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Abstract—Accurate scene depth capture is essential for the
success of three-dimensional television (3DTV), e.g. for high
quality view synthesis in autostereoscopic multiview displays.
Unfortunately, scene depth is not easily obtained and often
of limited quality. Dedicated Time-of-Flight (ToF) sensors can
deliver reliable depth readings where traditional methods, such
as stereovision analysis, fail. However, since ToF sensors provide
only limited spatial resolution and suffer from sensor noise,
sophisticated upsampling methods are sought after. A multitude
of ToF solutions have been proposed over the recent years. Most
of them achieve ToF super-resolution (TSR) by sensor fusion
between ToF and additional sources, e.g. video. We recently
proposed a weighted error energy minimization approach for
ToF super-resolution, incorporating texture, sensor noise and
temporal information. For this article, we take a closer look at
the sensor noise weighting related to the Time-of-Flight active
brightness signal. We determine a depth measurement reliability
function based on optimizing free parameters to test data and
verifying it with independent test cases. In the presented double-
weighted TSR proposal, depth readings are weighted into the
upsampling process with regard to their reliability, removing
erroneous influences in the final result. Our evaluations prove
the desired effect of depth measurement reliability weighting,
decreasing the depth upsampling error by almost 40% in com-
parison to competing proposals.

Keywords—Time-of-Flight, active brightness, sensor-fusion,
super-resolution, 3D video, scene depth, depth map upsampling.

I. INTRODUCTION

The ongoing success of three-dimensional (3D) cinema
fuels increasing efforts to spread the commercial success
of 3D to new markets. The possibilities of a convincing
3D experience at home, such as three-dimensional television
(3DTV), has generated a great deal of interest within the
research and standardization community. A central issue for
3DTV is precise scene depth information for Depth Image
Based Rendering (DIBR) view synthesis. Acquiring scene
depth information is a fundamental task in computer vision,
yet complex and error-prone. Dedicated range sensors, such
as Time-of-Flight (ToF) sensor, can simplify the scene depth
capture process and overcome shortcomings of traditional
solutions, like active or passive stereo analysis.

Stereo analysis is a common approach to scene depth
extraction. Feature and area analysis between two camera
views allows for the reconstruction of depth information based
on the camera geometry. However, if parts of the scene are
occluded in one view, or if areas have low or repetitive
texture, stereo matching produces erroneous results [1]. ToF

sensors can overcome most of these shortcomings. They cap-
ture scene depth in real-time, independent of texture structure
and occlusions. Admittedly, current ToF sensors deliver only
limited spatial resolution and suffer from sensor noise [2]. Thus
recent years have shown a multitude of ToF depth upsampling
proposals. Many of these utilize a combination of guidance
sources in the upsampling process, such as texture information
from video [3]–[5], depth measurement reliability [6], [7],
temporal filtering [8], or sensor noise information [9], [10].
All aim for the same goal: Fusing low-resolution ToF sensor
reading with additional information to achieve ToF super-
resolution (TSR).

In 2012, we proposed a TSR approach based on weighted
error energy minimization. In our original contribution we
enforce spatial similarity between neighboring pixels and as-
sumed that edges in texture correspond to object transitions
in depth. To avoid blurring at these important transitions, we
weight the spatial smoothness constraints with texture edges,
so that pixels at edges are less constrained to be similar. Since
texture sources usually contain more edges than actual depth
transitions, we mask the texture information with low reso-
lution depth edge information [11]. Recently, we introduced
additional weighting functions to address sensor noise and
temporal flicker in depth for TSR [12]. For this article, we
take a closer look at the ToF sensor noise model [13] and
analyze depth measurement reliability weighting based on the
received signal intensity, the so called active brightness. The
main contributions of this publication are the deeper analysis
of the active brightness weighting function and the de-coupling
of original depth sensor readings from the depth upsampling
result by introducing an additional error energy term for the
depth measurements.

