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Numerical simulations of time-dependent stochastic failure of fiber network have been performed by using
a central-force, triangular lattice model. This two-dimensional (2D) network can be seen as the next level
of structural hierarchy to fiber bundles, which have been investigated for many years both theoretically and
numerically. Unlike fiber bundle models, the load sharing of the fiber network is determined by the network
mechanics rather than a preassigned rule, and its failure is defined as the point of avalanche rather than the
total fiber failure. We have assumed that the fiber in the network follows Coleman’s probabilistic failure law [B.
D. Coleman, J. Appl. Phys. 29, 968 (1958)] with the Weibull shape parameter § = 1 (memory less fiber). Our
interests are how the fiber-level probabilistic failure law is transformed into the one for the network and how
the failure characteristics and disorders on the fiber level influence the network failure response. The simulation
results showed that, with increasing the size of the network (N), weakest-link scaling (WLS) appeared and each
lifetime distribution at a given size approximately followed Weibull distribution. However, the scaling behavior
of the mean and the Weibull shape parameter clearly deviate from what we can predict from the WLS of Weibull
distribution. We have found that a characteristic distribution function has, in fact, a double exponential form,
not Weibull form. Accordingly, for the 2D network system, Coleman’s probabilistic failure law holds but only
approximately. Comparing the fiber and network failure properties, we found that the network structure induces
an increase of the load sensitivity factor p (more brittle than fiber) and Weibull shape parameter g (less uncertainty

of lifetime). Superimposed disorders on the fiber level reduce all these properties for the network.

DOI: 10.1103/PhysRevE.92.042158

I. INTRODUCTION

Statistical failures of materials have been attracting keen
interest both in statistical physics and in reliability engineering.
Particularly today, as society’s focus moves onto sustainability
and the effective use of materials and energy, and thus correct-
ing overdesign situations by increasing reliability, are of prime
importance on many engineering fronts. Figure 1 shows typical
creep failures and corresponding frequency distributions of
lifetime and static strength of linerboard (used for packaging
construction) [1]. As compared with typical compressive
strength, which shows almost deterministic failure, creep
lifetime varies drastically—its coefficient of variation (COV)
exceeds more than 100%. This large variation of creep lifetime
is quite universal and has been found also for many other
materials (for example, Refs. [2—4]).

Perhaps the most important question in today’s material
design is how to describe and predict time-dependent statistical
failures of materials for a general loading history. This question
directly touches upon the following fundamental questions that
have been discussed for many years in the area: the size scaling
of lifetime distribution, the form of the distribution function,
and the damage evolution law. Although good reviews are
available for some of these topics (e.g., Refs. [2,5-7]), we will
revisit the literature specifically from the point of addressing
the above questions.

The earlier work by Coleman is probably the first formal,
axiomatic development of the analytical theory of time-
dependent statistical failure [8,9]. The theory is based on three
postulates: (1) weakest-link hypothesis, (2) a breakdown rule
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that describes the rate of breakdown (damage), and (3) a
probabilistic failure condition using the damage variable.
Based on these three postulates, he derived a cumulative
distribution function of lifetime in a general form. This general
formulation can be further specialized by introducing the
power-law breakdown rule and the power-law form of the
probabilistic failure condition, resulting in the most widely
used forms of the distribution function of time-dependent
statistical failure. Because of its hypotheses, this formulation
was proposed as a model for fiber. Therefore, it has been used
extensively as an almost default model for fiber in modeling
fiber-bundle systems [2,6,10-14].

One of the postulates, weakest-link scaling (WLS), is
intuitively obvious when one-dimensional elements are linked
in series, such as “fibers”” However, WLS does appear
also in multidimensional systems for brittle and quasibrittle
cases [7,15]. Qualitatively, it is explained that as damages
grow and a number of damage clusters are created, one of
such clusters, normally the biggest cluster, grows into a critical
size, leading to avalanche failure of the entire system [5].
Such critical cluster must be large enough to trigger the
avalanche but must be still sufficiently small as compared
with a typical system size in order to ensure the independence
of individual, hypothetical cells (or links) that contain cracks.
Therefore, the above hypothesis implies that, first, there is
a lower bound of the system size at which WLS emerges
and, second, the system must be brittle in order for WLS to
appear. This has been demonstrated in fiber-bundle models
for both static and time-dependent failures. The degree of
load sharing, either equal load sharing (ELS) or local load
sharing (LLS), affects the emergence of WLS: The ELS case
does not follow WLS [6,16-18]. Even in the LLS case, as
will be described later, a parameter p that controls damage
evolution affects the scaling behavior. At higher p values

©2015 American Physical Society
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FIG. 1. (a) Typical creep compression curves and failures of
linerboard and its (b) frequency distribution of lifetime and static
strength [1]. The lifetime and strength are normalized by their means.

(>2, brittle), LLS systems clearly shows WLS, but as p
becomes smaller, the size scaling of LLS systems approaches
to that of ELS [6,10,18]. In addition, when load sharing and
fiber failure are correlated, such as hierarchical fiber bundle
models [19,20], the scaling behavior deviates from WLS.
Therefore, in a higher-dimensional system (2D and 3D), as
load sharing is more extended (somewhat between ELS and
LLS) and microstructures have long-range correlations, the
emergence of WLS may not be automatic. This may pose a
question in extending Coleman’s model to higher-dimensional
systems. It should also be noted that the experimental inves-
tigations of WLS is generally very difficult (except in the
case of fibers), because of the needs for different pieces of
equipment for testing specimens with grossly different sizes
as well as the time required for performing a large number of
repetitions. Even the numerical studies of WLS are limited to
relatively simple systems, such as fiber bundles, because of
high computational demands.

