
This material is published in the open archive of Mid Sweden University  
DIVA http://miun.diva-portal.org to ensure timely dissemination of scholarly and technical 
work. Copyright and all rights therein are retained by authors or by other copyright holders. 
All persons copying this information are expected to adhere to the terms and constraints 
invoked by each author's copyright. In most cases, these works may not be reposted without 
the explicit permission of the copyright holder. 

 

Li Y.; Sjöström, M.; Olsson, R; Jennehag, U., "Scalable coding of plenoptic images by using a 
sparse set and disparities," IEEE Transactions on Image Processing, 2015 

http://dx.doi.org/10.1109/TIP.2015.2498406 

 

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 
 

  

http://miun.diva-portal.org/


1057-7149 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2015.2498406, IEEE
Transactions on Image Processing

1

Scalable coding of plenoptic images by using a
sparse set and disparities

Yun Li, Mårten Sjöström, Member, IEEE, Roger Olsson, Member, IEEE, and Ulf Jennehag

Abstract—One of the light field capturing techniques is the
focused plenoptic capturing. By placing a microlens array in
front of the photosensor, the focused plenoptic cameras capture
both spatial and angular information of a scene in each microlens
image and across microlens images. The capturing results in
significant amount of redundant information, and the captured
image is usually of a large resolution. A coding scheme that
removes the redundancy before coding can be of advantage for ef-
ficient compression, transmission and rendering. In this paper, we
propose a lossy coding scheme to efficiently represent plenoptic
images. The format contains a sparse image set and its associated
disparities. The reconstruction is performed by disparity-based
interpolation and inpainting, and the reconstructed image is
later employed as a prediction reference for the coding of the
full plenoptic image. As an outcome of the representation, the
proposed scheme inherits a scalable structure with three layers.
The results show that plenoptic images are compressed efficiently
with over 60 percent bit rate reduction compared to HEVC intra,
and with over 20 percent compared to HEVC block copying
mode.

Index Terms—Plenoptic, light field, HEVC, compression,

I. INTRODUCTION

A sampling of the light field with the directions and the
intensities of outgoing radiances from a scene is captured
by plenoptic cameras. The capability of image refocusing
and multi-view imaging during post-production is enabled by
the capturing process. However, a densely sampled plenoptic
image contains repetitive patterns with a large resolution.
The image can possibly be represented by a subset of its
microlens images plus disparity information. The question is
if a plenoptic image can be encoded efficiently by using such a
representation with a proper sampling factor, and if scalability
with respect to transmission and rendering is attainable.

The plenoptic function I = P (x, y, z, θ, φ, ω, t) [1] has
seven dimensions and captures the intensities I of light rays
at any viewing positions x, y, z, any directions θ, φ, any
wavelengths ω, and any time t. Representing the color by
RGB channels and for a static scene, the plenoptic function
is reduced to five dimensions without ω and t. If we further
assume regions are free of occluders, the plenoptic function
can be simplified into four dimensions as a light field [2] [3],
which is represented by a two-plane representation. The four
dimensions (x, y), and (r, t) locate the coordinates of radi-
ance passing through the two planes, respectively. There are
currently four techniques for capturing a light field image, i.e.,
by using multi-camera arrays [4], moving cameras [5], coded
apertures [6], and microlens arrays [7]. In the capturing with
microlens arrays, two capturing techniques are further derived,
which are standard plenoptic capturing [7] and plenoptic 2.0

[8]. Cameras with plenoptic 2.0 techniques [8] are also referred
to as focused plenoptic cameras.

The concept of plenoptic capturing was first introduced
by Gabriel Lippmann in 1908 [9]. A commercially available
product is the Lytro camera from Lytro, Inc. founded by Ng
et al. [7] in 2001. The first generation of Lytro cameras are
standard plenoptic systems [10], and by our visual inspection
of the captured images, so are the new generation of Lytro
cameras, Illum. Because the focal plane of the microlens is
on the camera image sensor plane for the standard plenoptic
capturing, the camera only captures angular information in
each microlens image, also called Elemental Image (EI), for a
single point in the 3D space. This results in a low spatial reso-
lution of rendered views in theory. Focused plenoptic cameras
capture, however, both angular and spatial information in each
EI and across EIs by putting the focal plane of microlenses
away from the image sensor plane. Thus, it provides a trade-off
between spatial and angular information for the capturing. The
details of focused plenoptic cameras are discussed in Section
II.

Plenoptic cameras have gradually gained popularity in the
consumer market due to its portability and usability. By a
fairly simple re-sampling of the captured plenoptic datasets,
refocusing and multi-view imaging can be acquired. We refer
to plenoptic images as the image captured by focused plenoptic
cameras in the context of this paper. In addition, a densely
sampled plenoptic image implies that adjacent EIs are highly
correlated.

Fig. 1: Focused plenoptic image Laura [11].

