribution, relative 

metabolic subsystem contribution, and course direction, on a 100 km course 

with an ambient wind of 5 m·s-1 which changes from tailwind to headwind in 

five equal angle increments. 

 

8.5 Effect of various bioenergetic models on the results in 
pacing strategy optimization 

In Paper III, the aim was to evaluate the effect of different bioenergetic models on 

the optimal pacing strategy and the estimated performance. The M-M model (BE III 

c) was compared to the CPIE model (BE III b) and a constant power simulation (BE 

III a). The QH course profile from Paper II was used and the optimization carried 

out 60 iterations for the M-M and CPIE models respectively. The finishing times 

(performance) were 𝑇𝐶𝑃𝑆 = 165.2, 𝑇𝐶𝑃𝐼𝐸  = 158.2, and 𝑇𝑀𝑀 = 159.3 s and the 

variances of speed were 7.8, 2.1, and 5.3 m∙s-1, for the constant power, CPIE, and M-

M models respectively. Furthermore, in comparison to the initial levels of energy, 

the remaining anaerobic energies at the finish line were 0.045% in the CPIE 

simulation, while they were 15 and 37% for the 𝐴𝐿 and 𝐿 compartments respectively 

in the M-M model. Course profile, pacing strategies, power output distributions, and 

anaerobic compartments’ energy levels can be seen in Figures 28 and 29 for the 

optimal simulations of the CPIE and M-M model respectively. Furthermore, a 

comparison in pacing strategies between the constant power, CPIE, and M-M 

models is illustrated in Figure 30. 
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Figure 28.  Optimal pacing strategy, power distribution, critical power, anaerobic work 

compartment level (𝐴𝐴𝑊), and course profile, calculated by PSO III and 

constrained by BE III b (CPIE model).  

 

 
Figure 29.  Optimal pacing strategy, power distribution, initial power, alactic and lactic 

compartment levels, maximal power constraint, and course profile, calculated 

by PSO III and constrained by BE III c (M-M model).  
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Figure 30.  Course profile and optimal pacing strategies for the three modeling 

approaches in PSO III.  

 

8.6 Effect of optimal pacing strategies on performance  

The estimated improvements from adopting optimal power distributions compared 

to constant power strategies for the studies contained within this thesis are 

summarized in Table 6. 

 
Table 6.  Numerical result comparisons for simulation of constant and optimal power 

distributions in Paper I, II, II, and VI. 

Paper Sport BE model Course Obstacle Finishing time [s] ∆ [%] 

     Constant  Optimal   

I XC-Skiing Average power - Hills 200.4 187.4 -6.5 

II Road Cycling CPIE SP Hills 176.4 171.1 -3.0 

II Road Cycling CPIE DH Hills 165.2 156.9 -5.0 

II Road Cycling CPIE QH Hills 155.5 151.9 -2.3 

III Road Cycling CPIE QH Hills 165.2 158.2 -4.2 

III Road Cycling M-M QH Hills 165.2 159.3 -3.6 

VI Road Cycling M-M-S SNW - 170.8 161.0 -5.7 

VI Road Cycling M-M-S SW Wind 177.4 168.6 -4.9 

VI Road Cycling M-M-S LNW - 10351 10146 -2.0 

VI Road Cycling M-M-S LW Wind 11188 11028 -1.4 

Note: ∆ is the relative difference in finishing times between constant and optimal power 

distributions expressed as a percentage. 
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8.7 Bioenergetic model development for pacing strategy 
optimizations 

The maximal power restriction on the M-M model (Morton, 1990) in Paper III was 

modified for Paper IV. However, the most comprehensive development of the 

bioenergetic compartment model in this thesis is presented in Paper V, in which the 

M-M-S model was evaluated and compared to previous empirical findings. Three 

different modes of exercise were simulated in Paper V to test the M-M-S model. 

These modes were submaximal exercise at 50 and 70% of 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 , supramaximal 

exercise at 101, 103, 110, 125, 150, and 200% of 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 , and all-out exercise. 

