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Abstract Obtaining three-dimensional scenery data

is an essential task in computer vision, with diverse

applications in various areas such as manufacturing

and quality control, security and surveillance, or user

interaction and entertainment. Dedicated Time-of-

Flight sensors can provide detailed scenery depth in

real-time and overcome short-comings of traditional

stereo analysis. Nonetheless, they do not provide

texture information and have limited spatial resolu-

tion. Therefore such sensors are typically combined

with high resolution video sensors. Time-of-Flight

Sensor Fusion is a highly active field of research. Over

the recent years, there have been multiple proposals

addressing important topics such as texture-guided

depth upsampling and depth data denoising. In this

article we take a step back and look at the underlying

principles of ToF sensor fusion. We derive the ToF

sensor fusion error model and evaluate its sensitivity

to inaccuracies in camera calibration and depth

measurements. In accordance with our findings, we

propose certain courses of action to ensure high

quality fusion results. With this multivariate sensitiv-

ity analysis of the ToF sensor fusion model, we

provide an important guideline for designing, cali-

brating and running a sophisticated Time-of-Flight

sensor fusion capture systems.

Keywords Sensor fusion �Model sensitivity � Range

data � Time-of-flight sensors �Depth map upsampling �
Three-dimensional video

1 Introduction

Three-dimensional (3D) scene data is a prerequisite in

countless applications for many areas, such as security

and surveillance, robotics, manufacturing, automa-

tion, quality control, entertainment and more. Combi-

nations of image and range sensors, i.e. Time-of-Flight

(ToF) cameras, become more and more popular for

acquiring such 3D data. However, it is often unclear

how different sensor characteristics and noise sources

influence this sensor fusion process.

Acquiring 3D scene data is a fundamental task in

computer vision, commonly addressed by stereo-

vision analysis between two or more cameras [29].

However, this process is complex and error prone.

Occluded areas or repetitive structures lead to

erroneous or missing depth estimations. Nowadays,

it becomes more and more popular to link image or

video cameras with dedicated Time-of-Flight sen-

sors for depth readings. Such ToF cameras can

overcome the shortcomings of stereo-vision analysis
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and deliver real-time depth readings [22, 30].

Nonetheless, ToF cameras are not without short-

comings of their own, with low spatial resolution

and high sensor noise as the most prominent ones.

Therefore additional two-dimensional (2D) informa-

tion from a high-resolution charge-coupled device

(CCD) image sensor is often used to enhance the

ToF depth readings.

Over the last couple of years, 2D image and 3D

ToF depth sensor fusion has been a very active

research field. Early research in this area includes the

use of Markov random fields (MRF) to fuse high-

resolution texture data with low-resolution depth data

[6], and joint-bilateral upscaling (JBU), proposed by

Kopf et al. [21]. Especially JBU received a lot of

attention, leading to several variations and improve-

ments, mainly addressing ToF sensor noise [5, 12, 19].

Other sensor fusion approaches include non-local

means (NLM) filtering [16], weighted mode filtering

[24] and weighted error energy minimization [31].

While all these proposals have varying solutions for

spatial ToF depth upsampling and depth noise filter-

ing, they share the concept of depth to video mapping,

based on the projective geometry between ToF and

CCD sensor.

For this article, we take a step back and look at

uncertainties in the projective geometry between two

sensors and the effect on ToF sensor fusion. We

consider both global and local uncertainties: Global

uncertainties affect the depth mapping in general.

They are introduced by errors in the intrinsic and

extrinsic camera calibration estimation between the

fused sensors. Local uncertainties affect each

mapped depth value separately, due to its amount

of ToF sensor noise. We evaluate the impact of each

uncertainty individually and assess the impact of the

combined uncertainties on the depth mapping

process.

The remainder of this paper is organized as follows:

at first we briefly introduce the different aspects of ToF

sensor fusion, including the general ToF principle,

noise sources, calibration, value mapping and depth

upsampling in Sect. 2. We then discuss the ToF sensor

fusion error model in Sect. 3 and present its multivar-

iate sensitivity analysis in Sect. 4. Based on our

findings, we propose some general course of action for

ToF sensor fusion in Sect. 5. Finally, we conclude our

contribution in Sect. 6.

2 Time-of-Flight Sensor Fusion

In this section, we introduce the theoretical back-

ground for ToF sensor fusion, consisting of the ToF

sensor itself and the fusion process with high resolu-

tion CCD sensors.

2.1 Time-of-Flight Sensors

In order to understand ToF sensor fusion, it is

important to understand the ToF sensor. So, at first,

some of its aspects and special characteristics are

discussed.

2.1.1 Time-of-Flight Principle

A ToF sensor, as the name suggests, measures the

round-trip time tRTT for a reflected light beam from the

sender to an object and back to the receiver. Based on

the standard equations for light propagation, the

distance d to an object is then determined by the

velocity of light c in the current medium. This distance

d is also called depth.

d ¼ tRTT � c
2

ð1Þ

ToF sensors deliver real-time depth readings and,

unlike stereo analysis, do not suffer from occlusions or

inadequate texture. We distinguish between two

different ToF concepts [18]: Pulse run-time sensors

measure the time which has passed between sending

and receiving a light pulse (Fig. 1a), continuous wave

sensors measure the phase shift between the sent and

received signal (Fig. 1b).

Both sensor types have their own field of applica-

tion. Pulse run-time sensors can operate at very high

distances of 1 km and more [23], but suffer from low

temporal resolution due to their pulsed nature [14].