A. Motivation

The plenoptic images retain both angular information and
spatial information of a scene. The image consists of a grid
of EIs whose contents are similar to their neighbours, see
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Fig. 1. Therefore, one problem with respect to coding is that
the image exhibits repetitive patterns, and a large amount of
redundancy exists. In a densely sampled plenoptic image, the
disparities between adjacent EIs are small, and one EI can be
approximated by a shift followed by an interpolation from its
neighbors. This implies that a full plenoptic image is possible
to be reconstructed from a sparse sample set of its EIs. Thus, a
coding approach that removes the redundancy before encoding
might be advantageous.

Another problem associated with the coding of plenoptic
image lies in that not all EIs are always needed for rendering.
Transmitting such a big image frame in the network will likely
introduce transmission latency at receiver sides and waste
network resources. Furthermore, in the decoder, an increasing
of decoding computational complexity will follow. Therefore,
a scalable representation of the plenoptic image is desired,
so that a quick transmission, decoding and rendering can be
performed from a base layer.

As mentioned above, we are motivated by the two problems
to devise an approach that can 1) remove the redundancy
before coding, 2) encode plenoptic contents efficiently, and 3)
provide coding scalability, which is defined in Section IV-C.

B. Previous work
There are other techniques to capture a light field image

as mentioned. Coding approaches with respect to light field
images in general can be applied to plenoptic images. Previous
coding works on light field image compression can be mainly
classified into three categories: vector quantization, predictive
coding and progressive coding [12]. For the Vector Quanti-
zation (VQ) [2] approach, light field images are partitioned
into small blocks, which are represented as vectors. A small
subset of the vectors is trained to approximate the entire vector
space. In predictive coding, an early work [13] arranges light
field images into a grid, images within the grid are recursively
predicted from a few intra coded images. The prediction
efficiency is further improved by using homography [14]. As
to the progressive coding, Discrete Wavelet Transform (DWT)
is usually applied to achieve a finer granularity of scalability
[12] [15] [16]. Shape Adaptive Discrete Wavelet Transform
(SA-DWT) was employed in a wavelet scheme with disparity-
compensated lifting and shape adaptation [16] to preserve
the boundaries of objects in light field images. As light field
images can be considered as 4-D contents, 4-D wavelets were
used in [17] for the compression.

In addition, there are approaches that do not distinctively lie
in any of the categories mentioned above. For example, the
performance of light field compression by using distributed
coding is evaluated in [18] [19]. The paper in [20] presents a
layer approach that segments objects in ray space and applies
wavelets for the compression of each segment. Furthermore,
Principle Component Analysis (PCA) was also utilized in [21]
[22] for de-correlating light field data. In [17], a model-based
coding approach was proposed, which represents objects by
voxels and exploits geometry information for prediction. In
general, hybrid multi-view encoders such as MVC [23] and
MV-HEVC [24] can also be applied to efficiently compress
light field images.

In order to apply the above mentioned approaches for
plenoptic coding, EIs must first be separated out from the
original captured image. However, the geometry information
for locating the position of each EI is not always available.
Therefore, to avoid the separation process, the Self-Similarity
(SS) modes [25] were introduced into HEVC and H.264 for
plenoptic images [26] [25] and videos [27]. SS modes predict
an image block from its neighboring reconstructed blocks. The
process is essentially a single hypothesis prediction. Further-
more, HEVC range extension has recently incorporated the
Block Copying (BC) mode [28] for coding of screen contents.
The BC mode is similar to SS mode with a single hypothesis
prediction. However, it has a limitation on the search areas
for prediction references. We have also proposed an efficient
displacement intra prediction scheme [29] for plenoptic images
by using more than one hypothesis, which is effective in
reducing the prediction error.

If camera geometry is known, multi-view encoders with
hierarchical coding structures in general can be used for coding
of plenoptic images. Nevertheless, an obvious drawback of
using multi-view encoders directly is that each EI must be
padded to the size of a power of two [30] for feeding into the
encoder. Because an EI is very small, the padding will result
in an unnegligible amount of extra data to be encoded. In
addition, the coding performance depends on the coding struc-
ture. Our previously proposed displacement intra prediction
scheme [29] can efficiently exploit the inter-EIs correlation
without considering the coding structure. But, the displace-
ment intra does not provide any scalability for transmission
and rendering. In [31], a layered-based approach for light field
images typically captured by camera arrays has been proposed.
It explores the plenoptic sampling function, performs a non-
uniformly spaced layer extraction, and conducts the rendering
with a probabilistic interpolation approach. However, this
approach is mostly suitable for camera captured light fields.
In [32], a scalable approach has been proposed for focused
plenoptic images by using the rendered views as prediction
references. However, different image processing techniques
can be applied on rendered views. As a consequence, the
rendered views may not be a good reference. In addition, in
this scheme, the coding bit rate for the rendered views (the
reference) is not included in the final bit stream. We, therefore,
further proposed a coding system that utilizes a sparse set
and disparities to address the problem [33] of scalability.
Nevertheless, in this coding scheme, disparities are encoded
losslessly. As a result, the bit rate allocated to the disparities
may be costly when coding plenoptic images at low bit rates,
and it is unlikely to reduce the depth bit rate significantly if
temporal prediction is considered for videos. Additionally, it
is of interest to evaluate the parameter space of the scheme
and the scalability with respect to rendering.