The remainder of this paper is structured as follows: First
we provide a brief explanation of ToF sensors in Sec. II. In
Sec. III, we describe our proposed active brightness weighting
scheme for TSR. Sec. IV addresses our methodology and Sec.
V shows our evaluation results, before we conclude this paper
in Sec. VI.

II. TIME-OF-FLIGHT SENSORS

As the name suggests, a Time-of-Flight (ToF) sensor mea-
sures the travel time for a reflected light beam from the sender
to an object and back to the receiver. There are two categories
for ToF sensors [14]: Pulse Runtime Sensors, where a pulsed
wave is sent out and a clock measures the time that has passed
until the reflected signal is received again). And Continuous
Wave Sensors, where the phase shift between the modulated
wave signal and its reflected signal is measured). Continuous



(a) Combined Capture Setup (b) RGB Texture

(c) ToF Depth (d) ToF Active Brightness

Fig. 1. Combined ToF+video capture setup (a) and its outputs: RGB Texture
(b), low resolution ToF depth (c) and active brightness (d).

wave ToF sensors are predestined for real-time scene depth
capture, while Pulse Runtime Sensors suffer from low temporal
resolution due to their pulsed nature.

A continuous wave ToF sensor sends out a cosines modu-
lated signal with modulation frequency ν, s(t) = cos(2πνt).
The received signal, r(t) = A · cos(2πνt−Φ), consists of the
reflected cosines modulated signal with amplitude A, due to
signal attenuation, and phase shift Φ, due to reflection. Using
the standard equations for light propagation, depth z of an
object can be determined by

z(Φ) = Φ
c

4πν
. (1)

However, ToF sensors readings suffer from photon shot
noise. Photon shot noise is inversely proportional to the
number of collected photons on the sensor [2]. It is the main
reason for the limited spatial resolution of ToF cameras, since
the single capturing pixel elements on the sensor must be of
an adequate size to collect a sufficient number of photons for
a reliable depth reading. Frank et al. [13] showed that the
effect of photon shot noise can be sufficiently approximated
as a zero-mean Gaussian, with standard deviation σD, inversely
proportional to the active brightness A.

εD ∈ N(0, σ2
D) with σD ∝

1

A
(2)

For 3DTV capture scenarios, ToF sensors are usually
coupled with a video camera. Such a ToF+video combination
is shown in Fig. 1(a). The RGB camera delivers the necessary
video sequence for DIBR view synthesis (Fig. 1(b)), while
the ToF sensor delivers depth readings (Fig. 1(c)) and depth
measurement reliability in form of the active brightness signal
(Fig. 1(d)). Since RGB camera and ToF sensor have differing
spatial resolution, the ToF depth requires upsampling for
DIBR. The next section explains how to incorporate texture
and depth measurement reliability information for ToF super
resolution.

Fig. 2. Proposed ToF upsampling algorithm with texture edge & depth
measurement reliability weighting.

III. WEIGHTED OPTIMIZATION TOF UPSAMPLING

Fig. 2 illustrates our proposed algorithm for ToF upsam-
pling in ToF+video combination, with two input sources: The
video camera and the ToF sensor. For mathematical context,
sources are represented as two-dimensional matrices of pixel
values, e.g. texture frame I = {I(x, y);x = 1, ..., X; y =
1, ..., Y } with X and Y as the maximum indices. Mapping
low resolution ToF depth DL and active brightness AL on the
corresponding texture frame pixel positions, yields D and A,
matching the video frame target resolution, but with a sparse,
irregular value distribution. Time-of-Flight super-resolution
D∗ is achieved by minimizing a combination of two energy
terms: spatial error energy QS and depth error energy QD:

D∗ = arg
D̂

min(cQS + (1− c)QD), (3)

where D̂ is the argument for the energy minimization and
constant c can be used to emphasize one of the input error
energies.