The breakdown rule defines the evolution of damages
by taking into account loading history effects. The most
commonly used breakdown rules are exponential and power-
law forms. Because the exponential form originated from

PHYSICAL REVIEW E 92, 042158 (2015)

the earlier work on absolute reaction rate theory for creep
failure [21], it has been argued in the area of experimental
creep failure analyzes that the exponential form is a more
faithful representation of the underlying molecular processes.
However, Phoenix and Tierney showed that the power-law
form is actually a better approximation of the stress-dependent
thermal energy function [11]. One of the critical tests of this
hypothesis is to examine the load dependence of mean creep
lifetime [9]. So far the power-law form has not shown any
obvious flaw, though the ranges of load tested are still limited
(for example, Refs. [1-3]).

The most problematic may be the shape of lifetime
distributions, specifically Weibull distribution. First, it depends
on the size (and its geometry) of the system. The problem has
been well recognized in the static strength distributions. Bazant
discussed the deviation of the upper tail of static strength
distribution from Weibull distribution in terms of the finite-
size effect. He also predicted the transition from Gaussian
to Weibull distribution in the lower tail. This transition
behavior was described recently by introducing « —Weibull
distribution [22]. For a larger system where WLS is presumed
to work, experimental data almost overwhelmingly showed
Weibull distribution. Interestingly, numerical and analytical
studies have shown otherwise. For example, for fiber-bundle
models with p >> 1 (more brittle) and alarge system size where
WLS appears, the distributions are clearly non-Weibull [6,11].
A microstructural model of damage evolution also suggested
that double-exponential distribution is a better approxima-
tion in the low-probability tail [23]. This situation is also
parallel to that of static strength distributions. However, it
has been recognized that detecting non-Weibull behavior by
experiments in a statistically significant manner is difficult,
particularly in the probability range where experiments can be
performed [1,3,4,24]. Nevertheless, the distribution shape in
the lower tail (shorter lifetime) is still of great importance in the
system reliability, as it is normally evaluated in the probability
range in the order of 107 [7].

Another critical question is how the statistical failure
properties of elements are transcended to the macroscopic
material properties. Except the fiber bundle case, this question
has been largely untouched. Recently unidirectional fiber-
reinforced composites are analyzed for both static strength
and time-dependent failure [14,25].

In this paper we focus on a fiber network. The fiber network
may be regarded as the next level structural hierarchy to
fiber bundles. It may also be regarded as a paradigm of
more general material systems, such as polycrystals, polymers,
living tissues, paper, and nonwoven fabrics. We first review the
general framework of Coleman’s formulation, as it will be used
later as a fiber model, and also it may be possible to use as a
system model (under certain conditions). Second, we examine
the postulates involved in Coleman’s model by using numerical
simulations of creep failure. The example of the fiber network
is a triangular, central-force spring network. This model has
been used in the past by many researchers to investigate various
aspects of statistical failure under both static strength and
creep test conditions (for example, Refs. [26,27]). In this paper
we use this network structure specifically to examine the size
scaling, the shapes of lifetime distributions, and the damage
evolution law. Based on this, we further discuss the cases where
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there are uncertainties in the element properties and how they
affect the lifetime distributions of the network.

It should be noted that this 2D system is distinct from the
fiber bundle models in two aspects. First there is, obviously, no
choice of load sharing rules (ELS and LLS). Load sharing is
determined by mechanics. Second, in the network, the failure
is defined as the point of avalanche (more precisely, the start
of avalanche), not all element failures across the width, such
as in the case of fiber bundle models. One of our interests is
to see how the results from this extension are compared with
those obtained in the fiber bundle models.

II. THEORETICAL BACKGROUND

Coleman’s formulation of time-dependent statistical failure
is based on three postulates. The first postulate is the WLS
hypothesis, which is generally stated as

1— F(t)=[1- F@®O1™, (1)

where F;(t) and F;(t) are the cumulative distribution functions
of lifetime ¢ for the system of size / and the element of size
s, respectively, and M = [/s. The interpretation of the sizes /
and s is obvious in the case of fiber, as the elements are linked
in series in the system and the failure of the weakest element
immediately triggers the entire system failure. However, in
a 2D or 3D system, these size parameters require some
consideration. For example, s must be large enough to contain
the largest cluster of damages (the existence of a lower bound
of the size parameter s [9]), and, at the same time, / must be
large enough to contain a number of the s elements which
are regarded as statistically independent in terms of damage
evolution. Therefore, Eq. (1) is regarded as an asymptotic
relation that may appear as M increases. The M-independent
F(¢) is often called the characteristic distribution function of
a fictitious element [6]. The size of the fictitious element may
be different depending on the anisotropy and also the loading
direction in the 2D or 3D system, as will be seen in a later
section.