C. Proposed method

In this paper, we introduce a scalable coding approach for
plenoptic images by using a sparse set of EIs and disparities,
and the disparities are lossy encoded. Approximated camera
geometry is assumed to be known, and EIs can be separated
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from the plenopitc image. We start by estimating disparities
for EIs, and then uniformly retain a sparse set of EIs. Based
on the sparse set and disparities, a full plenoptic image is
reconstructed by using prediction with interpolation and, for
those unpredictable areas, with inpainting. The reconstructed
plenoptic image is utilized to predict the original full image by
using a modified HEVC encoder. The proposed scheme has a
three-layer structure. From the first to the second layer, spatial
resolution scalability is provided, and from the second to the
third, quality scalability is enabled.

The novelties of this paper are as follows: 1) We encode
plenoptic images by using a sparse set of EIs and their
associated disparities. The proposed scheme is implemented
into HEVC. Compared to our previous work [33], the proposed
coding scheme utilizes lossy encoded disparities for plenoptic
image reconstruction. The lossy coding can reduce the bit rate
allocated to the disparities while possibly retaining the visual
quality as compared to the lossless coding; 2) The scalability
of the proposed coding scheme is theoretically described and
empirically analyzed; 3) The quality of reconstructed parts
of full plenoptic images is visually inspected and analyzed;
4) The parameter space for the sparse sampling factor is
explored to determine the best sampling factor; 5) We evaluate
the proposed system with a high quality lossy coding of
disparities, i.e. quality of 60 to 70 dB in PSNR.

The overall aim of the work is to improve the compression
efficiency for plenoptic contents. The work is limited to the
compression for densely sampled focused plenoptic images.
The goal is to investigate the rate-distortion performance for
the decoded plenoptic images at the third layer and the quality
of the plenoptic image reconstruction at the second layer of
the scalable structure.

D. Outline

The paper is organized as follows. The focused plenoptic
camera is presented in Section 2. We illustrate our previously
proposed displacement intra prediction scheme in Section 3
and the proposed scheme in Section 4. Experimental setup and
evaluation criteria are presented in Section 5, and Section 6
shows the results and analysis. Section 7 concludes this paper.

II. FOCUSED PLENOPTIC SYSTEM

As presented in [8], a focused plenoptic camera is typically
in the form shown in Fig. 2. The microlens array is placed
such that the microlens is focusing on a plane in front of the
photosensor. The main lens system brings a 3D scene into
focus at the main lens image plane.

1) Capturing: Plenoptic capturing is a sampling of the light
field in its four dimensions. The sampling density is related
to the camera parameters a and b, and the distance of the
objects to the camera in a 3D scene. A more densely sampled
plenoptic image is referred to as more adjacent EIs capture
the angular information for a spatially located point in the
scene. As a result, adjacent EIs have a higher correlation. In
Fig. 2, putting the main lens image plane farther away from
the microlens array, i.e., a larger a, increases the sampling
density. This can be shown by using a simple ray tracing, as

Fig. 2: Focused plenoptic camera [8].

more lenses capture the same 3D point when a is increased.
In addition, given a fixed a and b, it can also be shown with
the ray tracing that moving the object of the scene farther
away from the camera increases the sampling density. As an
example, parts of plenoptic images from Plane and Toy [34]
with different sampling density are shown in Fig. 3.

Fig. 3: Focused plenoptic image: sparsely sampled (left) and
densely sampled (right) [34].

2) Rendering: Views with different perspectives can be
rendered from a plenoptic image. A view is rendered by
combining patches from EIs [8]. Fig. 4 describes such a
rendering process, where a view is rendered by combining
patches from each EI IE(x,y)(r, t) in the captured image
C(x, y, r, t). x ∈ [1, N ], y ∈ [1,M ], r ∈ [1, Nt], and
t ∈ [1,Mt], where N , M , Nt, and Mt are the size of each
dimension, e.g., in Fig. 4, N = M = 4, and Nt and Mt

are the resolution of an EI in each dimension. However, by
using a fixed patch size, artifacts will likely appear on parts
of a rendered view, because the patch size is dependent on
the depth of the scene [8]. Since the depth can be translated
into disparities between EIs, it is feasible to perform a depth
dependent rendering by using estimated disparities from EIs.
With the disparity information, all patches of various sizes are
magnified and combined to form a rendered view.

