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Abstract

In recent years, the three-dimensional (3D) movie industry has reaped massive com-
mercial success in the theaters. With the advancement of display technologies, more
experienced capturing and generation of 3D contents, TV broadcasting, movies, and
games in 3D have entered home entertainment, and it is likely that 3D applications
will play an important role in many aspects of people’s life in a not distant future. 3D
video contents contain at least two views from different perspectives for the left and
the right eye of viewers. The amount of coded information is doubled if these views
are encoded separately. Moreover, for multi-view displays (i.e. different perspec-
tives of a scene in 3D are presented to the viewer at the same time through different
angles), either video streams of all the required views must be transmitted to the re-
ceiver, or the displays must synthesize the missing views with a subset of the views.
The latter approach has been widely proposed to reduce the amount of data being
transmitted and make data adjustable to 3D-displays. The virtual views can be syn-
thesized by the Depth Image Based Rendering (DIBR) approach from textures and
associated depth images. However, it is still the case that the amount of informa-
tion for the textures plus the depths presents a significant challenge for the network
transmission capacity. Compression techniques are vital to facilitate the transmis-
sion.

In addition to multi-view and multi-view plus depth for reproducing 3D, light
field techniques have recently become a hot topic. The light field capturing aims at
acquiring not only spatial but also angular information of a view, and an ideal light
field rendering device should be such that the viewers would perceive it as looking
through a window. Thus, the light field techniques are a step forward to provide
us with a more authentic perception of 3D. Among many light field capturing ap-
proaches, focused plenoptic capturing is a solution that utilize microlens arrays. The
plenoptic cameras are also portable and commercially available. Multi-view and re-
focusing can be obtained during post-production from these cameras. However, the
captured plenoptic images are of a large size and contain significant amount of a
redundant information.

An efficient compression of the above mentioned contents will, therefore, in-
crease the availability of content access and provide a better quality experience under
the same network capacity constraints.

In this thesis, the compression of depth images and of plenoptic contents cap-
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tured by focused plenoptic cameras are addressed. The depth images can be as-
sumed to be piece-wise smooth. Starting from the properties of depth images, a
novel depth image model based on edges and sparse samples is presented, which
may also be utilized for depth image post-processing. Based on this model, a depth
image coding scheme that explicitly encodes the locations of depth edges is pro-
posed, and the coding scheme has a scalable structure. Furthermore, a compression
scheme for block-based 3D-HEVC is also devised, in which diffusion is used for in-
tra prediction. In addition to the proposed schemes, the thesis illustrates several
evaluation methodologies, especially the subjective test of the stimulus-comparison
method. This is suitable for evaluating the quality of two impaired images, as the ob-
jective metrics are inaccurate with respect to synthesized views. For the compression
of plenoptic contents, displacement intra prediction with more than one hypothesis
is applied and implemented in the HEVC for an efficient prediction. In addition, a
scalable coding approach utilizing a sparse set and disparities is introduced for the
coding of focused plenoptic images.

The MPEG test sequences were used for the evaluation of the proposed depth
image compression, and public available plenoptic image and video contents were
applied to the assessment of the proposed plenoptic compression. For depth image
coding, the results showed that virtual views synthesized from post-processed depth
images by using the proposed model are better than those synthesized from original
depth images. More importantly, the proposed coding schemes using such a model
produced better synthesized views than the state of the art schemes. For the plenop-
tic contents, the proposed scheme achieved an efficient prediction and reduced the
bit rate significantly while providing coding and rendering scalability. As a result,
the outcome of the thesis can lead to improving quality of the 3DTV experience and
facilitate the development of 3D applications in general.



Sammanfattning

Under de senaste åren har den tredimensionella (3D) filmindustrin skördat stora
kommersiella framgångar på biograferna. Med utvecklingen av displaytekniker,
mer erfarenhet från inspelning och skapande av innehåll har hemunderhållning såsom
TV, film och spel utvidgats till 3D. Det är troligt att 3D-applikationer kommer att
spela en viktig roll i många aspekter av människors liv i en nära framtid. För att
video ska uppfattas som 3D måste minst två vyer från olika perspektiv för vänster
och höger öga presenteras för tittaren. Mängden information som krävs för lagring
och distribution fördubblas gentemot 2D om dessa vyer kodas separat. För multi-
vyskärmar där fler än två vyer presenteras samtidigtmåste lika många videoströmmar
som vyer distribueras mottagaren (multivy), eller så kan mottagaren syntetisera de
nödvändiga vyerna från den distribuerad delmängd. Den senare metoden har i stor
utsträckning föreslagits för att minska mängden data som överförs. De virtuella
vyerna syntetiseras genom Depth Image Based Rendering (DIBR) som använder
befintliga bilder med tillhörande djupinformation(multivy+djup). Trots det utgör
mängden information utgör en stor utmaning för nätverkens överföringskapacitet.
Kompressionstekniker är avgörande för att underlätta överföringen.

Förutom multivy och multivy+djup har light field tekniker nyligen blivit ett hett
ämne för att reproducera 3D. Ett light field inkluderar både rum- och vinkelinforma-
tion, och en idealisk light field bildskärm återskapar ljusets intensitet och vinkelin-
formation så att betraktaren uppfattar tittandet på skärmen som att titta genom ett
fönster. Således, light field teknikerna är ett steg framåt för att ge en mer autentisk
upplevelse av 3D. En teknik för att fotografera light field är med så kallade plenop-
tisk kameror, vilka utnyttjar mikrolinsmatriser placerade framför kamerans bildsen-
sor. Dessa plenoptisk kameror är portabla och kommersiellt tillgängliga och kan
tillhandahålla både multivy, multivy+djup samt tillåter bl.a omfokusering i efter-
behandling av bilder tagna med dessa kameror. Emellertid, de tagna plenoptiska
bilderna är av en stor storlek, och innehåller betydande redundanta information.

En effektiv komprimering av de ovan nämnda formaten kommer därför att öka
tillgången till innehåll och ge en bättre upplevelse av kvalitet under samma begräns-
ningar av nätkapaciteten.

I denna avhandling behandlas kompressionav djupbilder och fokuserade plenop-
tiska bilder. Djupbilderna består vanligtvis av styckevis släta ytor, och baserat på
denna egenskaperpresenteras en ny djupbildsmodell. Utifrån denna modell föreslås
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en komprimeringsmetod med skalbar struktur som uttryckligen kodar placeringen
av kanter i djupbilden. En komprimeringsmetod baserat på den blockbaserad 3D-
HEVC videokompressionsstandardden föreslås också, där diffusion används för in-
traprediktering. Förutom de föreslagna metoderna, presenteras ett antal utvärderin-
gssätt, särskilt ett subjektivttest utfört med hjälp av en kvantitativ stimulus-jämförel-
semetod. Detta är lämpligt för att utvärdera kvaliteten på två osäkra bilder, eftersom
de objektiva mätningarna är felaktiga på syntetiserade vyerna. För komprimering
av plenoptic bilder och video, displacement intra-prediction med mer än en hypotes
används och genomförs i HEVC för en effektiv prediction. Dessutom är en skalbar
kodningsmetod introduceras för kodningen av fokuserade plenoptiska bilder.

Standardiserade testsekvenser från MPEG användes för att utvärdera de föresla-
gna djupbildkomprimeringsmetoden,och med hjälp av offentligt tillgänglig plenop-
tisk data utvärderades den föreslagna plenoptiska komprimeringsmetoden. För djup-
bildkodning, visade resultaten att virtuella vyerna syntetiserade från efterbehand-
lade djupbilder är bättre än de som syntetiseras från originaldjupbilder. Ännu vik-
tigare, de föreslagna kodningssystemen producerar bättre syntetiserade vyer än de
toppmoderna systemen. För plenoptiska innehållen, det föreslagna systemet reduc-
erade bithastigheten och tillhandahållade kodning och rendering skalbarhet. Som
ett resultat, kan resultatet av avhandlingen leda till att förbättra kvaliteten på 3DTV
erfarenhet och hjälpa utvecklingen av 3D-applikationer i allmänhet.
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Chapter 1

Introduction

Three-dimensional (3D) media is not merely an extension of the two-dimensional
(2D), but a new form of art [BM12]. Not only can 3D provide audiences with the
impression of distance in relation to objects in a scene, but also with the realism of
pervasiveness. The 3D market in terms of content, cinemas, and display have been
expanding in recent years. The advancement of 3D display technology enables the
3D visions from different perspectives of a scene, so that viewers are able to watch
the scene in 3D from their preferred perspective. A multi-view or a free-view dis-
play is required to enable this feature, and multiple-view from different perspectives
must be provided or generated for the display. Therefore, a huge amount of data in
relation to the multiple-view contents presents a significant challenge in terms of
transmission and storage, if all views are transmitted. Fortunately, the intermediate
views can be synthesized from a small number of views plus their associated depth
information. However, the traditional video and image encoders will introduce dis-
turbing artifacts into the synthesized views when depth images are coded by these
encoders. More explicitly, they blur the depth transitions in the depth images, and an
alternative coding scheme that preserves the depth transitions would be beneficial
for view synthesis.

In addition to the multi-view plus depth format for the 3D representation, light
field techniques have gradually gained popularity in the past two years. A light field
[LH96] [GGSC96] is represented by a two plane representation. The positions from
the two planes locate the coordinates of the light ray passing through the two planes.
There are currently different techniques for capturing a light field image. One of
them is to capture by using cameras with microlens arrays, for which two capturing
techniques are further derived. They are standard plenoptic and plenoptic 2.0 sys-
tems, respectively. Cameras with plenoptic 2.0 techniques [GL10] are also referred to
as focused plenoptic cameras. Plenoptic cameras have gradually gained popularity
in the consumer market due to its portability and usability. Examples of commer-
cially available products are Lytro [Ng06] and Raytrix [Ray14]. By a fairly simple
post-processing of the captured plenoptic datasets, refocusing and multi-view imag-
ing can be acquired. There are numerous applications benefiting from light field ren-
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dering techniques. The applications range from medical applications to 3D videos
and computer games. I refer plenoptic images to as the images captured by focused
plenoptic cameras in the context of this thesis. A focused plenoptic camera not only
captures the spatial information of a scene but also the angular information, and the
captured image can be viewed as a grid of cropped multi-view images. The captur-
ing results in a plenoptic image consisting of multiple microlens images and with a
large resolution. In addition, the microlens images, also referred to as Elemental Im-
age (EI), are similar to their neighbors due to the property of the capturing. A dense
sampling of the light field results in large amounts of redundant data. Conventional
intra prediction in High Effiency Video Coding (HEVC) [BHO+13] is inefficient for
compressing such images [CDN12][BHO+13]. Therefore, an efficient compression is
vital for a practical use of these data.

In this thesis, a novel depth image modeling approach is presented, and coding
schemes utilizing such a model are proposed to improve the quality of the synthe-
sized views. In addition, efficient coding methods are devised for plenoptic contents
to de-correlate EIs and provide coding scalability.

1.1 Motivations

The following subsections present the motivations for each part of my work, which
includes depth image coding and coding of plenoptic contents.

1.1.1 Depth images

Traditional video and image encoders introduce distortions perceived as acceptable
by the Human Vision System (HVS) on the images. The distortion is manifested
as edge blurring because the encoders tend to remove the high frequencies in an
image. Depth images, on the other hand, are not viewed directly by viewers and
instead provide geometric translation for the view synthesis. The edge blurring of
depth images will result in disturbing artifacts on the synthesized view [LLT+10a].
Fig. 1.1 illustrates the synthesized artifact which resulted from depth compression
for parts of the Lovebird1 [ISO11], which uses Multi-view plus Depth (MVD) format.
Before the author conducted the research on depth image coding, traditional image
or video encoders have not exploited the special characteristics of depth images. This
provides the motivation for the research work for devising an alternative scheme for
depth image coding, which can preserve the edges (i.e. depth transitions) on depth
images.

1.1.2 Plenoptic contents

The EIs in a plenoptic image resemble multi-view video contents, but, with a small
image size. The total amount of pixels in each direction of an EI are usually in the
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Figure 1.1: Artifacts resulted from (a) the compressed depth and (b) the synthesized view.

magnitude of tens of pixels to hundreds of pixels [GYLG13] [GL10]. A straight-
forward approach to encode these images would be to apply standard image or
video encoders, e.g., JPEG [Jpe92] and H.264 [Adv12], on the captured images. How-
ever, the redundancy between EIs is not exploited by these encoders. Alternatively,
multi-view encoders, such as MV-HEVC [BHO+13], can be applied on EIs for decor-
relation. But, it is problematic to separate each EI from the plenoptic images if
the geometries of the camera are unknown. The geometries, e.g., modulation im-
ages/calibration images, are related to the camera settings when the image is cap-
tured [GYLG13]. The modulation images are obtained during camera calibration,
depending on the focus of the main lens, the focal length of the main lens, and the
opening of the camera aperture. The calibration process may lead to different images
captured by the same camera having different geometries.

Even if the geometrical problem is overcome and the EIs can be separated from
the plenoptic images, another problem arises: how to arrange them into a two-
dimensional grid of image and feed them into multi-view encoders. This is because
the arrangement of EI changes with the camera, EI is fairly small, and there are usu-
ally hundreds by hundreds of EIs in a plenoptic image. It is possible to rearrange the
EIs into other formats, e.g., to rendered views. However, to produce a good rendered
view, additional information is required [GL10] [YYLG13], e.g., disparity maps be-
tween EIs. In the case of video sequences, disparity maps have to be estimated for
every frames. The difficulties in coding separated EIs motivate us to devise a gen-
eral coding scheme that can 1) be applied to plenoptic images and videos from all
focused plenoptic cameras without knowing camera geometries and 2) decorrelate
EIs in the compression. A plenoptic image [Geo13] with rectangular EIs from fo-
cused plenoptic cameras is shown in Fig. 1.2.

Moreover, if approximate geometries are available, can we do better? In a densely
sampled plenoptic image, the disparities between adjacent EIs are small, and one EI
can be approximated by a shift followed by an interpolation from its neighbors. This
implies that a full plenoptic image can be reconstructed from a sparse sample set of
its EIs. Therefore, a coding approach that removes the redundancy before encoding
might be advantageous. Another problem associated with the coding of plenoptic
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Figure 1.2: Images from focused plenoptic cameras

image lies in that not all EIs are always needed for rendering. Transmitting such a
big image frame, e.g., larger than 4K resolution, in the network will likely introduce
transmission latency at receiver sides and waste network resources. Furthermore,
in the decoder, an increasing in decoding time complexity will follow. Therefore, a
scalable representation of the plenoptic image is desired, so that a quick transmis-
sion, decoding and rendering can be performed from a base layer. As mentioned
above, we are also motivated by the two problems to devise an approach that can: 1)
remove the redundancy before coding, 2) encode plenoptic contents efficiently, and
3) provide coding scalability.

1.2 Purpose

The transmission capacity limits the quality of content as well as the amount of con-
tents being transmitted. An efficient transmission through the means of coding that
reduces the bandwidth consumption for networking resources can enable both the
accessibility of 3D contents and the comfortability of 3D viewing. The purpose of
this thesis work is to improve the compression efficiency for texture plus depth and
plenoptic contents, and, ultimately, improve the 3DTV experience under a limited
transmission capacity for 3D video content.

1.3 Problem definition

The problems with coding of depth image and plenoptic contents by using tradi-
tional video and image encoders are the following:

1) Traditional video and image encoders introduce distortions on depth images,
which will be translated into the perceivable artifacts on the synthesized views.
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2) Correlation of EIs is not exploited effectively for plenoptic images with tradi-
tional image encoders.

3) If approximated camera geometries are known and EI can be separated from
the original image, rendering, transmission, and coding scalability are not suffi-
ciently exploited.

1.4 Scope

The depth images are assumed as piecewise smooth gray level images [SFWK11].
The current work for coding of depth images is focused on, but not limited to, still
image and intra frame coding. For the evaluation, synthesized views produced by
the compressed depth images are evaluated, and MPEG View Synthesis Reference
Software (VSRS) [vsr10] is used for the view synthesis. In addition, the MPEG MVD
test sequences are the data sources for the evaluation, and tested images are selected
from these sequences. For plenoptic contents, the work is limited to the compression
of plenoptic images and videos from focused plenoptic cameras. Contents captured
from camera arrays and other techniques are out of the scope of this thesis. The
scalability is only analyzed for focused plenoptic images, and video sequences are
not considered here.

The evaluation methodologies are chosen so that the evaluation results are com-
parable with the results from other research. These methodologies are the image
quality assessment metrics Peak Signal to Noise Ratio (PSNR) [HTG08] and Struc-
ture Similarity index (SSIM) [ZBSS04]. To overcome the shortage of these objective
metrics, the results are further assessed by visual inspections and subjective tests.

In the context of this thesis, 3DTV not only represents the 3D television systems
for home entertainments but also other aspects of 3D, e.g. 3D medical applications
[NBM+12], 3D mobile devices [GAC+11], and telepresence [KS05]. Furthermore,
coding scalability is referred to as progressive quality scalability, which implies that
better quality of image can be decoded upon receiving more data from the bit stream
while lower quality of image can also be decoded with less amount of information.

1.5 Objectives

1.5.1 Depth image

For the thesis, the following objectives are defined:

O.I. To investigate a possible model and representation of depth images based on
their intrinsic property, i.e. the piecewise smooth assumption.

O.II. To investigate a candidate for coding schemes for depth images that pre-
serves the fundamental properties of depth images and to analyze the coding per-
formance.
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O.III. To derive a coding scheme for depth images for MVD sequences based on
hybrid video coding schemes and to evaluate the rate distortion objectively.

1.5.2 Plenoptic content

The objectives for plenoptic coding are defined as follows:

O.IV. To find a signal model for plenoptic contents utilizing its intrinsic property,
i.e. cross-similarity, to explore a theory that exploits this property for an efficient
coding without knowing camera geometries and to analyze the coding performance.

O.V. To investigate a candidate of coding schemes for plenoptic images that re-
moves the redundancy between EIs before coding and provides coding scalability
and to evaluate the coding performance, parameter spaces and coding scalability.

1.6 Solution approaches

To fulfill the objective O.I, a format that utilizes the piecewise smooth assumption
is devised to represent the depth image on an abstract level. The format consists
of edges and sparse points from the depth image. Consequently, in objective O.II,
instead of coding the depth images directly, this format can be encoded by a novel
coding scheme. Objective O.III requires integrating the novel coding scheme into
state of the art video encoders. A solution to objective O.IV is to perform a block-
based spatial prediction on the plenoptic images. With approximate camera geome-
tries known, for objective O.V, a sparse set of plenoptic images plus disparities are
utilized to code the original plenoptic image and provide coding scalability.

1.7 Contributions

The author’s contributions to the thesis are listed in the section ‘concluding remarks’
at the end of each chapter. The author is responsible for the ideas, evaluation criteria
and test set-up, result analysis, and the presentation of the papers. The co-authors
have also partially contributed to the entire chain of research for the papers. In the
thesis, ‘we’ refers to ‘the authors of each paper’ in each chapter. The contributions of
the thesis are described below:

I. Introduction of a depth image post-processing scheme by diffusion for a better
quality of synthesized views.

II. Proposal of a scalable depth image compression scheme by diffusion for high
quality depth images with the aim of improving the subjective quality of synthesized
views.

III. Analysis of the accuracy of the objective metrics SSIM by conducting a sub-
jective evaluation of the proposed depth image compression scheme.
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IV. Introduction of diffusion modes in 3D-HEVC. The modes utilize texture edges
and are integrated into the Depth Modeling Mode (DMM) framework.

V. Introduction of displacement intra prediction with more than one hypotheis in
HEVC for coding of plenoptic images.

VI. Proposal of displacement intra prediction plus inter prediction with more
than one hypotheis in HEVC for coding of plenoptic videos.

VII. Design of a scheme that provides coding scalability for plenoptic images by
using a sparse set and disparities.

1.8 Outline

The details of the solution approaches are shown in Chapter 6 for objective O.I,
Chapter 7 and 8 for objective O.II, Chapter 9 for objective O.III, Chapter 10 for objec-
tive O.IV, and Chapter 11 for objective O.V.

The thesis is organized as follows: Chapter 2 overviews the three-dimensional
images, and Chapter 3 describes plenoptic images. Source coding and hybrid coding
are briefly discussed in Chapter 4. Related work is presented in Chapter 5. Chapter
6 illustrates the proposed scheme of depth image coding by diffusion, and Chapter
7 describes the proposed scalable depth image coding using depth edges and dif-
fusion. Subjective evaluation of the proposed scheme is shown in Chapter 8, and
depth image coding using diffusion modes and texture edges in HEVC is explained
in Chapter 9. Chapter 10 addresses the problem of coding of plenoptic contents by
displacement intra prediction. Coding of plenoptic images by using a sparse set and
disparities with lossless and lossy coding of disparities are discussed in Chapter 11.
Chapter 12 concludes this thesis and reflects the aims, the objectives, and the possible
impacts of the work.
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Chapter 2

Three-dimensional images

This chapter provides an overview of the 3D history and 3D transmission chain. In
order to understand how human perceive 3D, the humans perception of 3D and 3D
displays are briefly discussed. In addition, depth image capturing and view syn-
thesis are illustrated to reveal the relations between synthesized views and depth
images. Finally, evaluation methodologies of image quality for 3D are introduced.

2.1 3D history

The development of 3D has been going on for a long period of time. The first
stereoscopy device for still images was invented in 1838 by a British researcher: Sir
Charles Wheatstone [Feh05] for still images. In 1903, the first 3D short movie was
shown at the work fair in Paris; but, only one viewer at a time was able to watch
the screening. The first full 3D movie, Power of Love, was witnessed in Los Angeles
in 1922. The separation of views for the left and the right eye were produced by an
anaglyphic process, and multiple viewers could watch the movie at the same time.
However, the real 3D movie boom occurred after the 1950s when Hollywood started
to produce 3D movies for commercial purposes. The period 1952 to 1954 was partic-
ularly productive, over 60 3D movies were produced. The movie industry attempted
to highlight the sensation introduced by the depth impression to catch the audiences.

The boom subsided after 1954, as a result of several factors (e.g. inexperienced
photographers, inadequate quality controls, and poorly operated projection systems)
[Lip82]. Screening influenced by such factors results in headaches and eyestrain for
viewers. It was not until recently, with the advancement of 3D production tech-
niques, that 3D movies began to once again attract the viewers’ attention back to the
3D theaters, which is currently using the Image MAXimum (IMAX) technique.

3D has been also involved in broadcast television. The first 3DTV experimental
broadcasting was conducted in the US in 1953, but the first ’non-experimental’ 3D
program was broadcasted more than two decades later, in December 1980. With the

9
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Figure 2.1: The MUSCADE project signal processing and data transmission chain [mus13].

transitions from analogue to digital signals in TV broadcasting in the early 1990s,
compression technologies were developed by the Moving Pictures Expert Group
(MPEG) for the coding of 3D video contents [IL02]. The later coding techniques
such as H.264/AVC [Adv12] are also used for transmitting 3D video contents.

2.2 3DTV transmission chain

A example of the processing chain for 3DTV broadcasting is illustrated in Fig. 2.1
for the European project Multimedia Scalable 3D for Europe (MUSCADE) project
[mus13]. It consists of 3D content generation, coding, transmission, and rendering.
The 3D content can be captured by cameras or generated by computer animation.
These contents are then post-processed to reach the desired effects and are then com-
pressed. After transmission through networks, the compressed contents will be de-
compressed and played back in 2D or 3D mode according to the type of displays.

The 3D content is usually captured with multiple cameras or cameras plus depth
sensors. In addition, the content can also be acquired by using light field captur-
ing techniques. The capturing of depth images and plenoptic contents will be dis-
cussed in Section 2.5 and Chapter 3, respectively. These contents present an increase
of data stream being stored and transmitted compared to 2D data. The following
step, representation and coding, aims to post-process and compress the captured
data to be feasible for later transmission. One of the bottlenecks in the transmission
chain is the capacity of the Internet. As of today, Asymmetric Digital Subscriber Line
(ADSL) is still widely employed for delivering Internet services and usually with a
speed of less than 10 Mega bits per second (Mbps). With this bandwidth constraint,
it is unrealistic to transmit 3D contents in high quality without compression. The
common methods and my approaches to the representation and compression will
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Figure 2.2: Two images from different views of Poznan Street [DGKK09].

be discussed in detail in the thesis. As to the last part of the chain, a rendering of the
3D data attempts to recover the scene in front of the cameras in a realistic way. This
is a challenge for 3D contents and requires a specific display that is different from
that of 2D. The 3D displays and the method for synthesizing intermediate views are
briefly discussed in Section 2.4 and Section 2.6, respectively.

2.3 Human depth perception of 3D content

Before the discussion of 3D techniques, it will be of interest to understand how hu-
man beings interpret the closeness of an object. The human vision system can per-
ceive depth through a combination of monocular and binocular depth cues (informa-
tion). A more accurate depth perception results from more consistent cues [IJM05].

The depth perception from monocular cues is manifested in such a way that
depth can still be perceived when we close one eye. Based on the monocular cues, a
viewer can perceive that the light gray car is in front of the building in Fig. 2.2 (a).
Monocular cues consist of the following:

• Occlusion: Oclussion occurs when close objects block the view of distant objects
from the viewer’ perspective. The viewer can then perceive which objects are
closer.

• Linearity: Linearity means that parallel lines are perceived converging in an infi-
nite distance.

• Aerial effects: Lower color satuation and luminance contrast appear for far distant
objects, and therefore, they seems hazy.

• Lighting and shading: The reflective light from the surface of an object and the
shadow reveal its shape and position in the 3D space.

• Accommodation: The focal length of our eyes changes with the distance we are
focusing on. This gives feedback to the brain to be able to judge the actual
distance of an object.
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Figure 2.3: Illustration of binocular cues. Different perspectives of a scene are projected into
two eyes.

• Defocus blur: Because human eyes have a limited depth of focus, the scene that
lies outside of the range of our current focus will appear blurred.