 

8.7.1 Submaximal simulations 

In the submaximal constant power output simulations, power was set to increase 

according to equation (87) and Figure 14, up to the equivalent of the pre-set rate of 

energy expenditure and thereafter power was kept constant. The estimated relative 

contributions of the various energetic systems to total energy supply for the different 

durations are illustrated in Figure 31. 

 

    
Figure 31.  Energy substrate utilization for prolonged submaximal exercise at 0.5 ∙

𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 (~50% of �̇�𝑂2𝑚𝑎𝑥) (left) and 0.7 ∙ 𝑟𝐸𝐶𝑂

𝑚𝑎𝑥 (~70% of �̇�𝑂2𝑚𝑎𝑥)  (right). 

Calculations were done using BE V (M-M-S model). 
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8.7.2 Supramaximal simulations 

The supramaximal constant power output simulations were conducted in the same 

manner as the submaximal simulations. However, due to the higher power and the 

M-M-S model’s constraint on maximal energy expenditure rate (equation 53), power 

was impelled to decrease by the interaction of equation (53). The time by which this 

constraint interfered was termed the time to exhaustion (TTE). Figure 32 show TTE 

and the estimated relative contributions of the various energetic systems to total 

energy supply for the different rates of energy expenditures.  

 

 

Figure 32.  Time to exhaustion (TTE)  and metabolic subsystem utilization with a duration 

equal to TTE for supramaximal work at constant power outputs equivalent to 

101, 103, 110, 125, 150, and 200% of 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥. Calculations were done using 

BE V (M-M-S model). 

 

To evaluate the model for empirical data, two supramaximal simulations were run 

for 107 and 125% of 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 , which were compared to study 1 of Gastin et al. (1995). 

The time courses of these simulations are presented in Figures 33 and 34. Compared 

to study 1 in Gastin et al. (1995), the relative aerobic energy contribution for the 

simulations were 4.2% lower  and 1.5% higher for the 1.07 ∙ 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 and 1.25 ∙

𝑟𝐸𝐶𝑂
𝑚𝑎𝑥   simulations respectively. Average rates of energy expenditure were slightly 

lower in the simulations than in Gastin’s experiments (-0.3% for 1.07 ∙ 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥  and -

0.7% for 1.25 ∙ 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥). 
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Figure 33.  M-M-S (BE V) model time course for supramaximal exercise with constant 

power equivalent to a rate of energy expenditure equal to 1.07 ∙ 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥 

(~107% of �̇�𝑂2𝑚𝑎𝑥) for 230 s. Metabolic subsystem utilizations are expressed 

in normalized values.  

 

 

Figure 34.  M-M-S (BE V) model time course for supramaximal exercise with constant 

power equivalent to a rate of energy expenditure equal to 1.25 ∙ 𝑟𝐸𝐶𝑂
𝑚𝑎𝑥

 

(~125% of �̇�𝑂2𝑚𝑎𝑥) for 180 s. Metabolic subsystem utilizations are expressed 

in normalized values. 

 

  



79 

8.7.3 All-out simulation 

The all-out, maximal power simulation was run with an energy expenditure rate 

equal to the minimum of the two constraints on maximal propulsive force (equation 

87) and maximal energy expenditure rate (equation 53). The all-out simulation 

resulted in a relative aerobic energy contribution that was 3.4% lower and the 

average energy expenditure rate was 8.8% higher than the reported value in study 1 

of Gastin et al. (1995). The relative contributions of the various energetic systems to 

total energy supply for consecutive time intervals are presented for the all-out 

simulation in Figure 35 and the time course of that simulation is shown in Figure 36. 

 

       

Figure 35.  Metabolic subsystem utilization and mean power output for consecutive time 

periods of all-out exercise using the M-M-S model (BE V).  
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Figure 36.  M-M-S (BE V) model time course for all-out maximal power exercise 

constrained by equations (53) and (87) for a duration of 90 s. Metabolic 

subsystem utilization is expressed in normalized values. 
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9. DISCUSSION AND CONCLUSIONS 

The results of this thesis confirm previous findings (Swain, 1997, Atkinson and 

Brunskill, 2000, Gordon, 2005, Atkinson et al., 2007, Cangley et al., 2011, Boswell, 

2012, Dahmen, 2012b, Dahmen, 2012a, Wells et al., 2013), demonstrating that 

variable power output distributions are beneficial in variable ambient conditions. 

