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Abstract 

Road cycling performance is dependent on race tactics and pacing 

strategy. To optimise the pacing strategy for any race performed with no 

drafting, a numerical model was introduced, one that solves equations of 

motion while minimising the finishing time by varying the power output 

along the course. The power output was constrained by two different 

hydraulic models: the simpler critical power model for intermittent 

exercise (CPIE) and the more sophisticated Margaria-Morton model 

(M-M). These were compared with a constant power strategy (CPS). 

The simulation of the three different models was carried out on a 

fictional 75 kg cyclist, riding a 2,000 m course. This resulted in 

finishing times of 162.4 s, 155.8 s and       s and speed variances of 

0.58 %, 0.26 % and 0.29 % for the CPS, CPIE and M-M simulations 

respectively. Furthermore, the average power output was 469.7 W, 

469.7 W and 469.1 W for the CPS, CPIE and M-M simulations 

respectively. The M-M model takes more physiological phenomena into 

consideration compared to the CPIE model and therefore contributes to 

an optimised pacing strategy that is more realistic. Therefore, the M-M 

model might be more suitable for future studies on optimal pacing 

strategy, despite the relatively slower finishing time. 

1. Introduction 

The last couple of kilometres in a road cycling race is often the most decisive part when it comes 

to determining the outcome of the race. Depending on the course characteristics and the overall 

race situation, a range of race tactics may end up being beneficial. Among these potential tactical 

manoeuvres, the end spurt and the solo break-away attempt are the most frequently used ones. 

With poor sprinting abilities, the solo break-away seems to be the best tactical manoeuvre. In a 

solo break-away at the end of the race, the only objective is to finish in the quickest time possible 

to maximise the probability of winning. In that situation, the pacing strategy may greatly influence 

performance.  

In 1906, Kennelly [1] formulated mathematical relationships between distance and speed 

for speed records at the time. He was the first to suggest that constant speed is correlated to 

performance in numerous locomotive sports such as running, cycling and rowing. However in 

1974, Keller [2] showed that a constant pace strategy is only optimal for long distances, and that 

during short distance races, a fast starting strategy improves performance. The fast start minimises 

the effect of inertia during the acceleration from rest, which over shorter distances constitutes a 

greater proportion of the total work done and, therefore, has a greater effect on the total race time. 

There are also empirical results showing that fast start strategies are superior in middle-distance 

running. Ariyoshi [3], comparing a fast start strategy with a slow start and a constant pace strategy, 

proved the fast start delivers beneficial      kinetics and increases the time to exhaustion. Billat et 

al. [4] studied    middle distance runners performing either an 800 or a 1,500 m race. The results 

suggested that the athletes control their running speed to maintain the time-limit at the sequential 
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anaerobic power constant for the first two thirds of the race. This means a fast start with a 

gradually exponential decrease in speed. Furthermore, this fast start is not an all-out start; instead 

it has a safety margin from exhaustion, which is believed to be constant for the initial first two-

thirds of the race. In contrast, the last one third of the race is described as an all-out sprint. Swain 

[5] studied pacing strategies by numerical calculations of different conditions of wind and 

elevation gradients. He concluded that the power output should be increased on uphill and 

headwind segments, while reduced on downhill and tailwind segments to improve performance. In 

a study of seven male cyclists riding      km on a flat course with varying head- and tailwind, 

Atkinson and Brunskill [6] confirmed the findings of Swain [5] suggesting that a variable power 

strategy is beneficial for performance when external conditions are changing. 

There has also been extensive research into the optimisation of pacing strategies in 

locomotive sports. De Koning et al. [7] determined the optimal pacing strategy for the 1,000 and 

4,000 m track cycling race using iterative simulations. An all-out strategy showed to be optimal in 

the 1,000 m time-trial discipline, while an all-out start followed by a constant power strategy was 

optimal in the 4,000 m pursuit. Gordon [8] introduced an analytical optimisation approach using 

the method of Lagrange multipliers and the critical power concept, resulting in a variable pacing 

strategy for a course with multiple climbs. Cangley et al. [9] took a different approach by using a 

full-scale mechanical simulation model and optimal control theory to optimise the pacing strategy. 