Image refocusing is to integrate and average the angular
information of a spatial point in the 3D scene. In the operation
with respect to EIs, they are overlapped with each other by
using an assigned disparity as shown in Fig. 5, and the color
intensity for the overlapped pixels is averaged with the number
of overlapping. This operation will bring into focus the objects
in a depth plane that corresponds to the assigned disparity.

III. DISPLACEMENT INTRA PREDICTION

For the paper to be self-contained and for a better clarity of
the proposed scheme, our previously proposed displacement
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Fig. 4: Captured plenoptic image and all-in-focus rendered
image by using a constant patch size.

Fig. 5: Captured plenoptic image and refocused image [8]
(the EI overlapping is shown in a rotated 3D manner). The
overlapped pixels of EIs are averaged for the rendered image.

intra prediction [29] is briefly illustrated here. The displace-
ment intra prediction scheme can perform a bi-directional
prediction in spatial domain for coding of plenoptic images
and is referred to as B-coder.

As shown in Fig. 6(a), two parts of the image are assumed
as two reference pictures available in the reference picture list
L0 and L1. A current coding block is predicted from the best
matching reference block, which can be the best matching
block in list L0, the best in list L1, or (P0+P1)

2 . P0 and P1 are
two blocks obtained from L0 and L1, respectively. The best is
measured in terms of minimum rate-distortion. In addition, the
original HEVC directional intra prediction is also evaluated in
the Rate-Distortion Optimization (RDO) process. As a result,
the best prediction mode is selected for coding the current
block.

The displacement intra B-coder has been integrated into
HEVC framework with a maximum of two hypotheses. The
scheme efficiently reduces inter-EIs redundancy without know-
ing lens geometry. A detailed description of the original HEVC
intra and the displacement intra can be referred to [30] and
[29], respectively.

IV. PROPOSED METHOD

The proposed scheme is to provide the coding with three-
layer scalability and enable an efficient coding. At the first
layer, a sparse sampled set of EIs is retained along with

(a) (b)

Fig. 6: Bi-prediction within an image. (a) Two parts in color
light gray and dark gray are assumed as two reference pictures
and available in the reference list L0 and L1; (b) an illustration
of the prediction on a light field image.

the estimated disparities. A full plenoptic image can then
be reconstructed at the second layer. The original image is
encoded by using the reconstructed image as a prediction
reference at the third layer.

Fig. 7 and Fig. 8 present the overview diagrams of the
proposed coding scheme, the details of each block in the
diagram are explained in the following subsections.

Fig. 7: The proposed plenoptic image encoding system.

Fig. 8: The proposed plenoptic image decoding system.

A. Encoding

Sparse sample set selection: A plenoptic image is sampled
into a sparse plenoptic image set as illustrated in Fig. 9.
Assume (x, y) are the coordinates of an EI IE(x,y)(r, t) within
the plenoptic image C(x, y, r, t) in Fig. 9. A sparsely sampled
image Cs(xs, ys, r, t) is obtained with a sampling factor s such
that xs ∈ [1, N/s], ys ∈ [1,M/s], and Cs(xs, ys, r, t) =
C(xs · s, ys · s, r, t). The sampling process on a captured
plenoptic image is illustrated in Fig. 10.
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Fig. 9: A 8 by 8 plenoptic image sparsely sampled by a factor
of s = 3.

Fig. 10: An example of the sampling.

Displacement intra encoding: The sparsely sampled image
can be encoded by state-of-the-art image encoders. In this
work, we employ the displacement intra B-coder [29], men-
tioned in the previous section, for the encoding.

Decoding of sparse sample set: The coded image is de-
coded. This decoded sparse sample set of images are used for
a later reconstruction.

Block-wise disparity estimation: The disparity estimation is
performed on the original plenoptic images. As an entire EI
is considered as a block, the disparity between the current
EI and the EI at its right side is estimated as the horizontal
disparity, and the current EI and the EI at its bottom side as the
vertical disparity. The estimation is performed by minimizing
the Mean Square Error (MSE) between the two neighboring
EIs, e.g., for estimating the horizontal block-wise disparity
Dh(x, y), the disparity map Dh is obtained by

argmin
Dh(x,y)

( MSE
r∈[1,Nt],t∈[1,Mt]

(IE(x,y)(r +Dh(x, y), t),

IE(x+1,y)(r, t)),
(1)

where x ∈ [1, N − 1] and y ∈ [1,M ]. For measuring the
vertical block-wise disparity map Dv , it is by

argmin
Dv(x,y)

( MSE
r∈[1,Nt],t∈[1,Mt]

(IE(x,y)(r, t+Dv(x, y)),

IE(x,y+1)(r, t)),
(2)

where x ∈ [1, N ] and y ∈ [1,M−1]. The pixels shifted outside
of the EI are discarded without taking into calculation.

