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Abstract— Many Wireless Vision Sensor Networks (WVSNs) 

applications are characterized to have a low duty cycling. An 

individual wireless Vision Senor Node (VSN) in WVSN is 

required to complete the tasks as quickly as possible. The 

execution of the tasks can be speeded up by exploiting the 

inherited parallelism in the tasks by using a hardware platform 

such as FPGA. Traditionally SRAM FPGAs are considered to be 

inefficient for duty cycled applications. This paper presents a low 

complexity, energy efficient and reconfigurable VSN architecture 

based on SRAM FPGA by using a design matrix which includes 

tasks' partitioning, a low complexity background subtraction, bi-

level coding and duty cycling. The proposed VSN, referred to as 

SENTIOF-CAM, has been implemented on a prototype board 

and energy values of different states are measured for three real 

applications. The comparison results with existing solutions show 

that the proposed architecture with SRAM FPGA can achieve 

energy reduction of up to a factor of 69 as compared to software 

VSN solutions and approximately similar energy values to that 

for the FLASH FPGA based VSN solutions. The lifetime based 

on measured energy values shows that for a sample period of 5 

minutes, a 3.2 years lifetime can be achieved with a battery of 

37.44 kJ energy. In addition to this, the proposed solution offers a 

generic architecture with a smaller design complexity on a 

hardware reconfigurable platform and offers easy adaptation for 

a number of applications.  

 
Index Terms— Wireless Vision Sensor Node, SRAM FPGA, 

Wireless Vision Sensor Networks, Architecture, Image coding. 

 

I. INTRODUCTION 

IRELESS Vision Sensor Networks (WVSNs) are 

becoming increasingly prevalent within the research 

community as well as in industry because of the reduced 

infrastructure and maintenance costs, ease of deployment, 

scalability and low power stand-alone solutions [1]. The recent 

advancement in technology has enabled the WVSN to be used 

for a number of potential applications including machine 

vision [2],  
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environmental monitoring [3], smart home [4] and 

surveillance [5][7][8]. WVSNs are often comprised of many 

individual wireless Vision Sensor Nodes (VSNs) which can 

capture and process data. Depending on the requirements, a 

VSN can make decisions [6], or transmit data to a user/server 

for further analysis [2][5][9]. As compared to traditional 

vision monitoring systems, which use wired communication 

and wall power supply, VSNs are interconnected with each 

other by using a wireless link. In the presence of limited 

resources such as processing, memory and wireless 

bandwidth, a VSN is often expected to operate for a greater 

length of time on the available limited energy. In many 

scenarios i.e., too many nodes, hazardous environment, etc, 

the battery replacement/ recharging is not feasible. Hence, the 

lifetime is a critical issue in relation to VSN and has been 

extensively studied in the literature [10][11]. The typical 

lifetime of a VSN can vary from a few days to a few years, 

depending on the application requirement [12].   

In order to extend the lifetime of a VSN, researchers 

generally employ two strategies [2][3][4][5][9][13]. In the first 

strategy, as shown in Fig. 1-(a), no local processing is 

performed on the VSN and raw data is transmitted to the 

server for processing. This strategy has a smaller design 

complexity and consumes a smaller processing energy. 

However, this strategy consumes a greater communication 

energy because of the large amount of data being transmitted 

[3][4]. In the second strategy, depicted in Fig. 1-(b), all the 

required vision tasks are performed on the VSN and only the 

final features are transmitted to the server for analysis [9][13]. 

This strategy consumes a smaller communication energy. 

However, it consumes a greater processing energy on the 

currently available software platforms and has a high design 

complexity with regards to the hardware platforms [2].  

In comparison to the aforementioned two strategies, the 

balanced approach is to partition the processing load between 

the VSN and the server as shown in Fig. 1-(c). This approach 

assists in energy reduction and the design complexity on a 

hardware platform and offers a generic architecture for this 

type of machine vision system [5][2][3][14] which has the 

ability to classify objects by using binary data [30]. In this 

paper, the approach shown in Fig. 1 (c) has been employed for 

VSN implementation. In relation to implementation, a VSN 

can be realized by using software and/or hardware platforms. 

On a software platform, the design and development time is 
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smaller because of the availability of ready to use image 

processing libraries. However, traditional software platforms 

perform computation sequentially, often one job at a time and 

cannot efficiently handle the VSN’s front end tasks which 

account for a huge amount of data [15]. For low power 

systems i.e. VSN, the requirement is to finish tasks as quickly 

as possible so that the platform can be switched to a low 

power state in order to conserve energy [16]. 