The approach of optimal control in combination with more sophisticated constraints for power 

output is used in the studies of Dahmen [10] and Dahmen et al. [11]. Their  -parameter model, 

constraining power output, is a modification of the  -parameter critical power model [12]. By 

computing a field of optimal pacing strategies, Dahmen [13] shows the applicability of optimal 

pacing strategies for unpredictable circumstances. However, the  -parameter model mentioned 

above does not include the fast and slow components of      kinetics. A mathematical model 

called the Margaria-Morton model (M-M model), which was developed through the rigorous 

studies of Morton [14], accounts for      kinetics in addition to the lactic and alactic components 

of anaerobic work. The M-M model is supplemented with a dynamical constraint for maximum 

power output, dependent on the remaining glycogen store [15].  

The aim of the present study was to determine the optimal pacing strategy when 

implementing the M-M model and compare the results to the critical power model for intermittent 

exercise (CPIE) [16] and the constant power strategy (CPS). We study a race situation where the 

rider has made a break-away at the end of a race, with 2,000 m left to ride. 

2. Method 

A model for simulating time-trial road cycling and optimising the pacing strategy was 

implemented into a MATLAB
®
 program. It solves the equations of motion for road cycling and 

varies the power output to minimise the finishing time.  

2.1. Course and rider 

The course was built up of    cubic splines on the form        where   is the spline function, 

  is the vertical coordinate and   is the horizontal coordinate. The course inclination is expressed 

as               , whereas the course curvature radius is expressed as   
          

 
 

   

      
 

[17]. The course profile being investigated had a      m horizontal distance and a total climb of 

   m, equally distributed on four hills. In this study, no environmental wind and no turns were 

considered in the simulation. 

A fictional male rider with the body mass of       kg was subject to simulation and 

optimisation. His total mass, along with the bicycle and other equipment, was      and the total 

mass moment of inertia of the wheels was   . Therefore, the total inertia in the direction of travel 

was              
 , where    was the wheel radius.  

2.2. Equations of motion 

Equations of motion were built up by expressions for the external forces acting on the rider-

bicycle system (Fig. 1). In these motion equations, the rider-bicycle system was treated as a 
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particle with constant inertia. This particle was set to move along the predetermined course profile 

by solving the equations of motion numerically from start to finish. The forces acting on the rider-

bicycle system were modelled as the propulsive force (   , the aerodynamic drag (  ), the 

gravitational force (  ), the rolling resistance (   ) and the bearing resistance (   ) in accordance 

with Martin et al. [18]. In the following paragraphs, all forces are expressed as scalars but act in 

the directions shown in Fig. 1. 

 

 
Fig. 1 Arbitrary course section with local and global coordinates, as well as the forces acting on the athlete-bicycle system 

 

The propulsive force acted in the direction of travel and was dependent on the rider’s ability to 

generate power output. Thus, it was expressed as: 

 

             (1) 

 
where   was the power output generated at the crank spindle,     was the mechanical efficiency of 

the chain transmission and   was the speed parallel to the road. In this study, the drag force was 

set to be proportional to a constant drag area     and was thus expressed as 

 

    
 

 
             (2) 

 

where    is the incremental drag area due to wheel spoke rotation and   is the air density. The 

gravitational force was modelled as: 

 

            (3) 
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where   is the acceleration of gravity, which may be considered as constant for small vertical and 

horizontal displacements. The rolling resistance [17,19] was expressed as: 

 

                          
  

 
   (4) 

 

where     is the rolling resistance coefficient and   is the normal force acting on the tyres. In 

addition, the wheel bearing resistance was derived from Dahn et al. [20] and was expressed as: 

 

               (5) 

 

where    and    are constants. The sum of all the external forces was set to perform the 

acceleration of rider and bicycle. 