Continuous wave sensors, on the other hand, are

predestined for motion scene depth capture, however

the modulation frequency fm limits their depth sensing

range to the non-ambiguity interval L [22],

L ¼ c

2fm
: ð2Þ

In general, continuous wave sensors are more

common for ToF sensor fusion, since, for most

applications, temporal resolution is more highly

valued than maximum depth sensing range. However,
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the concepts presented in this article are valid for both

types of ToF sensors.

2.1.2 Error Sources

The accuracy of ToF depth readings is affected by

several different error sources. We can categorize

them roughly into internal and external sources [22].

Internal effects relate to the emitting photo diodes and

the receiving sensor. Typical effects include thermal

noise, quantization noise, reset noise and photon shot

noise. Most of these noise sources have already been

addressed on the sensor manufacturer side, e.g. by

signal processing and cooling solutions, and can be

ignored for ToF sensor fusion. Photon shot noise

however, cannot easily be discarded [22]. Photon shot

noise is inversely proportional to the active bright-

nessA, the received optical power of the reflected ToF

signal, and it is the main reason for the limited spatial

resolution of ToF sensors: Every capturing pixel

elements on the sensor must be of an adequate size to

collect a sufficiently large number of photons for an

accurate depth reading. In other publications the active

brightness is also called intensity or amplitude and is

usually provided in arbitrary units defined by the

camera manufacturer.

External effects depend on the captured scenery

and are therefore difficult to generalize. Low reflec-

tive surface might absorb a large portion of the sent

signal, leading to low active brightness levels, equiv-

alent to a high photon shot noise, or completely

invalid depth readings. The same is true for very

distant objects. Close or highly reflective objects, on

the other, hand can flood the capturing pixel element

with photo-generated electrons, leading to erroneous

depth readings [4]. Furthermore, signal reflection and

scattering at non-lambertian surfaces might cause

invalid depth readings. Another error, characteristic

for range sensors, are the so-called ‘‘flying’’ or

‘‘mixed’’ pixel. This phenomenon occurs when the

received signal is reflected from two different dis-

tances, for example, at foreground-background

boundaries or objects moving at high speed [26].

While it is often not possible to ‘‘repair’’ the effects of

these external noise sources, it is possible to identify

problematic areas based on the active brightness

signal. Therefore it is beneficial to define a plausible

range for active brightness values, outside which the

affected depth readings are dropped from the follow-

ing ToF sensor fusion process [31]. Within this range,

signal processing can help to reduce the effects of

noisy and erroneous depth readings [26].

2.2 Sensor Fusion

Combining ToF data with a high resolution 2D image/

video sensor requires three steps: At first the capturing

setup must be carefully calibrated, both within respect

to each sensor’s individual instrinsic parameters as

well as the overall extrinsic relation between the

different sensors. Based on the projective geometry

obtained by the calibration, all ToF depth readings are

mapped onto their corresponding position on the high

resolution video frame. Finally, some kind of interpo-

lation or upsampling algorithm must be applied to fill

the missing depth values for a dense depth map at

target resolution. These three steps are briefly

explained in the following sections.

2.2.1 Calibration

The purpose of the camera calibration is to obtain the

necessary camera parameters for the projective value

mapping. The calibration process is divided into two

(a) Pulse Runtime (b) Continuous Wave

Fig. 1 Classification of

different ToF systems [18]
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parts: the first is estimating the intrinsic parameters of

each individual camera, and the second, estimating the

extrinsic relationship between the cameras. A possible

third step, calibrating the depth readings of the ToF

sensor, might be necessary depending on the choice of

ToF camera. However, for most cases, the depth

calibration should have occurred at the manufacturer’s

side and can be discarded.

Intrinsic calibration for standard 2D video cameras,

based on checker-board patterns, is a well-docu-

mented process [33]. Popular tools, such as the

camera calibration toolbox by Bouguet [2], are easy

to use and deliver reliable results. Since ToF cameras

also provide an intensity image in the form of the

active brightness signal, the same tools can be applied

for the intrinsic ToF camera calibration and the

extrinsic calibration between the different cameras

[11].Table 1 lists the different camera parameters

estimated in the calibration process. The focal length

and principal point form the individual calibration

matrices K.

K ¼
fx ¼ f=dx g x0

0 fy ¼ f=dy y0

0 0 1

2
4

3
5; ð3Þ

where dx and dy denote the capturing pixel element

dimensions to transfer focal length f in pixel values.

The skew coefficient g denotes the angle between the

x- and y-sensor axes. For customary video sensors with

rectangular pixel the skew is set to g = 0. Radial and

tangential lens distortion coefficients are used to

correct distortions due to the optical system. Brown’s

distortion model [3] is commonly used to derive the

undistorted, pinhole camera pixel coordinates (x,y)

from the original, measured coordinates (x0,y0):

x ¼ x0 þ x a1r2 þ a2r4
� �

þ b1 r2 þ 2x2
� �

þ 2b2xy

ð4Þ

y ¼ y0 þ y a1r2 þ a2r4
� �

þ b2 r2 þ 2y2
� �

þ 2b1xy

ð5Þ

with

x ¼ x0 � x0; y ¼ y0 � y0; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
ð6Þ

The full model can add up an unlimited number of

coefficients, however, typically, one or two of each

coefficient are sufficient [15].

