
This material is published in the open archive of Mid Sweden University  
DIVA http://miun.diva-portal.org to ensure timely dissemination of scholarly and technical 
work. Copyright and all rights therein are retained by authors or by other copyright holders. 
All persons copying this information are expected to adhere to the terms and constraints 
invoked by each author's copyright. In most cases, these works may not be reposted without 
the explicit permission of the copyright holder. 

 

Yun Li; Sjöström, M.; Olsson, R., "Coding of plenoptic images by using a sparse set and 
disparities," in 2015 IEEE International Conference on Multimedia and Expo (ICME), June 29 
2015-July 3 2015 

http://dx.doi.org/10.1109/ICME.2015.7177510 

 

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 
 

  

http://miun.diva-portal.org/


CODING OF PLENOPTIC IMAGES BY USING A SPARSE SET AND DISPARITIES

Yun Li, Mårten Sjöström, and Roger Olsson

Dept. of Information and Communication Systems, Mid Sweden University, Sweden
Email: {yun.li, marten.sjostrom, and roger.olsson}@miun.se

ABSTRACT
A focused plenoptic camera not only captures the spatial

information of a scene but also the angular information. The
capturing results in a plenoptic image consisting of multiple
microlens images and with a large resolution. In addition, the
microlens images are similar to their neighbors. Therefore,
an efficient compression method that utilizes this pattern of
similarity can reduce coding bit rate and further facilitate the
usage of the images. In this paper, we propose an approach for
coding of focused plenoptic images by using a sparse image
set and disparities, i.e., a sparse plenoptic image set plus dis-
parity maps. Based on this format, a reconstruction method
by using interpolation and inpainting is devised to reconstruct
the original plenoptic image. As a consequence, instead of
coding the original image directly, we encode the sparse im-
age set plus the disparity maps and use the reconstructed im-
age as a prediction reference to encode the original image.
The results show that the proposed scheme performs better
than HEVC intra with more than 5 dB PSNR or over 60 per-
cent bit rate reduction.

Index Terms— Plenoptic, lightfield, HEVC, compres-
sion,

1. INTRODUCTION

Plenoptic cameras capture a sampling of the light field with
the directions and the intensity of outgoing radiances from a
scene. This capturing process enables the capability of image
refocusing and multi-view imaging during post-production.
However, a densely sampled plenoptic image contains repet-
itive patterns and has a large resolution. The image can pos-
sibly be represented by a subset of its microlens images plus
disparities. The question is if plenoptic image can be encoded
efficiently by using such a representation.

The concept of plenoptic capturing was introduced by
Gabriel Lippmann in 1908 [1]. A plenoptic function, which is
also referred to a light field, can be described by using a two-
plane representation [2]. Therefore, a light field has four di-
mensions (x, y), and (r, t), which locate the coordinates of a
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radiance passing through the two planes, respectively. There
are several techniques for capturing a light field image, for
example, by using multi-camera arrays, coded apertures, and
microlens arrays. In the capturing with microlens arrays, two
capturing techniques are further derived, which are plenop-
tic 1.0 and plenoptic 2.0. Cameras with plenoptic 2.0 tech-
nique [3] are also referred to as focused plenoptic cameras.
By putting the focal plane of microlenses away from the im-
age sensor plane, the focus plenoptic camera captures both
angular and spatial information in each microlens image and
across microlens images. It provides a trade-off between spa-
tial and angular information for the capturing. We only con-
sider images captured by focused plenoptic cameras in the
context of this paper. A densely sampled plenoptic image im-
plies that adjacent microlens images, also referred to as Ele-
mental Images (EI), are highly correlated.

The plenoptic image consists of a grid of EIs whose con-
tents are similar to their neighbors. Therefore, one problem
with respect to coding is that the image exhibits repetitive pat-
terns, and a large amount of redundancy exists. Another prob-
lem lies in that not all EIs are always needed for rendering.
Therefore, we are motivated by the two problems to devise
an approach that can: 1) remove the redundancy before cod-
ing, 2) encode plenoptic contents efficiently, and 3) provide
coding scalability.