Equations of motion where developed, with Newton’s second law, in the horizontal ( ) 

and vertical ( ) directions with all forces [Eqs. (1)-(5)] projected onto these directions. 

Subsequently, the equations of motion were transformed according to Sundström et al. [21] to 

make distance ( ) the dependant variable and time the independent variable. Consequently, the 

equation of motion was expressed as: 

  

           
     

  
                 

        
       

  
                          

   +tan  cos +(  )2 1    cos + 2     (6) 

 

where   is time and prime denotes differentiation by  . By introducing a new variable, the motion 

equation was transformed into a system of first-order ordinary differential equations that could be 

solved with the 4th order Runge-Kutta method. 

2.3. Optimal design 

The method of moving asymptotes (MMA) [22,23] was combined with the simulation program to 

minimise the finishing time ( ) while altering power output variables (  ) along the course. These 

discrete design variables    were distributed with equal spacing in   at   -m intervals for a total of 

81 variables. The power output between these variables was decided by linear interpolation. The 

numerical optimisation model MMA works in an iterative manner. In each iteration, MMA 

suggests altered variable values to decrease the objective function, which in this case is the 

finishing time.  

Three different approaches were evaluated for the model’s restriction of power output. 

The first one was a simple CPS where no optimisation was performed. The second approach was 

the critical power model for intermittent exercise (CPIE) described by Sundström et al. [24], and 

originally presented by Morton and Billat [16]. The third approach was the M-M model [14], 

which is described in more detail in this section. A diagrammatical representation of the M-M 

model can be seen in Figure 2. It is a hydraulic three-component model, in which each vessel 

volume represents an energy store and the flow of liquid symbolises the energy flow or power. 

The M-M model consists of three vessels that are connected by three tubes. Vessel   is the aerobic 

energy store with infinite capacity, vessel    is the alactic energy store of phosphagens and   is 

the lactic store of glycogen. Three connection tubes enable one-way flow between the vessels. In 

tube   , liquid flows from vessel   to vessel    and in tube    liquid flows from vessel   to 

vessel   . Tube    is placed at the same level as    but allows liquid to flow in the opposite 

direction. All three tubes have maximal flow limitations. The maximal flow through tube    is    

and corresponds to the maximal rate of aerobic energy consumption;    has a maximal flow of    

which corresponds to the maximal rate of lactic energy consumption; and    has a maximal flow 

of    the maximal rate of lactic restore of glycogen. The magnitude of the present flow through 

  ,    and    is decided by the inter-level differences   and  . The lactate threshold is the least 

power output able to induce a drop in the level of  . The dashed lines in Figure 2 represent the 

maximal and minimal hydraulic liquid limits in the M-M model. Initially, the liquid level in all 

vessels was set to the maximal limit. The quantities of  ,  ,   and   in the M-M model are all 

constants, and the small volume of the narrow tube   was neglected in this study.  
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Fig. 2 The Margaria-Morton model with aerobic vessel  , alactic vessel    and lactic vessel   with the narrow tube  .   , 

   and    are one-way connection tubes (where the flow goes from   to    in    and from    to   in   ) while   and   are 

the vessel levels in    and  .   is the power output constrained by the maximal power output   .  ,  ,   and   are 
geometrical parameters of the model 

 

The objective function in the optimisation problem was formulated as:  

 

       
 
     (7) 

 

where   is the total number of discrete distance steps and     is the time corresponding to each 

distance step. Furthermore, the constraints for the M-M model were formulated as: 

 

                       (8) 

                     (9) 

         
            (10) 

 

The volume in the alactic vessel      and lactic vessel    was calculated as: 

 

              
    

   
   

           

     
                   (11) 

 

            
           

     
               (12) 

 

However, if             ,    was switched to     in both Eqs. (11) and (12).       and 

     were the initial and maximal volumes of the alactic and lactic vessels, respectively. Equation 

(10) was introduced to constrain the rider’s power output, in proportion to the level of exertion. 