2.2.2 Value Mapping

The next step in the sensor fusion process is to map the

ToF depth readings on their corresponding pixel

positions in the high resolution video frame. For the

mathematical context, individual images are repre-

sented as two-dimensional matrices of pixel values,

e.g. I = {I(x, y); x = 1,…,X; y = 1,…,Y} with X and

Y as the maximum indices. A combined video plus

ToF setup delivers the high resolution texture frame I

and a low resolution depth map DL = {DL(xL, yL);

xL = 1,…,XL; yL = 1,…,YL}. The coordinates (x,y)

and (xL,yL) are Euclidean pixel coordinates in 2D

space with XL\X and YL\Y, representing the captured

3D-world point mW in pixel coordinates. Additionally

the ToF cameras delivers distance zD = DL (xL,yL) for

each pixel, with respect to the ToF sensor. With this

depth information, both camera calibration matrices

plus the rotation matrix R and translation vector h = [

hx, hy, hz]
T between the cameras, it becomes possible

to map each ToF pixel mD = [xL/zD, yL/zD,1]T on its

position mW in 3D world-space, and from there to its

corresponding position mI = [x/zI, y/zI,1] T in the high

resolution texture frame, with zI as the new distance

between object and 2D video sensor:

zImI ¼ zDKDK�1
I Rjh½ �mD ð7Þ

Figure 2a illustrates the value mapping process for

a combined video and ToF capture setup (2b), where

CD denotes the ToF camera and CI the video camera

point of view. Performing the projection for every

known value in DL on an empty frame with an equal

size as I gives the high resolution depth map

D = {D(x,y); x = 1,…,X; y = 1,…,Y} from the same

Table 1 Camera calibration parameters

Parameter Symbol Unit

Intrinsic

Focal length f (mm)

Principal point coordinates x0, y0 (pixel)

Radial lens distortion coefficients a1, a2

Tangential lens distortion coefficients b1, b2

Extrinsic

Translation in x,y,z-direction hx, hy, hz (mm)

Rotation around x,y,z-axis ux;uy;uz (�)
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viewing angle as the video camera, but with a sparse

and possibly irregular value distribution. Therefore

some kind of filling algorithm is required. This brings

us to the final step of the sensor fusion process.

2.2.3 Interpolation/Upsampling

In the present case, where the ToF camera is combined

with a 2D video camera, the high resolution video

texture can be used in a ‘‘guided’’ upsampling process.

Many solutions exist for guided ToF depth upsam-

pling. Discussing all different upsampling proposals

lies beyond the scope of this article. A good overview

is given by Min et al. [24]. For the article at hand, we

limit ourselves to two proposals. Firstly: Joint bilateral

upsampling (JBU) by Kopf et al. [21], and secondly

our previously proposed weighted optimization

approach for ToF super-resolution (TSR) [31].

Kopf et al. [21] proposed JBU, a guided upsampling

algorithm based on bilateral image filtering introduced

by Tomasi and Manduchi [32]. The bilateral filter is an

edge-preserving blurring filter, based on a nonlinear

combination of a spatial kernel and a (value) range

kernel. Applying the spatial kernel on the low

resolution depth map and the range kernel on a high

resolution guidance source yields the joint bilateral

filter, allowing for high resolution depth maps with

accurate, sharp edges at object boundaries. In the

subsequent years, JBU became the basis for a variety

of ToF upsampling proposals. To name a few: Chan

et al. [5] suggested a noise-aware filter for depth

upsampling, switching between bilateral and joint-

bilateral filtering. Garcia et al. [12] introduced the

pixel weighted averaging strategy, extending the JBU

depth upsampling process with a two-dimensional

credibility map. Kim et al. [19] attenuated the effects

of texture copying by assuming a piecewise linear

world geometry.

Besides the, mainly JBU related, filter based

techniques for ToF upsampling, optimization based

techniques exist, where a cost function is defined and

minimized. The cost function usually consists of one

or more energy terms, combining different aspects,

such as spatial smoothness, edge preservation, tem-

poral consistency and depth reading reliability, in the

upsampling process. Our previously proposed TSR

approach falls into this category: Based on the

piecewise linear distribution of depth maps, we

assume spatial smoothness between neighboring pixel

values. An edge weighting function, based on the

guidance texture frame, is introduced to preserve the

sharp depth transition at object boundaries. Further

weighting functions address the reliability of the depth

readings based on the active brightness and temporal

consistency between sequential depth maps. A

detailed description and evaluation of this approach

can be found in [31].

3 Sensor Fusion Mapping Model

Following up on the basics presented in the previous

section, we can derive a sensor fusion mapping model

with several error sources: The intrinsic parameter

(a) Projection (b) Capture setup

CI

mW

CD
DL

D

zD
yL

xL

x

y

zI

mD

mI

Fig. 2 Projective geometry

a for a combined ToF and

video capture setup b
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estimates for each capturing cameras, the extrinsic

parameter estimates and the per-pixel depth value

noise for the ToF sensor. The noise sources can be

categorized into global and local uncertainties. The

camera calibration estimates are considered global,

since they remain constant for the whole mapping

process. In contrast, the noise in the ToF depth

readings is varying for each pixel and is therefore

considered as a local uncertainty. As shown in Eq. 7,

both global and local uncertainties influence the value

mapping accuracy for position mI as well as the

precision of depth value zI.

Inaccurate mapping positions can lead to serious

problems in the upsampling step when projected

depth values are not properly aligned with texture

guidance information. Inaccurate depth values can

lead to problems in later post-processing steps, i.e.

object/shape detection or Depth Image Based Ren-

dering (DIBR) [7]. Correct mapping is particularly

important for sharp depth transitions at object

boundaries [25]. Figure 3 shows examples for both

cases. Incorrectly mapped depth values inflict mis-

alignment between the depth map and texture

(marked in red), leading to disturbing ghosting

artifacts in the view synthesis (b). Erroneous depth

values (marked in blue) create holes and other kinds

of visually disturbing artifacts.