Furthermore, the results of Papers I, II and III specifically confirm that power output 

should be varied in sync with course gradient to minimize variations in speed and 

thereby optimize performance. Collectively, the results presented in this thesis 

suggest that athletes improve performance by adapting their power output with 

respect, not only to changing course gradients and ambient winds, but also to their 

own physiological and biomechanical abilities, course length, and obstacles such as 

sharp course bends.  

 

9.1 Effect of hills on optimal pacing in cross-country skiing 

The rapid variations in power output suggested in Paper I may be questioned on the 

basis of human exercise bioenergetics. However, it might be argued that these 

variations are the result of the simplistic constraint that only restricts average, 

minimal and maximal power. Still, the calculated time saving of 6.5% from opting 

an optimal power distribution instead of constant power in Paper I, is well beyond 

the standard deviation of finishing times (3.6%) in elite cross-country skiers 

performing a similar sprint race (Andersson et al., 2010). Due to the simplistic 

bioenergetic model, significant time gains at the highest level of performance might 

be much smaller than those in Paper I, which still suggests that pacing strategy 

optimization may have a decisive effect on performance in cross-country sprint 

skiing. Overlooking the shortcomings of bioenergetics, the results of Paper I show 

that power should be varied heavily in parallel with course inclination to optimize 

performance in sprint cross-country skiing. 

 

9.2 Effect of hills on optimal pacing in road cycling 

The results of Paper II show that courses with the same total elevation but with 

different numbers of hills need different pacing strategies. Just like the findings of 

Boswell (2012), the finishing times of the optimal pacing strategies in Paper II were 

faster when hills had lower accumulated elevations. These findings agreed with the 

hypothesis that hills with lower accumulated elevations (QH) would create lower 

speed variance and therefore lower finishing times than courses with higher hills. 

Key to this is the point at which anaerobic work capacity is depleted with no further 

replenishment. This point occurs close to the top of the last uphill on each course 

and therefore occurs further into the race for the courses with hills closer to the finish 
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line. It was suggested by Swain (1997) that constant speed is optimal but not always 

achievable. In such circumstances, one might argue that performance can be 

improved if physiological stress is kept within acceptable limits while minimizing 

variations in speed. In Paper I, it is concluded that this constant speed optimality is 

the result of the aerodynamic drag’s dependence on speed squared (equations 12 

and 13). 

 

Moreover, in accordance with the findings of  Swain (1997), Atkinson et al. (2007), 

and Boswell (2012), Paper II found that differing numbers of hills induce varying 

potential for improvement by applying optimal pacing strategies. However, in 

contrast to these studies, Paper II resulted in larger improvements for both the 

course with one long hill (SP) and two medium hills (DH) compared to four shorter 

hills (QH). It might be argued that the optimization of the pacing strategy on four 

hills had not reached an absolute optimum before the iterative routine was 

terminated. Still, it is also evident that direct comparisons cannot be made with the 

preceding studies (Swain, 1997, Atkinson et al., 2007, Boswell, 2012), as they did not 

compensate for accumulated elevations (ascent) in their simulations. In conclusion, 

the different hill set-ups affected the optimal pacing strategy in a similar way, 

resulting in power distributions varied in parallel with course gradient up to the top 

of the last uphill. From there, power was maintained constant at the critical power 

all the way to the finish line. 

 

9.3 Impact of sharp course bends on optimal pacing in road 
cycling 

The results of Paper IV show that sharp course bends may pose considerable 

obstacles to road cycling performance. For example, a sharp corner with a minimal 

turning radius of 7.5 m on a 1000 m course slowed down the rider by 9% compared 

to the same course without a corner. Moreover, considering the lower turning radius 

as an inferior racing line of the same course bend to the 10 m turning radius, it may 

be argued that the inferior racing line impairs performance by more than 1% over 

the 1000 m course. This makes a distance gap of 13 m between the two racing lines 

after the bend, if average speed is assumed. It was further shown in Paper IV that 

greater kinetic energy lost due to braking matched a lower average power output 

and greater finishing time. Additionally, the differences in finishing times between 

the various courses could also be explained by the differences in speed variance. 