The second postulate is a breakdown rule that defines how
damage €2(¢) evolves as a function of time and other variables.
The most general rule given by Coleman, the so-called Class C
breakdown rule, states that the damage evolution rate depends
on force (or stress), damage state, temperature, and their time
derivatives in higher orders. However, the frequently used rule
in the literature only concerns the force dependence in the
following power-law form:

aQ o )
E—K[f(t)]—Cf(t) , 2

where f(¢) is a force (or stress) history and ¢ and p
are constants. p determines the force-sensitivity of damage
growth. This power-law form is often considered as a purely
empirical relation, but Phoenix and Tierney pointed out that
it is actually a good approximation of the thermal activation
energy function and derived an expression for the constant p
as

Uy
= —, 3
P =17 3)
where Uj is a fitting constant to the potential function, k the
Boltzmann constant, and 7 the temperature [11]. As seen in
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its temperature dependence, p captures the brittleness aspect
of the failure. The damage evolution rule, Eq. (2), does not
explicitly contain the dependence on the damage state $2(t),
unlike the corresponding rule in damage mechanics [28].
However, it can be easily shown that the above equation
is an approximate case for the standard damage mechanics
model when €2 is small (no large scale breakdown), so there is
little stress-enhancing effect due to the presence of damages
(mean-field effect). Therefore, the second postulate implicitly
assumes that the extent of damages is still limited when the
failure happens. (In the Appendix we derive the consequence
of Kachanov’s type breaking rule.)
The third postulate is a probabilistic fracture criterion:

Fi(t) = W[Q(@)], “4)

where the function W (£2) is a single-valued, positive monotoni-
cally increasing function of €2. The function may take any form
as long as it satisfies this basic condition. However, considering
the WLS hypothesis, one can expect that the function ¥ only
concerns small values of 2 when M in Eq. (1) is large. Coleman
chose the following form as an approximation of the lower tail
of the function €2:

im = CQP B
lim = CQ" +0(Q"). S

This power-law form, of course, can be derived from different
routes from damage evolution models [23,29] or percolation
lattice models [30,31].

Using these three postulates, one obtains the expression for
a cumulative distribution function of lifetime:

lim Fi(t) = 1 — exp{—MCQ*}
M— o0

t B
=1—exp {—A|: f(s)pds] }, (6)
s=0
where A = MCc” absorbs the constants. Precisely speaking,
this is a limiting distribution when M — oo. Therefore, in
a finite-size range where WLS does not appear, the above
equation may not hold. It should also be noted that, for a
general loading history, the lifetime does not necessarily follow
Weibull distribution; instead, the damage parameter 2 does
follow Weibull, as seen in the first equation of Eq. (6). The
damage parameter €2 plays the role of an internal time scale
that takes into account loading history effects. In the case of
creep condition, f(¢) = f., then lifetime does follow Weibull
distribution:

B

Fi(t)y=1—exp{—AfPtP} =1 —exp {—(%) } (7)
where t, = (f/ A'/F)~!. In this specific Weibull distribution,
the load dependence appears only in the scale parameter #, not
in the shape parameter 8, and the scale parameter is inversely
proportional to f. This load dependence can be used as one of
the critical tests for a class of Coleman’s model [4]. However, it
is often difficult to perform such tests experimentally at lower
stress levels (e.g., 50% or lower) because of unrealistically
long times required for break specimens. Numerical methods
may be more appropriate for this purpose.

In numerical simulations, the hazardous function or failure
rate function A (¢) is used instead of the cumulative distribution
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function (or probability density function):

h(t) = D

t B-1
—I_F(I)=Aﬁf(t)"[/é:0f(é)pdé} S ®

Here h(t)dt represents a probability of failure between t and
t 4+ dt when the system survived up to time . When g = 1,
the hazardous function depends only on the current value of
load f(¢) and not on its loading history. In other words, such a
system has no memory in the hazardous function. Because of
the Malkov property, this model has been frequently used as a
fiber model in many numerical studies. In our investigation we
also use it as an element model in the triangular lattice system.

III. MODEL ASSUMPTIONS

A. Network geometry

We have used a two-dimensional network with a central-
force, triangular lattice (Fig. 2). The geometry of this model is,
of course, highly simplified, but the model still retains essential
network mechanics and also the same complex statistical
failure properties as more realistic fiber network models.

Constant forces are applied at the top boundary, either
tensile or compression, to simulate creep, and a traction-
free boundary condition is employed at the sides. Periodic
boundary conditions, however, are not used in this study in
order to avoid introducing artificial length scales to the failure
phenomena of the system. In addition, the presence of edges
is an important feature of real materials. The two upper rows
are prevented from failure to avoid instability induced by large
rotation of the failed elements. Each element has the same
elastic modulus and the same length and diameter, though these
can be easily varied. In the following we call each element
fiber. The size of the network is described by m (the number
of stacks) and n (the number of horizontal fibers), as seen in
Fig. 2.

B. Stochastic fiber lifetime model

For individual fibers, we have used Coleman’s fiber model
with 8 = 1 (memory-less fiber). We rewrite Eq. (6) for the
case of B = 1 in a nondimensional form:

7 70
Ff(f)zl—exp{—f_o[TT(sl)} d§}, )

n

FIG. 2. Schematic of the central-force, triangular lattice used in
the simulations.
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where 7' (5) is the force history applied to an individual fiber,
nondimensional time f = ¢ /1y, and ty = (ATS)~!. If t, is taken
as a unit time, then 7, is interpreted as characteristic strength of
fiber (i.e., the load at which the fiber fails with the probability
of 1 — 1/e = 0.6321 before the unit time is reached). In the
following, we suppress~in 7 but with the understanding that it
refers to nondimensional time.