•Motion parallax: In the context of motion, objects closer to us seem to be moving
faster while those farther away look static.

• Relative and familiar size: Based on our previous knowledge of object sizes, we
are able to distinguish at what distance an object is located. A closer object
seems bigger than an object placed farther away.

Binocular cues include stereopsis and vergence.

• Stereopsis: The separation of our eyes provides each eye with the ability to cap-
ture a unique perspective of the same scene, e.g. Fig. 2.2 (a) for the right eye
and Fig. 2.2 (b) for the left eye. The depth of the scene can then be perceived
from the retinal disparity of the images captured by two eyes. The impression
of depth by such a perception is called stereopsis. Fig. 2.3 shows an example
of an image point perceived to be behind the display.

• Vergence: In addition, both of our eyes will rotate to fixate on an object in the
scene. This simultaneous eye movement is the vergence.

Fairly good depth can be perceived by means of stereopsis alone, even if the
monocular cues are inconsistent [Jul71]. However, the retinal disparity should be
within a certain range (i.e., Panum’s fusional area) so that images from two view-
points can be fused into one. In addition, the accommodation and convergence
conflict (see Fig. 2.3) and different types of stereoscopic distortions can cause vi-
sual discomfort. A more detailed discussion concerning these aspects is described in
[IJM05].
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Figure 2.4: A classification of 3D displays.

2.4 3D display

As discussed above, depth can be perceived by using monocular cues, which ex-
plains the perceived depth from 2D displays. A stereoscopic 3D display, however,
aims at providing stereopsis, i.e. to separate different view points for each eye. 3D
displays can be categorized into two groups based on the techniques that separate
different perspective views into the left and right eyes. A classification tree is il-
lustrated in Fig.2.4. The displays from the two groups are aided viewing and free-
viewing, respectively.

Stereoscopic displays: Different techniques with respect to how signals is carrying
to the respective eyes have been proposed. A common solution is to utilize glasses to
separate the signals, e.g. colour-multiplexed (anaglyph), polarization-multiplexed,
time-multiplexed, and location-multiplexed. In the color-multiplexed approach, im-
ages are filtered and displayed with close complementary colors, while viewers wear
color-filter glasses to separate the views. As to the polarization-multiplexed, orthog-
onal polarizing filters are employed to project the two images, which are superim-
posed on the screen. The views rely on polarized glasses for a separation for each
eye. In the time-multiplexed, the shutter glasses open and close alternatively for
the two eyes. This process synchronizes with the contents displayed on the screen
in such a way that only one view is channeled to the intended eye. The location-
multiplexed, however, channel the respective views to the eyes for views created at
separate places. The channeling process can be done separately, e.g. through two
small lenses.

Autostereoscopic displays: The autostereoscopic multi-view displays relies on view-
forming optics, e.g. lenticular sheets to direct the light from the display screen to
specific areas. If the eye position coincides with the areas, two views are channeled
to each of the eyes, respectively. An example of the multi-view display is shown in
Fig. 2.5. These types of displays enable multiple viewers to watch contents on the
screen at the same time. While viewers move around, views from multiple perspec-
tives can be perceived. But cross talk from different views, i.e., the view intended
to one eye leaks into the other eye, and view jumping between views are problems
yet to be solved. Therefore, a ’sweat spot ’ is needed for satisfactory viewing. The
volumetric and holographic displays are intended to reproduce a more immersive
imagery of captured 3D objects. However, they are still in the early stage of devel-
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Figure 2.5: Principle of multi-view displays.

opments. For an insightful discussion of these displays, see[Pas05]. As for the light
field displays, an example is the Holovizio light field display from Holografika. The
Holovizio display consists of an array of optical modules and a holographic display
panel. Light beams are emitted from each point of the screen to different directions
with angular intensities [BKM07], like a physical object point does in the 3D space.
It is likely to become a promising display technology in the near future. As of today,
the multi-view autostereoscopic displays are more of tangible and relatively mature
products in the consumer market.

Multi-view autostereoscopic displays require an input of multiple views, which
presents a challenge in terms of transmitting and storing such large amounts of data.
A modern approach with regards to addressing this problem is to synthesize virtual
views by using the Depth Image Based Rendering (DIBR) approach with the MVD
format data. Depth images from the MVD data represents the depth of the scene
for the corresponding texture images. Based on MVD, MPEG VSRS has been widely
used for view synthesis.

2.5 Depth image acquisition

Depth images are assumed to be piecewise smooth gray level images [SFWK11].
This is partially because objects in a scene lie in different depth planes. Depth images
can be obtained by passive and active stereovision techniques as well as dedicated
depth sensors [SOS13]. Fig. 2.6 shows the depth image and its associated texture
from the first frame of the MVD sequence of Poznan Street [DGKK09]. The range of
the depth per pixel d is from 0 (black) to 255 (white), which represents the farthest
to the closest distance relative to the viewer. The actual depth z is transformed from
the pixel value d of depth images by

z =
1

( d
255 ( 1

zmin
− 1

zmax
) + 1

zmax
)
, (2.1)
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Figure 2.6: (a) Texture image and (b) its associated depth image.

where zmin and zmax are the minimum and the maximum depths of the scene re-
spectively.

Passive stereovision techniques: They are also referred to as multiview-to-stereo ap-
proaches and have been intensively researched over the years. A survey of these
approaches can be found in [SSZ02]. The main idea behind these methods is fea-
ture matching between the multiple captured views. The state-of-the-art two-frame
stereo correspondence approaches are listed in the Middleburry stereo website [mid13].
These approaches can achieve a competitive depth quality when compared to the
ground truth depth. However, these approaches suffer from two major problems,
which are 1) the accuracy for matching homogeneous areas is low; 2) for the dis-
occluded areas from one view to another, no matching can be found. Therefore,
estimating depth from such areas is likely to be erroneous.

Active stereovision techniques: Active stereovision techniques involve projecting
light, usually invisible, to the scene surface. During the capturing, a predefined
light structure is projected on the scene. Because the light structure is distorted by
the scene geometry, depth information can be achieved by comparing the distorted
pattern and the original pattern in a way that is similar to the stereo correspondence
approaches. This is also called structure lighting, and the Microsoft Kinect version 1
is a commercially available product of this application.

Dedicated depth sensor: For dedicated depth sensors, the Time of Flight (TOF) of
a light beam is measured to determine the distance of objects. There are two types
of depth sensors [SOS13]. One of them is called pulse runtime sensors and is based
on the traveling time of the light between being emitted and received. The other
is called continuous wave sensors, which calculate the distance by measuring the
difference of the phase of wave. However, depth images acquired from TOF sensors
are often of lower resolution [SOS13].

Post-processing is usually needed to improve the quality of depth images. Semi-
auto approaches (e.g. with human intervention) and various filtering methods (e.g.
Join Bilateral filtering [GB09] and edge weighted optimization [SSO14b]) have been
proposed to perform the task.
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Figure 2.7: Views are synthesized from two views plus depth.

2.6 View synthesis

In order to reduce the network resource consumption, two to three views plus depth
are transmitted to the receiver end, whereas intermediate views are synthesized with
DIBR. Fig. 2.7 gives an overview of the synthesized views from the DIBR pipeline.
The disparity of a pixel in different views can be established using the depth values,
and the DIBR approach exploits the geometrical relation between two views. Fig. 2.8
illustrates a camera set-up [Feh05] with a 3D point M = (x, y, z, 1)T and two of its
projection points ml = (xl, yl, 1)T and mr = (xr, yr, 1)T . Assume that the left camera
coordinate system equals the world coordinate system, the following relation holds
[Feh05]:

zl ·ml = Kl[I|0]M. (2.2)

zr ·mr = Kr[R|t]M. (2.3)

Therefore, the 3D point M can be projected from the image point ml from the left
camera by

M = zlK
−1
l ml. (2.4)

Consequently, substituting Eq. 2.4 into Eq. 2.3, the depth dependent relation for the
same points in the two corresponding views is established by:

zrmr = zlKrRK
−1
l ml +Krt. (2.5)

The parameter K(·) is the 3 × 3 camera intrinsic parameter, I the 3 × 3 identity
matrix, and R the 3×3 camera rotation matrix. t represents the 3×1 camera transla-
tion. Subscripts l and r specify the left camera and the right camera, respectively. A
detailed analysis of the projection for the view synthesis can be found in [SAE05].
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Figure 2.8: Projection of 3D point M to cameras.

The projection from one view to another by using camera geometries is also called
warping. After the warping, due to multiple available views, pixels from these mul-
tiple views are mapped to a single pixel location. This situation needs to be properly
handled. In addition, missing areas (holes) introduced by disoclussions usually ap-
pear on the synthesized image. Therefore, interpolation and inpainting processes
are required to construct these missing areas. For an comprehensive overview of the
techniques for disoclussion handling, see [ZZY13] [KES05].

2.7 3D quality evaluation

Objective image quality metrics can be classified into three groups [CLCB03]: Full
Reference metrics (FR), Reduced Reference (RR), and No Reference metrics (NR).
In FR metrics, both original image and distorted image are available while in RR
or NR metrics, partial information of the original image or no original images are
available. Examples of RR and FR can be found in [NLF10][MJSY07][BPFP14]. The
FR metrics are usually the most accurate ones, and examples of the FR metrics are
PSNR [HTG08], SSIM [ZBSS04], which have a high correlation between objectively
measured quality and human perceived quality for the compression of 2D images
[HE12].

PSNR is widely used to evaluate the quality of 2D image compression. In the
context of depth image compression, the depth images are not viewed directly. In-
stead, the rendered views are presented to viewers. Therefore, the measurement
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should be performed on the rendered views when assessing the quality of the depth
image compression. When a view is warped during the rendering process, which
is commonly performed by using the DIBR with the MVD format, pixels in the
image are through a geometrical transformation. Therefore, A new quality metric
that corresponds to the HVS is required for an accurate assessment of the geomet-
rical distortion, and this has attracted much attention from the research community
that focused on 3D. Various human perceptual-based approaches have been applied
to address the problem [BLCMP13], e.g., FR metrics: PSNR-HVS [EAP+06], Visual
Signal-to-Noise Ratio (VSNR) [CH07], and the NR metric based on similarity match-
ing and edge magnitude [HAF14]. However, PSNR is still a valid metric to assess
the fidelity of the image signal, and it is fairly computationally simple and takes
only local characteristics into calculation, which is desirable for block-based hybrid
encoders. Furthermore, a commonly used quality metric like PSNR can facilitate the
comparison between the research results from different researchers.

In addition to objective metrics, subjective quality evaluation can reflect how the
HVS responds to the image quality directly. However, the procedure of conduct-
ing subjective evaluation is lengthy and costly when human resources are involved.
There are widely used standard procedures for performing a subjective test for im-
ages and videos, e.g. ITU-R BT. 500-13 [Bt212] and ITU-T P.910 [Rec08]. Additionally,
visual inspection by experts can also be utilized for a preliminary assessment of the
quality of image and video compression. A more comprehensive and detailed dis-
cussion about image quality assessment methods can be found in [Win05].



Chapter 3

Plenopic images

The previous chapter presented an overview of 3D. In order to understand how
plenoptic techniques can also provide 3D capabilities, and what the properties of
plenoptic images are, this chapter firstly presents an introduction to the plenoptic
function. This is followed by focused plenoptic image capturing and rendering as
the focus of this thesis work is on focused plenoptic contents. The chapter is con-
cluded with an analysis of the impact of compression on captured images to ren-
dered images.

3.1 Plenoptic function

The plenoptic function I = P (x, y, z, θ, φ, λ, t) [AB91] has seven dimensions and cap-
tures the intensities I of light rays at any of the viewing positions x, y, z, directions
θ, φ, wavelengths λ, and time t; see Fig. 3.1. For a static scene and to represent the
color in RGB, the plenoptic function is reduced to five dimensions without λ and t.
The parameter of wavelengths is removed due to the integration over wavelengths
for the color intensity I = [IR, IG, IB ]T . Further assuming regions are free of oc-
cluders, the plenoptic function can be simplified into four dimensions as a light field
[LH96] [GGSC96], which is represented by a two-plane representation shown in Fig.
3.2. The four dimensions, (p, q, r, t), locate the coordinates of a light passing through
from one plane (p, q) to another (r, t). A conventional camera averages the inten-
sities of radiances described by the higher dimensional plenoptic function into the
two-dimensional image sensor of the camera. A light field capturing is, however, a
sampling of the light field in its four dimensions, because acquisition of a full light
field is practically infeasible. There are four techniques commonly used for capturing
a light field image: with camera arrays [WJV+04], with a moving camera [TARV10],
with coded apertures [VRA+07], and with microlens arrays in a camera. From the
capturing with microlens arrays, two different capturing approaches are further de-
rived: standard plenoptic capturing and plenoptic 2.0. Cameras with plenoptic 2.0
techniques are also referred to as focused plenoptic cameras. For clarity, in the con-
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Figure 3.1: Ray parameterization in 3D space: it includes the position and direction of the ray,
wavelengths λ and time t.

text of this thesis, we refer to cameras with microlenses as plenoptic cameras.

Figure 3.2: Two plane representation of light field: a ray passing two planes.

The first plenoptic camera was introduced by Gabriel Lippmann in 1908 [Lip08].
But the commercially available plenoptic camera was firstly produced by Lytro, Inc.,
founded by Ng et al. [Ng06] [NLD+05] in 2006. The Lytro camera captures the
distribution of light rays as described by the light field. This capability is achieved
by putting a microlens array in front of the image sensor. Because the focal plane of
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the microlens is on the image sensor, only angular information is captured in each
EI. This camera set-up is the standard plenoptic capturing system, which results in a
low spatial resolution of rendered views. To overcome this drawback and trade-off
the spatial resolution with the angular resolution, focused plenoptic cameras [GL10]
have been devised. A commercially available product of these is the Raytrix [Ray14]
cameras, and one of its models is illustrated in Fig. 3.3. In images captured by
focused plenoptic cameras, each EI is essentially a small cropped multi-view image
from a specific viewing angle. The focused plenoptic cameras are described in detail
in section 3.2.

Figure 3.3: Raytrix camera [Ray14].

We refer to plenoptic images as the images captured by plenoptic cameras. A
plenoptic image [Geo13] with rectangular EIs from focused plenoptic cameras are
shown in Fig. 3.4.

Figure 3.4: Images from focused plenoptic cameras[Geo13].
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3.2 Capturing

A typical focused plenoptic camera set-up [GL10] is presented in Fig. 3.5, where the
main lens focuses on the main lens image plane, and the microlenses focuses on a
plane in front of the photo sensor plane.

Figure 3.5: Focused plenoptic camera [GL10]

Assume the transform matrix L and Tr are for the refraction of lens and the travel
of rays in free space, respectively [GL10]:

L =

(
1 0
− 1
f 1

)
, (3.1)

and

Tr =

(
1 t
0 1

)
, (3.2)

where t is the distance in this case. The ray transfer matrix A that transforms each
ray according to x′ = Ax is:

A =

(
1 b
0 1

)(
1 0
− 1
f 1

)(
1 a
0 1

)
=

(
− b
a 0
− 1
f −ab

)
, (3.3)

for the camera in Fig. 3.5. The inverse of the matrix is:

A−1 =

(
−ab 0
− 1
f − b

a

)
. (3.4)
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The image intensity for a spatial point on the image sensor is

I(sp) =

∫
ag

r(ag, sp)d(ag), (3.5)

where r is a given radiance at a specific plane, which is perpendicular to the axis of
the main lens. sp and ag denote the position and direction in ray space, respectively.
The integral of the radiance for all rays incident at a point forms the color intensity
I of that point. By using the inverse matrix, the sampling pattern at the focus plane
of the main lens can be obtained and shown in Fig. 3.6 for one microlens, and the

Figure 3.6: Sampling pattern of one microlens [GL10]

sampling pattern for multiple microlenses is shown in Fig. 3.7.

The camera is capable of capturing both spatial and angular information of a
scene in each EI; the angular information is also spread over several EIs for a spatially
located point [GL10], see Fig. 3.7. The trade-off between spatial and angular ratio is
adjusted by the parameters (a and b) of the camera and the size of the microlenses,
etc. The capturing process results in correlated images in adjacent EIs. The image
correlation depends on a and b, which can be shown by a simple ray tracing. But,
if a fixed value of a and b is given, the correlation between EIs is determined by the
homogeneity and the depth of the scene. More specifically, 1) EIs appear similar
if the scene surface is homogeneous; 2) a large number of adjacent EIs capture the
same parts of the scene if the objects are farther away from the camera (for the set-up
with the main lens image plane in front of the microlenses shown in Fig. 3.5). In
order to exclude the image properties of the scene surface, we introduce the term
cross-similarity to measure the repetitiveness of the scene between EIs. High cross-
similarity is referred to as a large number of adjacent EIs capturing the same parts of
the scene. The repetitive patterns of EIs due to cameras and scene depth are of special
interest for our coding scheme. An example of the captured image with respect to
the cross-similarity can be seen in Fig. 3.8, which shows parts of two frames from
the PlaneAndToy sequence [AFF+13]. The sampling density between EIs is related
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Figure 3.7: Sampling pattern of multiple microlenses. d is the size of the microlens in one
dimension. Both spatial and angular information is captured in a span of d along the sp axis
[GL10].

Figure 3.8: Focused plenoptic image: low cross-similarity (left), high cross-similarity (right)
[AFF+13].
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to the cross-similarity. A more densely sampled plenoptic image is referred to the
level of cross similarity is higher between adjacent EIs. As a consequence, EIs with
higher level of cross-similarity usually have a higher correlation.

3.3 Rendering

Noise, random shift of microlens image and vignetting etc. are present in the cap-
tured images [GYLG13]. Calibrations are commonly conducted before the actual
rendering to reduce rendering artifacts. The calibration involves intensity compen-
sation with modulation images, microimage center determination, etc.

Multi-view of all-in-focus images is rendered by combining patches from each EI
[GL10]. Fig. 3.9 shows the rendering approach. Because objects in a scene can be in

Figure 3.9: Captured plenoptic image and rendered view[GL10].

different depth planes, the cross-similarity between EIs changes and the disparities
between EIs vary throughout a plenoptic image. Furthermore, the patch sizes are
determined by the disparities, which correspond to the depth planes of the scene.
For example, the EIs containing objects farther away from the camera for the set-
up in Fig. 3.5 have a higher cross-similarity. Hence, the disparities and the patches
from these EIs are smaller. This implies that the disparities must be estimated for
a possible artifact-free rendering. The patches of different size are then normalized
with different magnification factors and combined to form a rendered image [GL10].
A simpler approach to circumvent the disparity estimation is to use a constant patch
size. However, by doing so, artifacts will exhibit on parts of the rendered image
[GL10], if the objects on those parts are not in the depth plane corresponding to the
fixed patch size being used.

Image refocusing is conducted by a blending process, which involves the integra-
tion in the angular dimension for a spatial point. In short, the process of the blending
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is to overlap EIs with a certain disparity, and the summation of the intensity of the
overlapped areas must be averaged by the number of overlapping pixels. The ob-
jects at the depth plane that corresponds to the current disparity are brought into
focus and other areas are blurred.

As a visualization in the ray space, the operations of all-in-focus rendering and
refocusing are shown in Fig. 3.10 and Fig. 3.11, respectively. In addition to this
basic rendering method, there are other more advanced rendering approaches, e.g.
the Fourier slices approach [Ng06], which aims at reducing rendering time com-
plexity, the super resolution method [GCL11], the method with computer modeling
[MMD02], and volumetric synthesis [LIHD04].

Figure 3.10: All in focus plenoptic rendering: angular information is selected for a spacial point
[GL10].

3.4 Impacts of compression to rendering

The quality of the in-focus rendered images are of interest. The out of focus areas,
which appear as blurring, are not intended to attract the attention of the viewer. Let
the captured plenoptic image be C(p, q, r, t), (1 ≤ p < Np, 1 ≤ q < Mq , 1 ≤ r < Nr,
1 ≤ t < Mt), and Np,Mq, Nr,Mt the size of each of the dimensions. The impacts
of the distortions induced by compression on the captured image to the rendered
image are as follows.

Firstly, lowered distortions, e.g., lowered Mean Square Error (MSE), on the cap-
tured image implies lower distortions on the all-in-focus rendered views if the dis-
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Figure 3.11: Refocused plenoptic rendering: angular information is integrated for a spacial
point [GL10].

tortion is distributed uniformly throughout the decoded captured image. This is
because the all-in-focus rendered views are just a subset of the captured image.

Secondly, the distortion is likely more visible on the all-in-focus rendered view
than on the refocused image. This is because the intensity of a pixel in a refocused
image is a result of averaging multiple corresponding pixels from adjacent EIs for
a spatial point. More specifically, assume that the error of a pixel after coding is
a random variable εi = C(pi, qi, ri, ti) − C ′(pi, qi, ri, ti), where pi, qi, ri, ti are the
indexes in the four dimensions, and C ′(·) is the decoded captured image. The error
εi results from quantization. When adjacent EIs are overlapped with a disparity and
averaged for the refocusing, the square error of a pixel due to averaging becomes

E[(
1

W

W∑
i=1

εi)
2] ≈ 1

W 2

W∑
i=1

E[ε2i ] (3.6)

where W is the total number of averaged EIs, which depends on the disparity. Eq.
3.6 holds because the cross term after the the expansion at the left side of the equation
E[εiεj ] ≈ 0 under the assumption that εi and εj are uncorrelated for i 6= j and have a
zero mean approximately. It has been pointed out in [RG][GN12] that it is reasonable
to assume that the quantization errors εi are uncorrelated with each other, which is
under the condition with uniform quantization for smooth density distribution and
in high rate. Because 1

W 2

∑W
i=1E[ε2i ] < E[ε2i ], the square error on the refocused image

is smaller than on the all-in-focus rendered view.

The above analysis implies that it is reasonable to perform a visual inspection of
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the all-in-focus rendered views to evaluate the performance of a compression scheme
for plenoptic images.



Chapter 4

Source coding and HEVC

A source coding scheme usually involves several stages, such as prediction, trans-
form, quantization, and entropy coding. The previous two chapters presented the
properties of the contents. In this chapter, the very basis of source coding is briefly
illustrated and followed by an introduction of a concrete example, the standard
HEVC. Firstly, the concepts of entropy and mutual information are described, which
leads to the discussion of optimal codes and rate-distortion functions. The rate-
distortion function for Gaussian sources, with and without memory, are illustrated.
This is followed by an analysis of linear prediction with multi-hypothesis. In ad-
dition, the state of the art encoder HEVC is presented, and the inter prediction is
discussed in detail.

4.1 Entropy and mutual information

In the context of source coding, the entropy represents a fundamental limit for the
average bits per symbol that can be achieved for representing a source. For a discrete
random variable X , the entropy H(X) is also a measurement of the uncertainty of
the random variable and is defined [CT06] by

H(X) = −
∑
x∈χ

p(x)log(p(x)), (4.1)

where χ is the alphabet and p(x) the probability mass function p(x) = Pr{X = x}.
For a pair of discrete random variables (X,Y ), the joint entropy H(X,Y ) is defined
by

H(X,Y ) = −
∑
x∈χ

∑
y∈γ

p(x, y)log(p(x, y)), (4.2)

29
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where p(x, y) is the joint probability distribution. The mutual information I(X;Y ),
which measures the mutual dependence of variables, is

I(X;Y ) =H(X) +H(Y )−H(X,Y ). (4.3)

For a stationary stochastic process {Xi}, the entropy rate, which describes the per
symbol entropy for n random variables, is

H(χ) = lim
n→∞

1

n
H(X1, X2, ..., Xn). (4.4)

For a random variable X with continuous alphabets, the entropy is referred to as
differential entropy. The definition of differential entropy, mutual information, etc.
for the continuous variable is similar to its discrete counterpart. That is to replace
the summation with an integral and replace the probability mass function p(x) with
the Probability Density Function (PDF) f(x) of X .

4.2 Optimal codes for data compression

For a random variable X , the expected length L(Z) of a source code Z(x) is:

L(Z) =
∑
x∈χ

p(x)l(x), (4.5)

where p(x) is the probability mass function of X , and l(x) the length of each code-
word. Codes containing codewords with minimum expected length are intended
to describe a given source. A feature of the codewords should be that they can be
decoded instantaneously independent of future codewords, i.e., no codeword is a
prefix of other codewords. A code with such a feature is also referred to as prefix
code, which must satisfy the Kraft inequality:∑

i

D−li ≤ 1, (4.6)

where D is the size of the alphabet for the code, and li the length of each codeword.
By solving the optimization problem using Eqs. 4.5 and 4.6 with a Lagrange mul-
tiplier, the optimal codeword length l∗i of non-integer codewords is obtained such
that:

l∗i = −logDpi. (4.7)

Therefore, the expected optimal codeword length is:

L∗ =
∑

pil
∗
i = −

∑
pilogDpi = HD(x). (4.8)
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Because the length of a codeword must be integer, it can be further proved [CT06]
that

L ≥ HD(X), (4.9)

with equality when D−li = pi. A prefix code can be constructed for a given source
[CT06] such that

H(X) ≤ L < H(X) + 1. (4.10)

For a random stochastic process,

H(X1, X2, ..., Xn)

n
≤ L∗n <

H(X1, X2, ..., Xn)

n
+

1

n
, (4.11)

where L∗n is the minimum expected codeword length per symbol. If the random
process is stationary then H(X1,X2,...,Xn)

n → H(χ) as n→∞.

With a given probability distribution, an optimal prefix code can be constructed
by the Huffman code. An optimal code here implies no other codes can perform
better than the Huffman code in terms of expected codeword length. A proof of the
optimality of Huffman code is described in [CT06]. The Huffman code algorithm
involves designing a code tree, which can be done in four steps as follows: 1) merge
two symbols with lowest probabilities into a new auxiliary symbol; 2) recalculate
the probability of the new auxiliary symbol; 3) repeat steps 1 and 2 until there are no
symbols left for the merging; 4) assign one and zero (or the opposite) to the left and
the right child of the tree, respectively.