Therefore, based on the results in Paper VI, it was concluded that the choice of racing 

line or the ability to reduce the minimal turning radius in cornering influence 

performance substantially. 
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In Paper IV, it was also concluded that optimal power distribution for course bends 

includes four different phases in addition to the initial all-out acceleration that 

originates from the initial acceleration of inertia. These four consecutive phases 

include a steady-state power phase, a rolling phase, a braking phase, and an all-out 

acceleration phase. It is rational to conceive of the steady-state phase as a way of 

keeping the speed reached in the acceleration phase of the locomotion, and the 

rolling phase as an attempt to recover and save energy for the acceleration phase 

coming up. Braking is of course the way to reach the maximal speed attainable 

without slipping (Paper IV) or avoiding the maximal total acceleration 

corresponding to the grip limit (Paper b). The last phase of all-out acceleration is an 

attempt to reach high speed as soon as possible, in order to finish in minimal time. 

Therefore, the optimal power distribution for course bends balances these phases to 

minimize the variations in speed. This aim of minimizing the variations in speed 

conforms to previous experimental findings for pacing in variable terrain (Cangley 

et al., 2011). In contrast to Paper IV, Paper b showed no visible steady-state power 

phase. The shorter course used in Paper b may explain this difference in optimal 

solution phases. The shorter distance from the course bend to the finish line may 

require less recovery ahead of the course bend, resulting in a relatively greater initial 

acceleration which consumes the steady-state power phase. A closer look at the 

braking phase in Figure 23 reveals that optimal braking for course bends is executed 

directly preceding the apex (minimal turning radius) of the bend. Furthermore, 

optimal braking ensures that the total acceleration in the plane of the bend is below 

the maximal allowable acceleration corresponding to the maximal frictional force 

between the road and the tires (Paper b). In addition, optimal braking for a course 

bend on a 500 m course consisted of substantial contributions of both tangential and 

normal acceleration components. Therefore, it is concluded that the interaction of 

these components is a key to optimal braking. It is of course evident that longer 

courses or less sharp course bends would not require braking to avoid slippage, so 

in these cases the braking phase may be cancelled.  

 

9.4 Impact of ambient wind with changing direction on 
optimal pacing in road cycling 

The results of Paper VI show that ambient wind has a substantial effect on 

performance and that the lay-out of optimal power distributions may also be 

affected. The simulations in Paper VI show that optimal pacing in ambient wind is 

almost identical to optimal pacing without ambient wind on a 2000 m flat course 

(Figures 24 and 25). These two simulations (OSNW and OSW) were both described 

by an all-out pacing strategy. However, on the 100 km flat course, optimal pacing 

showed considerable variations in the power distribution to manage the variable 

ambient wind conditions in OLW (Figure 27). This supports the findings of Swain 

(1997) and Atkinson et al. (2007) that substantial time savings can be achieved if 
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power is varied in parallel with wind direction. Furthermore, the optimal pacing 

strategies on the 100 km course in Paper VI were generally described by a high speed 

and high power start followed by an overall positive pacing strategy. 

 

The power distribution in OSNW and OSW (Paper IV) shows a distinct resemblance 

to the optimal power distribution on the flat 1000 m course (C∞) without ambient 

wind constrained by the M-M model (BE IV) in Paper IV (PSO IV) (Figure 21). 

Furthermore, these power distributions support the conclusion of Morton et al. 

(2009) that any bioenergetic model with a  maximum power feedback coupling, 

dependent in a monotonically decreasing fashion on the amount of some fuel 

substrate remaining, would require all-out effort for optimal performance.  

However, apparently this does not hold for the OLNW and OLW simulations (Paper 

VI), potentially due to longer courses and the additional constraints which restricts 

power to being lower than the maximum constraint in equations (53) and (131). 

 

The all-out pacing strategies for the 2000 m courses acquired from the optimization 

in Paper VI (Figures 24 and 25) are all in line with the findings of de Koning et al. 