The faster processing can be achieved by exploiting the 

inherited a parallelism in the front end tasks by using platform 

which offers parallel computation. Hardware platforms i.e. 

Application Specific Integrated Circuits (ASICS) and (Field 

Programmable Gate Arrays) FPGAs offer such parallel 

computation. ASICs have low power solutions and high 

performance as compared to FPGAs. However, the NRE cost 

for a low volume product is high and ASIC solutions are also 

inflexible with regards to any modifications. On the other 

hand, FPGAs offers parallel computing but still retain 

programmability of software at a relatively low cost 

[15][17][18]. These characteristics make FPGA a good choice 

for embedded vision processing [15][17].  

FPGA technology varies from vendor to vendor and their 

classification is based on the configuration method [19]. The 

major FPGA technologies include FLASH and SRAM based 

FPGAs. FLASH based FPGAs store their configuration in 

logic gates. There is no requirement to download the 

configuration at each power-up [18][20]. These characteristics 

make a FLASH based FPGA suitable for duty cycle 

applications. On the other hand, SRAM based FPGAs are 

volatile and require re-configuration for each power-up cycle 

from the non-volatile memory [19]. These characteristics 

contribute to greater configuration and sleep energy which 

prohibits the use of SRAM based FPGA for duty cycled 

applications [15][21]. The advantages of SRAM based FPGAs 

include greater variation in device sizes, greater support and 

high performance because of advanced process technology as 

compared to FLASH based FPGAs [5]. Therefore, it is 

necessary to investigate techniques for employing SRAM 

based FPGA in duty cycled WVSN applications. In this paper, 

our goal is to investigate the use of SRAM based FPGA for 

duty cycled WVSN applications.  VSN architecture with 

SRAM based FPGA requires special consideration for the 

implementation of vision tasks because of the non-volatility 

and greater configuration time. The traditional background 

subtraction techniques i.e., recursive and non-recursive 

techniques are expensive [22] and require the generation of a 

background at each power-up cycle which contributes to extra 

energy when there is no change in the background. In this 

work, we also investigated and developed a low complexity 

and low power background subtraction technique for the 

SRAM FPGA based VSN. Following this, section II presents 

related work, section III provides experimental work, section 

IV describes the VSN architecture, section V discusses the 

results and section VI concludes the paper. 

II. RELATED WORK 

A number of VSN implementation strategies have been 

proposed by researchers in order to reduce the processing and 

communication energy consumption. Gasparini et al. [5], used 

a bi-level CMOS vision sensor of 128×64 resolution to capture 

the images and then perform binary processing on a FLASH 

based FPGA. The authors proposed design principles for VSN 

in the context of a long-lifetime. However, no discussion is 

provided regarding the use of SRAM FPGA for their work. 

Kerhet et al. [8] proposed a VSN, MicrelEye, for cooperative 

video processing applications. The vision tasks were 

processed on the SRAM FPGA and a microcontroller whereas, 

for data transmission, a Bluetooth radio was used. The authors 

provided the VSN results for active duration but a discussion 

relating to the whole duty cycle is missing. Sánchez et al. [23] 

proposed a video sensor node, which uses two Digital Signal 

Processors (DSPs) for image processing tasks and an FPGA 

for controlling the interconnection and image data flow. The 

authors focus is on the efficiency of the VSN tasks. Casares et 

al. [24] presented a lightweight and resource efficient 

foreground object detection and tracking algorithm for WVSN 

applications. The authors used a CMOS image sensor for data 

capturing and a microprocessor with embedded Linux for 

processing. Bakkali et al. [7] processed the tasks with a  
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Fig. 1. VSN architecture, (a) with no vision tasks performed on VSN, (b all required vision tasks performed on VSN, (c) partitioning tasks between 
VSN and server. 
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regular computational flow on an array of processing elements 

and processed the tasks with small amounts of data on a 32 bit 

NIOS-II, RISC processor. The Stanford’s MeshEye node [25] 