There are other techniques to capture a light field image
as mentioned. Coding approaches with respect to light field
images in general can be applied to plenoptic images. Previ-
ous coding work on light field image compression is mainly
classified into three categories: vector quantization, predic-
tive coding and progressive coding [4]. For the vector quan-
tization [5] approach, light field images are partitioned into
small blocks, which are represented as vectors. A small sub-
set of the vectors is trained to approximate the entire vector
space. In predictive coding, an early work [6] arranges light
field images into a grid. Images within the grid are recur-
sively predicted from a few intra coded images. The pre-
diction efficiency is further improved by using homography
[7]. As to the progressive coding, Discrete Wavelet Trans-
form (DWT) is usually applied to achieve a finer granular-
ity of scalability [4] [8]. Shape Adaptive Discrete Wavelet
Transform (SA-DWT) [8] was employed in a wavelet scheme
with disparity-compensated lifting and shape adaptation to



preserve the boundaries of objects in images. As light field
images can be considered as 4-D contents, 4-D wavelets were
used in [9] for the compression. In addition, there are ap-
proaches that do not distinctively lie in any of the categories
mentioned above. Examples are compression with distributed
coding [10], with Principle Component Analysis (PCA) [11],
and with intra displacement prediction [12]. If camera ge-
ometries are known, multi-view encoders in general with hier-
archical coding structures can be used for coding of plenoptic
images. However, an obvious drawback of using multi-view
encoders directly is that each EI must be padded to the size
of a power of two [13] for feeding into the encoder. Since
an EI is very small, the padding will result in an uneglectable
amount of extra data to encode. In addition, the coding per-
formance is dependent on the coding structure. The work in
[12] has proposed a displacement prediction scheme that ef-
ficiently exploits the inter-EIs correlation. But the displace-
ment intra does not provide any scalability for the rendering.

In this paper, we introduce a coding approach for plenop-
tic images by using a sparse set of EIs and disparities. Ap-
proximated camera geometries are assumed to be known, and
EIs can be separated from the plenopitc image. We firstly esti-
mate disparities for EIs, and then uniformly retain a sparse set
of EIs. Based on the sparse set and disparities, a full plenoptic
image is reconstructed by using prediction with interpolation
and, for those non-predictable areas, with inpainting. The re-
constructed plenoptic image is utilized to predict the original
full image by using a modified HEVC encode. The novelties
of this paper are: 1) we encode plenoptic images by using a
sparse set of EIs and their associated disparities; 2) inpainting
and interpolation techniques are applied for the reconstruction
of plenoptic images; 3) a modified HEVC encoder is devised
for the prediction and coding of plenoptic images from their
reconstructed images; 4) we further integrated the proposed
scheme into the displacement intra prediction in HEVC; 5)
scalability of the proposed coding scheme is also described.

The overall aim of the work is to improve the coding ef-
ficiency for plenoptic contents. The work is limited to the
coding for densely sampled focused plenoptic images. The
goal is to investigate the rate-distortion ratio objectively for
the proposed scheme.

The sequence of the paper is organized as follows. We il-
lustrate the displacement intra prediction in Section 2 and the
proposed scheme in section 3. Test arrangements and evalu-
ation criteria are presented in Section 4, and Section 5 shows
the results and analysis. Section 6 concludes this paper.

2. DISPLACEMENT INTRA PREDICTION

For the paper to be self-contained and for a better clarity of
presenting our proposed scheme, the displacement intra pre-
diction is briefly described here. The displacement intra pre-
diction scheme in HEVC has been proposed in [12] for the
coding of plenoptic images. The scheme can perform a bi-

directional prediction in the spatial domain of an image and
is referred to as B-coder.