(1999) for a 1000 m course. The reason for this strategy being optimal is the high 

power needed for the initial acceleration, which is there to reduce the time spent at 

low speed far from the average speed. Moreover, high speed is more beneficial at 

the initial stages of the course, from where momentum can be transferred into 

locomotion at subsequent stages. On the contrary, all momentum will be wasted at 

the finish line and thus too high a speed at the finish line is suboptimal. All these 

effects can be owed to inertia. However, there is a complementary effect on 

performance from the  �̇�𝑂2 kinetics related to high power starts. Empirical studies 

show that the time to reach �̇�𝑂2𝑚𝑎𝑥  is inversely related to exercise intensity (Jones et 

al., 2008, Hill and Ferguson, 1999). This effect is also evident in the M-M and M-M-

S models and implies that high power starts result in higher average aerobic energy 

expenditure rates than lower power starts, which are naturally beneficial for 

performance. 

 

Judging by the results of Swain (1997) and Atkinson et al. (2007), the power 

distribution in OSW would have varied in parallel to the ambient wind direction. 

However, the results (Figure 25) showed that the power distribution was close to 

similar to OSNW (Figure 24), describing an all-out power distribution. The reason 

for this might be that the influences of inertia and �̇�𝑂2 kinetics are greater than the 

effect of varying power relative to ambient wind direction. Consequently, the 

optimal pacing strategy overlooks the effects of ambient wind direction in favor of 

the effects of inertia and �̇�𝑂2 kinetics. For the long course of 100 km, the effect of 

initial acceleration and �̇�𝑂2 kinetics are less pronounced and the ambient wind 
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direction has a greater effect on the optimal power distribution in the OLW 

simulation than in the OSW simulation.  

 

The OLNW simulation in Paper VI resulted in a distinct high power start influenced 

by initial acceleration and �̇�𝑂2 kinetics (Figure 26). Subsequently, power decreased 

to reach a somewhat constant level at the point where the carbohydrate store was 

depleted. Another observation, not initially obvious, is that some carbohydrates are 

first expended anaerobically through glycolysis (𝑟𝐸𝐶𝐿), then restored through 

gluconeogenesis (𝑟𝐸𝐶𝑅) and at last expended through oxidative phosphorylation 

(𝑟𝐸𝐶𝐶𝐻𝑂). The advantage of this pathway of energy extraction is that the anaerobic 

depletion in the initial stages of the course will increase the rate of aerobic energy 

conversion. Due to the formulation of the bioenergetic model (M-M-S, BE VI), such 

a great aerobic energy conversion rate is impossible to sustain at the late stages of 

the race because of the limited stores of carbohydrates (equations 50 and 128). In the 

M-M-S model (BE VI), the effect of impaired efficiency in motor units sustaining 

fatigue is not considered. In realty this effect might shift the optimal pacing strategy 

from  positive pacing to a more negative pacing scheme or possibly a U-shaped or 

reverse J-shaped pacing strategy (Abbiss and Laursen, 2008).  

 

The OLW simulation in Paper VI resulted in a similar power distribution to the 

OLNW simulation, save for the substantial ambient wind adaptions (Figure 27). The 

power variations seen in the OLW simulation could be regarded as a compromise 

between the mechanical model and the bioenergetic model. Optimization of the 

pacing strategy, subject to the mechanical model, induces power variations but the 

bioenergetic model strives to reduce the variations of power to minimize the 

disturbance to physiological homeostasis. 

 

9.5 Effect of various bioenergetic models on the results in 
pacing strategy optimization 

Course QH in Paper II with four hills, each with 10 m elevation, was used in Paper 

III to investigate the influence of various types of bioenergetic constraints on the 

optimization of pacing strategies. Unsurprisingly, that study showed that the 

optimization of pacing strategy resulted in improved performance and that the CPIE 

model (BE III b) induced a lower finishing time than the M-M model (BE III c). The 

formulation of the CPIE model without a maximal power constraint applies more 

relaxed restrictions on the power output than the M-M model. Therefore, it was 

expected that the greater performance would be observed in the CPIE optimization. 