Looking back at Eq. 7, we can set up an error model

for ToF value mapping by introducing the individual

global and local uncertainties. The estimated mapping

position m̂I and depth value ẑI can be expressed as

ẑIm̂I ¼ ẑDK̂DK̂
�1

I R̂jĥ
h i

m̂D; ð8Þ

where the hat-symbol denotes the respective estimated

value including error e, for example ẑD ¼ ẑD þ ezD

For the global uncertainties we can derive error

estimates straight from the camera calibration process,

see Sect. 2.2.1. We calibrated our combined ToF and

video capture setup, shown in Fig. 2, using the camera

calibration toolbox by Bouguet [2]. Our ToF capture

system is based on a Fotonic B70 [8] ToF camera,

providing a 160 9 120 pixel resolution, combined

with a 1280 9 960 pixel machine vision camera [1].

This leads to an image-to-depth ratio of 64:1, equiv-

alent to a subsampling factor of 8 in the x- and y-

directions, respectively. To ensure sufficiently accu-

rate parameter estimates, we used a set of 50

calibration images. Camera parameters from Table 1

are estimated together with the respective estimate

error e 2 N 0; r2ð Þ , assuming a zero-mean normal

distribution with standard deviation r. The individual

estimated standard deviations for our capture setup are

listed in Table 2 Please note that the respective focal

length error estimates have already been transferred to

Fig. 3 Depth related

artifacts due to inaccurate

depth mapping (line) and

depth value errors (circles)

Table 2 Camera calibration error estimate standard deviations

Parameter Symbol Values

Video

Focal length rfxI
;rfyI

1.8635, 1.8684

Principal point rx0I
; ry0I

1.5879, 1.4937

ToF

Focal length rfxD
;rfyD

0.7683, 0.7707

Principal point rx0D
; ry0D

1.2201, 0.9768

Radial coeff. ra1D
;ra2D

6.4�10-7, 1.7�10-9

Tangential coeff. rb1D
;rb2D

1.1�10-6, 7.9�10-7

Extrinsic

Translation rhx
;rhy

; rhz
0.8747, 0.8507, 0.8735

Rotation rux
;ruy

;ruz
0.0854, 0.1072, 0.0251
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pixel values. In this manner it is easily possible to

combine the individual error estimates in error matri-

ces E, for example

K̂ ¼ Kþ
efx 0 ex0

0 efy ey0

0 0 0

2
4

3
5 ¼ Kþ EK ð9Þ

and in a similar manner for rotation matrix R̂ and the

translation vector ĥ. Uncertainties in the lens distortion

coefficients for the ToF camera influence the accuracy

of the measured pixel position mD. The estimated

pixel position m̂D is derived by applying the ToF lens

distortion coefficients errors to Brown’s lens distortion

model from Eq. 4 and 5. The video camera lens

distortion coefficients have no effect on the actual

value mapping process.

Looking at Table 2, the uncertainties for the ToF

focal length estimates appear to be significantly

smaller than for the video camera. This effect is due

to the transformation from millimeter to pixel values.

In the given setup the ToF pixel are 8-times larger

compared to the video pixel size. Therefore the actual

estimation precision for the ToF parameters is larger

than for the video parameters. The difference in

estimation precision between the two sensors is due to

the low resolution of the ToF sensor, resulting in

inaccuracies for the camera calibration corner

extraction.

After identifying the global uncertainties with the

assistance of the camera calibration toolbox, the local

uncertainty is then dealt with. As mentioned in Sect.

2.1.2, the error ezD
in depth measurement is related to

the photon shot noise. Photon shot noise is theoreti-

cally Poisson distributed [4], however Frank et al. [9]

proved that it can be sufficiently approximated as a

zero-mean Gaussian, with standard deviation rzD

inversely proportional to the active brightness A, with

ezD
2 N 0; r2

zD

� �
and rzD

/ 1

A
ð10Þ

Since active brightness A is usually provided in

arbitrary units, the exact relationship has to be

determined for each specific kind of ToF sensor. To

identify the Fotonic B70’s depth deviation versus

active brightness relation, a test set of 8,000 samples

points at varying active brightness levels was created.

For each point, 200 individual depth samples were

captured. The standard deviation over the 200 depth

measurements yields the standard deviation rzD
for the

specific active brightness value A at the sample point.

Fitting a curve to our measurements in MATLAB, we

derive

rzD
¼ 300

1

A0:8
ð11Þ

Figure 4 shows the plotted depth deviations against

active brightness value A and the derived function for

rzD
. Eq. 11 accounts well for the measured data with a

fit standard error of 0.58 (RMSE).

After identifying the individual parts of the TOF

sensor fusion mapping model in Eq. 8, a sensitivity

analysis was performed to determine which compo-

nents are the most crucial for a high quality ToF sensor

fusion.

4 Multivariate Analysis

With the known error distributions from the previ-

ous section it is possible to identify the impact of

individual noise sources by a variance-based sensi-

tivity analysis [27]: The sensitivity of the sensor

fusion mapping model to a noise source is measured

by the output standard deviation (or variance)

caused by that input source. The analysis was split

into three parts. Firstly, the effects of global

uncertainties on mapping position and depth value

deviation were evaluated. Then at the effects of the

local uncertainty rzD
. Finally, other influencing

factors, such as pixel position and sensor distance

were investigated.