uses two kilopixel imagers for low resolution images and one 

high resolution camera module for capturing detailed object 

snapshots. MeshEye quantifies the reduction in energy 

consumption through the usage of a hybrid-resolution vision 

system. However, the hybrid vision system would suffer from 

calibration issues as variations in optics and alignment in 

image sensors would cause a problem in relation to object 

detection in the initial phase. Rowe et al. [13] presented a low-

cost, open source embedded vision platform called CMUcam3 

with their own optimized C library. The bottleneck in the 

CMUcam3 is based on the limited RAM and reduced 

computation speed, which is not sufficient for complex vision 

tasks. Kandhalu et al. [9] employed a platform called DSPcam 

which performs local processing in order to detect the event 

and will annotate the video stream for the operator in the 

observation station in the network. Juan et al. [21] investigated 

a SRAM based FPGA for VSN in the context of duty cycling 

but their investigation is not based on a real application 

environment. A discussion about the comparison of different 

VSN systems with respect to the proposed VSN can be found 

in the results sections. 

In related work, a number of authors reported VSN systems 

with general purpose microprocessors, which are considered 

to be good in terms of flexibility and ease of use. However, 

the energy efficiency of microprocessor based systems is 

lower as compared to hardware implemented VSN systems 

[2][5][8]. The authors who used SRAM FPGA for VSN chose 

to report algorithms efficiency and energy consumption in the 

active state and the discussion about the transition states and 

sleep states is missing. To the best of our knowledge, our work 

is the first to consider the overall energy reduction in active, 

transition and sleep states for SRAM FPGA based VSN with 

real applications scenarios. This will assist in evaluating the 

lifetime of VSN in a realistic manner. 

III. EXPERIMENTAL SETUP 

The following are the main components of the experimental 

work.  

A. Applications description 

The target area for the analysis of this work is machine 

vision applications in which objects can be classified by using 

binary data. For proof of concept, three test cases i.e., particle 

detection in an industrial machinery, remote meter reading and 

people counting have been used. All these cases represent 

machine vision applications in which the objects are changing 

slowly and the lighting conditions are controlled and for which 

an external LED flash light is used in order to achieve a high 

signal to noise ratio.   

1) Industrial machine monitoring 

Compared to a wired solution in industry, the wireless 

solutions offer many advantages such as flexibility in 

installing/upgrading the network, reduced deployment and 

maintenance cost, ease of re-location of devices, improved 

fault localization and isolation [26]. In this test case, we 

will consider an industrial application with a wireless 

requirement for the aforementioned reasons. It is important 

to mention that in some industrial applications, low energy 

may not be an issue because of the availability of a mains 

power supply. In industry, hydraulic machines wear out 

with aging and this can create a loss to industry due to 

accidental stoppages. Traditionally, the engineers stop the 

machine in order to check its health status by examining 

the oil. The oil becomes contaminated with magnetic 

particles, which detach from the engine with aging. The 

stopping of a machine will decrease the machine’s 

productivity. The stopping can be circumvented by means 

of the introduction of wireless smart cameras, which 

continuously monitor the machines as shown in Fig. 2. The 

smart camera will automatically detect magnetic particles, 

measure their size and transmit the information to the user. 

2) Remote water meter reading 

In many countries, the electricity and water meters are 

electromechanical and replacing them with a digital option 

is expected to cost more than integrating a low cost 

wireless smart camera system. In some cases, the 

manufacturers/regulators do not allow the already installed 

digital meter’s alteration in order to introduce direct 

integrated methods. In remote meter reading [3], a low cost 

and low power wireless smart camera is installed to 

monitor the meter and to transmit the information 

 
Fig. 2. Hydraulic machine setup with a server. (H1) VSN. (H2) LED ring. 
(H3) Window glass. (H4) Hydraulic machine. 

 
Fig. 3. Remote meter reading setup with a server. (W1) VSN. (W2) LED ring. 
(W3) Water meter.  
 

 
Fig. 4. People counting setup. (P1) VSN. (P2) LED ring. (P3) People passing. 
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regarding the counter digits to the receiver.  This will assist 

the service providers in reducing the cost of hiring meter 

reading operators, will assist users to remotely monitor 

their energy consumption and will assist service providers 

to identify leakage points in the system. The setup for 

remote meter reading is shown in Fig. 3. 

3) People counting 

People counting are usually performed by using ray-

trapping with fixed photocells and illuminators or by using 

techniques which involve PIR sensors, pressure sensors 

and thermal sensors. The battery operated, wireless camera 

based system offers another alternative with regards to 

people counting. This solution is compact and has the 

added advantage of surveillance over the other alternatives 

[5]. As discussed [5], this application is limited to people 

counting instead of full-fledged detection. The setup for 

people counting is shown in Fig. 4. 