Although Huffman coding can achieve optimality, it requires estimated mass
probability functions from the data, and it might not be optimal for all subsequences
and for sources with unknown probability distribution. To adapt to the changing
probability mass function, e.g. probabilities estimated from data streams of a video
sequence, adaptive arithmetic coding [Kle11] is often used. Instead of looking up
in an already computed table of probabilities, the adaptive arithmetic coding mea-
sures and updates the probability distributions from previously coded data streams.
Despite it requiring higher processing power than Huffman coding, this adaptiv-
ity makes it suitable for an efficient coding of a real-time generated data stream.
Nonetheless, Huffman code can also be adaptive to changing probabilities, a ver-
sion of these adaptive Huffman codes is the adaptive Huffman coding described in
[Say00]. The adaptivity involves changing the code tree structure according to the
current estimated probabilities. This makes it costly in implementation. In the previ-
ous conducted measurements of the specific implementations [WNJ87], the adaptive
arithmetic coding outperforms the adaptive Huffman coding both in terms of time
complexity and coding efficiency.

The algorithm for the arithmetic coding is illustrated as follows: 1) the general
(or conditional) probabilities of symbols xi, i ∈ Z are calculated or estimated; 2) it is
assumed that fx(xi) and Fx(xi) are the probability and cumulative probability of xi
and 3) initialize l0 = 0, w0 = 1, and i = 0; 4) the interval of [li, li + wi) is subdivided
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such that li+1 = li + wiFx(xi)) and wi+1 = wifx(xi); 5) i = i + 1 and repeat 4) until
all the symbols are encoded. Each interval produced by this repeated subdividing
can be converted into prefix codes. With a predefined bit precision in a machine,
the overflow problem must be handled properly. An approach for the implemen-
tation of finite precision arithmetic coding is described in [TM02]. The algorithm
of arithmetic coding illustrates that Fx(xi) and fx(xi) can be adapted to the condi-
tional probabilities or estimated probabilities and be updated during the iterations.
Therefore, its adaptivity is easily achieved. Huffman coding and arithmetic coding
are both well known lossless entropy coding methods, a detailed discussion of the
algorithms can be found in [CT06] [TM02] and [Kle11].

4.3 Rate-distortion function for Gaussian sources

The information rate distortion function R(D) is defined with respect to the mutual
information I(X, X̂) as:

R(D) = min
p(x̂|x):

∑
(x,x̂)p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂) (4.12)

for an independent and identically distributed (i.i.d.) sourceX with distribution p(x)

and distortion measurement d(X, X̂). The minimization is over all p(x̂|x) such that
the joint distribution p(x̂, x) satisfies the distortion constraint. R(D) also represents
the minimum achievable rate for a given distortion D.

For i.i.d. Gaussian sources with N (0, σ2) and square error distortion measure-
ment,

I(X; X̂) ≥ 1

2
log

σ2

D
, (4.13)

Therefore,

R(D) =

{
1
2 log

σ2

D , 0 ≤ D ≤ σ2

0, D ≥ σ2
(4.14)

It is proved in [Ber71] and illustrated in [Gir00] [RG] [FW00], that for stationary
Gaussian sources with joint distributions, the minimum rate that can be achieved
with the square error distortion measurement is

R(φ) =

1

8π2

∫ π

−π

∫ π

−π
max

[
0, log2

φxx(ωx, ωy))

φ

]
dωxdωy,

(4.15)

where φxx is the Power Spectrum Density (PSD) of the source, ωx is horizontal fre-
quency, and ωy vertical frequency. The parameter φ ∈ [0,∞) traces out the rate-
distortion curve.
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4.4 Linear prediction with multi-hypothesis

The linear prediction with multi-hypothesis explains how prediction with multiple
hypotheses can improve the coding performance. This theory gives a background to
the choice of multi-hypothesis prediction for the coding of focused plenpotic image
described in Chapter 10.

Assume s[x, y] is a scalar 2-D signal, which is sampled on an orthogonal grid, and
c[x, y] a column vector-valued signal sampled at the same positions. Further assume
s and c are generated by a jointly wide-sense stationary random process. It is shown
in [Gir00] how to predict s from c:

e[x, y] = s[x, y]− f [x, y] ∗ c[x, y] (4.16)

such that the mean square error of the prediction is minimized, where asterisk ∗
represents the 2-D convolution and f [x, y] a row vector of impulse responses. Fur-
thermore, let Φss be the PSD of s and Φee the PSD of the prediction error e, which
is also assumed Gaussian and stationary. The bit rate difference, which represents
the maximum bit rate reduction by a possible optimal coding of e compared to an
optimal intra coding of s, is calculated by

∆R = Re(φ)−Rs(φ)

=
1

8π2

∫ π

−π

∫ π

−π
log2

φee(ωx, ωy)

φss(ωx, ωy)
dωxdωy.

(4.17)

Re and Rs are the bit rates of the prediction error e and the signal s, respectively,
and ∆R is the bit rate difference. A negative bit rate difference implies a bit rate
reduction. The maximum bit rate reduction can be realized at high bit rates for the
given mean square reconstruction error.

Figure 4.1: Signal model for the multi-hypothesis predictions.

Fig. 4.1 illustrates the model for the multi-hypothesis predictions. The displace-
ment shift is a two dimensional motion or displacement vector. Moreover, the fol-
lowing assumption is further established [Gir00]: 1) ni is an additive white noise and
is uncorrelated from v0; 2) n0 is uncorrelated with ni for i 6= 0, ni is independent of
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s, and n0 independent of ci; 3) The displacement errors associated with the shift for
each ci and s are independent from v0 and independent of each other.

The PSD ratio for Eq. 4.17 is calculated [Gir00] by

φee
φss

= 1− (1 + α0)−1×

−2R

F

P1

P2

...
PN


+

F


1 + α1 P1P
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2 P1P

∗
3 ... P1P

∗
N

P2P
∗
1 1 + α2 P2P

∗
3 ... P2P

∗
N

... ... ... ... ...
PNP

∗
1 PNP

∗
2 PNP

∗
3 ... 1 + αN

FH


,

(4.18)

where (·)∗ is the complex conjugate, (·)H the transposed complex conjugate, αi the
spectral noise to signal power ratios φnni

φvv0
for the ith hypothesis signals, Pi the Fourier

transform of the PDF for the displacement error of the ith displacement vector, andN
the number of hypotheses. The rate difference can be determined by using Eq. (4.17)
and (4.18), given the parameters N , the PDF of the displacement error, n, and the au-
tocorrelation function of v0. Setting F = ( 1

N ,
1
N ...

1
N ) results in the case that multiple

hypotheses are simply averaged. A detailed analysis can be found in [Gir00].

The important theoretical analysis results [Gir00] for the multi-hypothesis MCP
over an optimal intra coding for Gaussian wide sense stationary sources are 1) in-
creasing the number of hypotheses reduces the coded bit rate, especially when the
motion prediction is accurate, (e.g. a quarter pixel prediction); 2) the spectral noise
on the signal influences the prediction, i.e., the bit rate reduction with multi-hypothe-
sis becomes smaller with an increasing level of noise; 3) when the power of residue
noises increases, doubling the number of hypotheses is more effective than dou-
bling the accuracy of the prediction; 4) averaging several good quality hypotheses
always reduces the coded bit rate. Additionally, in the simple averaging case when
more than one hypothesis is used, the analysis also shows the largest coding gain
is obtained when the number of hypothesis increases from one to two, assumed a
realistic level of noise, ni, on the images. Following the multi-hypothesis MCP anal-
ysis, a later study [FW00] concluded that using more than two hypotheses is less
effective in reducing prediction error variance in theory and provides insignificant
coding gains in experimental results.

4.5 Transform and quantization

For a lossy coding scheme, after the prediction, transform and quantization are usu-
ally performed. This is before the source is entropy encoded. Signals from a source
data stream are generally correlated. The major purpose of transforms in compres-
sion is to decorrelate signal and concentrate signal energy. Transforms can be clas-
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sified into two groups [Kle11] based on how they adapt to the statistic properties
of the signal. These two groups are referred to as 1) a-priori adaptation, which is
adapted with a transform basis before knowing the actual signal, and 2) a-posteriori
adaptation, which needs to adjust transform bases to the actual signal data. An ex-
ample of a-posteriori adaptation is the Principle Component Analysis (PCA). The
transform basis must be encoded and transmitted to the decoder if PCA is used.
The a-priori adaptation transforms, e.g. Discrete Cosine Transform (DCT), however,
have a fixed basis. Only coefficients from these transforms are encoded for a proper
decoding on the decoder side. DCT is widely used in image and video compression.
It decorrelates signals into different frequency bands. Most of the energy is likely to
concentrate on low frequency bands when applied on natural images. In addition,
linear prediction can also be viewed as a transform from another perspective [RG].

A scalar quantizer or a vector quantizer can be used for quantizations. Because
of its simplicity, scalar quantizers are widely used in the modern encoders, e.g. in
H.264 and HEVC. For both scalar and vector quantizers, quantization is a mapping
process. It maps a line into a countable set of points for the scalar case, and maps
a multi-dimensional space into countable points for the vector case. This process is
noninvertible and will therefore introduce distortions. However, a further bit-rate re-
duction is achieved by using quantization for compression. In resolution constrained
quantizers: given a signal with a known PDF and for a minimum MSE under a
fixed codebook size, a classic quantizer design algorithm is the Lloyd-Max quantizer
[Ber71]. It needs inputs of an initial set of K representative levels, which is done
manually. Afterwards K − 1 decision thresholds are calculated halfway between
any two representative levels. Representatives are refined by an iterative process to
move to the PDF centroid of any two decision thresholds so that the distortions are
minimized. In most of the cases, the PDF is unknown and needs to be estimated from
a training data set. In addition, if the variable-length encoding of quantizer index is
considered, entropy-constrained quantizers can perform better. In this case, not only
the MSE is taken into account, but also the entropy of quantization indexes. This
is then an optimization problem that can be solved by using a Lagrange multiplier.
The analysis results indicate that the optimal quantizer under high rate assumption
for MSE distortion is uniform quantizers, the detailed analysis of the quantization
can be found in [Ber71].

4.6 High efficiency video coding

High Efficiency Video Coding (HEVC), also called H.265, is the latest standard of
block-based hybrid video encoders [BHO+13] [RHkE15]. It has inherited the basic
structure of its predecessor, H.264. An overview of the HEVC encoder diagram is
presented in Fig. 4.2 [SOHW12]. In HEVC, video frames are also referred to as pic-
tures. Pictures are divided into one or more slices. Slices are then partitioned into
coding blocks and intra-coded periodically based on the Group of Picture (GOP)
structure. In between the intra-coded pictures, there are usually a sequence of inter-
coded pictures. An intra-coded picture only predicts a current block from its spa-
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(a)

Figure 4.2: HEVC video encoder [SOHW12], the gray blocks are also decoder elements.

tially reconstructed signals, while an inter-coded picture can predict a current block
from its spatially and temporally reconstructed signals. Intra prediction and inter
prediction produce side information to signal different modes. This side informa-
tion consists of prediction directions, motion vectors etc. As Fig. 4.2 shows, an input
picture is predicted by either intra/inter prediction or both. The residues are trans-
formed and quantized. The quantized coefficients and the side information from
the prediction together with other general control signals are entropy encoded and
packetized according to the defined syntax in HEVC.

In order to produce reference pictures, a replicate of the decoder elements (in-
dicated by dark gray boxes) is present in the encoder in Fig. 4.2. The quantized
residues are inversely quantized, transformed and added to the predicted blocks.
This is followed by deblocking filters to reduce reconstruction artifacts. The filtered
blocks are stored in the decoded picture buffers as prediction references for the inter
prediction of other pictures.

4.6.1 Coding blocks

A Coding Unit (CU) in HEVC consists of one luma Coding Block (CB) for the Y com-
ponent of an image, two chroma CBs and its associated syntax [SOHW12] [BHO+13]
[KML+12]. The Coding Tree Unit (CTU) is a basic processing unit and the largest
block allowed in HEVC. A CU can be split recursively until a maximum predefined
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depth, and its size is from 8x8 to 64x64. In each splitting level the CU is further split
into Prediction Units (PUs) of different sizes, which are the smallest blocks upon
which a prediction is based. The PU can be symmetric and asymmetric. Assume
M is the size of a CU. The PU can be M ×M , M/2 ×M , M ×M/2, M/2 ×M/2,
M/4 ×M , and M ×M/4 for inter picture prediction and, for intra picture predic-
tion, only M ×M and M/2×M/2 are supported. In the later transform coding, the
size of a Transform Unit (TU) can also be adjusted. For an efficient compression, the
Rate-Distortion Optimization (RDO) criterion, min(D + λR), is employed to deter-
mine the best CU splitting depth, PU and TU fragmentation, PU prediction modes,
etc. D is the distortion introduced by coding, λ the Lagrange multiplier, and R the
coded bit rate. Based on the RDO, a set of prediction modes, both intra and inter, are
tested. The RDO minimizes the distortion D given a bit rate constraint R. In relation
to our proposed scheme, we briefly illustrate the intra prediction for HEVC here. A
detailed description is found in [BHO+13].

4.6.2 Intra picture prediction

The intra prediction of a PU in HEVC is based on its top and left boundary samples
from neighboring reconstructed samples. The prediction is performed according to
the TU partition if a CU is split into multiple TUs. Fig. 4.3 illustrates the prediction
that a PU is predicted diagonally from its top reconstructed boundary samples. The
PU can be predicted with 33 directional modes plus a planner and a DC mode. For
the directional modes, each pixel intensity inside the PU is obtained from the recon-
structed boundary samples. This process is performed as follows: (1) a pixel location
inside the PU is projected to the reconstructed boundary samples along the selected
direction; (2) the two samples closest to the projected location are interpolated with
a 1/32 pixel precision; (3) the pixel inside the PU is then filled with the interpolated
pixel. For the planar prediction, a bilinear interpolation is applied to the boundary
samples to interpolate the pixels inside the PU.

After the prediction, a smoothing filter can be applied to reduce discontinuities
along the block boundaries. The best prediction modes are selected according to
the RDO. The prediction modes are then encoded predictively by using the most
probable modes, which are derived from the previously coded neighboring PUs.

4.6.3 Inter picture prediction

In this section, we assume that one frame is one slice for the following description.
In addition to using the intra-prediction, a frame can be either uni-directionally pre-
dicted (P frame) or bi-directionally predicted (B frame) as illustrated in Fig. 4.4 (a)
and (b). Two reference picture lists, list 0 (L0) and list 1 (L1), are utilized to accom-
modate reference pictures. For the prediction of P frames, all reference pictures are
placed in the reference listL0. For the B frames, past and future reference pictures are
placed in L0 and L1, respectively. A reference picture is a reconstructed video frame
used to predict a current frame. The prediction is performed in a block-wise manner.
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Figure 4.3: Intra-prediction: the current PU is predicted from the boundary of its neighboring
reconstructed PUs.

The best matching block from a reference picture for a current PU is determined by a
searching process from the reference pictures within a preset search range. The best
is measured in terms of the minimum rate-distortion. To predict the current PU in
P frames, the best matching block from the reference pictures in the list L0 is chosen
as a predictor. For B frames, there are three predictor candidates: the best matching
block produced by a weighted sum of two blocks from the reference pictures in each
of the lists (L0 and L1), the best matching block in L0, and the best matching block
in L1. The best candidate of the three is chosen as the reference for the current PU.

(a) (b)

Figure 4.4: Inter-prediction: (a) P frame: coding blocks are predicted from past frames;(b) B
frame: coding blocks are predicted from past and future frames.

Motion estimation: For each reference block, there is a motion vector pointing to
the current PU. The motion vectors are found by conducting a full search or a fast
search within a search range in reference pictures, and they are of a quarter-pixel
precision. The full search tests all candidates, i.e., all pixels, within a square prede-
fined range to find the best match.The fast search, however, chooses a sparse sample
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set of candidates for the testing. A commonly used fast search technique is the Test
Zone (TZ) search [XlSkCh10] [PAN12].

The TZ search involves four stages as follows. 1) Motion vector prediction: The
median vector and the motion vector from the neighbouring PU are tested, the best
vector in terms of the RDO is selected as the starting location. 2) Initial search: The
search is performed around the starting point in either eight point diamond or eight
point square patterns. The step increases with a power of two until the defined
range, which implies that the farther away it is from the starting point the more
sparse the testing points will be. 3) Raster scan: This step is similar to the full search,
but, in a down sampling of the search grid. 4) Search refinement: Either a raster re-
finement or a star refinement can be performed on the result from the previous step.
In both raster and star refinements, eight point diamond or square pattern search
is conducted. The star refinement is similar to the procedure in 2), and the raster
refinement changes the step by a factor of two every time in the loop until the step
is equal to zero. This entire refinement process is executed only if certain criteria are
met.

For the quarter pixel search, the process is first conducted on the integer pix-
els. Next, pixels in the half-pixel and the quarter-pixel precision are interpolated,
which is done by using an eight-tap filter (for luma samples). A full search is then
performed on the sub-pixel domain to determine the best vector.

Motion compensation: To reconstruct a current PU from inter picture prediction,
the reference block is shifted according to the motion vector to predict the current
PU. If sub-pixel precision is used, an interpolation process is performed to acquire
the sub-pixel intensities.

In the Advanced Motion Vector Prediction (AMVP) [BHO+13] of HEVC, motion
vectors are not encoded directly. In order to reduce the encoding bit-rate, an index
for a motion vector candidate and the motion vector difference between the current
PU and the candidate are encoded. The motion vector candidates are found for the
current PU from its neighboring and temporal collocated PUs. In the HEVC merge
mode, motion vectors can be derived from the neighboring and temporal collocated
PUs for the current PU.

4.6.4 Transform, quantization, and residue coding

After the prediction, the residues are coded by a block transform, which is similar
to the DCT. The size of the TU can be changed from 4x4, 8x8, to 32x32. The TU size
used is subject to the RDO to minimize the rate-distortion. The prescaling process-
ing in H.264 is not needed in HEVC. The transform coefficients are quantized with
the Uniform Reconstruction Quantization (URQ). The Quantization Parameter (QP)
value ranges from 0 to 51. An increase of the QP value by 6 doubles the quantiza-
tion step. In addition, quantization scaling matrices are also supported. Eventually,
the bit streams are entropy encoded by Context Adaptive Binary Arithmetic Coding
(CABAC). During the encoding of CABAC, context is obtained from the previous
coded information. Different context models are used to allow a better modeling of
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probabilities. The arithmetic coding is employed to encode bit streams based on the
probabilities.

4.6.5 Deblocking filters

Deblocking filters are applied for removing reconstruction artifacts. In HEVC, fil-
tering consists of two stages. They are the filtering with the deblocking filter (DBF)
and with the Sample Adaptive Offset (SAO) filter. The DBF works in the inter pic-
ture prediction loop, and it only filters across the boundaries of CUs and PUs. The
boundaries should also align with an 8 by 8 sample grid for both luma and chroma
samples. The DBF aims at reducing the blockiness artifacts introduced by quan-
tizations. The DBF is then followed by the SAO, which adds offset values to the
amplitude in frequency domain for a region to reduce banding artifacts. It can better
reconstruct the signals both in the smooth areas and on the edges.

4.6.6 Parallel processing

There are also features that enable HEVC to perform parallel decoding based on
tiles, and wavefront parallel processing. For the former, a picture is partitioned into
subregions called tiles, which are decodable separably. Encoding can be performed
on tiles in parallel. It can also enable random access into a subregion of a picture.
For the latter, wavefront parallel processing, CTUs are placed in rows, only after two
CTUs have been processed in the first row, processing of the second row can begin.
The CTUs from the third rows will begin processing after two CTUs from the second
row have been processed, and this processing pattern continues for the following
rows.



Chapter 5

Related works

Before presenting my proposed methods, the most recent related works are reviewed
in this chapter. The chapter begin with an introduction to the standard codecs, as
standard codecs can be applied directly to the coding of depth and plenoptic images.
Contemporary coding approaches for depth image are categorized in the following
section. The last part of the chapter illustrates the common and modern techniques
for coding of plenoptic contents.

5.1 Standard codecs

The Joint Photographic Experts Group (JPEG) in the International Standards Organi-
zation (ISO) is responsible for developing still image coding standards. These stan-
dards include the JPEG and the JPEG2000 [Jpe00][TM01]. JPEG2000 is a successor of
JPEG and aims at more efficient image compression. It is also a wavelet based en-
coder, and different quantization strategies can be applied [MLB+00] in lossy com-
pression.

For the coding of video contents, the Moving Picture Experts Group (MPEG) in
ISO and International Electrotechnical Commission (IEC) has developed video and
audio compression standards such as MPEG-1, MPEG-2, and MPEG-4. In addition,
the Video Coding Experts Group (VCEG) of the International Telecommunication
Standardization Sector (ITU-T) also develops video coding standards, e.g. H.261,
H.263 and H.26L. In 2001, the Joint Video Team (JVT) was set up by the two groups
(MPEG and VCEG) to convert the H.26L project to the standard H.264/MPEG-4 Part
10, namely Advanced Video Coding (AVC). In 2010, the two groups established the
Joint Collaborative Team on Video Coding (JCT-VC), which has been working on
the next generation of video coding, the High Efficiency Video Coding (HEVC), re-
ferred to as H.265. HEVC has a block-based coding structure similar to H.264 and
aims at higher compression efficiency. In 2012 the Joint Collaborative Team on 3D
Video coding extension development (JCT-3V) was formed by ITU-T and ISO/IEC
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to develop the 3D video coding standards.

Both H.264 and HEVC have multi-view (MV) [VIWS11] [SBB12] and 3D exten-
sion [atm11][htm10]. The multi-view extension exploits inter-view redundancies to
compress the video sources of different perspectives more efficiently, whereas the 3D
extension further utilizes the correlation between textures and depth maps for com-
pression. The quantization process in these encoders removes the high frequencies
of an image or a video frame.

The standard video and image codecs were originally devised for the coding of
texture images. The removal of high frequencies results in acceptable distortion in
texture images, but not in depth images [MMW11]. It was not until recently that
the 3D extensions of these codecs started to take the properties of depth images into
account, i.e., preserving depth edges in a rate-distortion sense [MBM12]. In addi-
tion to the standard codecs, as of today, there are many other approaches designed
specifically for depth image coding.

5.2 Previous work in depth image coding

Depth image coding schemes from previous works are categorized into seven groups
in this thesis for clarity. These groups are Distortion measurement, Filtering, Edge pre-
serving transform, Regional Segementation, Tree and mesh, Improvement in standard codecs,
Other Techniques. Some of the approaches from these groups can also be integrated
into the standard codecs as Improvement in standard codecs.

As coding of 3D video contents has been through rapid developments and is still
attracting massive research attention, the schemes illustrated in this chapter are a
brief survey of the entire research work in depth coding.

5.2.1 Distortion measurement

In the rate-distortion optimization process of image or video compression (e.g., in
H.264), the distortion measurement on images does not reflect the distortion on syn-
thesized views when coding depth images. The metric that takes the texture infor-
mation into consideration was presented in the research works [OLP11] [TSMT12].

5.2.2 Filtering

A Joint Trilateral Filtering that utilizes the edges of associated texture frames was
implemented in H.264/AVC for depth image compression to strengthen the proper-
ties of decoded depth images [LLT+10a]. The down-sampling and up-sampling ap-
proach, in which depth images are down-sampled before encoding and up-sampled
in decoding, is a straightforward approach to reduce the amount of data to be en-
coded. Papers [NMD13] and [SSO14a] propose up-sampling approaches for com-
pressed down-sampled depth images by using H.264 and HEVC, respectively. In
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the research work [SD09], depth images were compressed via compressed sensing,
in which original depth images were sub-sampled by a measurement matrix, and
decoded images were reconstructed by the conjugate gradient method, which is an
optimization algorithm for solving equation systems.

5.2.3 Edge preserving transform

Depth edge preserving coding using graph-based wavelets [SSO09] transmits the bi-
nary edge maps of depth images to the decoder and chooses filters adaptively by
minimizing a cost function. Transform coefficients are encoded by using the com-
pression method Set Partitioning in Hierarchical Trees (SPHIT), and the edge maps
by the bi-level compression scheme JBIG. Shape Adaptive Discrete Wavelet Trans-
form (SA-DWT) [LLSW98] extrapolates pixels on the other side of the edges by sym-
metric extension, whereas edges are encoded by a differential Freeman chain code
and bit-stream by the SPHIT. The adaptive wavelet coding [DTPP08] applies shot
filters around the edges of depth images and long filters for other areas. Cellular
automata [Kar05] was applied for depth image coding in the work [CCRCK09], in
which the gray level depth image is converted into gray code and represented by bit
planes. Inter-plane (i.e. between bit planes) correlations are utilized for prediction,
and bit-streams are produced by an arithmetic encoder.

Some transform bases, e.g., Bandelets [LM05], that decompose an image accord-
ing to the geometric flow of image intensity variation and Contourlets [DV05] that
capture the geometry of image edges, are also suitable for depth image compression.
In the paper [NW11], the performance of the DCT, the Karhunen-lòeve Transform
KLT, and the Block Truncation Coding (BTC) were compared. Adaptive BTC that
adaptively selects the size of a block for BTC was devised.

5.2.4 Region segmentation

Papers [Got11] and [Jag11] illustrate the algorithms that losslessly encode the edge
contours of a depth image and the coefficients of the polynomials utilized to approx-
imate the smooth areas bounded by depth edges. In paper [MC10], depth images
were segmented into depth layers based on a rate-distortion function. Each layer
was approximated by the mean value of this layer, and the residue of the predic-
tion was encoded by H.264/AVC. An edge-based depth image coding scheme that
compresses the edges by JBIG and reconstructs the depth image by diffusion was
proposed in [GLMG12].