Fig. 4 Depth value deviation with respect to active brightness

level for Fotonic B70 ToF camera

3D Res (2014) 5:18 Page 7 of 16 18

123



Table 3 Global

uncertainty sensitivity

analysis

Parameter Distance zD (m)

0.5 1 3 5 7

Mapping position standard deviation rmI
(pixel)

Intrinsic

Video

f̂xI
0.0192 0.0193 0.0200 0.0193 0.0196

f̂yI
0.1181 0.1153 0.1201 0.1223 0.1204

x̂0I 2.4927 2.5016 2.4936 2.5548 2.5652

ŷ0I 2.2485 2.2310 2.1599 2.2508 2.2571

ToF

f̂xD
0.1658 0.1612 0.1657 0.1617 0.1621

f̂yD
0.0408 0.0418 0.0415 0.0414 0.0416

x̂oD 11.797 12.396 12.216 12.250 12.085

by0D 7.8619 7.6321 7.7376 7.9775 7.7899

âD; b̂D
B 10-4

Extrinsic

ĥx
0.1125 0.1138 0.1125 0.1156 0.1134

ĥy
0.1050 0.1058 0.1101 0.1044 0.1083

bhz
0.0041 0.0046 0.0052 0.0094 0.0171

ûx 7.5484 7.2369 7.3095 7.3390 7.2158

ûy 11.583 11.576 11.638 11.537 11.662

ûZ 0.0370 0.0360 0.0366 0.0363 0.0359

Parameter Distance zD (m)

0.5 1 3 5 7

Depth value standard deviation rzI
(mm)

Intrinsic

Video

f̂xI; f̂yI
B10-10

x̂oI; ŷoI B10-10

ToF

bfxD
0.0332 0.0323 0.0332 0.0324 0.0326

bfyD
0.0072 0.0074 0.0073 0.0073 0.0073

bx0D 2.3605 2.4808 2.4456 2.4557 2.4278

by0D 1.3858 1.3453 1.3639 1.4062 1.3731

âD; âD B10-5

Extrinsic

bhx; bhy
B10-9

bhz
0.7418 0.7641 0.7145 0.7425 0.7471

bux 1.7811 1.7119 1.7213 1.7515 1.7077

buy 0.6512 0.6928 0.6826 0.6768 0.7022

buz 0.0081 0.0079 0.0081 0.0080 0.0079
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4.1 Global Uncertainty Sensitivity

Each global uncertainty was assessed individually. All

parameter estimates except one are kept constant,

taking the camera calibration result as reference. Only

the parameter in question is assumed noisy. The

respective noise characteristics are given in Sect. 3,

Table 2. For each sensitivity analysis a Monte Carlo

(MC) simulation with 2,000 samples was performed to

assess the standard deviation in mapping position and

depth value. Since the model in Eq. 8 depends on input

depth zD, each analysis was performed at five different

distances over the capture range of our ToF sensor

from 0.5 to 7 m. Table 3 shows the resulting standard

deviations in mapping position rmI
(in pixel) and

depth value rzI
(in mm) for a pixel at central position

mD = [xL/2, yL/2]T.

An investigation of the results in Table 3, shows

that it is possible to identify a couple of characteristics

for the ToF sensor fusion mapping model with regard

to global uncertainties:

The influence of intrinsic parameter uncertainties

on the precision of mapping position rmI
and depth

value rzI
is constant over the whole capture range

(0.5–7 m). Although the input deviations for intrinsic

video parameters are larger (see Table 2), the preci-

sion of mapping position m̂I is more sensitive to

deviations in the ToF parameter estimation. Overall,

the focal length estimates f̂D and f̂I are of sufficient

precision to ensure quarter-pixel precision for map-

ping position m̂I with 99\% confidence (three standard

deviations). Uncertainties in principal point estimates

can lead to a large standard deviation in mapping

position. Obviously, uncertainties in the lens distortion

coefficients have almost no effect, with mD = [xL/2,

yL/2]T so close to the principal point. These will be

revisited at a later stage, evaluating the effects of pixel

position in Sect. 4.3.1. For extrinsic parameters,

uncertainties in z-direction estimates ĥZ and ûZ hardly

affect the mapping position. Then again, the ToF

sensor fusion mapping model is highly sensitive to any

uncertainties in extrinsic rotation ûx and ûy with

regard to the mapping position. Concerning depth

value deviation rzI
, intrinsic parameters have barely

any influence, with the ToF principal point estimates

x̂0D and ŷ0D as the only exception. Rotation uncer-

tainties have only a minor effect on the depth value,

compared to their effect on the mapping position.

Obviously, deviation in extrinsic translation ĥZ influ-

ences the depth value precision. Summarizing the key

points of the global uncertainty sensitivity analysis, it

is possible to derive:

1. The influence on global uncertainties on mapping

position and depth value precision is constant over

depth.

2. Precise principal point estimation is crucial for

adequate value mapping accuracy.

3. Uncertainties in x- and y-rotation should be kept

as low as possible.

4. Global uncertainties barely influence the depth

value precision.

4.2 Local Uncertainty Sensitivity

After addressing the individual global uncertainties,

the investigation turns to the local uncertainty rzD
.

Again, the desire is to analyze the ToF sensor fusion

mapping model sensitivity over the whole capture

range. The same five depth sample points for zD are

taken as for the global uncertainty analysis. For each

sample point, ten active brightness levels A between a

range from 10 to 2,000 (arbitrary units provided by the

ToF camera software) are assessed. With the derived

relationship between depth standard deviation and

active brightness from Eq. 11, the respective depth

reading standard deviation rzD
is calculated to simu-

late the ToF depth reading ẑD with ẑD ¼ zD þ
Nð0; r2

zD
Þ .Individual MC simulations are performed

with 2,000 samples for each active brightness and

distance combination. Table 4 shows the resulting

deviations in mapping position rmI
and depth value rzI

for a pixel at central position mD = [xL/2, yL/2]T.

The first and most prominent result is how little

depth value uncertainties affect the mapping

position precision. Apart from the combination of

close capture distance zD and low active brightness A,

the deviation in mapping position is below a single

pixel. The close distance, low active brightness

combination is an extreme case and highly unlikely.