As shown in Fig. 1(a), two parts of the image are assumed
as two reference pictures available in the picture reference list
L0 and L1. A current coding block is predicted from the best
matching reference block, which can be the best matching
block in list L0, the best in list L1, or (P0+P1)

2 . P0 and P1

are blocks obtained from L0 and L1, respectively. The best
is measured in terms of minimum rate-distortion. In addition,
the original HEVC directional intra prediction is also eval-
uated in the Rate-Distortion Optimization (RDO) process of
HEVC. As a result, the best prediction mode is selected for
coding the current block. A detail description of the original

(a) (b)

Fig. 1. Bi-prediction within an image. (a) Two parts in color
blue and red are assumed as two reference pictures and avail-
able in the reference list L0 and L1; (b) an illustration of the
prediction on a light field image.

HEVC intra and the displacement intra can be referred to [13]
and [12], respectively.

3. PROPOSED METHOD

Fig. 2 and 3 present the overview diagrams of the proposed
coding scheme, the details of each block in the diagram are
explained in the following subsections.

Fig. 2. The proposed plenoptic image encoding system.

3.1. Encoding

Sparse sample set selection: A plenoptic image is sampled
into a sparse plenoptic image set as illustrated in Fig. 4. As-
sume (x, y) is the coordinate of an EI IE(x,y)(r, t) within
the plenoptic image C(x, y, r, t) in Fig. 4, x ∈ [1, N ],



Fig. 3. The proposed plenoptic image decoding system.

y ∈ [1,M ], r ∈ [1, Nt], and t ∈ [1,Mt], where N , M ,
Nt, and Mt are the size of each dimension. A sparsely sam-
pled image C(xs, ys, r, t) is obtained with a sampling factor
s such that {(xs, ys) | xs ∈ x ∩ ys ∈ y ∩ xs mod s =
0 ∩ ys mod s = 0)}. The sampling process on a captured
plenoptic image is illustrated in Fig. 5.

Fig. 4. A 8 by 8 plenoptic image sparsely sampled by a factor
of 3.

Fig. 5. An example of the sampling.

HEVC intra/displacement intra encoding: The sparse-
sampled image can be encoded by state of the art image en-
coders. In this work, we employ two coders, HEVC [13] orig-
inal intra and the displacement intra B-coder [12] mentioned
in the previous section, for the encoding.

Decoding of sparse sample set: The coded image is de-
coded. These decoded sparse sample set of images are used
for a later reconstruction.

Block-wise disparity estimation: As an entire EI is con-
sidered as a block, the disparity between the current EI and
the EI at its right side is estimated as the horizontal disparity,
and the current EI and the EI at its bottom side as the verti-
cal disparity. The estimation is performed by minimizing the

Mean Square Error (MSE) between the two neighboring EIs.
The results from the estimation are two disparity maps for the
horizontal and the vertical direction. Therefore, two disparity
maps with a resolution of only 7 by 7 are produced for the
plenoptic image illustrated in Fig. 4.

Disparity calculation: For a later reconstruction, the dis-
parities between all EIs outside the sparse set to each EI in
the sparse set with a range of r must be estimated. An EI in
the sparse set is located at each coordinate (xs, ys) within the
plenoptic image illustrated in Fig. 6. We refer these dispari-
ties to as sparse-set-centered disparities.

Fig. 6. Disparity calculation from all EIs outside the sparse
set in the blue box to an EI centered at (3, 3) in the sparse set
with a range of r = 2.