Ramp functions and Bezier curves has been utilized for depth coding in the
patent [MH01]. The coding scheme uses the Bezier curve to represent edges and
models the areas belonging to objects (inside closed edges) by means of ramp func-
tions.
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5.2.5 Tree and mesh

Depth image coding using Tri-tree [SZD10] employs the tri-tree decomposition to
subdivide a depth image. Depth values from three vertices of each triangle from
the decomposition can form a plane to approximate the depth of that triangular re-
gion. The sparse points from the triangle vertices are encoded by differential and
arithmetic coding.

Quadtree decomposition for depth image coding was proposed in [MF07]. Each
block from the decomposition is approximated by a modeling function. The decom-
position and the selection of the modeling function are subjective to a rate-distortion
criterion. Coefficients from the modeling functions are encoded by an adaptive arith-
metic encoder.

Mesh-based depth coding using the hierarchical decomposition of depth map
[KH07] decomposes a depth image into a layer descriptor and disjoint images. Five
types of modeling modes with mesh grids are used to represent the edge regions,
and the no-edge-regions are represented by feature points. The layer descriptors are
encoded by H.264/AVC, and the disjoint images are then merged together and also
compressed by H.264/AVC.

5.2.6 Improvement in standard codecs

Five extra prediction modes were introduced [LLT+10b] in H.264/AVC for depth
image compression. They utilize texture information for prediction. In edge-aware
intra prediction for depth image coding [SKOL10], the prediction is performed by
using the available reconstructed signals that are within the same region without
crossing depth edges.

The Edge Adaptive Transform (EAT) [SKN+10] has been implemented in H.264
for coding blocks containing depth edges. A rate-distortion optimizer will choose
between the DCT and the EAT for the coding of a depth block in which depth edges
are present. The joint motion vector scheme [DTPP09] that exploits the correlation
of motion vectors between texture and depth was introduced in MPEG-2. Similar
approaches for motion vector sharing can be found in the 3DV HEVC Test Model
(3DV-HTM) [htm10].

5.2.7 Other techniques

There are many other novel techniques available for depth image compression. In
[KPS10], a lossless depth image coding scheme was proposed, in which depth im-
ages were converted into the gray code representation and separated into bit planes.
Intra bit plane and inter bit planes (i.e. inside one bit plane and between different
bit planes) as well as inter frame correlation were utilized for prediction. A context-
based arithmetic encoder was employed to encode the bit planes. In depth coding
for a multi-view scenario, certain depth images can be predicted from the decoded
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depth images of adjacent views using the geometrical information [EWaK09]. Cod-
ing of depth by using WYNER-ZIV for the MVD format data [PCDPP11] exploits
texture motion information and uses motion vector interpolation to encode depth
images.

5.2.8 Preserving edges in depth images

Depth images must be compressed efficiently with respect to the quality of the syn-
thesized views. Therefore, the coding of depth images in this respect is different
to the coding from conventional images. A straightforward approach is to measure
distortions on the synthesized views for the rate-distortion optimization process in a
coding system as described in Distortion measurement in Section 5.2.1. But, measuring
distortions on synthesized views is likely to be either inaccurate [HE12] or increase
the coding complexity dramatically [TSMT12]. The majority of approaches in the
groups Filtering, Edge preserving transform, Regional Segementation, and Tree and mesh
utilize the property of depth images and focus on preserving depth edges, which
leads to a better quality of synthesized views. In addition, the Tree and mesh ap-
proaches can facilitate the rendering when consideration is given to the rendering
speed.

After my research work in depth image compression presented in Chapter 6, 7, 8,
and 9, there have been research papers published more recently. However preserv-
ing depth edges are still key for a convincing rendering quality, which is illustrated
in these papers. The edges detected by the Canny edge detector from depth images
are represented by the multiscale beamlet representation in [ZX14]. Consequently,
the beamlet coefficients are encoded by using a predictive encoder. The detected
edges are used in an adaptive wavelet transform to avoid filtering crossing edges.
In [LLZ+15], texture edges are utilized for the depth image prediction in 3D-HEVC.
Because there is a mismatch of edge alignments between texture and depth, a signif-
icant residue error is likely to appear around the edges of the predicted depth. The
paper introduces a rectification approach before entropy coding to reduce the num-
ber of coefficients that needs to be encoded. In another approach, the compress sens-
ing method combined with quad-tree partitions is applied for depth image coding in
[ZX14]. The uniform blocks from the partitions are encoded by a 8-bit encoder, and
the blocks with edges are encoded with compress sensing. In [SMAP14b][SMAP14a],
small quantization steps are assigned in the pixel domain for edges, so that edges are
well preserved in depth images. In [ZKHK14], an allowable depth distortion model
was devised to measure the impart of distortions on depth images to synthesized
views. This aims at reduce the bit rate of depth coding while preserving a constant
quality of synthesized views. In [SSZG14], an approach that takes the distortions on
the synthesized views into the RDO was proposed. In addition, there are approaches
aiming at reducing compression time complexity while maintaining compression ef-
ficiency. In [Par15], based on the variance in a PU block and the edge information
in the transform domain of DCT, a decision is made to be able to judge if the Depth
Modeling Modes (DMMs) are used or not. Because taking DMMs into the RDO will
introduce significant time complexity during encoding. An early determination will,
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therefore, reduce the time spent on the RDO. In [TZDJ14], the gradient in a PU was
utilized to select a small set of prediction directions into the RDO for the intra pre-
diction of depth images. In [CD13], based on a statistical multi-regression model, an
adaptive bit rate allocation between texture and depth was employed to improved
synthesized views.

5.3 Previous work in plenoptic image coding

Previous works on light field compression can be categorized into three different
groups [DQW04]: vector quantization, progressive coding and predictive coding.
The vector quantization approach [LH96] exploits data redundancies by representing
an entire vector space with a subset of vectors. In progressive coding, Discrete Wavelet
Transform (DWT) is commonly used in light field compression for a finer granu-
larity of progressive scalability [CZRG06] [DQW04] [RG]. A typical example is the
disparity-compensated lifting and shape adaptation scheme [CZRG06] that employs
a Shape Adaptive Discrete Wavelet Transform (SA-DWT) to better preserve object
boundaries. 4-D wavelets [MG00b] has also been applied to 4-D light field contents.
An early work in predictive coding is presented in [MG00a], which arranges light field
contents into a grid of images. An image is predicted with different modes from a
few intra-coded images within the grid. This work is further improved by using ho-
mography [Kun12]. In [OSX07], processed EIs are arranged into a sequence of video
frames according to different paths, and H.264 is applied for the coding of the video
sequences. In [GAEG14], depth information is utilized for the prediction of light
field images for the coding. A scalable approach that utilized the rendered view for
the reconstruction and the prediction of plenoptic image is presented in [CNS13a].
In addition, there are also other approaches that do not distinctively lie in a group
mentioned above for the coding of light field contents. Principle Component Anal-
ysis (PCA) was utilized in [LB04] [NSI99]. Paper [Gel10] presents an approach that
separates objects in ray space and applies wavelets to encode each separated part.
A model-based approach that represents objects by voxels and uses geometries for
prediction has been investigated in [MG00b]. The performance of distributed video
coding for light field contents was analyzed in [ZAG] [GD07]. An approach based on
compressive sensing [MWBR13] has recently been proposed to capture and encode
light field images.

In order to apply the above approaches for an efficient coding of plenoptic im-
ages, EIs must be separated out from the plenoptic image. To avoid the separation
process, the Self-Similarity (SS) mode [CDN12] has then been introduced into HEVC
for the coding of plenoptic images [CNS12] [CDN12] and videos [CNS13b]. The SS
mode is to predict the current block from reconstructed signals, and the SS mode
uses only one hypothesis (reference) block for the prediction. However, the previous
theoretical and empirical studies [Gir00] [FW00] [FWG02], also described in Chapter
4, illustrate that inter-frame prediction using multi-hypotheses is more effective at
reducing prediction errors. The displacement intra prediction is similar to the inter-
frame prediction. With a rapid development, HEVC range extensions have recently
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introduced the intra Block Copying (BC) [FSS13] mode for spatial intra prediction.
However, this mode has a restriction on search areas and performs only one hypoth-
esis prediction.
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Chapter 6

Depth image modeling by
diffusion

The state of the art coding methods for depth images and plenoptic contents have
been discussed in the previous chapter. An novel depth image representation and
reconstruction method is introduced in this chapter. In addition, the reconstruction
quality by using the proposed method is also investigated.

6.1 Introduction

Most depth images of a scene have distributions that consist of smooth areas and
sharp transitions where a foreground object appears in front of background objects.
Therefore, it is important to preserve these significant edges and assure smoothness
in the areas between these edges. However, restrictions of depth image acquisition
and existing post-processing techniques imply that inaccuracies will appear. The
process of rendering an intermediate virtual view using the MVD format is further
complicated by the disocclusion handling process, camera set-up and the precision
of camera parameters etc. It is a great challenge to find appropriate post-processing
to improve the quality of the depth image, so that the synthesized virtual view is
closer to a true view at the corresponding position. A question that arises is whether
synthesized views can be of better quality by eliminating insignificant edges and
setting smoothness constraints on the depth image.

In this chapter, we propose a post-processing method that adds a smoothness
constraint to depth images with aligned edges to the texture. The depth image is
modeled by edges and uniform sparse sampling points and then reconstructed by
solving Laplace equation with the least square error method. We investigate the
view synthesis quality as a function of the identified edges and the uniform sparse
sampling points on the corresponding depth image. The novelty of this work is the
application of PDE-based interpolation to depth image post-processing, yet preserv-

49



50 Depth image modeling by diffusion

ing the significant edges and geometrical relationship for a better quality of synthe-
sized views. We define significance of the edges by the magnitude of the first order
derivative of the depth image.

The aim of this work is to improve the quality of depth images for a better 3DTV
experience. In this work, we assume that the original depth image in the MVD se-
quences has accurate edges, such that they coincide well with the associated texture
edges. I.e., the problem of edge alignment is assumed to have been solved by other
post-processing algorithms, and so is out of the scope of this work. The goal is to
investigate the quality of the reconstructed depth image and the synthesized view
by using the proposed post-processing method.

This chapter is organized as follows: Section 6.2 presents the proposed recon-
struction model. The methodology is illustrated in Section 6.3. Results are showed
in Section 6.4, and Section 6.5 concludes our work.

6.2 Proposed method

We model a depth image by a certain number of significant edges and a uniform
sparse sampling. The significant edges are identified by applying a Canny edge filter
with given thresholds. The uniform sparse sampling points are obtained by sub-
sampling the original depth image by a constant factor. The improved depth image
is reconstructed from pixels on both sides of the detected significant edges and the
uniform sparse sampling points by applying a second order Partial Differentiation
Equation-based (PDE-based) interpolation, namely a discrete version of the Laplace
equation. The unknowns of the equations will then be solved by a least square error
method.

The significant edges retain object borders and preserve important depth tran-
sitions, and the uniform sparse sampling points govern the smoothness versus the
fidelity of the reconstruction, while the interpolation enforces the smoothness con-
straint for areas between the significant edges. See Fig. 6.1 for the reconstruction and
evaluation system.

The blocks Canny detector, Edge extraction, Sparse sampling and Diffusion are uti-
lized in the proposed depth image post-processing. The details of each block are
explained below.

Canny detector: The proposed method starts with edge detection. The Canny edge
detector [Can86] identifies the horizontal, vertical and diagonal edges, and applies
two thresholds to find connected edges. In Fig. 6.1, edges are detected by using
Canny edge detector with thresholds, which are changed by a threshold multiplica-
tion factor Te. Increasing the factor Te decreases the detection sensitivity and will
produce fewer edges of higher significance.

Edge extraction: Once the significant edges have been detected, the scheme needs
to obtain pixels on both sides of the edges. For this purpose, an edge mask Em is
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Figure 6.1: Evaluation system for depth image post-processing.

generated by morphological dilation

Em = Ed ⊕ S3, (6.1)

with a square structure element S3 of size 3, where Ed is the edges detected in the
previous step, and ⊕ is the morphological dilation. Pixels within the edge mask are
selected, along with the border of the depth image for later diffusion.

Sparse sampling: The scheme also requires uniform sparse sub-sampling points of
a sampling factor Ts from the original full depth image.

Diffusion: The sparse sampling points and the extracted edge information are
diffused to reconstruct the depth image. The extracted edge information includes
pixels on the edges, pixels on both sides of the edges, and the border of the image.
Fig. 6.2 shows an example of the required information for diffusion.

The diffusion is carried out by applying the Laplace equation

∂2f

∂x2
+
∂2f

∂y2
= 0, (6.2)

on smooth areas of the depth image. In our implementation, the solution is approxi-
mated by

f(x, y) = [f(x− 1, y) + f(x+ 1, y) +

f(x, y − 1) + f(x, y + 1)]/4. (6.3)

Eq. 6.3 implies that pixels of unknown are equal to the average of their horizontal
and vertical four surrounding pixels. The equations are solved by a least square error
method.
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Figure 6.2: an example of the edge information and the uniform sparse sampling points re-
quired for diffusion.

In this proposed method, the quality of the reconstructed depth image f̂(Te, Ts)
is varied by two parameters: the edge threshold multiplication factor Te and the
uniform sub-sampling factor Ts. The rationale for such a modeling is that the ex-
tracted edges and the uniform sparse sub-sampling points are important information
in depth images. The extracted edges contain essential depth values at the depth
transitions with a certain significance, and these edges also correspond to objects’
boundaries in the corresponding video texture; the uniform sparse sub-sampling
points ensure a consistency of depth between adjacent given views. In addition to
the piecewise smooth assumption of depth images, the consistency has to be consid-
ered because, in the view synthesis process, the positions of virtual rendered pixels
mvl and mvr from left and right cameras calculated by Eqs. (6.5) and (6.6) respec-
tively should satisfy the constraint [KES05] in

mvl = mvr, (6.4)

where

mvl =
zlKvRv(KlRl)

−1ml + (tl − tv)
zv

, (6.5)

mvr =
zrKvRv(KrRr)

−1mr + (tr − tv)
zv

, (6.6)

z =
1

( d
255 ( 1

zmin
− 1

zmax
) + 1

zmax
)
. (6.7)

The depth z(·) is computed from the pixels’ value d in the depth image, where K(·)
is the intrinsic parameter of the camera, R(·) is the rotational matrix, and t(·) the
camera translation in Euclidean coordinates. The subscript v represents virtual view,
l represents left camera, and r right camera. zmin and zmax is the minimum and the
maximum depth of the scene, respectively. The disagreement of the relationship
in Eq. 6.4 will lead to artifacts on the synthesized view, in which double pixels of
the same scene appear due to warping from the left and the right adjacent views,
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especially the corresponding texture contains edges on smooth areas of the depth
image.

6.3 Methodology

The quality of the proposed post-processing method was evaluated by comparing a
synthesized view rendered using the reconstructed depth image to the correspond-
ing true view at the same camera position. We used different edge filter thresholds
Te and different sub-sampling factors Ts to investigate what values would give a
rendered view closer to the original.

Two video sequences, Poznan Street and Poznan Hall2 from Poznan University
of Technology [DGKK09], were selected for the evaluation. Virtual views were syn-
thesized by the MPEG VSRS [vsr10] version 3.5 at the center position between two
given camera positions (position 4 from camera position 3 and 5, and position 6 from
camera position 5 and 7, respectively). The centered virtual views were rendered be-
cause those camera views are available. Furthermore the warping distances from the
adjacent camera views are equally long, which makes the center position the worst
case to investigate. The quality was measured over 100 frames for each sequence.

We also compared the resulting improved depth images to the original depth
images and the virtual views synthesized from the improved depth images to the
true camera views. The objective evaluation was performed in Matlab. Fig. 6.1
outlines the entire evaluation system. In addition, the rendered views were also
visually inspected.

The Canny edge thresholds were changed by multiplying Te with the default
edge thresholds, which were detected by using the Canny edge detector with default
parameters in the Matlab. The default thresholds were [0.0125 0.0313] and [0.0063
0.0156] for Poznan Street and Poznan Hall, respectively. Te was set to range from
0.25, 0.5, and 1 to 4; the uniform sparse sub-sampling factors Ts was assigned to 2, 4,
8, 16, 32 and none (no sampling). We considered YPSNR as a metric for our objective
evaluation due to its simplicity and the high acuity of the human visual system to
the luminance component of an image.

YPSNR = 20 log10(
255√

1
N

∑N
n=1(MSEYn

)
), (6.8)

N is the number of frames, MSEYn is the mean square error for the luminance of the
nth frame.

6.4 Results and analysis

Fig. 6.3 depicts the depth image reconstruction quality by the proposed method. YP-
SNR varies from 33 dB to 64 dB when changing Te and Ts in the entire investigated
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Figure 6.3: Objective quality of reconstructed depth image of Poznan Street.

Figure 6.4: Objective quality of reconstructed depth image of Poznan Hall.

Figure 6.5: Objective quality for view synthesis of Poznan Hall.
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Figure 6.6: Objective quality for view synthesis of Poznan Street.

Figure 6.7: Objective quality for view synthesis of Poznan Street (frame by frame).

range for Poznan Street. An increasing edge threshold and an increasing uniform
sparse sampling factor both introduce more deviations from the original depth im-
age. This is manifested in a reduction in PSNR for the reconstructed depth image
compared to the original depth image). Similar results can be found in Fig. 6.4 for
Poznan Hall, which exhibited a reconstruction quality ranging from 45 dB to 68 dB.
Because the sequence Poznan Hall contains fewer edges and larger planar areas, the
YPSNR is less sensitive to the edge thresholds and instead more affected by the uni-
form sparse sampling factor. For both sequences, more samples in smooth areas
(small Ts) are required for a satisfactory quality of depth image reconstruction with
fewer edges (large Te).

Considering the synthesized views, the proposed post-processing method achie-
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(a) (b)

(c) (d)

Figure 6.8: Details of the synthesized views for Poznan Street; (a) and (c) are from the 1st and
2nd frame synthesized using reconstructed depth image of Te = 3 and Ts = 8; (b) and (d) are
from the 1st and 2nd frame synthesized using original depth image.

ved an improvement in quality by 0.18dB for the Poznan Street sequence when the
parameters values Te = 3 and Ts = 8 were chosen. See Fig. 6.6. Fig. 6.7 further
shows that the improvement is consistent frame by frame for Te = 3 and Ts = 8.
However, the proposed method did not demonstrate any improvements when ap-
plied to the Poznan Hall2 sequence. This may be due to the depth distribution in the
scene of the sequence: it has a very simple structure characterized by clear edges and
planar areas bounded by the edges. The proposed method cannot make the areas be-
tween the significant edges even smoother, and consequently no improved quality
is registered in the evaluation. Our visual inspection also confirms the improvement
in the Poznan Street sequence. Fig. 6.8 presents the details of the synthesized views.

6.5 Concluding remarks

In this chapter, a depth image post-processing method by using PDE-based diffusion
was proposed. The method models a depth image as significant edges and uniform
sparse sampling points between these edges. This approach is based on the fact
that most depth images have a smooth distribution except at boundaries of differ-
ent objects in a scene. An appropriate threshold for the Canny edge detector selects
only significant edges. Insignificant edges are eliminated as the method applies a
PDE-based interpolation for reconstructing the depth image. Thus, this procedure
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increases the smoothness in the areas between the significant edges. The method
preserves the geometrical relationship between views for a better quality view syn-
thesis by keeping a set of sparse sampling points in the smooth areas.

The experiment results demonstrated that the depth image reconstruction qual-
ity varied with the parameter values, more deviations from the original depth image
were introduced with an increasing edge threshold and an increasing uniform sparse
sampling factor. The quality of synthesized views is improved by using the proposed
post-processing method with appropriate parameter values on depth images with
many edges of different significance. In cases when the depth image contains few
edges and large smooth areas, little or no improvements will be observed. The im-
provement was confirmed by our visual inspection. A requirement for the proposed
method is a good agreement of edges between depth image and its corresponding
texture image.

6.5.1 Contributions

My contribution to this chapter is the application of PDE-based interpolation to
depth image post-processing, while preserving the significant edges and geometri-
cal relationship for a better quality of synthesized views. The content of the chapter
was published in Paper I.
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Chapter 7

Scalable depth image coding
using depth edges and
diffusion

The previous chapter presented a modeling approach for the reconstruction of depth
images. In this chapter, as depth images are represented by sparse points and edges,
we will use the model to code these images and investigate the coding performance
objectively. Furthermore, the synthesized views using the decoded depth images are
shown for a visual inspection.

7.1 Introduction

In Chapter 6, it was shown that depth images can be modeled by edges and sparse
sampled pixels. By using such a model for depth image reconstruction, the impor-
tant piecewise smooth property is preserved. This model can then be utilized for
depth image coding. This brings the question if such an coding scheme can achieve
better quality at edges in the synthesized virtual views, and competitive quality in
overall.

In this work, we propose an intra frame compression scheme for high quality
depth images. The scheme is based on lossless coding of edge-contours, uniform
sparse sampling and smooth inpainting. The goals are to retain the inherent distri-
bution of depth images with good quality, and to investigate the quality of rendered
views in comparison to state of the art compression methods.

The proposed scheme is an independent work, which, however, exhibits certain
similarities with the work in [GLMG12]. The works differ in several important as-
pects. The novelties of this work are the following: (1) we introduce a pre-processing
of edges to reduce the depth incoherence on both sides of an edge contour, which
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Figure 7.1: Coding system.

leads to an accurate depth image reconstruction. (2) The scheme is scalable with
respect to quality at edges with decreasing significance as a consequence to the pro-
posed structure. (3) We consider an evaluation method that reflects the quality at
significant changes in depth in a rendered virtual view, as a complement to more
traditional evaluation methods.

This chapter is organized as follows. We outline our method and methodology
in Section 7.2 and 7.3, respectively. The results are presented in Section 7.4. Section
7.5 concludes our work.

7.2 Proposed method

The proposed coding scheme is shown in Fig. 7.1. It extracts the edge contours from
a depth image, after which an edge pre-processing is applied to render a more coher-
ent depth on each side of the contour. The chain codes representing edge contours
and the uniform sub-sampling points on both sides of the edge contours are then
compressed by differential and arithmetical coding. In parallel, a very low quality
depth map is encoded by HEVC intra in order to obtain uniform sparse points on
the receiver side. During decoding and reconstruction, the edge contours and the
sub-sampled pixels of both sides are recovered, from which full edge information on
either side of the contours are interpolated. The depth image is finally reconstructed
by diffusion using a second order PDE. Each block in Fig. 7.1 is described below.
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7.2.1 Encoding

Edge detection extracts the edges from the depth image. The scheme uses the Canny
edge detector [Can86], which applies a high and a low threshold to identify edges;
above the high threshold, all points are considered an edge, above the low threshold
all points entirely connected are parts of an edge. Hence, insignificant edges can be
removed by decreasing the detection sensitivity, i.e. by increasing the Canny edge
thresholds by a factor Te. The proposed algorithm further removes edge contours
that are less than 20 pixels long to ensure a more efficient compression. The total set
of detected contours are denoted Ec.

Chain code representation: The edge contours are represented by Freeman chain
code with 8 directions: from ”right”, ”down right”, ”down” to ”up right” in a clock-
wise manner. Each contour consists of the coordinates of the starting location (x,y),
length (L) of the contour (i.e. the number of elements) and the direction of each
element.

Pre-processing is introduced to make pixels along each side of the edge contour
more homogeneous and reduce the sampling error in the next step. For this purpose,
an edge mask Em is generated by morphological dilation from

Em = Ec ⊕ S3 (7.1)

with a square structure element S3 of size 3, choosing a larger size would mean risk-
ing very thin objects being removed entirely; where⊕ is morphological dilation. Fig.
7.2 illustrates the pre-processing step. The pixels on each side of the edge contour can

(a) (b) (c)

Figure 7.2: Edge pre-processing: (a) a portion of the depth image before processing, the
white line is the edge detected, (b) pixels removed by the mask in the black part, and (c) after
processing.

contain heterogeneous pixels due to imperfections in the depth image, illustrated in
(a). The pre-processing then removes the pixels within the edge mask as depicted in
(b). The pixels within mask Em near the contour Ec is assumed to be similar to its
adjacent horizontal and vertical pixels:

f(x, y) = f(x+ 1, y) = f(x, y + 1),

such that (x, y), (x+ 1, y), (x, y + 1) /∈ Ec.
(7.2)

The image in (c) is obtained by solving the Eqs. (7.2) in a least square error sense.
Edge sampling sub-samples pixels uniformly along both sides of the edge contours

by a factor of Tes. The scheme uses sampled pixels on both sides of the edge contours;
pixels on the contour are not encoded.
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Entropy encoding: Contour directions as well as sub-sampled pixels on both sides
of the edge contours are differentiated first. Then arithmetic coding is applied to this
differentiated information and to the edge contour location and length (x, y, l).

Low quality encoding: The reason for transferring a low quality depth image en-
coding is to extract uniform sub-sampled depth image information for the recon-
struction on the receiver side. The scheme encodes the full depth image with a high
QP value and then sub-samples the low quality depth image on the receiver side.

7.2.2 Decoding

Entropy decoding: During decompression, the edge information including edge con-
tours and sparse sampling pixels on both sides of the edge contours are decoded.

Edge reconstruction:The edge contours are reconstructed from the chain code, edge
sub-sampled pixels are interpolated and placed along both sides of the edge contour.
The scheme takes the pixels from nearest location on the right side of the edge con-
tour to fill the pixels on the edge contour itself.

Low quality depth image decoding: The low quality depth image is decoded.

Uniform sparse sub-sampling: Uniform sparse points of a sub-sampling factor Trs
and the full image border are extracted from the low quality depth image. Sparse
points are discarded within five pixels width of the edge contours, so that they do
not affect the reconstructed image quality around edges, as they can be heavily dis-
torted due to the low quality encoding. The rationales of using a full compressed
low quality depth image are the following: (1) For scalability reasons, as explained
in Section 7.2.3. If all edge information is lost, this low quality full depth image can
be directly used for view synthesis. (2) For an adjustable reconstruction in the Diffu-
sion step, the uniform sparse sampling factor Trs can be adjusted. The factor governs
the diffusion complexity (the number of equations to be solved) versus smoothness.