We first apply a dead load at the top boundary and then
calculate forces created in individual fibers. Using these forces
of individual fibers, we generate random numbers according
to Eq. (9) with the constant loading history (i.e., exponential
distribution). This determines lifetimes of individual fibers.
The first failure occurs at the fiber with the shortest lifetime
among the whole generated lifetimes. We set the modulus
for this failed fiber to zero (or a small number) and then
recalculate the force in each fiber for a new state of mechanical
equilibrium. At this point, the survived fibers are given new
force states in a stepwise manner. This means that the original
estimate of lifetimes for the survived fibers must be updated
with the new loading history. This is done by solving Eq. (9)
for a new lifetime with the new loading history, and one can
obtain a simple updating formula for lifetime. For example,
the updating formula after the first fiber break is given by

TO)1”
tgpp — 1 = I:T((tl)):| (tg1 — 1), (10)

where 7] is the time of the first fiber failure in the system and
tp1 and tp, are the first and the second estimate of lifetime of
a survived fiber. T(0) and T'(#;) are the forces of the survived
fiber before and after the first fiber failure. The minimum of
the updated lifetimes of all survived fibers is then found, and
this determines the second fiber failure. This process continues
until the avalanche failure of the system takes place.

This algorithm more faithfully reproduces fiber-breaking
processes than the standard algorithm used for triangular
lattice models (e.g., Refs. [23,26,27,32]). It should be noted
that the random number generation [following exponential
distribution in Eq. (9)] is made only once, and the subsequent
fiber breaking steps are completely deterministic as dictated
by micromechanics. This algorithm is in the same spirit of
those used for fiber bundle models (e.g., Ref. [20]).

The avalanche is defined when the process meets the
following two conditions: One is when the ratio of the current
rate of the creep strain to the initial rate exceeds a certain value
r. The other is that such high creep rate continues for a certain
number of consecutive time steps k. Within the parameter
space tested, we found that » = 100 and k = 5 can consistently
detect the initiation of avalanche leading to final failure.

The force equilibrium of the triangular lattice system was
obtained by using a truss analysis code for solving 2D and
3D structures [33]. To accelerate the calculations, and enable
simulations of larger networks, the code was modified by
introducing a MATLAB sparse matrix library.

The default set values used for the fibers (truss elements) in
the model are controlled in order to limit overall deformation
within a small strain (geometrically linear) range. Denoting
characteristic strength as T¢, elastic modulus E, cross-
sectional area A, and the applied load at each node Sy, we
used 7./So = 10/3 and EfA/Sy = 500/3 as a default. The
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FIG. 3. Creep curves obtained from the simulations; each marked point represents an individual fiber break. From left to right: (a) p = 5,

(b) p = 10, and (c¢) p = 20.

default value of p is 10, and it later varied from 5 to 400 to
cover the quasibrittle-to-brittle failure range.

IV. NUMERICAL RESULTS
A. Typical creep curves and damage evolution

We begin with looking at qualitative features of the sim-
ulation results. Figure 3 shows typical creep curves obtained
from the simulations. Each marked point corresponds to an
individual fiber break. (Note that since the strain increments are
created at the time of fiber failure, real creep strain is a stepwise
function.) Results for three different values of p are presented:
[Fig. 3(a)] p = 5, [Fig. 3(b)] p = 10, and [Fig. 3(c)] p = 20.
The size of the system is set to 200 x 200. (We will discuss the
size effect later.) Since these creep curves represent a sequence
of elastic failures of fibers, the shapes are rather erratic unlike
typical creep curves for viscoelastic body. As expected, with
increasing p, the system becomes more brittle, and less fiber
breaks are required before the avalanche type failure. The
range of p values used here already exceeds the threshold
(p = 2) that was defined by Curtin for the tough-brittle failure
transition [23].

The corresponding damage evolutions are shown in Fig. 4.
At lower values of p, a large-scale destruction occurs in the
entire structure, and critical clusters of damages appears only
in a diffused way. However, at p = 20, one can easily identify
such a critical crack just before the avalanche failure. We found
that, for high values of p, the stress intensity in the edges makes
the lattice more vulnerable to create critical clusters leading
to failure in those regions. In the case of fiber bundle systems,
the critical cluster of contiguous damages, so-called k* crack,

is used to obtain an upper bound of the lifetime distribution
function [11,12]. In the case of the 2D system, however, the
size and geometry of such critical cluster is more variable
and diffused, as the cluster grows both in the loading and its
perpendicular directions depending on underlying disorders in
the structures.

B. Lifetime distribution and size effect

We first investigate lifetime distributions and size effects
by changing the length () and width (n) of the system. Creep
failure simulations were performed 1000 times for each size.
This number of repeats was found earlier to be sufficient
to detect non-Weibull behavior in a finite-size range [6,34].
The distributions are plotted in the Weibull format in order to
examine a fit to Weibull distribution as well as the emergence
of WLS.

Figure 5 shows the effect of increasing length m with
constant width n = 10. After vertically shifting the curves of
different length systems by In(), almost all curves collapsed
into one, indicating WLS. Weakest-link scaling in the length
direction may seem obvious by considering a series link
of fibers, but for random fiber networks, WLS does not
clearly appear even in the length (loading) direction [35]. The
collapsed curve had a slight feature of a concave function,
which is similar to those seen in fiber bundle models [6]. Note
that the width n = 10 is still in the finite-size range, as seen
below.