The current maximal power output (   
) was set to decrease linearly with the level in   [15] and 

was thus expressed as: 

 

    
   

        

     
          (13) 

 

where    is the initial maximal power output, before the level in   starts to fall. 
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For the assessment of the M-M model, a simpler critical power model was used for comparison. 

The critical power model for intermittent exercise (CPIE model) [16], as used in the study by 

Sundström et al. [24], was modelled for this purpose. None of the power output restricting 

approaches considered the internal work of moving the limbs as there is no consensus about how 

to calculate this construct accurately [25]. Therefore, we used a constant gross efficiency that 

compensates for the internal work for constant pedalling frequency. 

2.4. Simulation input data 

The aim of this study was to determine the optimal pacing strategy for a simple 2-D course of 

2,000 m, with four 10-m climbs. The total mass of the rider-bicycle system was calculated to 

      83.9 kg and the total inertia to     85.1 kg, using an equipment mass of 8.9 kg, a 

moment of inertia of     0.14 kg∙m
2
 [18] and a wheel radius of     0.337 m. This rider was set 

to have a maximal rate of aerobic energy expenditure of 2,000 W corresponding to          

75.8 ml∙kg
-1

∙min
-1 

[26]. Consequently, he had a maximal aerobic power output of     450 W, as 

the considered gross efficiency was set constantly at 22.5 %, which is in the range of previously 

reported values [27,28]. The initial maximal power output was set to     1,100 W, which is in 

line with previously reported values on peak power output in sprints [29] and all-out exercise [30]. 

There are no validated values of   ,   ,      and       for this certain rider. Therefore, we 

chose values, influenced by the findings of Margaria [31] for the maximal lactic power (  ), the 

maximal lactic capacity (    ) and the maximal alactic capacity (     ). Furthermore, on the 

basis of the M-M model [14],    should be much smaller than    and   . Considering these 

assumptions, the parameters were set to     500 W,     50 W,       15,000 J and        

7,000 J. The geometrical parameters of the M-M model were set to    0.1 and    0.05, as 

proposed by Morton [15], and    0.76 to account for an lactate threshold at 80 % of        .  

The drag coefficient was taken as     0.638 [32] and the projected frontal area for a 

break hood’s position as    0.562 m
2
 [33] using the scaling laws of Heil. In addition, the 

supplemental drag area of the wheel spokes was set to     0.0044 m
2
, according to Martin et al. 

[18]. The coefficient of rolling resistance was calculated to      0.0042 [34] using a tyre 

pressure of 900 kPa and the transmission efficiency of the bicycle was set to      0.976 [18]. The 

bearing friction coefficients were derived from Dahn et al. [20] at     0.089 and     0.0084. 

Furthermore, the starting speed was set at 10 m∙s
-1

 to mimic a flying start in the break-away. The 

air density was set fixed at    1.2041 kg∙m
-3

 for 20 °C and 101.325 kPa air pressure; no 

environmental wind was considered. The optimisation simulation with the M-M model started 

with all variables set to     0.8      360 W. 

The average aerobic power output from the M-M simulation was set as the critical power 

in the CPIE simulation (    372.2 W). Furthermore, the total anaerobic work produced from 

both lactic and alactic resources in the M-M simulation was set as the anaerobic work capacity 

(     in the CPIE simulation (     15,440.6 J). The maximal power output for the CPIE 

simulation was constant at    
     1,100 W and started with all variables set to      . All 

other inputs were equal to the M-M simulation. The even power simulation was performed using a 

constant power output corresponding to the average power output of the CPIE simulation (    

469.7 W).  

3. Results 

The optimisation routine completed    iterations by changing the power output variables. The 

optimised pacing strategy with the CPIE model and the M-M model is presented in Figs. 3 and 4, 

respectively. The finishing times were       165.2 s,         158.2 s and      159.3 s. Thus, 

in comparison with the CPS simulation, the optimisation of the pacing strategy gave time gains of 