The spatial error energy QS is formed by the horizontal
and vertical similarity errors εH and εV, enforcing similarity
between neighboring pixel. Edge weighting function WE uses
edge information from texture frame I and depth map DL
to relax the spatial similarity constraint at object boundaries,
thus creating a piece-wise smooth value distribution for D∗.
Creating edge weight WE is described in more detail a previous
publication [12]. The key concept is to validate texture edge
information (edge map EI from I) with depth edge information
(edge map ED from DL, upsampled to match EI) to mask out
unnecessary edges in the edge weighting map WE. We call
this approach single-weighted ToF super-resolution (S-TSR).

εH(x, y) = D̂(x,y) − D̂(x+1,y), (4)

εV(x, y) = D̂(x,y) − D̂(x,y+1), (5)

QS =

X,Y∑
x,y=1

WE(x,y)ε
2
H(x, y) +

X,Y∑
x,y=1

WE(x,y)ε
2
V(x, y), (6)

WE(x, y) = 1− EI(x, y) · ED(x, y) (7)

In the original publication [11], the spatial error energy QS
was used directly to fill the missing values in D, thus adopt-



ing erroneous depth readings directly into the ToF super-
resolution result. For this paper, erroneous depth measurements
are suppressed by introducing the depth error energy QD.
Depth error εD enforces similarity between the sparse ToF
depth readings in D and the final super-resolution result D∗.
Transferred into energy terms, we derive depth error energy
QD. Depth measurement reliability weight WD can be used to
remove erroneous depth readings, suppress low reliability, and
emphasize high reliability depth readings in the upsampling
process. Thus, we call this approach double-weighted ToF
super-resolution (D-TSR).

εD(x, y) = D (x, y)− D̂ (x, y) (8)

QD =

X,Y∑
x,y=1

WD(x, y)ε2D(x, y) (9)

The depth measurement reliability weight WD is directly
derived from the sparse active brightness map A with

WD(x, y) =

{ (
A(x,y)
ll

)α
, ll < A(x, y) < lu

0, otherwise
(10)

The concept behind this weighting function is derived
from the photon shot noise model in Eq. 2, together with
practical observations on ToF sensors [15]. Exponent α defines
the basic weighting function based on active brightness A.
The range [ll; lu] limits the active brightness within which
ToF depth readings are considered useful. Eq. 2 supports the
assumption that the best results are achieved with the highest
active brightness. Unfortunately this is not completely true. At
high active brightness levels, photo-generated electrons flood
the capturing pixel element, causing erroneous depth readings.
Therefore it is beneficial to define an active brightness value
range within which the sensor is sufficiently saturated. Outside
this range, the depth readings should be removed from our
determined system. WD is then normalized to form a weighting
value range of [0; 1], with 1 for the most reliable and 0
for discarded depth readings. Based on this weighting, depth
measurements with high reliability have a stronger influence
on the upsampling process, while values with lower reliability
have less.

The basic concept of D-TSR was introduced in the above
mentioned previous publication [12]. The main contributions
for the current article are the de-coupling between sensor
readings and depth upsampling result through the weighted
depth error energy QD, and the following deeper analysis of
the depth measurement reliability weight WD.

IV. METHODOLOGY

A detailed discussion of the different factors influencing
the spatial error energy QS is provided in [11]. Within this
paper, we analyze the presented depth measurement reliability
function WD to determine an appropriate active brightness
weighting function, and the relationship between spatial error
energy QS and depth error energy QD for best ToF upsampling
results, in a mean squares error sense. In order to determine
good choices for the addition of depth measurement reliability,
we define our ToF upsampling approach as system T with
inputs I, DL and AL, output D∗, and four variables: Exponent

α, active brightness limits ll and lu from Eq. 10, and constant
c from Eq. 3:

D∗ = T (I,DL,AL, [α, ll, lu, c]) (11)

To rate the performance of system T , we created a set of
12 different test cases. Each test case consists of four single
frames: Low resolution depth and active brightness from a
Fotonic B-70 ToF sensor, plus a target resolution texture frame
for the upsampling process and a depth upsampling reference.
The depth reference is created by averaging the ToF depth
readings over 250 frames (10s), thus reducing the photon shot
noise from Eq. 2, and followed by an upsampling by a factor of
8 using S-TSR. As rating metric we choose the mean squared
error (MSE) between system output D∗ and the reference
depth. Lower MSE equals to better system performance. The
test cases cover several scenarios (checkerboard, reflectivity
gradient, different still scenes) with varying camera orientation
and active brightness saturation. Minimizing MSE over all
12 test cases yields a set of optimized parameters for the
upsampling process: α = 0.185, ll = 100, lu = 4000 and
c = 0.52.