The results from the estimation are two disparity maps
for the horizontal and the vertical directions. Therefore, two
disparity maps, Dh of resolution 7 by 8 and Dv of 8 by 7,
are produced for the plenoptic image illustrated in Fig. 9.

Coding of disparity maps: The two block-wise disparity
maps are encoded by using HEVC inter-frame prediction, i.e.,

one disparity map is encoded as intra-coded frame, from which
another is predicted by using HEVC inter-frame prediction.
These maps are encoded in high quality to ensure an accurate
plenoptic reconstruction.

Decoding of disparity maps: The coded block-wise disparity
maps are decoded.

Disparity calculation: For a later reconstruction, the dis-
parities between all EIs outside the sparse set to each EI in
the sparse set with a range of r must be estimated. We refer
these disparities to as sparse-set-centered disparities. An EI in
the sparse set is located at each (xs, ys) within the plenoptic
image illustrated in Fig. 11.

Fig. 11: Disparity calculation from all EIs outside the sparse
set in the blue box to an EI centered at (3, 3) in the sparse set
with a range r = 2.

Because the block-wise disparities have already been ac-
quired, the sparse-set-centered disparities can simply be cal-
culated by an addition horizontally and vertically from the
block-wise disparities. It is shown that Dh(x, y) is the block-
wise horizontal disparity for the EI at the coordinate (x, y)
to its neighbor at the right side, and Dv(x, y) is the block-
wise vertical disparity to its neighbor at the bottom side. The
horizontal and the vertical sparse-set-centered disparities for
the EI at (x, y) to the EI at (xs, ys) are calculated by:

Dhs((x, y), (xs, ys)) ={∑xs−1
i=x Dh(i, y), xs > x∑x−1
i=xs
−Dh(i, y), x > xs,

Dvs((x, y), (xs, ys)) ={∑ys−1
i=y Dv(x, i), ys > y∑y−1
i=ys
−Dv(x, i), y > ys.

(3)

The sparse-set-centered disparities, Dhs and Dvs, provide the
disparity vector to reconstruct the unknown EIs from the
known EIs in the sparse set.

Reconstruction: A full plenoptic image is reconstructed
from the decoded sparse plenoptic image set. As Fig. 12
shows, the EIs from the decoded sparse image set are placed
into their original coordinates within the full plenoptic image.
Based on the decoded and calculated sparse-set-centered dis-
parities, the unknown EIs are obtained from the known EIs
by a disparity shift. If multiple known EIs are available for
an unknown EI within the range r, they are averaged. As an
example, in Fig. 12, the EI at coordinate (1, 1) is extrapolated
from EI at (3, 3), and EI at (5, 4) is interpolated from four
known EIs.
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After the interpolation or extrapolation process, there are
still areas missing in each of the reconstructed EIs. Inpainting
approaches in general can be used to fill the missing areas.
In our work, a fluid dynamic inpainting approach [35] is
employed to inpaint the missing areas. This inpainting method
assumes the isophotes in the image as flows. The missing data
is filled by solving the Navier-stokes equation. An example of
the reconstruction of an image is illustrated in Fig. 13.

Fig. 12: Reconstruction of plenoptic images with r = 2. EI at
(1,1) is extrapolated, and EI at (5, 4) is interpolated.

Fig. 13: An example of the reconstruction.

Displacement intra & inter frame encoding: The HEVC
encoder is modified for the prediction of plenoptic images
in coding. During the initialization of the modified encoder,
the reconstructed plenoptic image from the Reconstruction
process is loaded into the reference picture list in HEVC and
available for inter frame prediction. During encoding, both
intra prediction and inter prediction are performed, the best
coding mode with the RDO for each coding block is chosen for
the prediction. Prediction residues are quantized, transformed
and entropy encoded as in HEVC. The intra prediction used
here is the displacement intra B-coder. Fig. 14 illustrates the
prediction for the modified encoder.

The final coded bit streams consist of three components: 1)
coding of sparse image sets from Displacement intra encoding,
2) coding of disparities from coding of disparity maps, and 3)
coding of full plenoptic data from Displacement intra & inter
frame encoding.

B. Decoding

Decoding of sparse sample set: The sparse plenoptic image
set is decoded.

Decoding of disparity maps: The coded block-wise disparity
maps are decoded.

Disparity calculation and Reconstruction: These procedures
are identical to the ones in the encoding. The two sparse-set-
centered disparity maps are calculated from the decoded block-
wise disparity maps as described in the Encoding system. With

Fig. 14: The prediction process for the modified HEVC
encoder.

the sparse image set and the disparity maps, a full plenoptic
image is reconstructed.

Decoding of plenoptic data: As an inverse process of
Displacement intra & inter frame encoding, a plenoptic image
is decoded by using the reconstructed plenoptic image as a
prediction reference.