The effect of increasing width n (with constant length m)
is shown in Fig. 6. In this case, the collapse of the curves
for different widths appeared much later (n ~ 200) than the
previous case of the length direction. Although it is difficult

(b) (c)

FIG. 4. Damage evolutions corresponding to the creep curves shown in Fig. 3. From left to right: (a) p = 5, (b) p = 10, and (c¢) p = 20.
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FIG. 5. Lifetime distributions for different sizes of the length of
the lattice plotted in a Weibull format with a scaling term.

to compare the 1D and 2D models on the same basis, the
emergence of WLS seems to be more rapid for the fiber bundle
model using LLS than the 2D case with p = 10 and 8 = 1.
This may be because load sharing in the 2D case is obviously
much extended than the LLS.

The same plots are shown when length m and width n are
changed simultaneously (Fig. 7). Similarly to the case of width
scaling, the WLS trend appeared when the width approaches
200 or 400.

Since the distribution curves for individual sizes are
approximately linear, i.e., Weibull distribution, we plotted the
slopes of the curves in Fig. 8 as a function of the total number
of fibers N. With increasing the size, the slope increased
almost linearly within the range of N tested, instead of the
slope approaching to a constant value. In other words, the
distribution does not seem to have the Weibull lower tail
(constant slope) suggested by Bazant [7].

Curtin and Scher [23,26] developed an analytical model
for damage evolution and lifetime distribution and proposed
approximate expressions for the size scaling of coefficient
of variation (COV) and mean lifetime. They gave COV =
(p/2 — 1)/In(N), where N is the total number of fibers. In this
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FIG. 6. Lifetime distributions for different sizes of the width of
the lattice plotted in a Weibull format with a scaling term.
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FIG. 7. Lifetime distributions for different sizes of the lattice
plotted in a Weibull format with a scaling term.

formula COV decreases with N, and at the thermodynamic
limit (N — oo) COV diminishes, although the diminishing
rate is slow. Figure 9 shows the relation between COV and
In[In(N)] obtained from this simulation. The slope was —0.93,
which is very close to —1 as predicted by Curtin and Scher.

The corresponding scaling of mean lifetime is given by
(t) o« InN)'=#/2_ Figure 10 shows the relationship between
mean lifetime and N obtained from the simulation.

As can be seen, a linear relationship was found, but the slope
was —1.81, which deviated from the prediction (1 — p/2 =
—4).

These size scaling results pose an interesting but puzzling
question. On one hand, as N increases, there was a tendency of
weakest-link scaling, and the distribution function at a given
size is approximately Weibull distribution. (Precisely saying,
it is difficult to detect non-Weibull behavior in a statistically
significant manner.) On the other hand, the scaling results
for the slope (Weibull shape parameter) and the mean clearly
deviate from what is expected from the weakest-link scaling of
Weibull distribution (i.e., the constant slope and linear decrease
of mean lifetime with In(N) [9]). This suggests that the limiting
distribution of lifetime as N — oo may not be exactly Weibull

4.5 T T T T T T T T

5 6 7 8 9 10 11 12 13 14

FIG. 8. Slope vs total number of fibers for the lifetime distribu-
tions plotted in Fig. 7.
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FIG. 9. COV vs total number of fibers for the lifetime distribu-
tions plotted in Fig. 7.

distribution. We will further discuss this point in the discussion
section. Meanwhile we examine next how lifetime distribution
is affected by the failure properties of fibers by using the
networks whose size is in the WLS range.

The emergence of weakest-link scaling means that the
distribution function for a sufficiently large system size N
has this special form:

1 — Fy@) = [1 = w1V, (11)

where W (¢) is called the characteristic distribution function,
representing the collapsed curve when WLS appears [6].
Unlike those curves in a finite-size range (smaller size), W(¢)
is approximately linear in Weibull plots (Fig. 7). Therefore,
we write the approximation of the characteristic distribution
function, W*(¢) {=[1 — Fy(t)]'/"}, as:

In{—In[l — W*@®)]} ~ aln(r) + b (12a)
or
W*(t) ~ 1 — exp{—ct?} (12b)
13.0
~125¢
(O]
£
o
=120}
®
[}
=3
=115}
Mmob——
16 17 18 19 20 21 22 23 24 25 26
In(In(N))

FIG. 10. Mean lifetime vs total number of fibers for the lifetime
distributions plotted in Fig. 7.
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where ¢ = exp{b}. The critical questions are, first, whether
one can express W*(¢) in the form of Eq. (7) that Cole-
man formulated originally for fiber and, second, how the
parameters a and b (or c¢) depend on the fiber properties 7,
and p.

C. Effects of applied load

For numerical simulations, we first find a set of parameters
by dimensional consideration. In the case of elastic failure (no
geometrical nonlinearity), applied load is linearly related to
local force of each fiber i:

Ti(1) = SoKi(2), 13)

where K;(t) is stress concentration factor. Using this relation
in the lifetime distribution function of fiber [Eq. (9)], we

have
{ SO 4 t
Fi(t) =1 —exp —(-) /K,-(s)"ds}. (14)
Tc 0

The system’s failure probability is, thus, determined by two
nondimensional parameters of fiber, (Sy/T;) and p, as well as
the individual stress (concentration) histories K;(z).