4.2 and 3.6 % for the CPIE and M-M simulations, respectively. Figure 5 shows the variation of 

speed for all three approaches to power output restriction. The variances of speed were       
   

7.8 m∙s
-1

,        
   2.1 m∙s

-1
 and      

   5.3 m∙s
-1

 (the speed variance was calculated as 

     
 

 
          

   , where   was the number of distance steps,    was the speed at distance 

step   and     was the average speed). Moreover, the maximum speeds were     
     16.2 m∙s

-1
, 

     
     15.8 m∙s

-1
 and     

     16.0 m∙s
-1

. The average power outputs were        469.7 W, 

        469.7 W and       469.1 W while the variances of power output were       
   0 W, 

       
   6.7∙10

4
 W and      

   2.4∙10
4
 W (the power output variance was calculated as 
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   , where   was the number of distance steps and    was the power output 

at distance step  ). Furthermore, the remaining available anaerobic work in the CPIE simulation 

was 7.0 J (0.045 % of    ) and the remaining alactic and lactic work in the M-M simulation were 

     1,055.6 J (15 %) and     5,503.8 J (37 %).  

 

 
Fig. 3 Optimised pacing strategy constrained by the CPIE model 

 

 

 
Fig. 4 Optimised pacing strategy constrained by the M-M model 
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Fig. 5 Speed variations for the three modelling approaches 

 

4. Discussion 

Firstly, it was clearly shown in Fig. 5 that the different modelling approaches led to differing 

pacing strategies. By minimising finishing time, the optimisation worked to reduce the speed 

variance while still fulfilling the constraints. It is clear that the three different pacing strategies are 

not equal when it comes to minimising the speed variance. 

The initial stage of the course was covered relatively slowly with the CPS, while the 

optimisation simulations made for faster starts. The M-M simulation had the fastest start, with 

maximal power output reached immediately. It is of course a good idea to reach average speed as 

quickly as possible to reduce the speed variance. However, for the M-M model, it is also beneficial 

to generate a high power output at an early stage to decrease the level in   , to increase the flow 

through   , ultimately increasing the aerobic contribution to power output. There is empirical 

evidence showing that the time to reach          is inversely related to exercise intensity [35,36]. 

In this way, a fast start leads to a higher average power output, which is, of course, beneficial to 

performance. Furthermore, the findings of the fast start being optimal are consistent with the 

findings of Keller [2], Ariyoshi [3] and de Koning et al. [7]. Additionally, Morton et al. [37] 

concluded that any bioenergetic model with a maximum power feedback coupling, dependent on a 

monotonically decreasing fashion on the amount of fuel substrate remaining, would require all-out 

effort for optimal performance. This would suggest an all-out effort (      
) for the entire 

course distance in the M-M simulation. However, due to the gravity and the hills considered in the 

present study, optimal performance required part-wise all-out effort in the M-M simulation. A 

similar maximum power constraint applied in the M-M model is suggested by Morton [38] for the 

critical power model; however, it was not considered in this study. 

In the middle stages of the course, between the first and last summits, the pacing 

strategies for CPS and CPIE had periodically recurrent variations in speed, which was a result of 

the constant and periodic behaviour of the power output distributions (Fig. 3). Conversely, the 

speed variation in the M-M simulation had a decreasing trend as a result of the stagnation in power 

output (Fig. 4) due to the maximal power constraint in Eqs. (10) and (13). This constrained power 

output seems very intuitive as the maximal producible power output really is constrained at high 

exertion. However, it also seems like the maximal power constraint was largely responsible for the 

large remaining volumes     (15 %) and    (37 %) at the finish line. This indicates that the rider 

was not exhausted, but Eqs. (10) and (13) would not allow a power output that is sufficient to 

empty any of the anaerobic vessels. Therefore, future work may develop the M-M model [15] to 