C. Scalability

The proposed scheme is scalable and can be considered
as having three layers. The first layer is the sparse image set,
which is in fact a sparsely sampled plenoptic image. Rendered
views can be obtained directly from this image. The amount
of angular and spatial information in the image depends on the
sampling factor s. A smaller s implies more angular and spatial
intensities can be achieved for the rendering. The second layer
is the reconstructed full plenoptic image if the disparity maps
are available. The reconstruction quality depends on the factor
s and how well the disparity estimation, interpolation, and
inpainting are performed. The third layer is the residues from
the prediction by using the reconstructed plenoptic image.
When these residues and their associated information are
present, the original plenoptic image can be decoded with a
given coded quality in terms of PSNR. It must be clarified here
that the scalability from the first layer to the second layer is the
resolution/spatial scalability, and that from the second layer to
the third layer is the quality/SNR scalability.

This scalability property is beneficial if the network resource
is limited, because the image in the first layer is much smaller
than the original full image and is sufficient for producing a
2D view if the sampling factor s is appropriate. In addition,
in a differentiated network, the disparity maps and the sparse
image set can be set to a high priority for transmission. If
the data for the third layer are lost during transmission, a full
plenpotic image is still possible to be reconstructed in the
second layer for rendering.

D. Computational complexity

The computational complexity of HEVC coding has been
analyzed empirically in [36]. The complexity of the Displace-
ment intra encoding is equivalent to HEVC B frame coding
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with one reference picture in each of the reference picture lists.
For the Reconstruction process, it involves interpolation and
inpainting, the computational complexity depends on how fast
they can perform. An interpolation is an operation of averaging
multiple pixels (with a maximum of four in our experiment).
For the Navier-stokes inpainting, it is shown that large missing
areas in an image were inpainted in a magnitude of seconds by
using a standard PC [35]. The inpainting is a parameter that
can be changed in the scheme, and a detailed analysis of the
complexity can be found in [35]. As to the Displacement intra
& inter frame encoding, it is equivalent to HEVC B frame
coding with two reference pictures in each of the reference
picture lists. Consequently, it can be seen that the overall
computational complexity of both encoding and decoding of
the proposed scheme is higher than using the displacement
intra B-coder or the HEVC intra only. However, if only the
first layer is needed for transmission and rendering, the coding
complexity is lower, which depends on the sampling factor s.

V. EXPERIMENTAL SETUP AND EVALUATION CRITERIA

Light field images Seagull, Fredo, and Laura [11] were used
in the test. These plenoptic images are densely sampled with
a different depth distribution and scene. The original images
have a resolution of 7240 by 5236, and the EI is of 75 by 75
with a rectangular shape. Because vignetting appears on the
EIs at the corner of the plenopitc images, we cut the EIs into
size of 64 by 64 from approximately the center position of each
EI and attached them together to form a processed plenoptic
image. Note that, in general, the size is chosen according to
camera settings, and may not be a power of two. The processed
version of the image can be seen in Fig. 15 for Seagull. It has
a resolution of 6080 by 4544. All images were transformed
into Y UV 4:2:0 format.

Fig. 15: Processed plenoptic image: Seagull.

HEVC Test Model (HM) reference software version 11
was used for the coding of the plenoptic image and the
block-wise disparity maps. The sparse plenoptic image set
was encoded by using the displacement intra B-coder. The
Quantization Parameters (QP) were 22, 27, 32, and 37. The
coding configurations were set as the ”All Intra-Main” and
the ”Low-delay B-Main” setting in JCTVC-L1100 [37] for the
HEVC original intra and the displacement intra, respectively.
The block-wise disparity maps were encoded by using HEVC
inter frame prediction with the Coding Tree Unit (CTU) of
size 16, QP 20 and ”Low-delay B-Main”. We also modified
the HEVC encoder and integrated the displacement intra into

the proposed scheme for the process Displacement intra &
inter frame encoding. The current QP used for this process
was the same as for the coding of the sparse plenoptic image
set, and the coding setting was the ”Low-delay B-Main”.

The objective quality was assessed on the Y component
with PSNR, and the bit rate, bits per pixel (bpp), was cal-
culated from the coded bit stream for all Y UV components.
The rate distortion curve is plotted for PSNR vs. bpp, and the
BD-PSNR [38] was also computed. The results are compared
to original HEVC intra, the displacement intra B-coder, and
the Block Copying (BC) mode of HEVC range extension
version 13. The configurations of the B-coder were defined
as ”Low-delay B-Main” [37] with a search range of 192 for
the displacement vector, and the BC mode as ”ALL Intra”
[39].