Because the block-wise disparities have already been ac-
quired, the sparse-set-centered disparities can simply be cal-
culated by an addition horizontally and vertically from the
block-wise disparities. Assume Dh((x, y), (x + 1, y)) is the
block wise horizontal disparity for the EI at the coordinate (x,
y) to its neighbor at the right side, and Dv((x, y), (x, y + 1))
is the block wise vertical disparity to its neighbor at the bot-
tom side. The horizontal and the vertical sparse-set-centered
disparity for the EI at (x, y) to the EI at (xs, ys) are calculated
by: Dh((x, y), (xs, ys)) ={∑xs−1

i=x Dh((i, y), (i+ 1, y)), xs > x∑x−1
i=xs
−Dh((i, y), (i+ 1, y)), x > xs,

Dv((x, y), (xs, ys)) ={ ∑ys−1
i=y Dv((x, i), (x, i+ 1)), ys > y∑y−1
i=ys
−Dv((x, i), (x, i+ 1)), y > ys.

Disparity estimation: However, the calculated disparities
are imprecise. In order to obtain more accurate disparities,
a refinement search around the calculated sparse-set-centered
disparities is carried out. The search is aiming at minimizing
the MSE further between two EIs under consideration, i.e., an
EI outside the sparse set to an EI within the sparse set with a
range r. The arrows in the blue box in Fig. 6 indicate that the
refinement is performed for all EIs at coordinate (x, y) to the
EI centered at (3, 3) in the sparse set within a range of r = 2.
This process is repeated for the EIs centered at (3, 6), (6, 3),
and (6, 6). The results are two estimated disparity maps of
resolution 10 by 10 for the horizontal and the vertical direc-



tions.
The rationale for estimating the disparities in two steps,

i.e., from the block-wise disparity to the sparse-set-centered
disparity, is to increase the accuracy of the disparity estima-
tion. This is because it is likely to find a good match for an
EI from its direct neighbors. By first performing an estima-
tion between neighbors and then a refinement, direct disparity
estimation between two distant EIs is avoided.

HEVC lossless encoding: Four disparity maps are en-
coded losslessly by using HEVC intra. The maps are the two
block-wise disparity maps and the two disparity residue maps,
which result from the subtraction between the estimated and
the calculated sparse-set-centered disparity maps.

The four disparity maps have a smooth property, which
is also the reason for choosing them as the disparity repre-
sentation formats for coding. The four maps are encoded in-
dependently, because the HEVC intra can reduce the spatial
redundancy efficiently. Adding inter frame prediction did not
improve the coding performance in our experiment.

Reconstruction: A full plenoptic image is reconstructed
from the decoded sparse plenoptic image set. As the Fig. 7
shows, the EIs from the decoded sparse image set are placed
into their original coordinates within the full plenoptic image.
Based on the estimated sparse-set-centered disparities, the un-
known EIs are obtained from the known EIs by a disparity
shift. If multiple known EIs are available for an unknown EI
within the range r, they are averaged. As an example in Fig.
7, EI at coordinate (1, 1) is extrapolated from EI at (3, 3), and
EI at (5, 4) is interpolated from four known EIs.

After the interpolation or extrapolation process, there are
still missing areas in each of the reconstructed EIs. Inpaint-
ing approaches in general can be used to fill the missing areas.
In our work, a fluid dynamic inpainting approach [14] is em-
ployed to inpaint the missing areas. This inpainting method
assumes that the isophotes in the image as flows. The missing
data is filled by solving the Navier-stokes equation.

Fig. 7. Reconstruction of plenoptic images with r = 2. EI at
(1, 1) is extrapolated, and EI at (5, 4) is interpolated.

HEVC inter frame/displacement intra encoding: The
HEVC encoder is modified for the prediction of plenoptic
images in coding. During the initialization of the modified
encoder, the reconstructed plenoptic image from the Recon-
struction process is loaded into the picture reference list in

HEVC and available for inter frame prediction. During en-
coding, both intra prediction and inter prediction are per-
formed, the best coding mode with the RDO for each cod-
ing block is chosen for the prediction. Prediction residues are
quantized, transformed and entropy encoded as in HEVC. The
coded bit-stream is formed together with the lossless coded
side information such as prediction vectors and mode signal-
ing flags. The intra prediction used here can also be either
HEVC original intra or the displacement intra.