Diffusion: With the information of reconstructed edges, uniform sparse points
and the image border, the scheme uses the Laplace equation, Eq. 6.2 and Eq. 6.3, as
an interpolation method to diffuse the entire depth image. The linear equations are
solved by a least mean square error method.

7.2.3 Scalability

We demonstrate here that the proposed scheme is scalable. In the proposed scheme,
the priority of the data information is related to the significance of the edges. The
edges are detected by the Canny edge thresholdCn, changed by factor Te = n, where
n = 1, 2...N , and N is the index for the highest threshold CN . The edge detector
will produce the most significant edges with the highest threshold. Assumed that
the edges extracted by the Canny edge detector is Ec(n) = fc(Cn), where fc is the
function that outputs edges by the Canny edge detector according to the thresh-
old Cn, and the edges are represented by Ec(n); a set e of edges can be built with
e(n) = Ec(n) − Ec(n + 1). The significance of the information listed in descending
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order: Ec(N), e(N − 1), e(N − 2), ..., e(1). Once the more significant set of edges and
the associated sampling pixels on both sides of the edge contours are available, bet-
ter quality depth image can be reconstructed. If the complete edge set is lost, the
decoded full resolution low quality depth image is still available for view synthesis.

7.3 Methodology

In this test, only the depth images were compressed. The decompressed depth image
and the original texture were used to synthesize virtual views. VSRS version 3.5 was
utilized for the view synthesis. We evaluated the quality of the synthesized virtual
view with respect to a reference view, which was synthesized from the original depth
image and the original texture.

Two test images consisting of multi-view images plus depth information were
selected for the test: the first frame of the sequence Poznan Street [DGKK09] and
the 239th frame of Lovebird1 from Electronics and Telecommunications Research
Institute (ETRI). The rationale for choosing these data sets is that the former is a
complicated scene with gradual depth transition in the background and relatively
large depth discontinuities for the foreground objects; the latter contains a very large
depth discontinuity for the foreground object while background depth is relatively
smooth with fewer edges. The depth images of both data sets have relatively accu-
rate edges in the sense that the edges coincide well between the depth image and
the associated texture. The virtual views were synthesized at equal distance from
two given views: for the first test image, the view was synthesized from camera 3
and 5 at camera position 4, and for the second test image, a view was synthesized at
camera position 6 from camera 4 and 8.

The proposed scheme was implemented using Matlab 2010b. HEVC intra with
QP 41 was selected to acquire the low quality depth image in our test. We compared
the proposed scheme with HEVC intra frame coding with QP 21, 25, 27, 29, 31, 33,
35 and 39 using HEVC version 6.5. Only the depth image was compressed. The de-
compressed depth image and the original texture were used to render virtual views
in the same manner as for the proposed scheme.

The scheme contains a certain number of parameters, which must be adjusted
to give an optimized quality with respect to bit rate. This optimization is out of the
scope of this work. In the test, we used values: Tes = 30 and Trs = 8. We changed the
edge threshold factor Te from 1.5 to 10 with a step of 0.5 for both depth images from
Poznan Street and Lovebird to produce bit rates approximately within the range of
that produced by the reference compression method. The edge thresholds used in
the tests were calculated by multiplying Te by the default thresholds of the Canny
edge detector in Matltab, which were obtained by running the Canny edge detection
with default parameters. The default thresholds were [0.0063, 0.0156] for Poznan
Street and [0.0125, 0.0313] for Lovebird, respectively.

The evaluation was partly performed by using SSIM, more specifically, MSSIM
[ZBSS04], on the luminance components of the full synthesized image. The rate-
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Figure 7.3: The edges to be evaluated by Edge MSSIM for Poznan Street.

distortion graphs for the test are based on MSSIM values versus bit rates of the com-
pressed depth images from two views. In order to assess the results in the neighbor-
hood of edges, we use an evaluation method we call Edge MSSIM. The reason for
using this method is that edges at the synthesized view corresponding to the signifi-
cant depth discontinuities are generally more distorted by the synthesis process and
so they draw the attention of the observer; objects at significant depth changes are
often what draws the attention of the viewer. These edges will therefore influence
the perceived quality. The Edge MSSIM computes the MSSIM on the full synthesized
view in which areas other than 8 pixels around the significant edges are cleared to
zero. These edges were identified by applying the Canny edge detector on the given
depth images at the position of the rendered virtual views, i.e. view 4 for Poznan
Street and view 6 for Lovebird. The thresholds are 18 times the default thresholds
of the Canny edge detector. The edges resulted from these thresholds are the edges
of the front most objects with the most significant depth discontinuities. Fig. 7.3
illustrates the locations of the edges to be assessed for Poznan Street.

7.4 Results and analysis

The results for Poznan Street calculated by Edge MSSIM in Fig. 7.4(a) show that
the proposed scheme performed better with respect to the given significant depth
discontinuities in the synthesized view for bit rates below 0.0302 bits per pixel (bpp).
These bit rates were produced by setting the edge threshold multiplication factor
Te above 5.5. The figure further shows that including more edges in the proposed
scheme, i.e. decreasing Te to have a higher bit rate, has less effect on the edge quality
(edge quality appears to be independent of bpp), partly because the edges being
assessed with Edge MSSIM were always included for decoding and reconstruction
at all tested bit rates for the proposed scheme. This behavior is a consequence of how
the Edge MSSIM was defined, and further investigations is required to determine if
this is also valid for a perceptual evaluation. Also for the image from Lovebird, the
proposed scheme outperforms HEVC for bit rates below 0.085 bpp when considering
Edge MSSIM, see Fig. 7.5(a).
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(a)

(b)

Figure 7.4: Evaluation results for the synthesized view (Poznan Street). (a) Edge MSSIM. (b)
MSSIM.

The result for the full image MSSIM in Fig. 7.4(b) illustrates that HEVC out-
performs the proposed scheme. Nonetheless, the proposed scheme performs better
than HEVC for the whole image from Lovebird at bit rates below 0.049 bpp, as illus-
trated in Fig. 7.5(b). The image from Lovebird has much larger depth discontinuities,
whereas the Poznan Street contains more edges and has gradual depth transitions.
This would then imply that the proposed scheme is advantageous not only at the
edges but also on the full image of the synthesized view, when the depth image
contains fewer edges and has prominent depth discontinuities.

A visual inspection of the results reveals that the proposed scheme produces less
distortion in the synthesized views at the significant discontinuities, not only for
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(a)

(b)

Figure 7.5: Evaluation results for the synthesized view (Lovebird1). (a) Edge MSSIM. (b)
MSSIM.

certain but for all the tested bit rates. This also implies a limitation of the objective
metric for evaluating visual quality. Detailed parts of the rendered images for Poz-
nan Street are shown in Fig. 7.6 corresponding to bit rate 0.0236 bpp using HEVC
and the proposed scheme, respectively. In Fig. 7.6(b), the blurring effect of the pole at
the background is the result of the insignificant edges for the pole not being encoded
at this bit rate.

An alternative way to more efficient coding of the low quality encoding to obtain
the uniform sub-sampling pixels of the full depth image can be to down-sample and
compress at the encoder side. This alternative has the disadvantage of the full image
border having to be recreated by interpolation. We have tested such an implementa-
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(a) (b)

Figure 7.6: View synthesis results. (a) HEVC. (b) Proposed method.

tion in the proposed coding system, it produced worse results for some parts of the
image according to our visual inspection. However, it is subject to further research.

The proposed encoding scheme retains the inherent disposition of depth images,
as it strives to maintain accurate discontinuities in the depth image in order to have
faithful synthesis of virtual views. If such discontinuities are erroneous, e.g. not
coinciding with texture, a smoother transition of the discontinuities may lead to less
errors and a better quality of experience of the virtual view. In such a case, HEVC
may be advantageous because it blurs the edges and strives for the best fidelity for
the entire depth image.

7.5 Concluding remarks

We have proposed and implemented a scalable depth image coding scheme that
retains the inherent distribution of depth images, as it accurately preserves discon-
tinuities in the depth image. The scheme extracts the edge contours and represents
them by chain code. The chain code and uniform sub-sampling depth values along
both sides of the edge contours are encoded by differential and arithmetic coding.
The depth images are reconstructed by diffusing the edge information and uniform
sparse sampling points using the Laplace equation. The sparse sampling informa-
tion is obtained from a low quality depth image compressed by HEVC intra with
high QP. We demonstrated that in theory the proposed scheme is scalable.

The test results showed that, at the lower bit rates, the proposed scheme can pro-
duce higher quality at edges in synthesized views than HEVC intra encoding, which
is a consequence of the edges in the synthesized view corresponding to significant
depth discontinuities in the depth image. In the case when the depth image contains
large depth discontinuities, the proposed scheme results in a higher overall quality
for the full synthesized view than HEVC at the lower bit rates.
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The investigation showed that the proposed scheme may very well be an alter-
native to encode high quality depth images with accurate depth information.

7.5.1 Contributions

My contributions in this work are following: 1) Introduced a pre-processing of edges
to reduce the depth incoherence on both sides of an edge contour, which leads to an
accurate depth image reconstruction. 2) The scheme is scalable with respect to qual-
ity at edges with decreasing significance as a consequence to the proposed structure.
3) An evaluation method is considered that reflects the quality at significant changes
in depth in a rendered virtual view, as a complement to more traditional evaluation
methods. 4) By using the proposed depth image coding scheme, a better synthesized
view was achieved. The content of this chapter was published in Paper II.



Chapter 8

Subjective evaluation of the
scalable depth image coding
using diffusion

An edge-based scalable depth image compression scheme has been proposed and
objective assessment conducted in the previous chapter. We then perform a subjec-
tive evaluation to reveal the subjective quality by using the proposed coding scheme.

8.1 Introduction

Objective video or image quality metrics (e.g. PSNR, SSIM) are less accurate for eval-
uating synthesized views than for decoded views [HE12]. We have performed an ob-
jective test considering SSIM for the edge-based depth image compression scheme
in Chapter 7. The testing results are inconsistent with our visual inspection, which
motivates this subjective evaluation research in order to answer the question if the
edge-based compression scheme can improve the quality of the synthesized view
subjectively.

In this work, we conduct a subjective test for the previously proposed compres-
sion scheme. The test follows the ITU-R BT.500-13 recommendation [Bt212] using
the stimulus-comparison method, which was selected because we assessed the qual-
ity of two synthesized images in relation with each other under the same encoded
depth image bit-rate. The reference is the state of the art video codec HEVC, which
is very efficient for coding video textures.

The overall aim is to improve depth image coding for a better 3D experience. The
work is limited to subjective evaluation of the proposed depth image compression
scheme. The goal is to evaluate if better subjective quality on the synthesized views
can be achieved by using the proposed scheme than the state of the art technique.
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Table 8.1: Comparison scale
-3 Much worse
-2 Worse
-1 Slightly worse
0 The same
1 Slightly better
2 Better
3 Much better

The remainder of the chapter is organized as follows: The methodology, results
and analysis are illustrated in Section 8.2. Section 8.3 concludes the work.

8.2 Methodology

The subjective evaluation was conducted by following the ITU-R BT.500-13 recom-
mendation [Bt212].

8.2.1 Test procedure

The ITU-R BT.500-13 recommendation provides methodologies for image quality as-
sessment. The recommendation consists of the Double-Stimulus Impairment Scale
(DSIS) method, the Double-Stimulus Continuous Quality-Scale (DSCQS) method,
and the alternative assessment methods. The DSIS and the DSCQS methods are used
for assessing the quality of pictures in relation to unimpaired source pictures. In our
subjective test, the quality of two impaired pictures in relation to each other was
under consideration. Therefore, the stimulus-comparison methods of the alterna-
tive assessment methods were utilized. The types of stimulus-comparison methods
chosen were the Adjectival categorical judgment methods.

In the test, two impaired images in a pair from a source were presented to ob-
servers. They were asked to compare two images in the pair in relation to each other
and enter scores on a scoring sheet. The images were scored according to Table 8.1.
Fig. 8.1 illustrates the presentation structure of test materials. Each image in the pair
was presented on a display screen for 4 seconds. Between the presentations of the
image pairs, a mid-gray image was displayed for 3 seconds. The number of repe-
titions for each presented pair was 3, and voting took 6 seconds while showing a
mid-gray image on the screen.

8.2.2 Apparatus and environment

A 23 inch full HD display Alienware2310 for two-dimensional viewing was utilized
for the test. The display has a native resolution of 1920 × 1080 pixels. The testing



8.2 Methodology 71

Figure 8.1: Presentation structure with durations of the presentation.

environment follows the ITU-R BT. 500, e.g. viewing distance: 3 times of display
height, peak luminance of the screen: 200 cd/m2, ratio of luminance of background
behind picture monitor to peak luminance of picture: 0.15, chromaticity of back-
ground: D65, room illumination: low.

8.2.3 Test material and error conditions

We chose the same MVD images from the MPEG video sequences [ISO11] as de-
scribed in Section 7.3 as test sources (SRC), i.e. SRC1: Poznan Street [DGKK09] (1st

frame) and SRC2: Lovebird1 (239th frame).

Images at virtual camera 4 were synthesized from camera 3 and 5 for Poznan
Street and virtual camera 6 from 4 and 8 for Lovebird1 by VSRS. These virtual views
were synthesized from original textures and decoded depth images. The depth im-
ages were compressed by using HEVC version 6.5 with QPs 25, 27, 29, 31, 33 and 35,
and by using our scheme with corresponding bit rates. Accordingly, the hypotheti-
cal reference circuits (HRC) were formed by processes of the depth image compres-
sion and the view synthesis, i.e. HRC1: "the proposed scheme+VSRS" and HRC2:
"HEVC+VSRS".

Two synthesized images from the same test sequence were paired such that they
were synthesized from the coded depth images of similar bit rates, and that they
were produced from the proposed scheme and the reference encoding scheme (HEVC).
This resulted in 12 pairs from the pairing process. In addition, the synthesized im-
ages were cropped for Poznan Street and padded for Lovebird1 to the native resolu-
tion of the display. The padding was in mid-gray color.



72 Subjective evaluation of the scalable depth image coding using diffusion

8.2.4 Test subjects, training and randomization

In this test screening, observers who have visual acuity below 0.8 or color blindness
were unqualified for the subjective test. Visual acuity and color vision were exam-
ined by using the Snellen chart and the Ishihara chart respectively.

After the screening of 21 subjects, 18 naive subjects were qualified for the test.
They were aged from 20 to 29, 7 females and 11 mailes. The unqualified subjects also
participated in the test, but results obtained from them were removed. All of the
subjects were given written instructions before the test session, and these instruc-
tions were also explained by a test operator so that they fully understood how to
proceed with the test. The graphical user interface and the examples of processed
images were shown in a training section. One observer at a time sat in front of the
display when conducting the test.

The subjective test consisted of two test sessions, and the pairs from the same test
source were presented in the same session. Two images in each pair were presented
in a random order. Prior to the test, two stabilizing pairs were presented, and scores
given to these pairs were excluded.

8.2.5 Analysis

Mean opinion scores and deviations with a 95 % confidence interval are of interest.
The mean opinion score is calculated by

ūjk =
1

N

N∑
i=1

uijk, (8.1)

where uijk is the score from assessor i under test condition j for image k, and N is
the number of assessors. The associated confidence interval with the mean score is
given by

[ūjk − δjk, ūjk + δjk], (8.2)

where
δjk = 1.96

Sjk√
N
, (8.3)

and the standard deviation is computed by

Sjk =

√√√√ N∑
i=1

(ūjk − uijk)
2

N − 1
. (8.4)

Outliers are found based on a criterion that if, for more than half of the tested
pairs from one test source, the voting scores of a test subject deviate above twice the
standard deviation, i.e.

|uijk − ūjk| > 2Sjk, (8.5)

the results from this individual are removed.
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Figure 8.2: Subjective evaluation results for the synthesized views of Poznan Street (the pro-
posed scheme versus the HEVC).

None of the 18 observers were judged to be outlier by the criterion. The scores
obtained from the observers were taken into analysis. The analyzed results are plot-
ted with the mean and standard deviation of a 95 % confidence interval. Results
from the objective evaluation considering SSIM are also presented.

Results of objective quality are illustrated in Fig. 7.4(b) and 7.5(b) for Poznan
Street and Lovebird1, and the corresponding subjective test results are shown in Fig.
8.2 and 8.3, respectively.

The subjective test demonstrated that the proposed scheme performs slightly bet-
ter than HEVC for Poznan Street at all tested bit rates with statistical significance, ex-
cept at the bit rate corresponding to HEVC QP 35, which is at 0.027 bit per pixel (bpp)
(see Fig. 8.2). For images from Lovebird1, the proposed scheme performs slightly
better than HEVC at all tested bitrates, (see Fig. 8.3). The results also indicated that
SSIM is inaccurate with respect to the perceptual quality on the synthesized view,
(see Fig. 7.4(b) and 7.5(b)). Parts of the synthesized views are presented in Fig.
8.4 and 8.5 for Poznan Street and Lovebird1 respectively. The quality of edges on
the texture corresponding to the significant depth transitions was improved for the
proposed scheme, and the scattering artifacts introduced by using the HEVC were
reduced significantly.

The above experimental results show that the artifacts on the synthesized views
introduced by the HEVC compressed depth images are more disturbing than those
by the proposed scheme. We interpret the results that preserved edges in a synthe-
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Figure 8.3: Subjective evaluation results for the synthesized views of Lovebird1 (the proposed
scheme versus the HEVC).

(a) (b)

Figure 8.4: Parts of the synthesized views from Poznan Street by using (a) the HEVC and (b)
the proposed method at the bit rate 0.027 bpp, respectively.

sized view as an important characteristic for quality of experience, as the proposed
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(a) (b)

Figure 8.5: Parts of the synthesized views from Lovebird1 by using (a) the HEVC and (b) the
proposed method at the bit rate 0.042 bpp, respectively.

compression scheme preserves significant depth continuities in a depth image; it
seems that distortion at edges in a synthesized view draws the attention of the ob-
servers. However, HEVC is a rate-distortion optimized compression scheme, which
guarantees the fidelity of the entire compressed depth image. Therefore, it intro-
duces less distortion on the overall synthesized view than the proposed scheme at
the very low bit rate (i.e. at 0.027 bpp) showed in Fig. 8.2.

8.3 Concluding remarks

We have previously proposed a depth image coding scheme that preserves signifi-
cant edges and encodes smooth areas between these. An objective evaluation consid-
ering the SSIM for synthesized views demonstrated an advantage of the proposed
scheme over the HEVC intra mode in certain cases. However, there are some dis-
crepancies between the objective evaluation and our visual inspection. Therefore,
a subjective test was conducted according to the ITU-R BT.500-13 recommendation
with stimulus-comparison methods. The synthesized images of the test sequences
were paired such that they used encoded depth images of similar bit rates produced
from the proposed scheme and HEVC respectively.

The investigation demonstrated that the proposed compression scheme for depth
images was preferred over using HEVC Intra coding, when a synthesized intermedi-
ate image was observed by test viewers. The research work revealed that preserving
significant depth continuities in a depth image can result in an overall better qual-
ity of experience for synthesized views. It also illustrated that the objective metric
SSIM fails to predict the importance of preserved edges for perceived quality in a
synthesized view.
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8.3.1 Contributions

My contribution in this work was to conduct a subjective test for the previously
proposed edge-based compression scheme. The test follows the ITU-R BT.500-13
recommendation using the stimulus-comparison method. The test results confirm
that the proposed depth image coding scheme provided a better visual quality than
HEVC intra coding. The content of this chapter was published in Paper III.



Chapter 9

Depth image coding using
diffusion modes and texture
edges in HEVC

Chapter 7 shows that preserving depth edges in coding benefits the visual quality
of synthesized views. However, coding of depth edges is expensive. In this chap-
ter, the texture edges are utilized for the coding and the proposed coding scheme is
integrated into 3D-HEVC. The coding efficiency is evaluated objectively.

9.1 Introduction

The edge-based depth image compression scheme can preserve the transitions of the
depth images better than traditional video and image encoders as described in Chap-
ter 7. However, such a scheme implies a very expensive encoding of edge contour
information in terms of bit rate.

To solve this issue, edges can be extracted from the co-located texture image.
Inter-component prediction for depth map coding has recently been implemented in
3D-HEVC. It may employ an inter-component predicted wedgelet partitioning or a
predicted contour partitioning for intra coding; the former separates a depth block
into two parts by a straight line, the latter divides the block into parts of arbitrary
shapes. The intensities of each part are then represented by constant values. The
wedgelet partition for a depth block is found by searching for the best wedgelet pat-
tern in the co-located texture luminance block. The contour partition is also detected
from the texture luminance. This partition is selected depending on the pixel values
in relation to their mean within the texture block, whereby the partition may be of
arbitrary shape. The two depth values given to the different parts of the depth block
are predicted from the partially reconstructed depth. Fig. 9.1 shows a depth block,
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Figure 9.1: A depth block for inter-component prediction: the edge between part A and B
are detected from the co-located texture block, and parts of the adjacent reconstructed blocks
available for prediction are shown in dark and light gray.

where P1 and P2 are decoded values in adjacent blocks. The edges in the current
block are detected from the co-located texture luminance by thresholding, and the
parts A and B are predicted by the mean of P1 and P2, respectively.

Another issue with our previously proposed edge-based scheme is the lack of
rate distortion control to optimize the compression ratio. Therefore, one of the solu-
tions to this is to implement the diffusion process in a block-wise manner in HEVC.
The question is if better compression of depth maps can also be achieved by imple-
menting diffusion modes block-wise in 3D-HEVC with texture edges.

A block-based diffusion method based on the Laplace equation for H.264 was
proposed in [CYD+12]. It detects an edge map from the depth map and encodes
these edges by the bi-level image compression tool JBIG. The method uses these
edges as constraints with the Laplace diffusion when reconstructing the depth map
on blocks of a fixed size.

In this work, we propose two new modes based on block-wise Laplace diffusion.
We replace two inter-component prediction modes in the 3D-HEVC by the proposed
modes in order to save bits used for signaling. The novelties of this work are: (1)
block-based diffusion modes are introduced into HEVC using the inter-component
prediction framework; (2) the block size is allowed to be further split in the same way
as the original inter-component prediction modes; (3) the diffusion is conducted in
two steps if there are still isolated parts still in the block.

The overall aim of the work is to improve compression ratio for depth maps with
a sustained 3D video quality. The work is limited to reusing the inter-component
prediction framework, and the goal is to investigate the rate-distortion ratio for the
new proposed diffusion modes, where quality is measured on synthesized views.

The chapter is organized as follows. We illustrate the proposed modes in Section
9.2, and the methodology in Section 9.3. Section 9.4 presents the results and analysis,
and Section 9.5 concludes the work.
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Figure 9.2: Depth modeling modes. (1) and (2) Explicit wedgelet signaling. (3) and (4) Inter-
component predicted wedgelet partitioning. (5) and (6) Inter-component predicted contour
partitioning. (7) and (8) Intra-predicted wedgelet partitioning.

9.2 Proposed method

Fig. 9.2 illustrates all eight Depth Modeling Modes (DMM) in the 3D-HEVC software
[htm10]. They are derived from the 3D-HEVC test model [Wp212]. Among them,
the modes (1), (2), (7) and (8) employ wedgelet partitions, which are detected by a
search on the depth block or predicted from the previously coded blocks, i.e., they
are non-inter-component prediction modes. The inter-component prediction modes
(3), (4), (5) and (6), however, derive the partition information from the co-located tex-
ture block. Mode (2), (4), (6) and (8) employ so-called delta constant partition value
coding, i.e., they encode the difference between the mean of the original signal and
the predicted constant value, which is the mean of the available adjacent prediction
signal.

The original mode (5) in Fig. 9.2 is denoted as DMM-TEX-CONTOUR in the
context of this chapter. In this mode, the partition is detected from the co-located
texture luminance by thresholding. As mentioned, the partition can also be detected
by searching for the best Wedgetlet pattern in the co-located texture block, i.e., in
mode (3). This inter-component predicted wedgelet partition may avoid a possible
inconsistency of the contour detection from the texture [MBM12]. We also denote
the original mode (3) in Fig. 9.2 as DMM-TEX-WEDGE.

The DMM-TEX-WEDGE and DMM-TEX-CONTOUR were replaced by the pro-
posed diffusion modes for intra prediction. We replaced the existing modes instead
of adding new modes in the inter-component prediction framework because no ad-
ditional bits had been required to signal the proposed modes. The original parti-
tioning methods were kept and the obtained edges were used as constraints in the
Laplace diffusion.

The proposed modes, illustrated in Fig. 9.3 and 9.4, thus include two processes:
Edge detection and Diffusion with edge constraints, which are defined as follows:
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Figure 9.3: Proposed diffusion mode for DMM-TEX-WEDGE.

Figure 9.4: Proposed diffusion mode for DMM-TEX-CONTOUR.

Edge detection: The modes kept the original partitioning methods using texture
luminance for the edge detection. They require no extra bits for encoding the depth
edges, whereas explicit coding of depth edges require a substantial amount of cod-
ing bits. The methods for obtaining the edges are different for the contour and the
wedgelet partitioning.

Edge detection-Wedgelet partition: The wedgetlet partitioning is carried out by an
efficient wedgelet search on the co-located texture block for the least distortion. The
edge is the straight line that separates two parts.

Edge detection-Contour partition: The contour partition for the depth block is made
by a thresholding process, in which parts from the partitioning are obtained based
on if the value in the co-located texture block is above or below the mean value of
this texture block. Edges are located at the transitions between the parts.

Diffusion with edge constrains: The new diffusion modes for intra prediction are
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also shown in Fig. 9.1. The parts A and B are diffused from P1 and P2 respectively.