However, judging by the results presented in Paper III, it is conceivable to assume 

that the M-M model better describes the real human body’s restriction on power 

output. The gradual decrease in power observed in the distribution corresponding 

to the M-M model is more realistic than the almost unfatigued characteristics of the 
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power distribution observed in the optimal CPIE model optimization. It has been 

established that muscle fatigue is highly related to the intra-muscular concentration 

of inorganic phosphate that is released during supramaximal exercise (Westerblad 

et al., 2002). Therefore, the high power output attained by the CPIE model in the last 

uphill section in Paper III seems unrealistically high, as such great exertion should 

inhibit high power outputs.  

 

The fast and slow components of �̇�𝑂2-kinetics are absent in the CPIE model, but are, 

however, implicitly included in the M-M model. There is empirical evidence 

showing that the time to reach �̇�𝑂2𝑚𝑎𝑥  is inversely related to exercise intensity (Hill 

and Ferguson, 1999, Jones et al., 2008), which is congruent with the dynamic 

behavior of the M-M model. Furthermore, along with the mechanical basis of high 

power starts being optimal (de Koning et al., 1999) this implicit �̇�𝑂2-kinetic of the 

M-M model further benefits high power starts to generate high aerobic energy 

expenditures. Consequently, it is conceivable to assume that the M-M model is 

preferable in comparison to the CPIE model, for the application of optimal pacing 

strategies in real-world competition. In conclusion, the CPIE model resulted in the 

best estimated performance, but the M-M model resulted in more realistic 

distributions of power and speed. Furthermore, The CPS strategy resulted in poor 

performance compared to the CPIE and M-M models on a hilly course. 

 

9.6 Effect of optimal pacing strategies on performance  

From the comparison of estimated performance improvements in Table 6, it may be 

concluded that short courses realize greater improvements than long courses from 

adopting an optimal pacing strategy. Furthermore, it may be concluded that greater 

improvements are also realized for less sophisticated bioenergetic constraints, such 

as the average power or CPIE models, than for the more sophisticated M-M model. 

These results also showed that greater time gains from adopting an optimal pacing 

strategy might be achieved in variable ambient wind conditions than in calm or no 

winds. The experimentally achieved time gain from adopting an optimal pacing 

strategy in time-trial road cycling, reported by Cangley et al. (2011), was 2.9% on a 

hilly 4000 m course. Numerically estimates of performance improvements presented 

in Papers II and III were 2.3 to 5.0% on a hilly 2000 m course. Moreover, Swain (1997) 

reported performance improvement estimates of up to ~10% from optimized power 

distributions in numerical road cycling simulations. In conclusion, the results in 

section 8.6 showed an optimal pacing strategy performance improvement in the 

range of 1.4 to 6.5%, which is in the proximity of previously reported values. 
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9.7 Methodological considerations 

9.7.1 Mechanics of locomotion 

The various mechanical models applied to the studies presented in this thesis are all 

formulated as motion equations by using Newton’s second law of motion and 

solved using numerical differential equation solvers. These models consider both 

inertial resistance to motion and all the major external forces acting on the athlete 

and his/her equipment. This enables valid simulations of the athlete’s locomotion 

(Martin et al., 1998) assuming all parameters of the model conform with the athlete’s 

properties and the ambient conditions. In this respect, the validity of mechanical 

locomotion modeling directly reflects the validity of athlete and environment 

measurements. The validity of these measurements is of course functions of the 

accuracy and precision of measurements which, as such, relates to the measurement 

methods used and the administration of such methods. However, for the purpose of 

answering general research questions regarding locomotion or pacing strategy, 

reasonable parameter settings at least work to simulate the general dynamics of 

locomotion.  

 

In Paper I, drag area was set to vary with speed, mostly due to the crouching 

occurring at high speeds in cross-country skiing. However, it is evident that cross-

country skiers tend to move in a manner that cause fluctuations in the drag area 

within each sub-technique cycle. The effect of these variations upon the drag area 

have not been studied to date but might have substantial effects on the modeling of 

cross-country skiing locomotion. Furthermore, different sub-techniques and/or 

gears may also be associated with differences in efficiency (Ainegren et al., 2013) 

which may influence the validity of the results in Paper I.  