The final coded bit streams consist of three components,
which are: 1) coding of sparse sample set from HEVC in-
tra/displacement intra encoding , 2) coding of disparity maps
from HEVC lossless coding, and 3) coding of full plenop-
tics from HEVC inter frame/displacement intra encoding. We
name our proposed scheme as 1) proposed scheme and 2)
proposed+displacement intra (proposed +Disp.) based on the
coding methods for each component listed in Table 1.

Table 1. The coding methods for each component

Coding components The proposed
scheme

The proposed +
displacement intra

Sparse sample set HEVC intra Displacement intra

Disparity maps
HEVC intra
(lossless) HEVC intra (lossless)

Coding of full plenoptics
Modified encoder
with HEVC intra

Modified encoder with
displacement intra

3.2. Decoding

Decoding of sparse sample set: The sparse plenoptic image
set is decoded.

Decoding of disparity maps: The lossless coded block-
wise disparity maps and the disparity residue maps are de-
coded.

Disparity calculation and Reconstruction: These proce-
dures are identical to the ones in the encoding. The two es-
timated sparse-set-centered disparity maps are reconstructed
from the block-wise disparity maps and the residue maps.
With the sparse image set and the disparity maps, a full
plenoptic image is reconstructed.

Decoding of plenoptics: As an inverse process of HEVC
inter frame/displacement intra encoding, a plenoptic image
is decoded by using the reconstructed plenoptic image as a
prediction reference.

3.3. Scalability:

The proposed scheme is scalable and can be viewed as hav-
ing three layers. The first layer is the sparse plenoptic image
set, which is in fact a sparsely sampled plenoptic image. Ren-
dered views can be obtained directly from this image. The
amount of angular information in this image depends on the
sampling factor s. A smaller s implies more angular resolu-
tion can be achieved for the rendering. The second layer is



the reconstructed full plenoptic image given that the disparity
maps are available. The reconstruction quality depends on the
factor s and how well the disparity estimation, the interpola-
tion, and the inpainting are performed. The third layer is the
residues of the prediction by using the reconstructed plenop-
tic image as a prediction reference. When these residues and
their associated information are present, a required quality of
the original plenoptic image in terms of PSNR can be de-
coded.

4. TEST ARRANGEMENT AND EVALUATION
CRITERIA

Light field images Seagull and Fredo [15] were used in the
test. These plenoptic images are densely sampled with a dif-
ferent depth distribution and scene. The original images have
a resolution of 7240 by 5236, and the EI is of 75 by 75 with
a rectangular shape. Because vignetting appears on those EIs
at the corner of the plenopitc images, we cropped the cen-
ter of each EI out with a size of 64 by 64 and attached them
together to form the processed plenoptic images. The pro-
cessed version of the image has a resolution of 6080 by 4544.
All images were transformed into Y UV 4:2:0 format.

HEVC Test Model (HM) reference software version 11
was used for coding of the sparse plenoptic image set, the
block-wise disparity maps and the disparity residue maps.
The sparse plenoptic image set was encoded by using the
HEVC original intra mode and the displacement intra with
Quantization Parameters (QP) 22, 27, 32, and 37. The coding
configurations are set as the ”All Intra-Main” and the ”Low-
delay B-Main” setting in JCTVC-L1100 [16] for the HEVC
original intra and the displacement intra, respectively. The
block-wise disparity maps and the residue maps were encoded
by using lossless intra mode with the Coding Tree Unit (CTU)
of size 16. We also modified the HEVC encoder and inte-
grated the displacement intra into the propose scheme for the
HEVC inter frame/displacement intra encoding. The current
QP used for this was the same as for coding the sparse plenop-
tic image set, and the coding setting was the ”Low-delay B-
Main”.

The parameter for the sampling factor was s = 5, and for
the disparity estimation r = 4. In this paper, an optimization
of these parameters has not been considered. We evaluated
the performance of the proposed scheme by using fixed pa-
rameters.