The Laplace equation is employed for the diffusion, see Eq. 6.3. The unknowns
of the equations are solved by a method described in [CYD+12]. The method refines
the diffusion iteratively as:

f (n+1)(x, y) =
1

N(x, y))

∑
(i,j)εu4(x,y)

C(i, j))fn(i, j),

n = 1, 2, 3...M) (9.1)

C(x, y) =

{
1, if f(x, y) is available)
0, else,

(9.2)

N(x, y) =
∑

(i,j)εu4(x,y)

C(i, j)). (9.3)

The equations describe that the diffusion for a depth map block f (n) is refined it-
eratively with the number of iterations, n. u4(x, y) represents the four neighbors
(up, right, down and left) around the current refined pixel with position (x, y) in the
block. C(i, j) denotes the availability of these neighbors (e.g., the pixels taken into
calculation are available and belong to the same part), andN(x, y) sums up the num-
ber of available neighbors. The iteration stops with a convergence condition in Eq.
9.4a. In addition to this condition, we also impose a time constraint for the diffusion,
which is to limit the number of iterations M . Therefore, the diffusion process stops
when either of the conditions a or b is satisfied:{

a. |f (n+1) − f (n)| < 0.05
b. n >= M.

(9.4)

9.2.1 Two-step diffusion

The contour partition may appear much more complex than the one shown in Fig.
9.1. The parts can be arbitrary shapes and even isolated within a block. An example
is depicted in Fig. 9.5. Our approach to fill these isolated parts is by using a two-
step diffusion. In the first step, parts that are connected with the available prediction
pixels are diffused, which is illustrated in Fig. 9.5(d). In the second step, the diffusion
is carried out without the edge constraint for those isolated parts only. Fig. 9.5(e)
shows the final diffused block. As to the maximum iterations for the diffusion in Eq.
9.4, we set M = 20 for the diffusion step 1 and M = 10 for the step 2.

Such a diffusion process might produce erroneous depth values for the isolated
parts, but it is also possible that the edges detected from the co-located textures
might not exist in the depth block. The HEVC rate-distortion process decides if the
proposed modes are chosen.
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(a) (b)

(c) (d) (e)

Figure 9.5: Two-step diffusion: (a) Original depth block, (b) co-located texture block, (c) de-
tected edges of the texture, (d) diffusion after the first step, and (e) diffusion after the second
step.

9.3 Methodology

The proposed modes have been implemented in 3DV HEVC Test Model (3DV-HTM)
software version 4.1 [htm10]. The evaluation partially followed the Call for Propos-
als on 3D Video Coding Technology [ISO11]. However, we evaluated only the intra-
frame coding to better understand the effectiveness of the proposed intra diffusion
modes. Therefore, the bit rate anchors were not followed. We chose two-view con-
figurations and four test sequences with fixed QP pairs for texture and depth. The
MPEG test sequences [ISO11]: Poznan Street [DGKK09], Poznan Hall [DGKK09],
Undo Dancer, and Newspaper were selected. The first 50 frames from these se-
quences were evaluated.

We used Poznan Street view 3, Poznan Hall view 6, Undo Dancer view 2 and
Newspaper view 4 for the evaluation of depth. Virtual views were rendered at cam-
era position 3.5 for Poznan Street, camera position 6.5 for Poznan Hall, position 3
for Undo Dancer and position 5 for Newspaper, for the assessment of synthesized
views. The virtual views were synthesized from the decoded texture and the de-
coded depth, and compared to the virtual views synthesized from the original tex-
ture and depth. VSRS version 3.5 was employed for the view synthesis.

The View Synthesized Optimization (VSO) [TSMT12] was turned off, i.e., in the
HEVC rate-distortion optimization, the distortion is measured on the depth map in-
stead of on the synthesized view when encoding of depth map. The QPs in (texture,
depth) format were (20, 30), (25, 34), (30, 38) and (35, 42). These QPs were selected
because the bit rate of the depth should be significantly lower than for the texture
for an optimized bit rate allocation between texture and depth [TSMT12]. The results
using the alternated 3D-HEVC with the proposed modes were compared to results
using the original 3D-HEVC under the same testing conditions.
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Table 9.1: BD-PSNR for the tested sequences (the bit rate change in percentage of the total
depth bit rate)

Sequence BD-rate(depth) BD-rate(virtual view)
(%) (%)

Undo Dancer -1.536 -1.247
Newspaper -0.282 -0.312
Poznan Street -0.465 0.026
Poznan Hall -0.642 -0.488
Average -0.731 -0.505

Table 9.2: Coding complexity (time ratio between proposed and reference schemes)
Sequence Encoding Decoding
Undo Dancer 1.041 0.958
Newspaper 1.055 1.096
Poznan Street 1.049 1.055
Poznan Hall 1.102 1.026
Average 1.062 1.034

The results were calculated using the BD-PSNR model [Bjo01]. In this model, a
curve is fitted through the PSNR values of four bit-rate points. The difference be-
tween the integrals divided by their respective integration intervals is the average
difference for two curves. In the evaluation, the bit rate change for depth was com-
puted over the bit rates for the depth map versus PSNR of the decoded depth map,
whereas the bit rate change for the synthesized views was calculated over the bit
rates for the depth map versus PSNR of the synthesized view.

The complexity of the modes is presented as a ratio of total coding time between
the proposed scheme and the 3D-HEVC.

9.4 Results and analysis

The results are illustrated in Table 9.1. The bit rate saving is around 0.64 percent for
Poznan Hall, 0.47 for Poznan Street and 0.28 for Newspaper when only the depth
quality is considered. When the evaluation of PSNR is on the synthesized views,
around 0.49 percent bit rate savings were achieved for Poznan Hall and 0.31 per-
cent for Newspaper. Better bit rate savings were obtained for the synthetic sequence
Undo Dancer, where 1.54 percent for the depth and 1.25 percent for the synthesized
views were achieved. The results further show that there is no improvement for the
Poznan Street sequence when considering the synthesized views.

Table 9.2 summarizes the complexity of the proposed modes. The complexity
increases in average by 6.2 percent for encoding and 3.4 percent for decoding. An
exception is the Undo Dancer sequence, where the decoding time is 4.2 percent less
than for the 3D-HEVC. This implies that in some cases the proposed diffusion modes
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Figure 9.6: A depth image from the first frame of Newspaper: the blocks marked with red
and yellow use the proposed modes that replaced the DMM-TEX-WEDGE and DMM-TEX-
CONTOUR respectively.

are more efficient in decoding than some of the other intra modes in the 3D-HEVC.

An example of block fragmentations and mode assignments are plotted in Fig.
9.6. Our proposed modes are marked with red and yellow, which represent the two
proposed modes that replaced DMM-TEX-WEDGE and DMM-TEX-CONTOUR, re-
spectively. The total area covered by the proposed modes is 2.33 percent of the entire
image among all intra prediction modes in Fig. 9.6.

The test results illustrate that better compression of depth maps can be achieved
with the proposed modes in 3D-HEVC, and that the decoding complexity increases
by less than 4 percent. The proposed modes target only inter-component prediction
framework, and they cover a very small percentage of the entire depth map. Thus the
effectiveness seems less significant. By replacing further intra-modes by diffusion
modes, it is likely that further depth compression may be achieved.

The experimental results also demonstrate that the improvement of the quality of
decoded depth is consistent. This implies that the Laplace diffusion process can bet-
ter approximate the original depth signals than the constant partition value coding
in 3D-HEVC under the given testing conditions. The fast advancement in hardware
processing power will likely make high computational complexity less of a problem
in the future.

This work aimed at improving depth compression (reducing bandwidth con-
sumption) for a better quality of synthesized views in 3D-HEVC, which is state of
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the art in coding of 3D video contents. With the proposed diffusion modes, the pro-
posed scheme outperforms the original 3D-HEVC. As coding of 3D video contents
has been attracting much research attention, we also aim at comparing our scheme
with other novel methods and improving the proposed scheme further in future re-
search.

9.5 Concluding remarks

We have implemented two modes using diffusion in 3D-HEVC for coding of depth
map and replaced two inter-component prediction modes by the proposed modes.
They utilize edges from the associated texture and diffuse depth values in the block
by using the Laplace equation with texture edge constraints. The experimental re-
sults illustrate that the proposed modes can improve the compression efficiency for
depth map coding, and that the complexity increases by 3.4 percent on average for
the decoding. When considering the quality of synthesized views, the bit rate sav-
ing can reach around 1.25 percent of the total depth bit rate for the tested MVD
sequences. The bit rate saving is efficient, considering that the proposed modes have
been implemented in the inter-component prediction framework only, and cover a
very small percentage of the depth image among all intra prediction modes.

9.5.1 Contributions

My contributions to this work are the following: 1) To devise block-based diffu-
sion modes, which are introduced into HEVC using the inter-component prediction
framework; 2) the block size is allowed to be further split in the same way as the orig-
inal inter-component prediction modes; 3) diffusion is conducted in two-step if there
are still isolated parts exist in the block; 4) the proposed scheme for depth image cod-
ing surpassed HEVC intra frame coding with a small time complexity increase. The
content of this chapter was published in Paper IV.
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Chapter 10

Coding of plenoptic contents
by displacement intra
prediction

The coding of depth images has been discussed in the previous four chapters. From
this chapter onward, the coding focus is switched to the plenoptic contents. In this
chapter, a multi-hypothesis analysis theory is employed for the coding of plenoptic
contents. The coding performance is investigated with the proposed scheme inte-
grated into HEVC.

10.1 Introduction

A dense sampling of the light field results in highly correlated EIs in focused plenop-
tic images. Displacement intra can be utilized for spatial prediction on the image.
The question is how much compression efficiency can be achieved by using spatial
displacement intra prediction with more than one hypothesis (reference signal) for
the coding of these plenoptic contents.

In this work, we introduce a three-dimensional displacement intra and inter pre-
diction scheme for the coding of plenoptic images and videos. The scheme is imple-
mented into HEVC. The prediction can be performed both in the spatial domain (x,
y) and the temporal domain (previous and future) with a maximum of two hypothe-
ses.

The novelties of this work are: 1) we develop a multi-hypothesis prediction sche-
me for the coding of plenoptic contents; 2) the scheme is integrated into HEVC
framework; 3) the displacement intra prediction is explained theoretically with the
proposed plenoptic signal model; 4) the coding performance is analyzed empirically
for plenoptic contents with different input image properties; 5) we also investigate
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the efficiency of the TZ search [XlSkCh10] compared to the full search for the pro-
posed scheme; 6) the impacts of coding in the captured image to the rendering qual-
ity are theoretically analyzed and visually inspected.

The overall aim of the work is to improve the compression efficiency for light
field contents. The work is limited to the compression of plenoptic images and
videos from focused plenoptic cameras, and the maximum number of hypotheses
for the proposed coding scheme is limited to two. The goal is to investigate the
rate-distortion ratio objectively for the proposed method and to relate the PSNR of
compressed plenoptic images to the visual quality of rendered views.

The chapter is organized as follows. We illustrate the proposed modeling of
plenoptic signals in Section 10.2, and the proposed methods in Section 10.3. The
methodology is presented in Section 10.4, and Section 10.5 shows the results and
analysis. Section 10.6 concludes this chapter.

10.2 Modeling of plenoptic signals

Figure 10.1: Mapping between the captured plenoptic image and the 2D surface.

A 3D scene represented by a light field is modeled by a 2D planar surface v2D in
[RG], and the surface v2D is assumed approximately lambertian. We denote an EI as
C(pi, qi, r, t) and model the EI image through the mapping shown in Fig. 10.1 as

C(pi, qi, r, t)

= v2D((pi − 1) Nr + r + ∆lri , (qi − 1) Nt

+ t+ ∆lti) + npi,qi(r, t).

(10.1)

The noise term npi,qi(r, t) includes geometrical errors, non-lambertian effects, lens
distortions and disocclusions. ∆lri and ∆lti are the offsets that map C(pi, qi, r, t) to
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the 2D surface v2D.

We derive a hypothesis texture image from C(pi, qi, r, t) as

ci(r, t) = vi(r + ∆lri , t+ ∆lti) + ni(r, t), (10.2)

where

vi(o1, o2) = v2D((pi − 1) Nr + o1, (qi − 1) Nt + o2). (10.3)

The current texture image being predicted is

s(r, t) = v0(r + ∆lr0 , t+ ∆lt0) + n0(r, t). (10.4)

The multi-hypothesis signals ci are assumed to be found from different neighboring

Figure 10.2: Signal model for the displacement intra with respect to focused plenoptic images;
s: current EI being predicted, and ci: neighboring EIs.

EIs, i.e., ci is a shifted version of v0 plus noise ni (ci and s are cross-similar). This
assumption leads to the same signal model as described in [Gir00] and presented in
Section 4.4, and also shown in Fig. 10.2. The displacements between s and ci are
related by two-dimensional shift displacement vectors.

It is assumed that s and ci are produced by a jointly wide-sense stationary Gaus-
sian random process as in [Gir00]; s is predicted by a linear prediction from ci. If
W number of hypotheses are used for prediction, in the simple averaging case, s is

predicted from
∑W

i=1 ci
W . We further assume the same signal statistics for ni, v0, and

shift displacement errors as in [Gir00]. The multi-hypothesis MCP analysis [Gir00]
can be applied to the plenoptic signal model between cross-similar EIs.

The analysis results presented in Chapter 4 for the multi-hypothesis MCP [Gir00]
shows that averaging several good quality hypotheses reduces the coded bit rate.
The analyses suggest that it is appropriate to increase the number of hypothesis to
achieve a more efficient compression for focused plenoptic images. Within the scope
of this work, we only consider the compression efficiency related to the number of
hypothesis increased to the maximum of two in our experiment.
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10.3 Proposed method

The intra prediction scheme in HEVC is unable to explore the repetitive patterns of
plenoptic images, because only boundary samples are used for the prediction. We
apply the displacement intra prediction into HEVC as an intra prediction scheme to
solve this problem. However, the prediction is with a maximum of two hypotheses,
which are also limited by the HEVC framework. In addition, the encoding time
complexity will increase substantially if more hypotheses are used. Furthermore, the
analyses of displacement intra prediction for plenoptic images illustrated in Section
4.1 suggest that increasing the number of hypotheses from one to two is effective in
reducing coding bit rates.

10.3.1 Coding of plenoptic images (intra mode)

In video coding, the bit rates for intra-coded frames are much higher than for inter-
coded frames. Therefore, the bit rate produced by intra prediction can account for a
large portion of the total bit rates if video frames are intra-coded frequently, either by
configuration or because of drastic scene changes between frames. Hence, the intra
image compression efficiency is of paramount importance.

Fig. 10.3 presents the concept of the proposed displacement intra prediction cod-
ing scheme. It can be seen as a derivation from the inter-prediction scheme of HEVC.
The proposed scheme takes the adjacent reconstructed region in the same plenoptic
image as reference pictures in HEVC for the prediction. The region is limited by a
predefined search range parameter within the reconstructed CU blocks. An example
is shown in Fig. 10.4, in which the reconstructed region is marked with light gray
and dark gray, and is neighboring the current PU, block B. In order to perform the
bi-directional prediction with two references, the reconstructed region is separated
into two parts colored light gray and dark gray, respectively. These two parts are
assumed to be two reference pictures in each of the two picture reference lists L0 and
L1. The picture reference lists are utilized to accommodate the reference pictures for
the prediction. For the uni-directional prediction with a single reference, the entire
reconstructed region (light gray and dark gray) is assumed to be a reference picture
in the list L0. We call the intra mode with bi-prediction image B-coder and the one
with uni-prediction image P-coder.

Image B-coder (intra mode): the prediction for the B-coder is similar to the prediction
for the B frame coding in HEVC. There are three candidates for the prediction of a
current PU, block B in Fig. 10.4. As to the first two candidates, they are the best
matching blocks from each of the reference lists L0 and L1. These two blocks are,
however, not shown in Fig. 10.4. The third candidate is obtained by P0+P1

2 , where
P0 and P1 are two blocks from the lists L0 and L1, respectively. More specifically,
block P0 is found by a refinement search in the neighborhood of the best matching
block from L0, and block P1 is obtained from L1 in the same way. This refinement
search is designed to find the best matching signal P0+P1

2 to the current PU within
the refinement search range. As a result, the best of the three is chosen to predict the
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Figure 10.3: Displacement intra-prediction derived from inter-prediction for plenoptic image
compression.

(a) (b)

Figure 10.4: Bi-prediction within an image. (a) The two parts in light gray and dark gray
are assumed as two reference pictures and available in the reference list L0 and L1; (b) an
illustration of the prediction on a plenoptic image.
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current PU block.

Image P-coder (intra mode): the proposed P-coder is essentially performing a single
reference prediction. The best matching block is obtained from a search process from
the entire reconstructed region (i.e. with light gray and dark gray regions in Fig.
10.4). Consequently, the best block is selected from the region to predict the current
PU block.

The Advanced Motion Vector Prediction (AMVP) [BHO+13] technique in HEVC
is also applied in the proposed scheme. The displacement vector obtained from the
search is not encoded directly. Instead, the AMVP encodes the difference between
the current displacement vector and its predictor. The predictors are found from the
spatially neighboring and temporally collocated reconstructed PUs of the current
PU. In the merge mode of AMVP, the displacement vectors of the current PU can also
be derived from its spatially neighboring and temporally collocated reconstructed
PUs, where the latter is only available in the case of video coding. We describe the
plenoptic video coding in the next section.

The proposed displacement intra prediction is tested using the RDO criterion
along with the traditional intra during encoding. The best of them is selected as the
final intra prediction mode for the current PU. The B-coder is expected to improve
the compression efficiency over the P-coder. The reason for such an improvement is
demonstrated in Section 4.1. The proposed intra mode P-coder and the B-coder use
the same syntax as the P slice and the B slice [BHO+13] in HEVC.

10.3.2 Coding of plenoptic videos

The coding of videos aims to extend the prediction within an image into the temporal
domain. Fig. 10.5 illustrates the process of plenoptic video coding. Up to 16 reference
pictures can be loaded into each of the lists, L0 and L1. We call the proposed video
encoder with two hypotheses video B-coder.

Video B-coder: In addition to the reference pictures from the adjacent reconstructed
part of the same image (video frame), neighboring reconstructed frames in the tem-
poral domain are also loaded as reference pictures into the reference lists, L0 and L1

as shown in Fig. 10.5. The exact frames loaded into the lists depend on the HEVC
configurations. For the prediction, the predictor candidates are the best matching
blocks from each of the lists and the P0+P1

2 . The P0 and P1 are from the reference
pictures in the lists L0 and L1, respectively, in a similar way as for the proposed intra
frame coding by a refinement search. More specifically, the refinement search here
is performed iteratively for all the combinations of the reference pictures in the lists
L0 and L1, and is around the proximity of the best matching block from each refer-
ence picture. A detailed description of the iteration process is referred to [BHO+13]
and [hev13]. Furthermore, the search for the best matching block from the temporal
domain is limited to the reference pictures within a predefined search range. As a
result, the best of the three candidates is used to predict the current PU.

The prediction for the video coder can be seen as a hybrid of displacement intra
and inter frame prediction. To encode the current PU, the encoder will find the best
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prediction modes with the RDO among the conventional intra, and the hybrid of
displacement intra and inter frame prediction.

Figure 10.5: Plenoptic video coding: prediction candidates can be selected from spatial do-
mains as well as from temporal domains.

10.3.3 Encoding complexity of the proposed schemes

The time complexity of HEVC has been analyzed empirically in [BBSF12]. It is shown
that the motion prediction in HEVC takes up a significant amount of time in encod-
ing. For the proposed image P-coder, the coding complexity is equivalent to HEVC P
frame coding with one reference picture, and for the proposed image B-coder equiv-
alent to HEVC B frame coding with one reference picture in each of the picture ref-
erence lists. Therefore, the proposed image coders have higher encoding time com-
plexity than HEVC original intra. In addition, the video B-coder has a higher encoding
time complexity than HEVC B frame coding given the same prediction structure, and
the complexity increased is equivalent to adding one more reference picture for the
HEVC B frame coding in each of the picture reference lists. However, the complexity
analysis for the decoding in [BBSF12] illustrates that coding with temporal P and B
prediction is faster in a real-time implementation than with all intra frame coding,
because less time is spent on the entropy decoding. This suggests that it can be ben-
eficial for the proposed image coders in decoding, as opposed to the original HEVC
intra.

10.4 Methodology

Due to the importance of the intra prediction in reducing bit rates for a coded intra
frame, it is of interest to test the intra frame coding efficiency. In addition, in order to
draw a more general conclusion, images from different plenoptic cameras with var-
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ious image characteristics were considered for the test. The characteristics include
microlens structures, EI cross-similarity, etc.

Light field images, e.g., Seagulls, Books [Geo13], PlaneAndToy [AFF+13], were used
in the test. We also captured an image, OpticalTable1, by using a Raytrix camera
[Ray14]. The size of the image is 6576 by 4384 with hexagonal EIs with a width of
approximately 36 pixels.

The video sequence of PlaneAndToy, see Fig. 10.6, contains 250 frames of plenop-
tic images with a stationary background. The cross-similarity between EIs changes
over the sequence. In addition, another video sequence, DemichelisSpark [AFF+13],
was also used for the test. The cross-similarity between EIs does not change through-
out the sequence, therefore, only the first 50 frames were tested. Table 10.1 summa-
rizes the tested plenoptic input data.

Table 10.1: Plenoptic images/videos

Image/Video Resolution EI shape and
size in pixels

Cross-
similarity (EIs)

Seagull 7240×5236 Square(75) High
Books 3913×3913 Circular(50) Low
OpticalTable 6576×4384 Hexagonal(36) Low
PlaneAndToy (high) 1920×1088 Square(27) High
PlaneAndToy (low) 1920×1088 Square(27) Low
PlaneAndToy (video) 1920×1088 Square(27) Change
DemichelisSpark 2880×1620 Circular(38) Low

The HEVC Test Model (HM) reference software version 11 [hev13] was modified
for the proposed scheme. The test was conducted in TZ search unless otherwise
mentioned. The search range was set to 192 for Seagull, Books, and OpticalTable, and
to 128 for PlaneAndToy and DemichelisSpark. The search range is different because the
EI size is larger for Seagull, Books, and OpticalTable. The search range refinement for
bi-prediction was set to 4 as default.

10.4.1 Intra coding

The images were transformed into YUV 4:2:0 format. The tested QPs for images were
selected to be 20, 30, 40, and 50 for Seagull, Books, and OpticalTable. Two images from
the PlaneAndToy sequences were extracted for the intra coding test. They are the first
frame of PlaneAndToy with low EI cross-similarity denoted as PlaneAndToy(low) and
the 186th frame with high cross similarity denoted as PlaneAndToy(high). The QPs
for PlaneAndToy are set to 22, 27, 32, and 37. The bit rate in bpp was obtained from
the coded bit stream for all YUV components, whereas the quality was measured
on the luminance component by using PSNR. The rate-distortion curves of PSNR
versus bpp are presented for the image P-coder, the image B-coder, and the original
HEVC intra coder. Bit rate changes for the P-coder and the B-coder over the origi-

1http://plenoptics.droppages.com/
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(a) (b)

(c) (d)

Figure 10.6: Light field images: (a) OpticalTable; (b) Books; (c) PlaneAndToy (186st frame)
with high cross-similarity; (d) PlaneAndToy (1st frame) with low cross-similarity.

nal HEVC have also been expressed in the BD-PSNR [Bjo01], which computes the
average difference between two rate-distortion curves.

The configuration parameters for the proposed image coders were defined as the
‘Low delay-Main’ setting in JCTVC-L1100 [Bos13], and for the original HEVC as the
‘All intra-Main’ setting in JCTVC-L1100 [Bos13]. Additionally, the coding efficiency
of JPEG2000 was compared to the HEVC original intra. We used the OpenJPEG
software [ope15] and the default setting with one quality layer and one tile. The
coding quality is set to the same as the HEVC original intra coding for the four bit
rate points.

The following aspects are of interest for the analysis: 1) cross-similarity between
EIs; 2) search strategies (full search versus TZ search); 3) intra mode image B-coder
versus image P-coder; 4) the percentage of different modes used.

The decompressed images were also rendered for a visual quality investigation.
The rendering approach with a constant patch size was employed to render all-in-
focus images. The calibration step mentioned in Section 3.3 was skipped because
the camera geometry is unknown. This will not affect the evaluation, because all-in-
focus images are rendered from different compressed images under the same condi-
tion. The part of the image that is in the depth plane corresponding to a given patch
size is of special interest.
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10.4.2 Video coding

For the video sequences PlaneAndToy and DemichelisSpark, the ‘Random access-Main’
setting (hierarchical B frame coding) in JCTVC-L1100 [Bos13] with a GOP of size 8
was used for HEVC with temporal prediction and the proposed video B-coder. The
QPs used were 22, 27, 32, and 37. The CTU size was set to 16 to reduce the coding
time complexity. A bigger CTU, e.g. 32, than the size of an EI will likely cause more
CU splitting and increase side information (e.g. splitting flags, displacement and
motion vectors). The rate-distortion curves and the BD-PSNR were also acquired for
the video sequence. However, the bit rate is measured in kilo-bits per second (kbps).

10.5 Results and analysis

10.5.1 Intra coding

(1) Cross-similarity between EIs: The results in Table 10.2 show that the compression
efficiency is related to the cross-similarity between EIs. A higher cross-similarity
between EIs implies that more hypotheses signals are available for the prediction.
Therefore, a larger bit rate saving is achieved. The bit rate savings for the image B-
coder are 56.71 and 26.64 percent for Seagull and PlaneAndToy(high) compared to the
HEVC intra, respectively, in the TZ fast search case shown in Table 10.2. For the image
P-coder, the improvement compared to the image B-coder is less. But, substantial bit
rate reduction can still be seen in Table 10.2. The bit rate reductions are 42.89 and
20.18 percent for Seagull and PlaneAndToy(high), respectively.