The following aspects of the proposed coding scheme are of
our interest: 1) We investigate the performance of the scheme
by changing s from 2 to 5 and setting r = s − 1 in order
to determine the best sampling factor s. 2) With respect to
the best sampling factor, the scalability of the scheme is
analyzed: 2.a) For the first layer, the sparse image set is
a plenoptic image of lower resolution and encoded by the
displacement intra image B-coder, whose coding efficiency
has been investigated in [29]. For the second layer, we also
compute the PSNR of the reconstructed image vs. the bit
rate of the sparse sample set plus the disparity maps. This is
to evaluate the objective reconstruction quality. However, the
second layer involves pixels displacement, interpolation, and
inpainting processes. Therefore, the reconstructed plenoptic
image and its corresponding rendered image are partly shown
for a visual inspection. The rendered image is obtained by
using the all-in-focus rendering approach discussed in Section
II. The patches are taken from the center of each EI with a
fixed size of 8, which allows an artifact free rendering for the
presented parts.

VI. RESULTS AND ANALYSIS

The results of the parameter space of sampling factors and
the scalability of the scheme are discussed in the following
subsections.

A. Sampling factors

The BD-PSNR/rate in Table I shows the largest bit rate
reduction compared to HEVC intra was achieved with the
sampling parameter s = 2 for the proposed scheme. The bit
rate reductions compared to HEVC intra are 64.82, 60.90, and
48.87 percent for Seagull, Fredo and Laura, respectively. The
performance of the proposed scheme declines with the increase
of s. This indicates that an accurate reconstruction of plenoptic
images and a precise prediction of the coding of full plenoptic
data are essential to improve the coding performance. In
addition, Table I illustrates that bit rate reductions of 2.89,
3.05, and 2.29 percent were achieved for Seagull, Fredo and
Laura, respectively, compared to the displacement intra. This
shows that the majority of the bit rate reduction is achieved
by using the displacement intra prediction, which utilizes the
reference blocks from the spatial domain. It is further shown
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that the proposed scheme surpasses HEVC BC mode with over
20 percent bit rate reduction for all the tested images. Although
the proposed scheme only achieved an improvement of around
3 percent in bit rate saving compared to the displacement
intra, it provides a scalable coding structure for the coding,
transmission and rendering, and the results from each layer of
the structure will be discussed in Section VI-B.

TABLE I: BD-PSNR/rate: compared to HEVC intra

Image Coding
methods

BD-PSNR
(dB)

BD-rate
(%)

Seagull
Proposed (s=2) +4.68 -64.82
Proposed (s=3) +4.69 -62.86
Proposed (s=4) +4.47 -62.62
Proposed (s=5) +4.42 -62.14
Displacement intra +4.41 -61.93
HEVC BC mode +2.30 -36.36

Fredo
Proposed (s=2) +5.39 -60.90
Proposed (s=3) +5.31 -60.56
Proposed (s=4) +5.29 -60.43
Proposed (s=5) +5.18 -59.61
Displacement intra +4.90 -57.85
HEVC BC mode +2.71 -36.17

Laura
Proposed (s=2) +4.19 -48.87
Proposed (s=3) +4.02 -47.21
Proposed (s=4) +3.98 -46.90
Proposed (s=5) +3.94 -46.54
Displacement intra +3.94 -46.58
HEVC BC mode +1.87 -24.25

The results in Fig. 16, Fig. 17, and 18 further confirm that
the proposed scheme with s = 2 reduces coding bit rate
significantly more than HEVC intra and HEVC BC mode.
It also performs better than the displacement intra B-coder for
all tested QPs. The results are consistent for the tested images.

Fig. 16: Rate-distortion curves for Seagull.

Table II, Table III, and Table IV show the coding bit rates for
each coding component of the proposed scheme with s = 2. It
is illustrated that the coding of full plenoptic data contributes
to most of the coded bit stream, especially at the higher bit
rates, while the disparity maps add least overhead to the bit
stream. This also suggests that for an overall improvement of
the coding scheme, it is important to reduce the bit rate for
the coding of full plenoptic data.

Fig. 17: Rate-distortion curves for Fredo.

Fig. 18: Rate-distortion curves for Laura.

B. Scalability

The first layer:
Because the sparse image set in the case of s = 2 has only

half of the resolution of the original image in each dimension,
a direct comparison between the first layer to the second and
the third layers is impossible. The sampling process results in
a loss of angular and spatial information in the sparse image
set in general.

The second layer: Fig. 19, Fig. 20, and Fig. 21 additionally
illustrate the objective quality of the reconstructed image
obtained from the process Reconstruction for s = 2. The
reconstruction quality is above 30 dB for Seagull and Fredo,
and around 29 dB for Laura. The variations in PSNR values are
small, in the range of 3 dB, with the QP changed from 22 to
37. As mentioned, because the reconstruction process involves
pixel displacements, interpolation, etc., a visual inspection
is performed to examine the actual visual quality of the
reconstruction.