 

9.7.2 Bioenergetics 

No study to date has investigated the validity of the M-M or the M-M-S models and, 

therefore, not much can be claimed about the validity of these bioenergetic models. 

The lack of any validation of these bioenergetic models may be regarded as a 

deficiency in their reliability. However, concerning the direct transmission of 

corroborated physiological facts to these models and their credible output results 

(Papers III, IV, V, and VI), support their application in pacing strategy optimization. 

Just like the mechanical models, the validity of bioenergetic models is also 

dependent on the validity of measures for the various included parameters. Some of 

these measures are readily available through simple sample-taking or indirect 

calorimetry in exercise testing. However, other measures, such as the maximal rate 

of energy conversion due to lactic formation, are harder to assess. Validating 

bioenergetic models has not been the scope of this thesis. Still, it is of great interest 
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that some research efforts from sports physiologists is directed into this area, 

especially regarding the more sophisticated M-M and M-M-S models. The vast 

number of parameters in the M-M-S model may be its greatest drawback. Still, every 

parameter in the M-M-S model has a reason to be included and serves a certain 

functionality, which also is its greatest advantage.  

 

9.7.3 Optimization 

The optimization method used in all the studies included in this thesis has proven 

to work well for all the posed pacing strategy optimization problems. Several other 

optimization methods, including the interior point method, the sequential quadratic 

programming method, and the generalized pattern search method were evaluated 

but none worked better than MMA. The pattern search method, which is a non-

gradient based method, was evaluated for its advantageous ability to find global 

optima but it was rejected on the basis of its long computational time requirements. 

In most cases, default values of the MMA algorithm were used with good results but 

in some cases, especially the lower and upper asymptotes had to be tightened to 

achieve stable converging solutions.  

 

The resolution of the optimal pacing strategy is primarily dependent on the number 

of the optimization variable density. Therefore, a greater number of optimization 

variables will generate a better pacing strategy. However, the computation time is 

more or less linearly dependent on the number of optimization variables, which 

results in extended computation times if high accuracy is desired. Furthermore, a 

high number of optimization variables may result in badly formulated numerical 

calculations of the gradients which are necessary for the optimization. A decent 

compromise is to increase optimization variable density in sections where 

propulsive force alterations are more likely due to the approach of speed 

conservation. Another possible solution is to post-process such sections with more 

detailed variable settings.  

 

Instead of using convergence criteria, all the optimizations in thesis were run for a 

preset number of iterations from which the best feasible solution was chosen. In 

some instances, such as Paper II, it might have been better to use a convergence 

criterion to be sure of convergence. However, a convergence measure was used in 

Paper VI to ensure all solutions had converged to a stable solution.  
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10. PERSPECTIVES AND FUTURE DEVELOPMENT 

The numerical models presented in thesis may be used as means of optimizing 

performance for individual athletes seeking to improve performance in their 

locomotive endurance sports. However, at present, all models are not 

straightforward and user friendly to the novice user and might need engineering 

and physiology expertise to make full use of. These models are of course not just in 

the interest of elite athletes but may as well be worthwhile to the dedicated leisure 

athlete seeking to improve on her/his favorite segment or Grand Fondo race. The 

possibility to form a service of these models and make it commercially available, 

could eventually increase user numbers. This service could be integrated into the 

cyclist’s power meter or the skier’s GNSS-based (global navigation satellite systems) 

wristwatch as an on-the-fly aid for optimal pacing. From this device visual or audio-

based communication systems could inform the athlete of the present status in 

relation to the optimal pacing strategy. Still, prior to such service is commercially 

available, athletes may be assisted by the general outlines of the results presented in 

section 8. For instance in the event of course bends in road cycling that need braking, 

these results (Figures 21 to 23) may be studied to consciously adapt pacing in a way 

that, according to these results, improves performance. A perhaps even more helpful 

result to any road cyclist competing in time-trials is the results of Paper VI for the 

100 km course. Although such long time-trial races are rare, courses which 

experience ambient winds on an out-and-back or closed circuit race course are 

common. Therefore, direction of travel will vary over the course distance, as will the 

effect of ambient winds. The general outline of power distribution in Figure 27 thus 

suggest that power should be varied in parallel with these changes in ambient wind, 

still allow a high power start and an overall decreasing power distribution.  