Although the image Books is low cross-similar, the EIs are still highly correlated
as a consequence of a more homogeneous scene surface. By using the proposed
image B-coder, a bit rate reduction of 64.47 percent is gained, as shown in Table 10.2.
For the low cross-similar EIs in image PlaneAndToy(low), a smaller bit rate saving of
14.52 percent is obtained, see Table 10.2. The rate-distortion curve is plotted in Fig.
10.10. Although the EIs in OpticalTable are less cross-similar, the bit rate saving is
still convincing, which is 45.16 and 32.59 percent for the image B-coder and the image
P-coder shown in Table 10.2.

At a similar bit rate, the proposed scheme outperforms conventional HEVC intra
with a significant improved visual quality, which is illustrated in Fig. 10.8 and Fig.
10.9 for image Seagull. It is further shown that the blockiness artifact is less visible for
the proposed scheme at the lower bit rate, see Fig. 10.9. This is not only because the
proposed scheme improves the compression efficiency compared to HEVC intra, but
also due to an EI being well predicted from its neighbors by the displacement intra
prediction. Therefore, with less energy on the prediction residues, the blockiness
distortions from the quantization of the transform coefficients in HEVC are reduced.

Additionally, Table 10.3 illustrates that JPEG2000 performs worse than the origi-
nal HEVC intra for all the tested images. The rate-distortion curve for Books is plotted
in Fig. 10.7. In the figure, the highest bit rate point for JPEG2000 was removed due
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to a significant bit rate increase to 4.5 bpp at the PSNR of 46.73.

Table 10.2: BD-PSNR/rate for the proposed intra modes

Images P-coder B-coder
BD-PSNR

(dB)
BD-rate

(%)
BD-PSNR

(dB)
BD-rate

(%)
Seagull (TZ) +2.67 -42.89 +3.80 -56.71
Books (TZ) +4.46 -56.79 +5.26 -64.47
Optic. (TZ) +2.06 -32.59 +3.01 -45.16
Plane. (high)
(TZ search) +1.83 -20.18 +2.44 -26.64

Plane.(low)
(TZ search) +0.73 -10.85 +0.98 -14.52

Plane.(high)
(Full search) +2.59 -27.59 +2.90 -31.09

Plane.(low)
(Full search) +0.97 -14.11 +1.09 -15.93

Table 10.3: BD-PSNR/rate for JPEG2000 compared to HEVC original intra

Images
BD-PSNR

(dB)
BD-rate

(%)
Seagull (TZ) -2.62 +59.33
Books (TZ) -3.55 +83.10
Optic. (TZ) -2.10 +64.92
Plane. (high) -2.60 +49.14
Plane. (low) -2.61 +35.09

2) Full search vs. TZ search: Given a search area of a fixed size, it can be observed in
Table 10.2 that full search outperforms TZ search in terms of rate-distortion by a large
margin, especially in the case of the image P-coder. The inefficiency of TZ search for
the plenoptic contents compared to the natural images [XlSkCh10] is partly because
TZ search does not consider and exploit the repetitive patterns.

The time complexity for encoding is presented in Table 10.4 for images PlaneAnd-
Toy(high). The results show that the time spent on the image B-coder with full search
is 12 times more than with TZ search. Approximately the same encoding time ratio
is obtained for the image P-coder. The order of the encoding complexity can be gen-
eralized as: image B-coder with full search > image P-coder with full search >> image
B-coder with TZ search > image P-coder with TZ search, and the coding efficiency as:
image B-coder with full search> image B-coder with TZ search≈ image P-coder with full
search > image P-coder with TZ search. Therefore, in our opinion, the image B-coder
with TZ search is a better trade-off between quality and time complexity.

3) Image B-coder vs. image P-coder (intra mode): Results from Table 10.2 describe a
similar pattern; the B-coder is superior to the P-coder. Regardless of the effects of EI
borders, the rate-distortion pattern agrees well with the multi-hypothesis prediction
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Figure 10.7: Rate distortion curve for Books.

(a) (b)

Figure 10.8: Parts of the rendered views from the decoded plenoptic images at a bit rate of
around 0.13bpp: (a) the proposed image B-coder (b) original HEVC intra.

Table 10.4: Encoding time

QP P-coder
(TZ) (s)

B-coder
(TZ) (s)

P-coder
(Full) (s)

B-coder
(Full) (s)

22 420 579 5727 7035
27 395 539 5757 7201
32 353 496 5763 7363
37 321 460 5783 7256
Average 372 519 5758 7214
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(a) (b)

Figure 10.9: Parts of the rendered views from the decoded plenoptic images at a bit rate of
around 0.048bpp: (a) the proposed image B-coder (b) original HEVC intra.

analysis described in Section 4.1, that two hypotheses reduce the coded bit rate more
than one. However, this improvement diminishes with a decreasing cross-similarity
between EIs, as is shown for PlaneAndToy(low) in Table 10.2. Only 3.7 and 1.8 percent
bit rate savings for B-coder over P-coder are achieved for the TZ search and the full
search, respectively. Additionally, the difference in bit rate reduction between B-
coder and P-coder becomes smaller when comparing TZ search to full search for the
PlaneAndToy images. For the PlaneAndToy(high) in Table 10.2, percentage of bit rate
differences between B-coder and P-coder reduces from 6.5 percent with TZ search to
3.5 percent with full search. This reduction is because the TZ search does not explore
all possible searching points while the full search provides the encoder with a higher
probability to find a single matched reference block that achieves the best in terms
of RDO.

(4) Employment of different modes: Table 10.5 shows that the proposed intra modes
are used on over 50 percent of the image area for the high cross-similar PlaneAndToy.
The results were obtained at QP 22 by using the image B-coder, which includes both
the proposed spatial uni-directional prediction and bi-directional prediction into the
RDO evaluation in HEVC. As expected, the employment of the proposed modes
drops when the cross-similarity between EIs is low. It is less than 20 percent for the
low cross-similarity PlaneAndToy. An example of the mode assignments for the high
cross-similar PlaneAndToy with TZ search is shown in Fig. 10.12: red rectangular
specifies areas that are bi-predicted, and yellow rectangular uni-predicted.
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Figure 10.10: PlaneAndToy with TZ fast search.

Table 10.5: Different intra modes used in the image B-coder
Contents -
PlaneAndToy

Uni-
predicted

Bi-
predicted

HEVC
intra

High cross-similarity (full) 22% 33% 45%
High cross-similarity (TZ) 28% 19% 53%
Low cross-similarity (full) 11% 7% 82%
Low cross-similarity (TZ) 8% 6% 86%
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Figure 10.11: PlaneAndToy with full search.



102 Coding of plenoptic contents by displacement intra prediction

Figure 10.12: Mode assignments: red rectangular specifies areas that are bi-predicted, and
yellow rectangular uni-predicted.

10.5.2 Video coding

Even for a scene with a stationary background, 13.7 percent bit rate reduction is
obtained with the proposed encoder for the entire PlaneAndToy video sequence as
shown in Table 10.6. It is further illustrated in Fig. 10.13 that the bit rate reduction
is more significant at the lower bit rate points. In addition, a larger bit rate saving of
32.01 percent is achieved for the DemichelisSpark sequence, see Table 10.6. Through
the examination of coded bit rates frame by frame, we further observe that the main
contribution to the coding efficiency is from the intra coded frames.

Table 10.6: BD-PSNR/rate for the proposed video B-coder
Video BD-PSNR (dB) BD-rate (%)
PlaneAndToy +0.74 -13.70
DemichelisSpark +0.92 -32.01

10.6 Concluding remarks

We have proposed a displacement intra prediction scheme with a maximum of two
hypotheses for the compression of plenoptic contents from focused plenoptic cam-
eras. The scheme has been implemented into HEVC and is capable of exploring the
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Figure 10.13: Rate-distortion curve for video B-coder over PlaneAndToy.

inter-microlens redundancy efficiently. Furthermore, we have formulated a signal
model for plenoptic images and explained the theoretical aspects of the displacement
intra prediction with multiple hypotheses. In order to assess the rendering artifacts,
the impacts of distortions on the compressed captured image to the rendered view
were also analyzed.

The results showed that the plenoptic images and videos were compressed effi-
ciently by using the proposed scheme. The compression efficiency is related to sev-
eral parameters. More cross-similar EIs facilitated the compression for the proposed
schemes over HEVC. The TZ search was less effective in searching for prediction can-
didates for plenoptic contents than for natural images. For the intra modes, although
full search can improve the coding efficiency, the image B-coder with TZ search is a
trade-off between quality and time complexity. In addition, the image B-coder has
a more extensive bit rate reduction and agrees with the multi-hypothesis analysis.
For the tested images, up to 60 percent bit rate reduction was achieved for the pro-
posed scheme compared to HEVC intra, and more than 30 percent was obtained
compared to HEVC in temporal mode for the tested video sequences. The visual
quality inspection on the rendered views also showed that the proposed schemes
outperformed HEVC intra with a better visual quality.

10.6.1 Contributions

My contributions in this chapter are the following: 1) the development of a multi-
hypothesis prediction scheme for the coding of plenoptic contents; 2) integrating the
scheme into the HEVC framework; 3) theoretically explaining the displacement intra
prediction with the proposed plenoptic signal model; 4) analysis of the coding per-
formance empirically for plenoptic contents with different input image properties;
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5) investigation of the efficiency of the TZ search compared to the full search for the
proposed scheme; 6) theoretical analysis and visual inspection of the impacts of cod-
ing in the captured image to the rendering quality; 7) the coding efficiency with the
proposed scheme outperforming HEVC significantly for focused plenoptic contents.
The content of the chapter was published in Paper V and summarized in Paper VI.



Chapter 11

Scalable coding of plenoptic
images by using a sparse set
and disparities

Plenoptic contents was encoded by using displacement intra prediction with more
than one hypothesis in the previous chapter. In the chapter, in order to provide
rendering scalability, an approach that enables a scalable coding of plenoptic images
is proposed. Two alternatives of the proposed scheme are analyzed, i.e., with lossless
coding of disparities and with lossy coding of disparities.

11.1 Introduction

The previously proposed displacement intra prediction scheme in Chapter 10 can
efficiently exploit the inter-EIs correlation without knowing camera geometries and
considering coding structures, e.g., GOP. But the displacement intra does not provide
any scalability for transmission and rendering. Moreover, the focused plenoptic im-
age can possibly be represented by a subset of its microlens images plus disparities.
This brings the questions: if a plenoptic image can be encoded efficiently by using
such a representation; what the optimal sampling factor is, and how scalability can
be achieved.

If camera geometries are known, multi-view encoders with hierarchical coding
structures in general can be used for coding of plenoptic images. However, an obvi-
ous drawback of using multi-view encoders directly is that each EI must be padded
to the size of a power of two [BHO+13] for feeding into the encoder. Since an EI is
very small, the padding will result in an extra amount of data to encode. In addition,
the coding performance depends on the coding structure.

In this work, we introduce a coding approach for plenoptic images by using a

105
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sparse set of EIs and disparities. Approximated camera geometries are assumed to
be known, and EIs can be separated from the plenopitc image. We start by estimating
disparities for EIs, and then uniformly retain a sparse set of EIs. Based on the sparse
set and disparities, a full plenoptic image is reconstructed by using prediction with
interpolation and, for the unpredictable areas, with inpainting. The reconstructed
plenoptic image is utilized to predict the original full image by using a modified
HEVC encoder.

The novelties of this work are the following: 1) we encode plenoptic images by
using a sparse set of EIs and their associated disparities; 2) inpainting and inpola-
tion techniques are applied for the reconstruction of plenoptic images; 3) a modified
HEVC encoder is devised for the prediction and coding of plenoptic images from
their reconstructed images; 4) we further integrated the proposed scheme into the
proposed displacement intra prediction in HEVC described in Chapter 10. 5) The
scalability of the proposed coding scheme is theoretically described and empirically
analyzed. 6) The quality of reconstructed parts of full plenoptic images is visually
inspected and analyzed. 7) The parameter space for the sparse sampling factor is
explored. 8) Lossless coding and lossy coding of disparities are investigated.

The overall aim of the work is to improve the coding efficiency for plenoptic con-
tents. The work is limited to the coding for densely sampled focused plenoptic im-
ages. The goal is to investigate the rate-distortion ratio objectively and the scalability
of the proposed scheme.

The chapter is organized as follows. We illustrate the proposed scheme in Sec-
tion 11.2. The methodology is presented in Section 11.3, and Section 11.4 shows the
results and analysis. Section 11.5 concludes this chapter.

11.2 Proposed methods

11.2.1 Lossless coding of disparities

Fig. 11.1 and 11.2 present the overview diagrams of the proposed coding scheme,
the details of each block in the diagram are explained in the following subsections.

Encoding

Sparse sample set selection: A plenoptic image is sampled into a sparse plenoptic image
set as illustrated in Fig. 11.3. Assume (x, y) are the coordinates of an EI IE(x,y)(r, t)
within the plenoptic image C(x, y, r, t) in Fig. 11.3, x ∈ [1, N ], y ∈ [1,M ], r ∈ [1, Nr],
and t ∈ [1,Mt], where N , M , Nr, and Mt are the size of each dimension. Without
ambiguity, the notations of the dimensions for a light field are changed from (p, q)-(r,
t) to (x, y)-(r, t) in this chapter, because coordinates are commonly denoted as (x, y).
A sparsely sampled image C(xs, ys, r, t) is obtained with a sampling factor s such
that {(xs, ys) | xs ∈ x ∩ ys ∈ y ∩ xs mod s = 0 ∩ ys mod s = 0)}. The sampling
process on a captured plenoptic image is illustrated in Fig. 11.4.
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Figure 11.1: The proposed plenoptic image encoding system.

Figure 11.2: The proposed plenoptic image decoding system.

HEVC intra/displacement intra encoding: The sparse-sampled image can be en-
coded by state-of-the-art image encoders. In this work, we employ two coders,
HEVC original intra and the displacement intra image B-coder described in Chapter
10 for the encoding.

Decoding of sparse sample set: The coded image is decoded. These decoded sparse
sample set of images are used for a later reconstruction.

Block-wise disparity estimation: As an entire EI is considered as a block, the dispar-
ity between the current EI and the EI at its right side is estimated as the horizontal
disparity, and the current EI and the EI at its bottom side as the vertical disparity.
The estimation is performed by minimizing the Mean Square Error (MSE) between
the two neighboring EIs. The results from the estimation are two disparity maps
for the horizontal and the vertical direction. Therefore, two disparity maps with a
resolution of only 7 by 7 are produced for the plenoptic image illustrated in Fig. 11.3.
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Figure 11.3: An 8 by 8 plenoptic image sparsely sampled by a factor of 3.

Figure 11.4: An example of the sampling.

Disparity calculation: For a later reconstruction, the disparities between all EIs
outside the sparse set to each EI in the sparse set with a range of r must be estimated.
An EI in the sparse set is located at each coordinate (xs, ys) within the plenoptic
image illustrated in Fig. 11.5. We refer these disparities to as sparse-set-centered
disparities.

Because the block-wise disparities have already been acquired, the sparse-set-
centered disparities can simply be calculated by an addition horizontally and verti-
cally from the block-wise disparities. Assume Dh((x, y), (x+ 1, y)) is the block-wise
horizontal disparity for the EI at the coordinate (x, y) to its neighbor at the right side,
and Dv((x, y), (x, y + 1)) is the block-wise vertical disparity to its neighbor at the
bottom side. The horizontal and the vertical sparse-set-centered disparities for the
EI at (x, y) to the EI at (xs, ys) are calculated by:

Dh((x, y), (xs, ys)) =

{ ∑xs−1
i=x Dh((i, y), (i+ 1, y)), xs > x∑x−1
i=xs
−Dh((i, y), (i+ 1, y)), x > xs,

Dv((x, y), (xs, ys)) =

{ ∑ys−1
i=y Dv((x, i), (x, i+ 1)), ys > y∑y−1
i=ys
−Dv((x, i), (x, i+ 1)), y > ys.

(11.1)
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Figure 11.5: Disparity calculation from all EIs outside the sparse set in the blue box to an EI
centered at (3, 3) in the sparse set with a range r = 2.

Disparity estimation: However, the calculated disparities are imprecise. In order to
obtain more accurate disparities, a refinement search around the calculated sparse-
set-centered disparities is carried out. The search is aiming at minimizing the MSE
further between the two EIs under consideration, i.e., an EI outside the sparse set
to an EI within the sparse set with a range r. The arrows in the blue box in Fig.
11.5 indicate that the refinement is performed for all EIs at coordinate (x, y) to the EI
centered at (3, 3) in the sparse set within a range of r = 2. This process is repeated
for the EIs centered at (3, 6), (6, 3), and (6, 6). The results are two estimated disparity
maps with a resolution of 10 by 10 for the horizontal and the vertical directions.

The rationale for estimating the disparities in two steps, i.e., from the block-wise
disparity to the sparse-set-centered disparity, is to increase the accuracy of the dis-
parity estimation. This is because it is likely that a good match for an EI can be
found among its direct neighbors. By first performing an estimation between neigh-
bors and then a refinement, direct disparity estimation between two distant EIs is
avoided.

HEVC lossless encoding: Four disparity maps are encoded losslessly by using
HEVC intra. The maps are the two block-wise disparity maps and the two dispar-
ity residue maps, which result from the subtraction between the estimated and the
calculated sparse-set-centered disparity maps.

The four disparity maps have a smooth property, which is also the reason for
choosing them as the disparity representation formats for coding. The four maps are
encoded independently, because the HEVC intra can reduce the spatial redundancy
efficiently. Adding inter frame prediction did not improve the coding performance
in our experiment.

Reconstruction: A full plenoptic image is reconstructed from the decoded sparse
plenoptic image set. As Fig. 11.6 shows, the EIs from the decoded sparse image set
are placed into their original coordinates within the full plenoptic image. Based on
the estimated sparse-set-centered disparities, the unknown EIs are obtained from the
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known EIs by a disparity shift. If multiple known EIs are available for an unknown
EI within the range r, they are averaged. As an example, in Fig. 11.6, the EI at
coordinate (1, 1) is extrapolated from EI at (3, 3), and EI at (5, 4) is interpolated from
four known EIs.

After the interpolation or extrapolation process, there are still missing areas in
each of the reconstructed EIs. Inpainting approaches in general can be used to fill
the missing areas. In our work, a fluid dynamic inpainting approach [BBS01] is
employed to inpaint the missing areas. This inpainting method assumes that the
isophotes in the image as flows. The missing data is filled by solving the Navier-
stokes equation. An example of the reconstruction of a plenoptic image is shown in
Fig. 11.7.

Figure 11.6: Reconstruction of plenoptic images with r = 2. EI at (1,1) is extrapolated, and EI
at (5, 4) is interpolated.

Figure 11.7: An example of the reconstruction.

HEVC inter frame/displacement intra encoding: The HEVC encoder is modified for
the prediction of plenoptic images in coding. During the initialization of the mod-
ified encoder, the reconstructed plenoptic image from the Reconstruction process is
loaded into the picture reference list in HEVC and available for inter frame predic-
tion. During encoding, both intra prediction and inter prediction are performed, the



11.2 Proposed methods 111

best coding mode with the RDO for each coding block is chosen for the prediction.
Prediction residues are quantized, transformed and entropy encoded as in HEVC.
The coded bit stream is formed together with the lossless coded side information
such as prediction vectors and mode signaling flags. The intra prediction used here
can also be either HEVC original intra or the displacement intra. For the scheme
with the displacement intra, Fig. 11.8 illustrates the prediction for the encoder.

Figure 11.8: The prediction process for the modified HEVC encoder.

The final coded bit streams consist of three components: 1) coding of sparse sam-
ple sets from HEVC intra/displacement intra encoding , 2) coding of disparity maps
from HEVC lossless coding, and 3) coding of full plenoptics from HEVC inter frame/disp-
lacement intra encoding. We name our proposed schemes as 1) proposed scheme and
2) proposed+displacement intra (Proposed +Disp.) based on the coding methods for
each component listed in Table 11.1.

Table 11.1: The coding methods for each component

Coding components The proposed
scheme

The proposed +
displacement intra

Sparse sample
set HEVC intra Displacement

intra

Disparity maps HEVC intra
(lossless) HEVC intra (lossless)

Coding of full plenoptics Modified encoder
with HEVC intra

Modified encoder with
displacement intra



112 Scalable coding of plenoptic images by using a sparse set and disparities

Decoding

Decoding of sparse sample set: The sparse plenoptic image set is decoded.

Decoding of disparity maps: The lossless coded block-wise disparity maps and the
disparity residue maps are decoded.

Disparity calculation and Reconstruction: These procedures are identical to the ones
in the encoding. The two estimated sparse-set-centered disparity maps are recon-
structed from the block-wise disparity maps and the residue maps. With the sparse
image set and the disparity maps, a full plenoptic image is reconstructed.

Decoding of plenoptics: As an inverse process of HEVC inter frame/displacement intra
encoding, a plenoptic image is decoded by using the reconstructed plenoptic image
as a prediction reference.

11.2.2 Lossy coding of disparities

Fig. 11.9 and Fig. 11.10 present the overview diagrams of the proposed coding
scheme, the details of each block in the diagram are explained in the following sub-
sections. Some blocks are identical to those in the previous section; descriptions of
blocks omitted can be found in the previous section.

Figure 11.9: The proposed plenoptic image encoding system.

Encoding

Displacement intra encoding: The sparsely sampled image can be encoded by state-
of-the-art image encoders. In this work, we employ the displacement intra image
B-coder for the encoding.

Coding of disparity maps: The two block-wise disparity maps are encoded by us-
ing HEVC inter-frame prediction, i.e., one disparity map is encoded as intra-coded
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Figure 11.10: The proposed plenoptic image decoding system.

frame, from which another is predicted by using HEVC inter-frame prediction. These
maps are encoded in high quality to ensure an accurate plenoptic reconstruction.

Reconstruction: A full plenoptic image is reconstructed from the decoded sparse
plenoptic image set as Fig. 11.11 shows. This reconstruction is identical to that of
lossless coding of disparities in Section 11.2.1.

Figure 11.11: Reconstruction of plenoptic images with r = 2. EI at (1,1) is extrapolated, and
EI at (5, 4) is interpolated.

Displacement intra & inter frame encoding: The HEVC encoder is modified for the
prediction of plenoptic images in coding as the HEVC inter frame/displacement intra
coding in Section 11.2.1. However, the intra prediction is only with the displacement
intra.

The final coded bit streams consist of three components: 1) coding of sparse im-
age sets from Displacement intra encoding, 2) coding of disparities from coding of dis-
parity maps, and 3) coding of full plenoptics from Displacement intra & inter frame
encoding.
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Decoding

Disparity calculation and Reconstruction: These procedures are identical to the ones in
the encoding. The two sparse-set-centered disparity maps are calculated from the
decoded block-wise disparity maps. With the sparse image set and the disparity
maps, a full plenoptic image is reconstructed.

Decoding of plenoptics: As an inverse process of Displacement intra & inter frame
encoding, a plenoptic image is decoded by using the reconstructed plenoptic image
as a prediction reference.

11.2.3 Scalability

The proposed scheme is scalable and can be considered to have three layers. The first
layer is the sparse image set, which is in fact a sparsely sampled plenoptic image.
Rendered views can be obtained directly from this image. The amount of angular in-
formation in the image depends on the sampling factor s. A smaller s implies more
angular intensities can be achieved for the rendering. The second layer is the recon-
structed full plenoptic image if the disparity maps are available. The reconstruction
quality depends on the factor s and how well the disparity estimation, interpolation,
and inpainting are performed. The third layer is the residues from the prediction by
using the reconstructed plenoptic image. When these residues and their associated
information are present, a required quality of the original plenoptic image in terms
of PSNR is decoded.

This scalability property is beneficial if the network resource is limited or the end
users are still using a conventional display, because the image in the first layer is
much smaller than the original full image and is sufficient for producing a 2D view
if the sampling factor s is appropriate. In addition, in a differentiated network, the
disparity maps and the sparse image set can be set to a high priority for transmission.
If the data for the third layer are lost during transmission, a full plenpotic image can
still be reconstructed in the second layer for rendering.

11.2.4 Time complexity

The time complexity of HEVC coding has been analyzed empirically in [BBSF12].
The complexity of the Displacement intra encoding is equivalent to HEVC B frame
coding with one reference picture in each of the picture reference lists. For the Recon-
struction process, it involves interpolation and inpainting, the time complexity de-
pends on how fast they can perform. An interpolation is an operation of averaging
multiple pixels (with a maximum of four in our experiment). For the Navier-stokes
inpainting, it is shown that large missing areas in an image were inpainted in a mag-
nitude of seconds by using a standard PC [BBS01]. The inpainting is a parameter
that can be changed in the scheme, and a detailed analysis of the complexity can be
found in [BBS01]. As to the Displacement intra & inter frame encoding, it is equivalent
to HEVC B frame coding with two reference pictures in each of the picture reference
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lists. Consequently, it can be seen that the overall time complexity of both encod-
ing and decoding of the proposed scheme is higher than using the displacement
intra B-coder or the HEVC intra only. However, if only the first layer is needed for
transmission and rendering, the coding complexity is lower, which depends on the
sampling factor s.

11.3 Methodology

11.3.1 Lossless coding of disparities

Light field images Seagull and Fredo [Geo13] were used in the test. These plenoptic
images are densely sampled with a different depth distribution and scene. The origi-
nal images have a resolution of 7240 by 5236, and the EI is 75 by 75 with a rectangular
shape. Because vignetting appears on the EIs at the corner of the plenopitc images,
we cut out the center of each EI, sized of 64 by 64 and attached them together to form
a processed plenoptic image. The processed version of the image can be seen in Fig.
11.12 for Seagull. It has a resolution of 6080 by 4544. All images were transformed
into Y UV 4:2:0 format.

Figure 11.12: Processed plenoptic image: Seagull.