Fig. 23 and Fig. 24 depict parts of the reconstructed images
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Fig. 19: Rate-distortion curves for Seagull.

Fig. 20: Rate-distortion curves for Fredo.

Fig. 21: Rate-distortion curves for Laura.

TABLE II: Seagull: coding bytes per picture for each compo-
nent of the proposed scheme

QP Disparities Sparse image set Coding of full
plenoptic data Total

22 468 661 116 1 552 115 2 213 699
27 468 298 926 577 672 877 066
32 468 129 829 206 438 336 735
37 468 61 659 85 379 147 506

TABLE III: Fredo: coding bytes per picture for each compo-
nent of the proposed scheme

QP Disparities Sparse image set Coding of full
plenoptic data Total

22 564 516 795 1 106 050 1 623 409
27 564 260 161 451 398 712 123
32 564 136 140 197 055 333 759
37 564 75 240 94 430 170 234

with s = 2 and their corresponding rendered images for
Seagull. Fig. 23(a) and Fig. 24(a) are reconstructed from the
high quality and the low quality coded sparse image set, re-
spectively. Compared to the same part of the original plenoptic
image and rendered image illustrated in Fig. 22, distortions
other than the compression artifacts are insignificant, i.e., it is
indistinguishable which EI is reconstructed in Fig. 23(a) and
Fig. 24(a). However, the reconstruction quality depends on the
disparity estimation, the disparity compression, the sampling
factor s, the interpolation/extrapolation, and the inpainting.

The third layer: The objective quality of the third layer
has been discussed and presented in the beginning of this
section and is shown in Fig. 16, Fig. 17, Fig. 18, and Table
I. It was illustrated that the proposed scheme with bit rates
combined from all the compressed components outperforms
the state-of-the-art schemes. Parts of the decoded images and
its corresponding rendered views are illustrated in Fig. 25 and
Fig. 26 for the high and the low quality, respectively. They
are visually slightly better than the corresponding counterparts
reconstructed in the second layer shown in Fig. 23 and Fig.
24.

(a) (b)

Fig. 22: (a) Parts of the original plenoptic image; (b) corre-
sponding rendered image.
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TABLE IV: Laura: coding bytes per picture for each compo-
nent of the proposed scheme

QP Disparities Sparse image set Coding of full
plenoptic data Total

22 331 1 369 558 3 406 527 4 776 416
27 331 762 798 1 630 750 2 393 879
32 331 376 826 552 599 1 039 756
37 331 180 655 251 670 432 656

(a) (b)

Fig. 23: (a) Parts of the reconstructed plenoptic image at
the second layer from the coded sparse set with QP 22; (b)
corresponding rendered image.

VII. CONCLUSION

In this paper, we have proposed a scalable coding scheme
for densely sampled plenoptic images. The scheme sparsely
samples the image and represents a full plenoptic image by
its sparse image set and associated disparities, which are
encoded accordingly. A full plenoptic image is reconstructed
from the decoded sparse set and disparities by using interpola-
tion/extrapolation and inpainting. The reconstructed full image
is utilized for a prediction to encode the original plenoptic

(a) (b)

Fig. 24: (a) Parts of the reconstructed plenoptic image at
the second layer from the coded sparse set with QP 37; (b)
corresponding rendered image.

(a) (b)

Fig. 25: (a) Parts of the decoded image at the third layer with
QP 22; (b) corresponding rendered image.

(a) (b)

Fig. 26: (a) Parts of the decoded image at the third layer with
QP 37; (b) corresponding rendered image.

image with a required PSNR. The proposed scheme is scalable
with three layers such that the rendering can be performed with
the sparse image set, the reconstructed plenoptic image, and
the decoded plenoptic image.

The coding results demonstrated that plenoptic images
were compressed efficiently with the proposed scheme. It
outperformed HEVC BC mode with more than 2dB quality
improvement or by over 20 percent bit rate reduction when
measuring by using BD-PSNR/rate. It also surpassed our
previously proposed displacement intra B-code by as much
as 3 percent bit rate reduction. Visual inspection of the tested
image showed that distortions other than compression artifacts
were insignificant for the reconstructed image in the second
layer of the scalable structure. However, the reconstructed
quality depends on several factors, e.g., the sampling factor,
interpolation, and inpainting. An accurate reconstruction in the
second layer and a precise prediction in the third layer can fa-
cilitate an efficient coding of plenoptic images with a required
PSNR. Although the improvement over the displacement intra
B-coder is small, the scalable feature of the proposed scheme
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provides a flexible reconstruction of the plenoptic image from
its sparse set, which can enable the coding and transmission
to adapt to the limitation of network bandwidth capacity.

VIII. FUTURE WORK

To optimize the depth estimation, the interpolation and
the inpainting process are our future research. In addition, a
detailed analysis of the scalability with respect to network
transmission and error concealment is also of our future
consideration.
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