Figure 11 shows the lifetime distributions for differ-
ent applied loads plotted in Weibull format. The shapes
of the distributions are linear, again confirming Weibull
distribution. With increasing load, the curves are sim-
ply shifted towards shorter lifetime, whereas the slope a
(Weibull exponent) remains almost constant with varying load.
Therefore,

a3, = 15
a—a<?c,,0>—a(,0), (15)

where a(10) varied between 3.09 and 3.65. The intercept b of
the Weibull plot is linearly related to applied load, as seen in
Fig. 12,

S,
b=a11n<—o> + by (16)
T,
-8 : : : : : . . .
-9 i * SO/TC=O'1 1
o So/Tc:O'S
0| « 8,T,=05 |
. S/T =10
=11} o e ]
= . S /T =15
e 0 ¢
=12} ]
=137 1
=14 ! ]
-15¢ LA P i
16l LA P
v o x K3 *
1 v 1 L] 1 X o 1 1 1%

17 .
20 -15 -10 -5 0 5 10 15 20 25

FIG. 11. Lifetime distributions for different applied loads plotted
in a Weibull format.
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FIG. 12. Intercept vs applied load for the lifetime distributions
plotted in Fig. 11.

This indicates that W*(¢) is generally expressed as

So a(p)
W*(t) =1 —exp {— cl(p)<7) z“<P>}, (17)

where c;(=exp{b}), a;, and a generally depend on p. From
Eq. (14), the dependence on Syp/7, must be in the form of
(So/T.)*. This means that a;(p) = a,p, where a, may still
depend on p at this stage.

D. Effects of load sensitivity factor p

Figure 13 shows lifetime distributions when load sensitivity
factor p is varied. As p increases, the lifetime distributions
shift towards longer lifetimes at the same time as the slope
decreases (i.e., more variation of lifetime).

In Fig. 14, the slope of the distributions is plotted against
different values of p. It is interesting to see that, as p
increases, the slope (Weibull shape parameter) decreases but
reaches a plateau value, unity, which happens to be the value
of Weibull shape parameter of fiber. In other words, the
network’s reliability may be ultimately controlled by fiber at

-8 : : :
* p=5
e
x p:
-10+ = p=50 1
v p=100
Zol |
=
£ 14} ]
£ !
16 : Do
* o x - v
-18 . . .
0 40 80 120 160

In(t)

FIG. 13. Lifetime distributions for different values of load sensi-
tivity factor, p, plotted in a Weibull format.
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FIG. 14. Slope vs load sensitivity factor, p, of the lifetime
distributions plotted in Fig. 13.

high p values. Figure 14 also determines the dependence of
a(p) on p in Eq. (17).

In Fig. 15, the intercept for the distributions is plotted
against different values of p. The intercept clearly shows a
linear relation with p. Using Eq. (17), we have the following
equality:

b =azp+ by =1In[ci(p)] + az(P)Pln<%)- (18)
where the slope a3 and the intercept b3 in Fig. 15 are generally
a function of Sy/ T,. In order to maintain the linear form on the
right-hand side, c{(p) must be expressed as C, C,f , and ax(p)
must be a constant (instead of a function of p). This eventually
determines the functional form of W*, which is given by

SO ap
W*(1t) =1 —exp {—CaC{,’(F> r“‘/’)}. (19)
This is further transformed into a more compact form:

p*ﬁ*
W*(t)=1—exp {—(%) tﬁ*}, (20)

2.0 T T T T T T T T

In(Slope)

100 150 200 250 300 350 400 450
p

0 50

FIG. 15. Intercept vs load sensitivity factor, p, of the lifetime
distributions plotted in Fig. 13.
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FIG. 16. Nondimensional characteristic strength S?/7T, of the
network vs fiber p.

where S¥/T. = (C,Cp)~ @R p* = [ayp/a(p)], and B* =
a(p). The corresponding expression for fiber is given by

pB
Fp(t) =1 —exp {—(?) zﬂ}, (21)

B
where B is assumed to be unity in the simulation. When com-
paring the above two equations, we note that the parameters
S¥, p*, and B* are those for afictitious elements of the network.
Here in Eq. (20) we have recovered Coleman’s formula for the
cumulative distribution function of creep lifetime on the system
level. The preservation of Coleman’s formula when ascending
the structural hierarchy from fiber to fiber network may not
be completely surprising. It is because we used the power-law
breaking law (scale-free) and also the deformation is still in
a geometrically linear range (small strain). This preservation
property was also indicated by Phoenix and Tierney in the case
of a fiber bundle model [11].

Figure 16 shows the effect of p of fiber on the nondimen-
sional characteristic strength of the fictitious elements S’/ 7.
With increasing p, S quickly decreased and reached a plateau
below T, fiber characteristic strength. It is interesting to see
that S} is even higher than 7. in the low p range. Figures 17
and 18 show the effects of p of fiber on load sensitivity factor

1000 |

o L L L L L L L L
0 50 100 150 200 250 300 350 400 450

14

FIG. 17. Load sensitivity factor of the network, p* vs fiber p.
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P

O L
0 50
FIG. 18. Weibull shape parameter of the network, 8* vs fiber p.

of the network, p*, and the corresponding Weibull shape
parameter B*. Increasing p increased p* and decreased 8*,
and B* approaches to unity, as discussed earlier.

E. Effects of fiber strength, T,

The system investigated so far contains fibers whose failure
property follows Coleman’s probabilistic failure law that is
characterized by the parameters, 7., p, and B(=1). In a
heterogeneous network, these parameters may vary from one
fiber to the other, and thus the statistics are superimposed (su-
perstatistics). In this section, we have varied the characteristic
strength, T, to simulate the effects of heterogeneous fibers in
the network on the lifetime distribution.