B. Processing platform  

To realize a wireless VSN, the vision algorithms have been 

implemented on a SENTIOF platform [28] which is referred to 

as SENTIOF-CAM in this work. SENTIOF-CAM integrates 

components i.e. FPGA, micro-controller, SRAM, FLASH, 

CMOS sensor MT9V032 [29] and an IEEE 802.15.4 

complaint transceiver in a single platform. The block diagram 

of SENTIOF-CAM is shown in Fig. 5. To receive the data at 

the server side, an IEEE 802.15.4 compliant transceiver 

embedded in a   SENTIO32 [27] platform has been used. 

C. Resource utilization, power and performance parameters 

According to the tasks' partitioning approach [30], the tasks 

implemented on the VSN are shown in Fig. 6 whereas the 

tasks processed on the server are shown in Fig. 7. It is 

important to mention that on the server side, depending on the 

application requirements, the ordering and the types of tasks 

could be changed. The resource utilization of the individual 

VSN tasks is shown in Table 1. The resource utilization for 

the final implementation in which all the modules are 

integrated is given in section V. In relation to the final 

implementation, logic resources of any specific strategy can 

exceed the combination of the individual functions because 

the integration and synchronization requires extra logics. The 

processing time for each vision task is measured by means of a 

logic analyzer and can be calculated by using Eq.1 

fLt)+Ls)+(Col(Row= /T                      (sec)      (1) 

where Lt is the latency of each task, f is frequency, Row 

represents rows, Col represents columns and Ls represents low 

line sync. The power consumption of the VSN strategies is 

measured by using an Agilent 34410A meter [38] at a 

sampling frequency of 10 kHz. The time spent on transmitting 

the results to the server is measured on the actual hardware. 

IV. SENTIOF-CAM ARCHITECTURE 

The target architecture for this work is shown in Fig. 8 and 

has been implemented on the SENTIOF, which is discussed in 

section III-B. The front end tasks, background storage model 

and bi-level video coding have been implemented on an 

FPGA. The background storage in the FLASH memory is 

controlled by a state machine as shown in Fig. 9. After 

segmentation and morphology, the bi-level video coded data is 

transmitted to a server for further processing. It is important to 

mention that VSN tasks are the same and are fixed for 

different applications with the exception of the parameters i.e. 

image sizes, threshold values.  

However on the server side, there is greater flexibility for 

incorporating different tasks and machine vision libraries. This 

tasks' partitioning approach assists  in proposing a 

reconfigurable and generic architecture as the initial data 

intensive tasks can be easily reused on hardware 

reconfigurable platforms as compared to control dominated 

post segmentation tasks [14][31]. For conserving energy, the 

SENTIOF-CAM can be switched to a low power state, 

referred to as the sleep state, when the required vision tasks 

have been performed. In sleep state, only the real time counter 

is ON in order to keep track of the timing, whereas all other 

components i.e., FLASH, FPGA, SRAM and transceiver are 

OFF. In the proposed architecture, the minimum sleep 

duration should be 235 ms in order to effectively utilize the 

SRAM based FPGA for duty cycled VSN applications. This 

has been demonstrated in section V. 

Following this, a brief detail of imaging tasks is presented. 

A. Front end tasks 

Front end tasks include image capturing, pre-processing, 

segmentation and binary morphology. The pre-processing 

includes the background subtraction and filtering. 

Imager

MT9V032

FPGA

XC6SLX16

Microcontroller
AT32UC3B0512

64 Mb Flash
W25Q64BV

SD CARD
4 MB SRAM
CY62177DV30

Radio
CC2520

LED ring

Power/Interfaces 

 
Fig. 5. SENTIOF-CAM  block diagram. 

TABLE 1. DEVICE UTILIZATION AND PERFORMANCE PARAMETERS OF VISION 

TASKS. AVAILABLE LOGICS 9112, BRAMS 64(8K*)/32(16K**).  
 