With these results we evaluate our approach against the pre-
vious S-TSR implementation and Joint-Bilateral upsampling
(JBU, [3]). This time with six test cases which have not been
part of the previous parameter estimation. The individual test
cases are: Checkerboard filling the complete image, with well-
exposed (case 1) and slightly under-exposed (case 2) active
brightness. Gray-scale gradient from white to black, filling the
complete image, with well (case 3) and slightly over-exposed
(case 4) active brightness. Two different still color scenes with
maximum depth of 3m (case 5) and 7m (case 6). While cases
1 to 4 represent lab conditions, cases 5 and 6 represent real-
life applications. The evaluation metric is MSE. JBU is a very
popular texture guided depth upsampling approach. It was first
proposed in 2007 and might not be state-of-the-art. However,
its easy implementation leads to a widespread acceptance
and it is often presented in ToF upsampling publications.
Therefore JBU is considered a good choice of reference to
allow comparisons between different proposals using different
test data.

V. RESULTS

Fig. 3 shows the MSE comparison between different depth
upsampling approaches, normalized with respect to the JBU
upsampling. D-TSR outperforms the competing approaches
for every case, with an overall decrease in MSE of 37.5%,
compared to JBU, respectively 24% compared to S-TSR. These
results support the validity of depth measurement reliability
weighting for ToF upsampling. The positive influence of the
depth measurement reliability weight is especially noticeable
between the cases 1 & 2 and 3 & 4. Both case combinations
each represent identical content, but at different active bright-
ness saturation. With the former (case 1 and 3) well saturated
in terms of active brightness, and the latter slightly under-
(case 2) or over-exposed (case 4). The visual results are similar
for all cases. Within the extent of this paper, Fig.4 presents
only images for case 6. Please note the relationship between
high noise in original depth (a) and low active brightness
(b), especially in the background on the right. This noise is
leveled out in the reference depth (c), but still visible in the



0,6

0,8

1

1,2
m
al
ize

d 
M
SE

JBU S‐TSR D‐TSR

0

0,2

0,4

Case1 Case2 Case3 Case4 Case5 Case6

no
rm

Fig. 3. Depth upsampling error in MSE for different upsampling approaches
by a factor of 8. Normalized with respect to JBU results.

(a) Original Depth (b) Active Brightness

(c) Reference Depth (d) JBU

(e) S-TSR (f) D-TSR

Fig. 4. Test case 6: Original depth (a), active brightness (b), reference depth
(c) and upsampling results for JBU (d), S-TSR (e) and proposed D-TSR (f).

JBU (d) and S-TSR (e) upsampling result. The proposed D-
TSR upsampling (f) delivers a result close to the reference
depth. For a detailed evaluation of S-TSR with respect to JBU
and further competing depth upsampling approaches, please be
referred to the previous publications [11], [12].

VI. CONCLUSIONS

In this paper we have presented an important addition to
our recently proposed TSR approach based on error energy
minimization [12]. Original ToF sensor readings are weighted
into the upsampling process with regard to their reliability

based on the active brightness. We determined an eligible
depth measurement reliability weighting function based on a
parameter estimation process. Our results show a significant
decrease in depth upsampling error compared to previous pro-
posals, when validated on independent data. Please be aware
that one should not generalize the specific weighting function
variables [α, ll, lu, c]. The values presented in this paper only
apply to the Fotonic B-70 ToF sensor. Other ToF sensors might
require an adaption of these system variables. However the
overall statement for this contribution remains intact: Depth
measurement reliability weighting significantly increases the
quality for ToF super-resolution, thus simplifying scene depth
acquisition and improving 3D video content quality.
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