Usually, the active brightness is rather high at close

distances, due to the short reflection distance and the

propagation of light.

Therefore it is possible to safely discard any local

uncertainty effects on the mapping position in ToF

sensor fusion. However, the actual depth value
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deviations rzI
is obviously sensitive to the input depth

deviation rzD
, as shown in the bottom half of Table 4.

Deviations in input depth rzD
translate 1:1 into the

mapped depth value deviation rzI
, constantly over the

whole capture range.

The maximal acceptable value for rzI
depends on

the desired application and capture range. For exam-

ple, many DIBR tools, such as the MPEG view

synthesis reference software [17], rely on 8-Bit depth

representations. Covering a relatively small scene

depth range of 5 m already yields a quantization step

size of almost 2 cm. With 95 % confidence (two

standard deviations) any depth value with variance

rzD
� 10 mm will be within the correct quantization

step or its direct neighbor. Other applications, such as

product quality control, might require higher preci-

sion, however in such cases it is usually easier to

control capture conditions and active brightness

levels. Summarizing the key points of the local

uncertainty sensitivity analysis, it is possible to derive:

1. Local uncertainties barely influence the mapping

position precision.

2. Input depth value precision translates 1:1 to the

mapped depth value precision.

3. Depth value precision with rzD
� 10 mm can be

considered sufficient for DIBR applications.

4.3 Other Influences

There are two more factors that should be considered

in the ToF sensor fusion mapping model: The

measured pixel position in the original depth map,

and the mapping distance, i.e. the distance between

video and ToF sensor.

Table 4 Local uncertainty sensitivity analysis

Parameter Distance zD (m)

0.5 1 3 5 7

A rzD Mapping position standard deviation rmI
(pixel)

10 47.5 3.4371 0.7914 0.0827 0.0293 0.0147

50 13.1 0.9027 0.2120 0.0221 0.0079 0.0041

70 10.0 0.6987 0.1608 0.0167 0.0060 0.0032

100 7.5 0.5364 0.1204 0.0129 0.0045 0.0023

150 5.4 0.3806 0.0880 0.0093 0.0034 0.0017

200 4.3 0.2963 0.0704 0.0073 0.0026 0.0013

300 3.1 0.2139 0.0505 0.0054 0.0019 0.0010

500 2.1 0.1512 0.0333 0.0035 0.0013 0.0006

1000 1.2 0.0828 0.0191 0.0020 0.0007 0.0004

2000 0.7 0.0491 0.0114 0.0011 0.0004 0.0002

Parameter Distance zD (m)

0.5 1 3 5 7

A rzD Depth value standard deviation rzI [mm]

10 47.5 46.945 48.727 48.608 48.330 47.816

50 13.1 12.821 13.148 13.027 13.002 13.248

70 10.0 9.9892 9.9670 9.8341 9.9905 10.290

100 7.5 7.6591 7.4639 7.5708 7.4717 7.6256

150 5.4 5.4387 5.4548 5.4760 5.5544 5.5527

200 4.3 4.2278 4.3715 4.3093 4.2709 4.0659

300 3.1 3.0567 3.1319 3.1779 3.0882 3.1693

500 2.1 2.1599 2.0644 2.0816 2.0911 1.9987

1000 1.2 1.1841 1.1821 1.1918 1.2154 1.1968

2000 0.7 0.7017 0.7069 0.6632 0.6849 0.6741
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4.3.1 Pixel Position

So far sensitivity has been assessed only for a central

pixel mD = [xL/2, yL/2]T, since most global and local

parameters are invariant for different pixel positions.

Most, but not all: Uncertainties in the focal length

parameter estimation f̂ and in the lens distortion

coefficients a and b have an increasing influence on

the value mapping precision with further distance to

the principal point. Figure 5 illustrates the influence of

erroneous lens distortion coefficients, depending on

pixel coordinates. The dots mark reference positions,

assuming perfect lens calibration. The lines mark the

respective range of possible mapping positions m̂I

within a 95\% confidence interval (two standard

deviations) for uncertainties in the radial lens distor-

tion coefficients aD.

To evaluate the effect of the original pixel position

on the ToF sensor fusion mapping model, eight sets of

pixel coordinates are selected, representing different

distances to the principal point in x- and y-direction.

For each pixel position the model sensitivity to

uncertainties in focal length and ToF lens distortion

coefficient estimates is assessed. As mentioned previ-

ously, the video lens distortion coefficients have no

influence on the mapping process. The evaluation is

following the description given in Sect. 4.1. Since the

previous global uncertainty sensitivity analysis

showed that distance zD has no influence on the

mapping position precision, only values for zD = 1 m

are presented. Table 5 shows the resulting standard

deviations for mapping position rmI
.

As expected, the ToF sensor fusion mapping model

becomes more sensitive to erroneous focal length

estimates closer to the image borders. However, the

effect of uncertainties in the radial distortion coeffi-

cients is much more severe. The mapping position

precision for depth values close to the image borders is

the worst regarding all previously evaluated factors.

Then again, the effect of the lens distortion coeffi-

cients decreases rapidly closer to the image center.

Within the central half of the frame it is reduced to

reasonable precision, within the central third, it

becomes negligible compared to other influencing

factors.

A solution to compensate for lens calibration

uncertainties is to use a shared optical system for

video and ToF sensor. Identical optical distortions for

video and depth pixel would ensure correspondence

between video pixel and mapped depth pixel position

m̂I. Such a system is currently being investigated by

the EU FP7 project SCENE [28].