Figure 19 shows lifetime distributions when 7T is generated
as a uniformly distributed random variable between T n;,
and T, max, Where we fixed the mean (10) but varied AT,
(=T, max — T¢.min)- As can be seen, when increasing the spread
of fiber characteristic strength, the distributions shift towards
shorter lifetimes but, surprisingly, retain Weibull distribution.
Figure 20 shows the slopes (Weibull shape parameter) of
the distributions as a function of the spread AT,/T,. The

-8 , , , , : :
+ ATJT =0
o AT/T =04
10F| . AT T =08 1
~ . AT/T =12
Z_ol|  AT/T =16 |
=
£ 141 1
£
” ! P
v o x ° *
v a x o ¥
-18 1 1 1 1 1 ! ! !

-4 -2 0 2 4 6 8 10 12 14

FIG. 19. Lifetime distributions for different values of the spread
of characteristic strength of fiber, AT, / T, plotted in a Weibull format.
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FIG. 20. Slope vs spread of characteristic strength of fiber,
AT,/ T,., for the lifetime distributions plotted in Fig. 19.

slope gradually increases with the spread but decreases
as AT./T, — 2. It is difficult to surmise the underlying
mechanism, but it may be related to the non-dimensional load
parameter, [T (t)/T.]° in Eq. (9). As the spread increases, this
parameter increases (i.e., increased failure probability) at the
lower end, T, = T, min, Whereas it decreases at another end
(T, = T¢ max)- Therefore, the phenomena seen in Fig. 20 may
be a result of these two competing processes.

F. Effects of stress distributions

In addition to the fiber properties, another superimposed
statistics may be stress (force per fiber) distribution. The
triangular lattice that we used has its own stress distribution
according to its geometry, but we can also introduce addi-
tional stress disorder by manipulating some of the structural
parameters in the triangular lattice model. For this purpose we
varied the area A of the fibers (truss elements) by generating
uniformly distributed random variables between A, and
Amax- This creates additional stress disorders to this triangular
network.

-8 : : : : :
* AA/A=0
9 v AA/A=0.2 §
= AA/A=0.4
10} = AA/A=1.0 1
+ AA/A=1.6
=111 ]
'z 121 1
=131 1
14} J 1
e F
151 £ O T
S PF
-16 ¢ o x - w ]
_17 o % 1 1 o 1 *v 1 1
2 4 6 8 10 12 14

FIG. 21. Lifetime distributions for different values of AA/A
plotted in a Weibull format.
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FIG. 22. Slope vs AA/A for the lifetime distributions plotted in
Fig. 21.

Figure 21 shows the lifetime distributions for different
spreads AA/A. Increasing the spread shifts the distribution
towards shorter lifetimes, and at the same time the slope
decreases. This decrease of the slope eventually ceased
(Fig. 22) and approached unity, which is, again, the Weibull
shape parameter of fiber. In other words, the stress disorder
decreases both the mean lifetime and the shape parameter of
the network. For large stress disorders in the network fiber’s
uncertainty of lifetime seems to ultimately control the one for
the network.

V. DISCUSSIONS

Although Coleman’s phenomenological model was orig-
inally developed as a model for time-dependent statistical
failure of fiber, it is interesting to see that the same probabilistic
failure law appeared also on the network level. From the point
of Coleman’s formulation, however, it is expected that such
a relationship holds as long as the material system satisfies
the three conditions that Coleman postulated: (1) WLS,
(2) power-law form of probabilistic failure criteria (which
leads to Weibull distribution of creep lifetime), and (3) power-
law form of damage evolution with load.

Weakest-link scaling is associated with brittle or quasibrit-
tle failure. In the system we have studied with p > 2, it is,
therefore, reasonable to observe WLS as a limiting case when
the total number of (fictitious) elements becomes large.

One interesting result is that, although WLS seems to
emerge for this network system and the distribution at a given
network size is approximately Weibull distribution, the scaling
behavior of the characteristic strength (and mean strength) and
the slope did not follow the WLS for Weibull distribution.
Instead they followed:

(22a)
(22b)

By = agIn(N) + bg,
In(ay) = —agIn[In(N)] + by.
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where By and ay are defined in the approximation of lifetime
distribution at size N:

¢ BN
1— Fy@) ~ exp|:— <E) i| (23)

The question is whether there is a function W(t) that
satisfies the weakest-link scaling {1 — Fy(t) — [1 — W(®)]V
as N — oo}, and, at the same time, produces the scaling
relations in Eq. (22). In fact there is such a function when
we consider W(¢) as an envelope that is formed by a series
of the tangent curves, each of which is described by Eq. (23).
This is actually a similar conjecture that was also used by
Phoenix and Tierney [11] and Newman and Phoenix [6] to
approximate W(¢) by the critical cluster model of LLS fiber
bundles. As shown in Appendix, W(¢) is given by

W(r) = 1 — exp{—exp{—rr "% + pu}} (24)
or
Fy(t) = 1 — exp{—Nexp{—rt~"% + u}}, (25)
where
by
A= aaaﬁexp{ + — — l}, (26a)
agdg Ay
1
w= bﬁ<— — aa>. (26b)
ag

This equation is valid for small 7 (or large N), as seen in the
Appendix. Although this is still an empirical result based on
the simulations, it is interesting to see that W(¢) or Fy(¢) has
a double exponential form, which was also obtained by Curtin
and Scher from their damage evolution model [23].

One important note is that this model does not take into
account the dynamic effect of cracking (or avalanche). The
presence of dynamic effects was recently demonstrated for
a triangular lattice model with distributed strength thresh-
olds [36]. The study showed that a single bond break can cause
immediate multiple breaks by the dynamic effect. Therefore,
the finite time required to proceed from avalanche to the total
failure, such as observed in many static fiber bundle models,
may be an overestimate.