Vision Tasks Logics 

used 

% 

used 

BRAMs % 

used 

Latency 

 (clk 

cycles) 

Image capture     174 1.9 0 0 4 

Background 
storage model*  

691 
 

8 
 

1*, 2** 
 

2*,  
6 ** 

64† 
 

Pre-processing    5 0.05 0 0 1 

Segmentation      6 0.06 0 0 1 

Morphology        139 2 4* 6 645 

Change coding   209 2 3** 9 5 

ROI                     271 3 0 0 641 

G4 Compression       3204 35 3* 5 647 

Communication 

module [42] 

100 

 

1 

 

1** 

 

3 

 

4 

 

Note: † represent latency during first time configuration. 
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Fig. 6. Vision processing on VSN. 
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Fig. 7. Vision processing on server. 
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Fig. 8. Architecture of wireless vision sensor node, SENTIOF-CAM. 
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Fig. 9. State machine for duty cycling and background storage. 

 

For background subtraction, the background image is stored 

in the FLASH memory [32] via a Serial Peripheral Interface 

(SPI) at an initial stage after which, the current image is 

subtracted from the background image. In relation to the 

people counting application, the pre-processing includes an 

edge detect filter. In this work, for proof of concept, we have 

used a sobel edge detect filter with a mask of 3×3. Following 

the pre-processing, segmentation is performed to partition the 

image into mutually exclusive connected binary regions. In 

binary morphology, erosion is followed by dilation, by using a 

suitable size of the structuring element. During the erosion, 

and dilation required number of rows are stored in order to 

have the necessary neighborhood information for the 

operation. 

B. Low complexity background storage 

In the context of a resource constrained SRAM FPGA based 

VSN, we propose a low complexity background subtraction 

technique, which uses existing image scaling techniques for 

image resizing in order to have smaller storage requirements. 

For the subtraction, operation, the downscaled version is 

upscaled by using an  upscaling technique. Existing scaling 

methods include nearest neighbour, bilinear, bicubic, quadratic 

cubic, winscale, Lagrange and Gaussian [33][34]. Some of 

these techniques such as the Gaussian method, offer good 

quality but have higher computational complexity and require 

an approximately 22 times longer execution time as compared 

to that for the bilinear [33]. For the proposed background 

model, different image scaling techniques, including nearest 

neighbour, averaging, bilinear, and bicubic with different 

scaling factors were first investigated for a real application 

[35]. In relation to image scaling techniques, the output image 

quality, complexity and memory requirement depends on two 
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factors including scaling technique and scaling factor. 

Therefore, we have considered these parameters in relation 

to selecting a suitable scaling technique for both upscaling and 

downscaling. Based on experimentations [35], it was 

concluded that averaging for downscaling and nearest 

neighbour for  upscaling, with a scaling factor of 8, are 

suitable for the machine vision applications.  The scaling 

factor of 8 means scaling in both width and height. It is 

important to mention that averaging during downscaling 

introduces blurring effect and nearest neighbour during 

upscaling might introduce artifacts. However, for images with 

a smooth texture, they both offer good results [34][35][36]. 

Depending on the requirements, spatial and anti-aliasing filters 

can be applied on the server side as shown in Fig. 7. These 

techniques have been investigated for indoor machine vision 

applications with controlled lighting and a smooth texture 

background. For applications with an outdoor environment, 

this background subtraction technique requires investigation. 

Nonetheless, the proposed technique will reduce the memory 

requirement by a factor of up to 64 in addition to a reduction 

in the design/implementation complexity as compared to the 

background model, which involves the storage of the whole 

frame. In this work, the proposed background storage and 

subtraction technique is implemented on hardware and the 

functionality is verified on the hardware. The background 

storage and subtraction model is shown in Fig. 10 and the state 

machine for controlling the background storage is shown in 

Fig. 9.  

1) Background storage  

For background image storing, the scaled down image by a 

factor of 8 is stored in the internal memory of the FPGA. The 

image size for  two of the investigated  applications, namely  

particle detection and meter reading, is 640×400. The image 

size for people counting is 640×320. The internal memory will 

lose its contents after power down. The contents that are lost, 

require the generating of the image after each wake up cycle, 

which is costly in terms of computation and energy 

consumption. It is important to mention that the background 

remains constant for a long time in many machine vision 

applications [5][35]. To handle this situation, the background 

scaled down image is stored in the non-volatile FLASH for 

later use. After each wake up cycle, the scaled down image is 

read out from the FLASH memory into the internal memory. 

If system parameters i.e. lighting, location, optics are changed, 

the background must be updated. For the subtraction 

operation, the scaled down image is accessed from the internal 

memory and is upscaled using a nearest neighbour technique. 