 

The question may arise, whether or not athletes are opting for optimal pacing 

strategies already, as a natural inherent ability or as a result of experience. If so, this 

work on optimal pacing strategy in locomotive sports would be a complete waste of 

time and resources. In this context it must be resembled that in-competition 

variabilities in pacing are frequently observed by split timing of athletes along the 

course distance. It may be that optimal pacing varies between individuals, resulting 

in these differences in split times. However, more likely, athletes frequently opt for 

suboptimal pacing strategies resulting in impaired performance. Furthermore, there 

exist several examples not mentioned in this thesis where obviously suboptimal 

pacing has been adopted by competitive athletes. 

 

One might argue that science and technology undermine the excitement of sports by 

reducing the impact of the athletes own endeavor or the conscious and subconscious 
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actions that are learned by experience. In the worst case, technology may sideline 

the ethics of fair play in sports. However, it must be stressed that in the modern era 

of sports, athletes have always been influenced by other athletes, coaches, scientists, 

and the technological development. The challenge for the governing bodies of sports 

are to formulate their regulations on the use of technology, in a manner that 

facilitates fair play. On the other hand, the application of science and technology 

may also facilitate fair play. For instance, the formation of a cross-country skiing 

course may be designed with an optimal distribution of uphill, downhill, and flat 

sections so that performance is independent of the skiers’ body mass (Bergh, 1987, 

Moxnes and Hausken, 2008).  

 

A meaningful scientific contribution to the work presented in this thesis would be a 

comprehensive sensitivity analysis of, for instance, PSO VI. As already proposed in 

section 9.2.2, future development must also include validation of the more 

sophisticated bioenergetic models. It was clearly shown in Paper III that the 

bioenergetic model substantially affects the distribution of power and therefore the 

pacing strategy. Furthermore, regarding the bioenergetic model, several points for 

further development are possible. Discretization of compartments into muscle fiber 

motor units and the prioritization of fiber type activation similar to previous studies 

(Liu et al., 2002, Xia and Fray Law, 2008, James and Green, 2012, Sih et al., 2012, Gede 

and Hubbard, 2014) is one possible extension to the M-M-S model. This also enables 

the modelling of efficiency variations in various fiber types. The M-M-S model has 

a large number of parameters and therefore, it would be favorable to reduce this 

number and thereby attain a simpler model. However, it may be difficult to reduce 

this number without losing important functionality.  

 

Considering the mechanical model of locomotion, varying glide friction for cross-

country skiing and varying rolling resistance would contribute to further 

possibilities for studying optimal pacing strategies. In real world circumstances, 

snow conditions may vary between different positions on the skiing track due to 

local geographical differences and the natural variation in preparing the tracks 

(grooming). The classical technique tracks usually induce less frictional resistance 

than skating technique tracks which are commonly situated alongside the classical 

tracks. Consequently, the classical tracks may be a beneficial choice for athletes 

performing the skating technique in downhills where no propulsive force is 

generated by the athlete (above ~10 m·s-1). Moreover, some road cycling 

competitions make use of cobblestoned roads with various surface roughnesses 

which are often decisive for the competition’s outcome.  
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Another variable parameter that was not allowed to vary in Paper I is the efficiency. 

It has been shown that efficiency varies with different gears in cross-country skiing 

(Ainegren et al., 2013). Modelling this variability might result in a tendency to where 

power is increased more in sections where gears of high efficiency is employed. At 

the same time, power would decrease in sections where gears associated with low 

efficiency is employed. These tendencies would of course be relative to power 

distributions computed without efficiency variability in contrast to absolute 

tendencies.  

 

Widening the perspectives of this thesis, the approach of optimizing pacing 

strategies in cross-country skiing and road cycling presented in this thesis may also 

be applied to other locomotive sports, such as running, speed skating, and rowing. 

Similar models can also be used to minimize fuel consumption in, for instance, 

combustion engine vehicles. In this approach the finishing time will be a constraint 

and the expenditure of fuel will be the objective function. 
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