The parameters defined in Eq. (20), S}, p*, and B*,
are useful for material characterization in terms of time-
dependent, statistical failure. One interesting observation in
this study is that at the brittle limit (p — o0), the Weibull
shape parameter of the system B* has a lower bound which
seems to coincide with the same shape parameter of fiber.
This is understandable, since at the brittle limit, the lifetime of
the system is essentially determined by the first fiber failure,
which is simply a minimum of lifetime among all fibers. In
other words, suppose the lifetime distribution of the i-th fiber
is given by

t , p B
Fi(t)=1—exp (—{/ |:T,]Es):| ds} ), 27)
s=0 c

PHYSICAL REVIEW E 92, 042158 (2015)

then lifetime distribution of the system [i.e., the minimum of
lifetime of N fibers Fy(#)] should satisfy the condition:

N
1= Fy@ =[]0 - F@]

i=1

= exp (—:i [T’;:))rﬂ}rﬁ), (28)

i=l1

where T;(0) is the force applied to the i-th fiber between r = 0
and the first fiber failure. Therefore, lifetime distribution of the
system for the first fiber failure is Weibull distribution with the
shape parameter being equal to the shape parameter of fiber 5.
Note that this result is not limited to a specific geometry; it is
equally applied to a 3D fiber network at p — oo.

VI. SUMMARY AND CONCLUDING REMARKS

Numerical simulations of creep failure have been carried
out for central-force, triangular fiber networks by assuming
element fibers follow Coleman’s probabilistic failure law, with
B =1and p > 2. The main results obtained are as follows:

First, Coleman’s probabilistic failure law approximately
holds also on the system level (fiber network) when the net-
work size enters into the WLS regime. In this regime, Weibull
distribution was persistent even when there are superimposed
disorders to fiber properties or stress distributions. However,
Weibull distribution is still an approximation of W(¢), which
was actually found to have a double exponential form rather
than Weibull form.

Second, comparing fiber properties T, p,8 with those for
the network S, p*, B*, we found that increasing fiber p induces
areduction of characteristic strength S but an increase of load
sensitivity p* and Weibull shape parameter * of the network.
The superimposed disorders of fiber characteristic strength
and stress reduces both characteristic strength and 8* of the
network significantly.
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APPENDIX

1. Damage evolution under Kachanov’s type condition

Coleman’s breakdown rule of Class B states that the damage
evolution depends not only on force applied on the fiber but
also the damage state itself, which is expressed as

ds2
— = ¢Lf(0).Q0)].

7 (Al)
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One of the examples of Coleman’s Class B damage evolution
rule is the one by Kachanov [28]:

dQ, _ B[ 10 ]"’
dt 1 —Q,(t)

(A2)

where €2, is a normalized damage variable, according to
Kachanov, with 2, = Q/ Q¢ and 2y the damage level at which
the stress enhancement effect becomes infinity. The above
equation can be easily integrated:

;[1 — (11— = B/ f(s)’ds.
0

A3
p+1 (A3)

For Q « 1, i.e., when failure happens with a limited level of
damages (brittle failure), then the left-hand side is approxi-
mated as
t
Q,+0(Q) = B/ f(s)ds. (A4)
0

This recovers Coleman’s Class A breaking rule. In other words,
the assumption of the Class A breaking rule implicitly contains
the assumption of brittle failure, which goes together with the

case of higher p failures. Equation (A3) can be solved for €2,
as

Q=1-— [1 — B(p + 1)/ f(s)pdsi|p+l. (AS)
0

This damage evolution, based on Kachanov’s type condition,
clearly gives non-Weibull distribution of creep lifetime.

2. Characteristic distribution function
Weakest-link scaling assumes the presence of characteristic
distribution function W(¢), such that

1— Fy(@) — [1 = wW®OIY (A6)

as N — oo. In this simulation we have found that Fy(t) is
approximated by Weibull distribution within the probability

PHYSICAL REVIEW E 92, 042158 (2015)

range tested (0.001 and 0.999):

BN
t
1—Fyn(t) >~ exp|:—<—) :| (A7)
ay
and oy and By were scaled by
Bn = agIn(N) + bg, (A8a)
In(ay) = —agIn[In(N)] + b,. (A8b)

The question is how to find W(¢) that satisfies the scaling
relations in Eq. (A6) and Eq. (AS8), as N — oo. As seen in
Fig. 7, we can consider W (¢) as an envelope to which a series of
the approximate curves Eq. (A2) for different N form tangents.
This is the similar conjecture that was employed by Phoenix
and Tierney and Newman and Phoenix for approximating W (¢)
by using the lifetime distributions of critical damage clusters
in fiber bundle model with local-load sharing [6,11]. From
Eq. (A6),if [1 — Fi(H)]Y* form tangents to 1 — W(¢), we must
be able to find #; which satisfies

[1 = Fe@l"* = [1 = Fen @1, (A9)
This relation yields
ap
In(ty) = a1 — auIn[In(N)] — , Al10
n(ty) = a; — aqIn(In(N)] () (A10)
where a; =1/ag —a, +b, and ar =a,bg/ag. Using

Eq. (A10) in Egs. (A6) and (A7), and taking N — oo, we
have

W(t) = 1 — exp{—exp{—rt /% + u}}, (A11)
where
by
A = Gqagexp + — =14, (Al2a)
audp Qg
1
w= b,g(— — aa>. (A12b)
ag

This double exponential form is an approximation when N —
oo (ort — 0).
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