incorporate a modified maximum power constraint. Overall, the variations in power output, seen in 

the middle stages of the course for the optimised simulations, are supported by the theoretical 

study of Swain [5] and the empirical study of Atkinson and Brunskill [6], showing that the power 

output should be altered to meet the external conditions, such as the course inclination. Although 

these variations in power output are to the largest extent a result of the varying altitude, St Clair 
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Gibson and Noakes [39] suggest that the central governor itself, induces oscillatory variations in 

exercise intensity. This central governor theory is based on integrative central neural regulation of 

effort and fatigue in exercising humans [40]. By sensing physiological changes, the central 

nervous system regulates the recruitment of motor units to retain homeostasis. The oscillatory 

governed exercise intensity is a result of the dynamical process in a complex system with different 

peripheral and central, feedback and feedforward systems. Though the central governor model in 

humans is realistic, no study to date has shown that this natural pacing with oscillatory exercise 

intensity is optimal for constant external conditions.  

In the final stage of the course, from the last summit to the finish, there were similar 

pacing strategies in all three simulations (Fig. 5), indicating a minor correlation between modelling 

approaches and pacing in the final stage. The overall speed variance clearly showed a relation to 

the finishing time. The lower the speed variance, the lower finishing time was obtained. This is a 

logical consequence of the drag force’s dependence upon the squared speed (Eq. 2).  

The results of the present study showed that the CPIE simulation yielded the fastest 

pacing strategy. However, it is conceivable to assume that the M-M model better describes the real 

human body’s restriction of power output. The fast and slow components of      kinetics are 

considered in the M-M model while completely omitted in the CPIE model. It has also been shown 

that the rate of refuelling the anaerobic energy stores in real athletes is not described by a linear 

function of time, but rather an exponential time course [41].  Furthermore, if we consider the 

power output generated in the CPIE simulation in the last uphill (Fig. 3) it is not likely that the 

simulated rider would really generate such high power output with an almost emptied storage of 

anaerobic work. In this case, the M-M model performed a more realistic pacing strategy, where the 

rider’s ability to generate power output declined with the decline in the lactic energy store.  

The type of optimisation problem posed for the M-M model makes it impossible to use a 

convergence criterion. The dynamical constraint in Eq. (10) is very sensible to variable values. A 

small alteration in one variable, caused by a small computational error, may affect the constraint to 

be violated by another variable, resulting in an infeasible solution. Therefore, an equal number of 

iterations were performed to compare the different bioenergetic models. Among these iterations, 

the feasible solution with the lowest objective function value was chosen as the optimum. 

Furthermore, the improvement in the objective function between the last two feasible iterations in 

the CPIE simulation was less than      s and for the M-M simulation the same number was less 

than      s. This suggests that further iterations would only result in small improvements. 

Solo break-away attempts do not solely benefit from minimising the time to finish. For 

instance, the perceived distance to another competitor may influence motivation for further 

exertion, thus a fast start strategy may be favourable to demoralise one’s competitors. 

5. Conclusions 

The CPIE model created a pacing strategy that was 0.68 % faster than the strategy constrained by 

the M-M model. However, the M-M model has a more realistic restriction on the rider’s power 

output including the dynamic restriction of aerobic work rate as well as lactic work rate, and of 

course the dynamic constraint on the power output. Furthermore, this includes the limits of 

anaerobic work capacity for different substrates.  According to this, the M-M model yielded an 

optimised pacing strategy that is more realistic than the one obtained from the CPIE model. 

Therefore, it is conceivable to assume that the M-M model is preferable in comparison to the CPIE 

model, for the application of optimal pacing strategies in real-world competition. However, this 

has to be confirmed through validation studies performed on real riders, which is not within the 

scope of the present study. Nevertheless, variable pacing strategies, including the ones derived 

from the CPIE and M-M simulations, had faster finishing times than the CPS simulation on a hilly 

course.  
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