HEVC Test Model (HM) reference software version 11 [hev13] was used to code
the sparse plenoptic image set, the block-wise disparity maps and the disparity
residue maps. The sparse plenoptic image set was encoded by using the HEVC
original intra mode and the displacement intra with QPs 22, 27, 32, and 37. The cod-
ing configurations are set as the ‘All Intra-Main’ and the ‘Low-delay B-Main’ setting
in JCTVC-L1100 [Bos13] for the HEVC original intra and the displacement intra, re-
spectively. The block-wise disparity maps and the residue maps were encoded by
using lossless intra mode with the CTU of size 16. We also modified the HEVC en-
coder and integrated the displacement intra into the proposed scheme for the HEVC
inter frame/displacement intra encoding. The current QP used for this was the same
as for the coding of the sparse plenoptic image set, and the coding setting was the
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”Low-delay B-Main”.

The parameter for the sampling factor was s = 5, and for the disparity estimation
r = 4. In this work, an optimization of these parameters has not been considered.
We evaluated the performance of the proposed scheme by using fixed parameters.

The quality was assessed on the luminance component with PSNR, and the bit
rate in bpp was calculated from the coded bit stream for all Y UV components. The
rate distortion curve is plotted for PSNR vs bpp, and the BD-PSNR [Bjo01] was also
computed. The proposed scheme has been compared to original HEVC intra and the
displacement intra for plenoptic images.

11.3.2 Lossy coding of disparities

Similar to the methodology in Section 11.3.1, one more processed plenoptic image
from Laura [Geo13] was used in the test.

HEVC Test Model (HM) reference software version 11 [hev13] was used to code
the plenoptic image and the block-wise disparity maps. The sparse plenoptic image
set was encoded by using the displacement intra B-coder. The QPs were 22, 27, 32,
and 37. The coding configurations were set as the ‘All Intra-Main’ and the ‘Low-
delay B-Main’ setting in JCTVC-L1100 [Bos13] for the HEVC original intra and the
displacement intra, respectively. The block-wise disparity maps were encoded by
using HEVC inter frame prediction with the CTU of size 16, QP 20 and ‘Low-delay
B-Main’. We also modified the HEVC encoder and integrated the displacement intra
into the proposed scheme for the process Displacement intra & inter frame encoding.
The current QP used for this process was the same as for coding the sparse plenoptic
image set, and the coding setting was the ”Low-delay B-Main”.

The results are compared to original HEVC intra, the displacement intra B-coder,
and the Block Copying (BC) mode of HEVC range extension version 13. The con-
figurations for the B-coder were defined as ‘Low-delay B-Main’ [Bos13], and the BC
mode as ”ALL Intra-Main Rext” [FSR13].

The following aspects of the proposed coding scheme are of interest: 1) We inves-
tigate the performance of the scheme by changing s from 2 to 5 and setting r = s− 1
in order to determine the best sampling factor s. 2) With respect to the best sam-
pling factor, the scalability of the scheme is analyzed: 2.a) The PSNR vs. bpp of the
sparse set is plotted. The visual quality from the sparse image set will not be further
investigated in this work. 2.b) For the second layer, we also compute the PSNR of
the reconstructed image vs. the bit rate of the sparse sample set plus the disparity
maps. This is to evaluate the objective reconstruction quality. However, the second
layer aims at providing a convincing visual quality for the rendering. Therefore,
the reconstructed plenoptic image and its corresponding rendered image are partly
shown for a visual inspection. The rendered image is obtained by using the all-in-
focus rendering approach discussed in Chapter 3. The patches are taken from the
center of each EI with a fixed size of 8, which allows an artifact free rendering for the
presented parts.
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11.4 Results and analysis

11.4.1 Lossless coding of disparities

The results in Fig. 11.13 show that the proposed scheme reduces coding bit rate sig-
nificantly more than HEVC intra for all tested QPs. However, the displacement intra
in HEVC still outperforms the proposed scheme for the three higher bit rate points.
But at the lowest bit rate the proposed scheme achieves similar coding efficiency as
the displacement intra. The results are consistent for the tested images. In addition,
the BD-PSNR/rate in Table 11.2 illustrates that the improvement of the proposed
scheme is greater than 3 dB compared to the original HEVC intra, or equivalently
that the bit rate over 40 percent is reduced.

Table 11.2: BD-PSNR/rate: compared to HEVC intra
Image Coding methods BD-PSNR (dB) BD-rate (%)

Seagull
Proposed +3.19 -48.28
Proposed+Disp. +4.54 -63.20
Displacement intra +4.41 -61.91

Fredo
Proposed +3.57 -44.27
Proposed+Disp. +5.06 -58.87
Displacement intra +4.90 -57.85

Table 11.3: Size (in bytes) of each coded component for the proposed scheme

QP Disparity
maps

Sparse sample
set

Coding of full
Plenoptics Total

22 17 169 152 131 2 573 297 2 742 597
27 17 169 90 956 1 202 089 1 310 214
32 17 169 50 964 476 943 545 076
37 17 169 26 338 172 196 215 703

Table 11.3 shows the coding bit rates for each coding component of the proposed
scheme for Seagull. It can be noted that the coding of full plenoptics contributes
most of bits to the bit stream, while the disparity maps add least overhead to the bit
stream. This suggests that a more efficient prediction of the coding of full plenoptics
is essential to improve the overall coding performance. As expected, the bit rate
reduction is witnessed by using the proposed+displacement intra, which surpasses
the displacement intra slightly for all the tested bit rate points shown in Fig. 11.13.
Furthermore, it can be seen in Table 11.2 that the bit rate reduction is above 1 percent
for the proposed+displacement intra compared to the displacement intra.

11.4.2 Lossy coding of disparities

The results for the parameter space of the sampling factor and the scalability of the
scheme are discussed in the following subsections.
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Figure 11.13: Rate-distortion curves for Seagull and Fredo.

Sampling factor

The BD-PSNR/rate in Table 11.4 shows the largest bit rate reduction compared to
HEVC intra was achieved with the sampling parameter s = 2 for the proposed
scheme. The bit rate reductions compared to HEVC intra are 64.82, 60.90, and 48.87
percent for Seagull, Fredo and Laura, respectively. The performance of the proposed
scheme declines with the increase of s. This indicates that an accurate reconstruc-
tion of plenoptic images and a precise prediction for the coding of full plenoptics are
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essential to improve the coding performance. In addition, Table 11.4 illustrates that
bit rate reductions of 2.89, 3.05, and 2.29 percent were achieved for Seagull, Fredo and
Laura, respectively, compared to the displacement intra. It is further shown that the
proposed scheme surpasses HEVC BC mode with over 20 percent bit rate reduction
for all the tested images.

Table 11.4: BD-PSNR/rate: compared to HEVC intra

Image Coding
methods

BD-PSNR
(dB)

BD-rate
(%)

Seagull
Proposed (s=2) +4.68 -64.82
Proposed (s=3) +4.69 -62.86
Proposed (s=4) +4.47 -62.62
Proposed (s=5) +4.42 -62.14
Displacement intra +4.41 -61.93
HEVC BC mode +2.30 -36.36

Fredo
Proposed (s=2) +5.39 -60.90
Proposed (s=3) +5.31 -60.56
Proposed (s=4) +5.29 -60.43
Proposed (s=5) +5.18 -59.61
Displacement intra +4.90 -57.85
HEVC BC mode +2.71 -36.17

Laura
Proposed (s=2) +4.19 -48.87
Proposed (s=3) +4.02 -47.21
Proposed (s=4) +3.98 -46.90
Proposed (s=5) +3.94 -46.54
Displacement intra +3.94 -46.58
HEVC BC mode +1.87 -24.25

The results in Fig. 11.14, Fig. 11.15, and 11.16 further confirm that the proposed
scheme with s = 2 reduces coding bit rate significantly more than HEVC intra and
HEVC BC mode. It also performs better than the displacement intra B-coder for all
tested QPs. The results are consistent for the tested images.

Table 11.5: Seagull: coding bit rates for each component of the proposed scheme in bytes

QP Disparities Sparse image set Coding of
full Plenoptics Total

22 468 661 116 1 552 115 2 213 699
27 468 298 926 577 672 877 066
32 468 129 829 206 438 336 735
37 468 61 659 85 379 147 506

Table 11.5, Table 11.6, and Table 11.7 show the coding bit rates for each coding
component of the proposed scheme with s = 2. It is illustrated that the coding of full
plenoptics contributes to most of the coded bit stream, while the disparity maps add
least overhead to the bit stream. This also suggests that for an overall improvement
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Figure 11.14: Rate-distortion curves for Seagull.

Figure 11.15: Rate-distortion curves for Fredo.

of the coding scheme, it is important to reduce the bit rate for the coding of full
plenoptics. This requires an accurate reconstruction of the plenoptic image in the
second layer of the scalable structure.
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Figure 11.16: Rate-distortion curves for Laura.

Table 11.6: Fredo: coding bit rates for each component of the proposed scheme in bytes

QP Disparities Sparse image set Coding of
full plenoptics Total

22 564 516 795 1 106 050 1 623 409
27 564 260 161 451 398 712 123
32 564 136 140 197 055 333 759
37 564 75 240 94 430 170 234

Scalability

The first layer: The results from the compression for the first layer are plotted in Fig.
11.17, Fig. 11.18, and Fig. 11.19 for Seagull, Fredo, and Laura, respectively.

The results for the first layer are not intended to be compared with the results
from the second and the third layers, because the sparse image set in the case of
s = 2 has only half of the resolution of the original image. Although the PSNR
obtained from the first layer is higher than from the second layer. The sampling
process results in a loss of angular information in the sparse image set.

The second layer: Fig. 11.17, Fig. 11.18, and Fig. 11.19 additionally illustrate the
objective quality of the reconstructed image obtained from the process Reconstruction
for s = 2. The reconstruction quality is above 30 dB for Seagull and Fredo and around
29 dB for Laura. The variations in PSNR value are small, in the range of 3 dB, with
the QP changed from 22 to 37. Because the reconstruction process involves pixel
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Figure 11.17: Rate-distortion curves for Seagull.

Figure 11.18: Rate-distortion curves for Fredo.
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Table 11.7: Laura: coding bit rates for each component of the proposed scheme in bytes

QP Disparities Sparse image set Coding of
full plenoptics Total

22 331 1 369 558 3 406 527 4 776 416
27 331 762 798 1 630 750 2 393 879
32 331 376 826 552 599 1 039 756
37 331 180 655 251 670 432 656

Figure 11.19: Rate-distortion curves for Laura.

displacements, a visual inspection is performed to examine the actual visual quality
of the reconstruction.

Fig. 11.21 and Fig. 11.22 depict parts of the reconstructed images with s = 2
and their corresponding rendered images for Seagull. Fig. 11.21(a) and Fig. 11.22(a)
are reconstructed from the high quality and the low quality coded sparse image set,
respectively. Compared to the same part of the original plenoptic image and ren-
dered image illustrated in Fig. 11.20, distortions other than the compression arti-
facts are insignificant, i.e., it is indistinguishable which EI is reconstructed in Fig.
11.21(a) and Fig. 11.22(a). However, the reconstruction quality depends on the dis-
parity estimation, the disparity compression, the sampling factor s, the interpola-
tion/extrapolation, and the inpainting.

The third layer: The objective quality of the third layer has been discussed and
presented in the beginning of this section and is shown in Fig. 11.14, Fig. 11.15, Fig.
11.16, and Table 11.4. It was illustrated that the proposed scheme with bit rates com-
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(a) (b)

Figure 11.20: (a) Parts of the original plenoptic image; (b) corresponding rendered image.

(a) (b)

Figure 11.21: (a) Parts of the reconstructed plenoptic image from the coded sparse set with
QP 22; (b) corresponding rendered image.

bined from all the compressed components outperforms the state of the art coding
schemes.

Comparing the schemes between lossless and lossy coding of disparities, the
overall bit rate reduction is similar for the sampling factor of s = 5. However, the
lossless coding of disparities imposes a nontrivial cost in terms of coding efficiency
to the entire bit stream, especially at the low bit rates. Moreover, the inter frame
prediction from one to the other for the two similar disparity images can not reduce
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(a) (b)

Figure 11.22: (a) Parts of the reconstructed plenoptic image from the coded sparse set with
QP 37; (b) corresponding rendered image.

the disparity coding bit rate further in our experiment for the lossless coding case.
Therefore, lossy coding of disparities can be beneficial for a lower quality coding of
plenoptic images and may be advantageous for the cases where inter-frame predic-
tion of disparity maps is considered for the coding of video sequences.

11.5 Concluding remarks

We have proposed a scalable coding scheme for densely sampled plenoptic images.
The scheme represents a full plenoptic image by its sparse sample set and associated
disparity information. For the encoding, the sparse set and disparities are encoded
accordingly. A full plenoptic image is then reconstructed from the sparse set and
disparities by using interpolation/extrapolation and inpainting. Consequently, the
reconstructed full image is utilized for a prediction to encode the original plenop-
tic image with a required PSNR. We further integrated a previously proposed dis-
placement intra scheme into our proposed coding system. In addition, the proposed
scheme is also scalable such that the rendering can be performed with the sparse
sample set, the reconstructed plenoptic image, and the decoded plenoptic image.

The coding results demonstrated that plenoptic images were compressed effi-
ciently with the proposed scheme. It outperformed HEVC intra with more than 5dB
quality improvement or by over 60 percent bit rate reduction when measuring by
using BD-PSNR/rate. In the case of lossy coding of disparities, it also surpassed our
previously proposed displacement intra B-code by as much as 3 percent bit rate re-
duction. In addition, visual inspection of the tested image showed that distortions
other than compression artifacts were insignificant for the reconstructed image in the
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second layer of the scalable structure. However, the reconstructed quality depends
on several factors, e.g., the sampling factor, interpolation, and inpainting. An accu-
rate reconstruction in the second layer and a precise prediction in the third layer can
facilitate an efficient coding of plenoptic images with a required PSNR. Although
the overall complexity of the proposed scheme has increased, the coding and trans-
mission of the first layer is of advantage due to the small size of the sparse image
set.

11.5.1 Contributions

My contributions in this chapter are following: 1) Encoding the plenoptic images
by using a sparse set of EIs and their associated disparities; 2) applying inpaint-
ing and interpolation techniques to the reconstruction of plenoptic images; 3) de-
vising a modified HEVC encoder for the prediction and coding of plenoptic images
from their reconstructed images; 4) integrating the proposed scheme into the previ-
ously proposed displacement intra prediction in HEVC; 5) theoretically describing
and empirically analyzing the scalability of the proposed coding scheme; 6) visually
inspecting and analysing the quality of reconstructed parts of full plenoptic images;
7) exploration of the parameter space for the sparse sampling factor; 8) investigation
of the lossless coding and the lossy coding of disparities for the proposed schemes; 9)
the proposed scheme improving the coding efficiency and enabling a flexible trans-
mission and rendering of plenoptic images. The content of this chapter was pre-
sented in Paper VII and summarized in Paper VIII.



Chapter 12

Conclusions and future work

The previous chapters of the thesis have summarized the author’s contribution sep-
arately. In this chapter an overview of the thesis work is presented and followed
by an analysis of the objectives. Furthermore, the contributions to research commu-
nity and society are also discussed, and, last but not least, future work lists possible
research directions.

12.1 Overview

The purpose of the work presented in the thesis is to improve the 3DTV experience
by means of more efficient coding for 3D video contents. The thesis has fulfilled this
purpose by investigating, proposing, and evaluating novel coding schemes for data
formats used for 3D video: depth images and focused plenoptic contents. In partic-
ular, a novel coding scheme utilized the property of depth image was proposed to
achieve an efficient depth image compression, and displacement intra was employed
for the coding of plenoptic contents with an effective bit rate reduction. The experi-
mental results from the research work show that the task of a more efficient coding
of 3D video contents, specifically for still depth images and plenoptic contents, was
accomplished. This will indirectly lead to a better 3DTV experience. The following
paragraph describes the work in more detail.

First, a depth image modeled by edges and sparse samples and reconstructed
by diffusion was devised for depth image post-processing. A scalable depth im-
age compression scheme using the model was proposed in order to render a better
quality of synthesized views. A subjective test was conducted to evaluate the per-
ceived quality of the synthesized views, which showed that the proposed scheme
outperforms HEVC intra subjectively. The diffusion process was further introduced
into 3D-HEVC as intra coding diffusion modes, by using these, bit-rate saving was
achieved for a constant quality of synthesized views.

For plenoptic contents, spatial displacement intra prediction with more than one
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hypothesis was introduced into HEVC. The proposed coding scheme can perform
a spatial bi-directional prediction efficiently without knowing camera geometries.
It surpassed HEVC intra significantly when measured by using PSNR. The visual
inspection on the rendered views confirmed that the proposed scheme improved
the visual quality over HEVC intra at the given bit rates. In addition, the proposed
scheme was further expanded to provide transmission and rendering scalability, so
that rendering can be conducted in different layers of the coding structure. This was
realized by representing the original plenoptic images by a sparse image set and
disparities. As a consequence, a three-layer scalable structure was provided, where
the first layer is the sparse set. With the disparities, a full plenoptic image is recon-
structed by using interpolation/extrapolation and inpainting as the second layer.
This reconstructed plenoptic image is utilized as a prediction reference for the third
layer that decodes the full plenoptic image with a required PSNR. The experimen-
tal results showed that the full plenoptic images were compressed more efficiently
than HEVC intra and the method with displacement intra that is also proposed in
the thesis. In addition, the tested plenoptic image was reconstructed with a satisfi-
able visual quality at the second layer. The visual quality was measured through our
visual inspection.

12.2 Outcome

The specific objectives were mandated in Section 1.5 of the Introduction. A discus-
sion of the outcome for the presented papers with respect to the objectives is pre-
sented here.

O.I. Investigate a possible model and representation of depth images based on their in-
trinsic property, i.e. the piecewise smooth assumption.

Depth images can be assumed as piecewise smooth. This is manifested in sharp
edges surrounded by smooth areas. Preserving the edges is crucial in the view ren-
dering process. Chapter 6 introduces a model that represents depth images as signif-
icant edges and uniform sparse sampling points, and the missing areas were inter-
polated by using diffusion based on the Laplace equation. The model was applied
to depth image post-processing and the results were published in Paper I, which
showed that the depth images can be well reconstructed with respect to the synthe-
sized views by using the model.

O.II. Investigate a candidate of coding schemes for depth images that preserves the fun-
damental properties of depth images; analyze the coding performance.

In order to preserve the edge transitions of depth images and for a convincing
synthesized view, the scalable coding scheme that applies the proposed depth im-
age model presented in Chapter 6 was devised and described in Chapter 7. In this
scheme, the locations of depth edge contours are explicitly encoded, and smooth
areas are interpolated by solving the Laplace diffusion. The scalability is inherited
from the coding structure and is relative to the significance of the edges. The pro-
posed scheme was evaluated objectively and subjectively in Chapter 7 and Chapter
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8, respectively. The results were published in Paper II and Paper III, and showed
that the proposed coding scheme achieved a better quality of synthesized view than
HEVC intra coding.

O.III. Derive a coding scheme for depth images for MVD sequences based on hybrid video
coding schemes; evaluate the rate distortion objectively.

To reduce the bit rate of the coding of depth edges and to optimize the rate-
distortion in encoding, the diffusion process was implemented in the 3D-HEVC as
intra prediction modes in Chapter 9; the scheme diffuses a coding block by using the
Laplace equation with texture edge constraints. The results were published in Paper
IV and showed that the proposed scheme achieved bit-rate saving with respect to
the quality of both depth images and synthesized views for the MVD sequences.

O.IV. Find a signal model for plenoptic contents utilizing its intrinsic property, i.e. cross-
similarity; explore a theory that exploits this property for an efficient coding without knowing
camera geometries; analyze the coding performance.

Adjacent EIs are cross-similar in focused plenoptic images. For an efficient cod-
ing of these images, a displacement intra prediction scheme with a maximum of two
hypotheses was proposed for the coding in Chapter 10. The proposed scheme was
further implemented into HEVC. The work was aiming at coding focused plenop-
tic captured contents efficiently without knowing underlying camera geometries.
Evaluation results were published in Paper V and summarized in Paper VI, which
showed that plenoptic contents were efficiently compressed by the proposed scheme.

O.V. Investigate a candidate of coding schemes for plenoptic images that removes the
redundancy before coding and provides coding scalability; evaluate the coding performance,
parameter spaces and coding scalability.

In order to removes the cross-similarity first before coding and provide coding
scalability for the proposed displacement intra scheme described in Chapter 10, an
approach for coding of focused plenoptic images by using a representation, which
consists of a sparse image set and disparity maps, was presented in Chapter 11. The
evaluation results were published in Paper VII and summarized in Paper VIII, which
showed that the proposed scheme achieved an efficient compression for plenoptic
images while providing a scalable coding structure.

12.3 Impact

Compression is part of the 3DTV transmission chain. With the advancement of dis-
play technologies, 3DTV of multi-view, free-view and even holographic viewing
might be a future trend for home entertainment. This implies an explosion of ca-
pacity required for storing and transmitting video data. An efficient compression
scheme, therefore, enables this video data to be transmitted through a limited capac-
ity of channels, but, with a better quality of presentation. As a result, a more efficient
compression technique will enhance a better 3DTV experience.

The proposed depth image post-processing and coding schemes result in a better
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quality of synthesized views than the state-of-the-art schemes. The proposed coding
approaches for plenoptic contents reduce the coding bit rate significantly and enable
coding scalability. Therefore, the work presented in this thesis can provide a more
convincing and satisfactory quality for the 3DTV viewers while saving network re-
sources.

As a consequence, the research may increase the availability of contents for end
users and may indirectly boost the 3D content production and will probably acceler-
ate the advancement of 3D displays. The research might also boost the development
of 3D mobile applications because the network capacity in a mobile environment is
further limited. Furthermore, home entertainment users can enjoy a more realistic
virtual 3D program while some professionals, e.g. medical doctors, may benefit from
high quality 3D transmission when examining a patient remotely.

12.4 Future work

There are still challenges associated with the proposed coding schemes, and I have
identified the need for improvement in future research. One problem is in relation
to the decoding complexity. As the diffusion is performed by solving overdeter-
mined systems or by an iterative process, the decoding complexity will increase ac-
cordingly. This problem can be solved by utilizing some other fast interpolation or
filtering methods.

The second problem is the coding of depth edges, which costs significant amounts
of bits. For video sequences, efficient compression may be difficult to achieve by us-
ing temporal prediction (i.e. predicting a frame from its adjacent frames) for edge
contours. Although texture edges can be utilized to approximate depth edges, the
texture edges are probably inaccurate, i.e., there are usually more texture edges than
depth edges and there is not exact correspondence between them. This problem may
be solved by means of a joint encoding scheme of texture edges and depth edges.

In addition, transforms that preserve edges for residue coding might be beneficial
for standard video codecs (e.g. HEVC) in depth coding. The areas of transform
coding can be exploited further in the future. As the quality of synthesized views
relies on the combination of texture and depth from MVD sequences, future research
should also be focused on the compression of texture images.

In my approach to the coding of plenoptic contents, to optimize interpolation and
inpainting processes are future research topics. In addition, the error concealment
techniques in case of packet loss during network transmission are also subject of
future work.

As plenoptic images are four dimensional (4D) data, and plenoptic videos are 5D
data, a high dimensional or a novel transform may be beneficial to further remove
the redundancies of the data set. In addition, the modulation images that are ob-
tained during camera calibrations can also be utilized to provide camera geometries
and to achieve a more efficient compression of plenoptic contents.
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12.5 Ethical considerations

I am confident that my research work has followed the guidelines of Swedish ethical
issues [GrHP11].

The work is intended to improve the quality of experience for 3DTV and save net-
work resources. The research activities and results of the coding of 3D video contents
described in this thesis, to my knowledge, are only used to facilitate the data trans-
mission between machines, e.g., computers. The applications based on the research,
e.g., 3D movies, games, and medical applications, do not involve humans directly
with respect to compression, despite the compressed contents eventually being pre-
sented to viewers. However, it is known that watching 3D video for a long period of
time might cause discomfort for some viewers [Sol13], such as, nausea, headaches,
and disorientation. Therefore, viewers are recommended to stop watching should
any discomfort occur.

During my research, when a subjective test was necessary to evaluate the artifacts
introduced by the compression, all test subjects selected were above the age of 18,
and participated voluntarily in the test. They were able to terminate and quit the
test at any time for any reason.
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Page xix:
VII Li, Y., Sjöström, M., Olsson, R., and Jennehag, U. Coding of focused plenoptic
contents by intra displacement prediction. Manuscript , 2015.
should be:
VII Li, Y., Sjöström, M., Olsson, R., and Jennehag, U. Coding of focused plenoptic
contents by intra displacement prediction. Accepted for publication in IEEE Transac-
tions on Circuits and Systems for Video Technology , 2015.

Page 116:
2.a) The PSNR vs. bpp of the sparse set is plotted. The visual quality from the sparse
image set will not be further investigated in this work.
should be:
2.a) For the first layer, the sparse image set is a plenoptic image of lower resolution
and encoded by the displacement intra image B-coder, whose coding efficiency has
been investigated in Chapter 10.

Page 121:
The results from the compression for the first layer are plotted in Fig. 11.17, Fig.
11.18, and Fig. 11.19 for Seagull, Fredo, and Laura, respectively.

The results for the first layer are not intended to be compared with the results
from the second and the third layers, because the sparse image set in the case of
s = 2 has only half of the resolution of the original image. Although the PSNR ob-
tained from the first layer is higher than from the second layer. The sampling process
results in a loss of angular information in the sparse image set.
should be:
Because the sparse image set in the case of s = 2 has only half of the resolution of
the original image in each dimension, a direct comparison between the first layer to
the second and the third layers is impossible. The sampling process results in a loss
of angular and spatial information in the sparse image set in general.

Page 122, 123:



Figure 11.17, Figure 11.18, and Figure 11.19 are changed to the following:

Figure 11.17. Rate-distortion curves for Seagull.

Figure 11.18 Rate-distortion curves for Fredo.

Figure 11.19 Rate-distortion curves for Laura.