The background image reading, writing and erasing can be  
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Fig. 10. Background storage and subtraction model with scaling. 
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Fig. 11. Architecture for background image down scaling. 

controlled by sending a command of size 1 byte from the 

microcontroller as shown in the state machine of Fig. 9. 

2) RTL model of image down and up scaling 

The architecture for image downscaling, using the averaging 

technique, is shown in Fig. 11. A scaling factor both for the 

width and height of the image can be set and controlled by 

column and row counters. A line buffer holds the intermediate 

summation values of the scaled down window pixels. For 

example, the sum value of a scaling window of 8×8 is stored 

in the line buffer in one location. When a specific scaling 

factor is reached in both the width and height directions, a 

signal is generated to summation and division/shift right, in 

order to perform division by right shifting the bits of the 

summed values and storing them in the internal memory of the 

FPGA. In the mean time, the pixels' values for the current 

scaling window will start summing. For upscaling, the nearest 

neighbour is used. This method requires the sampling of the 

nearest pixels to the original image [35] and the 

implementation is straightforward. 

3) Background subtraction 

For the background subtraction operation, the pixels from 

the background image are read out in advance in order to 

synchronize them with the current frame pixels for the 

subtraction operation. After the subtraction operation, the 

pixel data is forwarded for further processing. 

C. Bi-level video coding 

To reduce the amount of transmission data, we have 

developed and implemented a new bi-level video coding 

technique [30]. The architecture for this bi-level technique is 

shown in Fig. 12-(a) and the output data format is shown in 

Fig. 12-(b). The fundamental components of bi-level video 

coding include G4 compression, change coding, ROI coding 

and Huffman-run length code mixer. In G4, the coding scheme 

uses a two- dimensional line-by-line coding in which the 

position of each changing picture element, rather than 

alternating white and black runs in each scan line, is 

considered [37]. Change coding searches for the changes in 

consecutive frames. A change coded image is shown in Fig. 

13-(e) for image sequences of Fig. 13-(c-d). The change 

coding removes similar objects. The ROI coding isolates those 

binary image regions which have objects. An ROI coded 

image is shown in Fig. 13-(f) for the image sequence of Fig. 

13-(d). The run length codes, representing the presence of 

objects in the rows, are transmitted together with the Huffman 

codes of the ROI image to the server. The proposed video 

coding, comprising of the aforementioned components, has the 

flexibility to perform the following coding schemes. 
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Fig. 12. Bi-level video coding, (a) architecture, (b) output data format. 
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Fig. 13. Video coding example with images from particle detection 

application. (a)-(b) Image sequences. (c) Compressed image of a. (d) 

Compressed image of b.  (e) Change coded image a,b (f) ROI coded image of 
b. (g) Change-ROI coded image of a, b. 

 

 Image coding 

 Change coding. 

 ROI coding. 

 Change-ROI coding. 

Depending on the application and environmental factors 

i.e., the speed of the object and the lighting, the output data 

produced by the four coding schemes could be different and 

the coding should select the smaller bit stream based on the 

four schemes. Change coding requires the storage of the 

compressed frame in the non-volatile memory for duty 

cycling. The storage of a run length coded frame requires 

additional delay and energy. The additional delay is associated 

with sector erasing and page programming. For page 

programming, sector erasing is required. The typical time for 

sector erasing is approximately 30 ms for 4 KB. Each page 

programming in the FLASH memory requires typically 0.7 ms 

[32]. This time is greater as compared to the transmission of 

data with ROI coding. Therefore, in this work video coding 

with ROI coding has been selected. 

V. RESULTS AND DISCUSSION 

The proposed VSN architecture is implemented on real 

hardware and its functionality is verified for three 

applications, namely particle detection, remote meter reading 

and people counting. The sample images for the three test 

applications are shown in Fig. 14. The experiments are 

performed 100 times in order to check the effect of changing 

ambient lighting conditions. With constant LED lighting, the 

results are good and imaging tasks are able to properly 

segment the objects. Table 2 shows the resource utilization of 

the complete design obtained by the Xilinx synthesis tool ISE 

[19]. For energy measurement, the average current was used to 

calculate the power consumption of sleep, sleep-to-wakeup, 

and wakeup states for one duty cycle for a 3.6 supply voltage. 