4.3.2 Mapping Distance

A typical combined ToF and video capture setup, such

as the one shown in Fig. 2b, attempts to minimize the

distance between different sensors to ensure a large

similarity in field of view. However, some applica-

tions might require larger distances, for example if

depth from a central ToF sensor is combined with
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Fig. 5 Range of possible mapping position due to erroneous

radial lens distortion coefficients (95 % confidence)

Table 5 Pixel position sensitivity analysis

Parameter Pixel position mD

[10, 10]T [x0D, 10]T [10, y0D]T [x0D, y0D]T

Mapping position standard deviation rmI
(pixel)

bfxI
2.3424 1.3603 1.9029 0.0958

bfxD
3.3077 1.8853 2.7297 0

baD 54.274 3.8731 17.963 0

bbD
0.1655 0.0708 0.1001 0

Parameter Pixel position mD

[40, 30]T [120, 60]T [53, 40]T [107, 80]T

Mapping position standard deviation rmI
(pixel)

bfxI
1.3159 1.1735 1.0482 1.0569

bfxD
1.8080 1.7623 1.1444 1.4910

baD 2.9982 2.4632 0.3646 0.3215

bbD
0.0538 0.0431 0.0230 0.0365
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several satellite video sensors. In this case, the larger

mapping distance might influence the sensitivity of the

ToF sensor fusion mapping model. Our previous

evaluations assumed a translation of hy = 48 mm

between ToF and video sensor.

To evaluate the influence of the mapping distance,

additional translations in x-direction are introduced.

We performed global and local uncertainty sensitivity

analyses for five different sensor translations from 50

to 1,000 mm, following the descriptions in the

respective sections. To limit the extent of this paper,

only a selection of parameters is presented. For

parameters not presented, the ToF sensor fusion

mapping model sensitivity was either invariant to the

sensor translation or the results are consistent over

similar parameters. The results shown in Table 6 are

for capture distance zD = 1 m and central pixel

position mD = [xL/2, yL/2]T. Influences of capture

distance and pixel position conform to our previous

evaluations.

Concerning the mapping distance evaluation, there

is no influence of the sensor translation on the actual

depth value standard deviation rzI
, with the exception

of the video focal length estimates bf I in sensor

translation axis. In our example f̂xI for translation hx.

The influence of the ToF focal length estimates f̂D

does not change with greater mapping distance,

neither does the influence of the principal point

estimates for both sensors. It is also interesting to

note that uncertainties in extrinsic parameter estimates

have a constant influence, independent of the mapping

distance.

The most prominent result, with regard to the sensor

translation, is the increased effect of noise in the depth

measurements on the mapping position precision rmI
.

For a translation of hx = 1 m, the influence of the

depth measurement precision is about 60-times as high

as at the closest distance hx = 50 mm. This relation-

ship is consistent over the whole range of the evaluated

active brightness values A. For best ToF sensor fusion

results, the respective sensors should be positioned as

close as possible. The large influence of sensor

translation provides the motivation behind close

distances between depth and video sensors, going as

far as sharing the same optical system or even the

combination of ToF and video sensors on the same

chip, as recently presented by Samsung [20].

5 Discussion

In the previous section we performed an extensive

multivariate sensitivity analysis for the ToF sensor

fusion mapping model and identified its sensitivity

characteristics. In this section we discuss these

characteristics, their influence on the value mapping

process and how to address them for satisfactory

sensor fusion results. We point out key aspects and

propose methods regarding the conduct over the

complete processing chain, starting from calibration,

over value mapping, to data interpolation/upsampling.

Concerning the camera calibration process, we

established that global uncertainties have little to no

Table 6 Mapping distance sensitivity analysis

Parameter Sensor translation hx (mm)

50 100 200 500 1000

Mapping position standard deviation rmI
(pixel)

Intrinsic

Video

bfxI
0.2441 0.4217 0.7764 1.9337 3.6575

bfyI
0.1059 0.1072 0.1064 0.1064 0.1079

bxoI 2.5442 2.587 2.4739 2.5238 2.5350

by0I 2.2596 2.2038 2.2632 2.1928 2.2123

ToF

bfxD
0.1690 0.1715 0.1673 0.1688 0.1630

bfyD
0.0419 0.0434 0.0425 0.0437 0.0420

bxoD 12.589 12.569 12.391 12.661 12.138

byoD 8.0445 7.9943 8.2815 8.2297 7.9690

Extrinsic

bhx
0.8027 0.8283 0.8282 0.8131 0.8214

bhy
0.7861 0.7882 0.7696 0.7787 0.7909

bhz
0.0613 0.0999 0.1866 0.4298 0.8357

bux 7.7544 7.8173 7.7512 7.6701 7.6982

buy 11.899 11.842 12.195 12.239 12.062

buz 0.0375 0.0382 0.0377 0.0369 0.0372

A rzD Mapping position standard deviation rmI
(pixel)

Local

10 47.5 0.8757 3.5367 8.8170 25.720 52.053

70 10.0 0.1809 0.7304 1.8460 5.1673 11.047

150 5.4 0.1025 0.4041 1.0011 2.8748 5.9369

300 3.1 0.0572 0.2286 0.5948 1.6347 3.3832

1000 1.2 0.0213 0.0891 0.2203 0.6160 1.2746
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impact on the depth value deviation rzI
. The only

exceptions are ToF principal point and extrinsic

rotation estimates at larger capture distances. How-

ever, uncertainties in these parameters have a much

higher impact on the mapping position deviation

rmI
over the whole capture range. The ToF value

mapping process is highly sensitive to uncertainties in

principal point and extrinsic rotation estimates. This

fact becomes even more prominent if we set the

mapping position precision in relation to the individ-

ual global uncertainties, as shown in Fig. 6. Focal

length estimate uncertainties have little influence on

the mapping position, while uncertainties in the

principal point estimation get amplified by a factor

of about 1.5 for video sensor parameters, and by factor

8–10 for ToF sensor parameters. The value mapping

model is also highly sensitive to extrinsic rotation,

with an around 100-times less precise output com-

pared to the input. Please note, here the input deviation

is in angular degrees, so we cannot compare extrinsic

sensitivity directly with intrinsic sensitivity. Anyhow,

from the comparison in Fig. 6 it becomes clear that

accurate principal point and rotation estimates are

most crucial for successful ToF sensor fusion. There-

fore these parameters should receive the most atten-

tion in the camera calibration process.