The quality was assessed on the luminance component
with PSNR, and the bit rate, bits per pixel (bpp), was cal-
culated from the coded bit stream for all Y UV components.
The rate distortion curve is plotted for PSNR vs bpp, and the
BD-PSNR [17] was also computed. The proposed scheme has
been compared to original HEVC intra and the displacement
intra for plenoptic images.

5. RESULTS AND ANALYSIS

The results in Fig. 8 show that the proposed scheme reduces
coding bit rate significantly than HEVC intra for all tested
QPs. However, the displacement intra in HEVC still outper-
forms the proposed scheme for the three higher bit rate points.
But, at the lowest bit rate, the proposed scheme achieves simi-
lar coding efficiency compared to the displacement intra. The
results are consistent for the tested images. In addition, the
BD-PSNR/rate in Table 2 illustrates that the improvement for
the proposed scheme is larger than 3 dB compared to the orig-
inal HEVC intra, or equivalently that bit rate over 40 percent
is reduced.

Fig. 8. Rate-distortion curves for Seagull and Fredo.

Table 2. BD-PSNR/rate: compared to HEVC intra
Image Coding methods BD-PSNR (dB) BD-rate (%)

Seagull
Proposed +3.19 -48.28
Proposed+Disp. +4.54 -63.20
Displacement intra +4.41 -61.91

Fredo
Proposed +3.57 -44.27
Proposed+Disp. +5.06 -58.87
Displacement intra +4.90 -57.85

Table 3. Size (in bytes) of each coded component for the
proposed scheme

QP Disparity
maps

Sparse sample
set

Coding of full
Plenoptics Total

22 17 169 152 131 2 573 297 2 742 597
27 17 169 90 956 1 202 089 1 310 214
32 17 169 50 964 476 943 545 076
37 17 169 26 338 172 196 215 703

Table 3 shows the coding bit rates for each coding compo-
nent of the proposed scheme for Seagull. It can be noticed that
the coding of full plenoptics contributes most of bits to the bit
stream, while the disparity maps add least overhead to the bit
stream. This suggests that an more efficient prediction in the
coding of full plenoptics is essential for improving the over-
all coding performance. As expected, the bit rate reduction is
witnessed by using the proposed+displacement intra, which
surpasses the displacement intra slightly for all the tested bit
rate points shown in Fig. 8. Furthermore, it can be seen in
Table 2 that the bit rate reduction is above 1 percent for the



proposed+displacement intra compared to the displacement
intra.

6. CONCLUSION

In this paper, we have proposed a scalable coding scheme for
densely sample plenoptic images. The scheme represents a
full plenoptic image by its sparse sample set and associated
disparity information. For the encoding, the sparse set and
disparities are encoded accordingly. A full plenoptic image is
then reconstructed from the sparse set and disparities by us-
ing interpolation/extrapolation and inpainting. Consequently,
the reconstructed full image is utilized for a prediction to en-
code the original plenoptic image with a required PSNR. We
further integrated a previously proposed displacement intra
scheme into our proposed coding system. In addition, the
proposed scheme is also scalable such that the rendering can
be performed with the sparse sample set, the reconstructed
plenoptic image, and the decoded plenoptic image.

The coding results demonstrated that plenoptic images
were compressed efficiently by using the proposed scheme.
It outperformed HEVC intra with more than 5dB quality im-
provement or by over 60 percent bit rate reduction when mea-
sured by using BD-PSNR/rate. With the integration of the
displacement intra into the proposed scheme, It reduced the
bit rate by more than 1 percent compared to the displacement
intra only.

7. FUTURE WORK

To optimize the depth estimation, the inpainting process, and
the parameter space, i.e., the sampling factor s and the dis-
parity refinement range r is our future research. In addition,
a detail analysis of the scalability with respect to the network
transmission and the rendering is also our future focus.
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