Nevertheless, even a careful camera calibration

over a large set of calibration images might not deliver

the desired accuracy, especially for the ToF parame-

ters since the low spatial sensor resolution can lead to

uncertainties in the corner extraction, as mentioned in

Sect. 2.2.1. For the majority of the pixel, a slight

mapping inaccuracy might be tolerable. Then again,

incorrect mapping positions around object boundaries

will lead to disturbing artifacts in later processing

steps, as previously shown in Fig. 3. Therefore a

suitable course of action would be to remove values

around depth transitions before the value mapping

process. In this way, incorrectly mapped values around

object boundaries are avoided. Lost depth values can

easily be filled by texture guided interpolation, due to

their piecewise smooth distribution. The benefits of

this approach are shown in Fig. 7. In the original depth

value mapping (a), some values are mapped incor-

rectly on the other side of a depth transition, thus

producing disturbing depth artifacts in the following

ToF super-resolution process (c). Performing the same

ToF super-resolution process after removing depth

values around object boundaries (b), will yield a much

better result (d). Removing values around depth

transitions also has the added benefit of avoiding

‘‘flying’’ pixel and saving computational costs on

solving this problem.

Looking further into the value mapping process, the

results in Table 4 show that it is not necessary to

remove noisy depth readings, because the effect of the

photon shot noise on the mapping position accuracy

becomes negligible at larger capture distances. Only

values below a certain active brightness level A and

below a certain capture distance zD should be

completely removed. All other values will be mapped

precisely enough and can be denoised in a later

processing step.

With the low resolution ToF depth map DL sparsely

mapped on the high resolution frame D, we need to fill

the missing values for a dense depth map, preferably

by utilizing guidance information from the corre-

sponding video frame I. There are many ways to

proceed, as mentioned in Sect. 2.2.3. However, one

aspect of ToF sensor fusion remains unaddressed: The

actual precision in depth measurements. High levels of

photon shot noise can lead to significant noise in the

depth value, as shown in Table 4. The active bright-

ness values A, with their known relationship to the

depth measurement standard deviation rzD
from

Eq. 11, deliver valuable guidance information for

ToF denoising. Since the noise in depth measurement

ẑD translates 1:1 to the noise in the mapped depth value

ẑI, ToF depth denoising can be integrated in the

interpolation or upsampling process [5, 31], or

performed as an independent post-processing step

[10, 13]. To what levels denoising is necessary and
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Fig. 6 Relationship between input parameter standard devia-

tion (Table 2) and ToF value mapping precision (Table 3) at

capture distance zD = 1 m. Please note: For better visualization,

the relationship for the intrinsic parameters is multiplied by a

factor of 10

3D Res (2014) 5:18 Page 13 of 16 18

123



Fig. 7 Visual example of

the effects of erroneous

depth value mapping around

depth transitions and the

benefits of value removal

around depth transitions

Fig. 8 Visual example of

the benefits of active

brightness guided depth

value denoising
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required depends on the desired application. Figure 8

clearly states the benefits of active brightness related

depth measurement denoising. Low active brightness

levels, for example at the window, result in highly

noisy depth readings. Using active brightness as

guidance information, this noise can be removed

easily, as shown in Fig. 4d using a weighted optimi-

zation approach for TSR [31].

Finally, concerning the design of ToF and video

capture system, the mapping distance sensitivity

analysis shown in Table 6 strongly suggests a move

towards close distances between ToF and video

sensors. While the increased sensitivity to focal length

estimate errors is avoided by the previously mentioned

depth value removal around depth transitions, large

translation distances still influence the depth value

mapping precision adversely. Furthermore, large dif-

ferences in field of view can create inconsistencies in

object boundaries between the two sensor views and

create disturbing artifacts for texture-guided upsam-

pling algorithms.

6 Conclusion

In this article a closer look was taken at the

underlying principles of ToF sensor fusion. Effects

of uncertainties in projective geometry and depth

measurements on the value mapping process were

analyzed. Evaluating the ToF sensor fusion mapping

model, a particularly high sensitivity to uncertainties

in principal point and extrinsic rotation estimates was

identified. Since reducing such inaccuracies can be

difficult with standard camera calibration tools, it is

beneficial to remove measurement values around

depth transitions. For most 3D-video applications it

is sufficient, in terms of visual quality, to recreate the

lost values by texture-guided interpolation. In this

way, object boundaries can be kept consistent

between sensor views and disturbing artifacts due

to incorrect value mapping can be avoided. Other

applications, e.g. measurements for quality control

and manufacturing might require more exact details

at depth boundaries. Then again, these applications

are typically performed in controlled environments,

allowing for precise calibration. To avoid incorrect

mapping due to high sensor noise, a combined limit

on capture distance and active brightness is proposed.

Furthermore, the use of active brightness based depth

value denoising algorithms during or after the value

mapping process is encouraged. Concluding this

article, the presented evaluations show a clear

relation between the capture system’s sensor trans-

lation and noise-induced depth value deviation.

Under this light, recent developments towards shared

optics [28], or even a shared sensor [20], become

highly interesting.
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