The instantaneous current is shown in Fig. 15. Table 3 shows 

the time and power required by different states for one duty 

cycle. The configuration time for uncompressed bit streams of 

3,731,264 bits was measured to be 23.6 ms and the average 

current was measured to be 33.8 mA. The average current 

consumption at 3.6 volt resulted in an energy consumption of 

2.8 mJ. 

For the configuration process, the SPI bus width was set to 

quad-mode at a frequency of 66 MHz. The power 

consumption and time required by the processing and 

communication processes are also shown in Table 3. During 

processing, other components including image sensor, FLASH 

memory and microcontroller are also powered ON. For 

communication purposes, the radio transceiver was operated 

with a transmission throughput of 250 kbps and an output 

power level of 5 dBm. The micro-controller was clocked at 16 

MHz in order to coordinate radio communication activities 

and duty cycling for the SENTIOF-CAM. The sleep current 

for the SENTIOF-CAM in which only the real time counter 

was ON, was measured to be 87 µA at 3.6 V. Table 3 includes 

the LED lighting energy of 48 µJ for a one frame exposure. 

Following this, the VSN is compared against the published 

systems.  

A. Comparison mechanism 

The direct comparison of different systems is a challenging 

task because of the number of parameters involved i.e., 
 Compressed ROI Compressed 

(a) 

 

 

(b) 

 

 

(c) 

 

 

Fig. 14. Images of different applications with bi-level video coding. (a) 

Particle detection. (b) Remote meter reading. (c) People counting. 

TABLE 2. RESOURCE UTILIZATION AND POWER CONSUMPTION OF VSN FOR 

DIFFERENT APPLICATIONS.* DENOTE 8K AND ** DENOTE 16K. 
 

Resources type Total available 

resources 

Resources used 

(Particle detection+ 
meter reading) 

Resources used 

(People 
counting) 

Slice Registers 18224 1529 1804 

Slice LUTs 9112 4460 4707 

LUT Flip Flop  N.A. 5671 5804 

 Block RAM 64*, 32** 5*, 6** 7*, 6** 
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environment, lighting, vision tasks, architecture, optics, video 

content and resolution, etc. For an ideal comparison, these 

parameters should be similar. However, it is important to 

mention that due to limited access to other researchers’ 

architectures, the comparison is not a fully objective process. 

The development of these systems for the purpose of 

comparison requires a significant amount of design and 

development efforts/costs and time. 

Therefore, a suitable approach is to have a quantitative 

analysis based on some assumptions and provide the points of 

differences [30]. In the literature, a large number of systems 

are analyzed in [14], each with different requirements. The 

one to one comparison of the proposed system with the VSN 

system of different application requirements is a challenging 

task because of the unavailability of data. However, a 

comparison of available essential parameters i.e., power, 

performance and compression efficiency is given in Table 4. 

The comparison results in Table 4 show that the proposed 

system has a greater performance in terms of FPS and has an 

average processing power which falls close to the customized 

and microprocessor based solutions. The communication 

energy which contributes significantly to the overall energy 

[3] and transition states energy, are not mentioned for these 

systems. For detailed and fair comparison, it is necessary to 

select systems with the same characteristics but, it is a 

challenging task without the presence of standard selection 

criteria. The taxonomy proposed in [14] presented a 

mechanism for identifying a common class of systems. By 

using the aforementioned taxonomy we have identified a class 

of systems which is able to classify objects by using binary 
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                  Fig. 15. VSN's instantaneous current for one duty cycle during meter reading. 

TABLE 3. TIME, AVERAGE POWER AND TOTAL ENERGY FOR VSN FOR DIFFERENT APPLICATIONS. 
 

Applications Output data 

(bytes) 

Config. 

time (ms) 
Config.  

power (W) 

Proc. time 

(ms) 

Proc. 

power (W) 

Comm. 

Time (ms) 

Comm. 

power (W) 

Total energy 

(mJ) 

Particle 
detection 

70 23.6 
 

0.12 
 

21 
 

0.67 3.2 0.13 17.2 

Meter 

 reading 

83 23.6 

 

0.12 

 

21 

 

0.67 4.3 0.13 17.4 

People 
counting 

1715 23.6 
 

0.12 
 

16.9 0.67 63.5 0.14 22.8 

TABLE 4. POWER AND PERFORMANCE PARAMETERS OF DIFFERENT VSN SYSTEMS. 

VSN Systems Processing Platforms Resolution 

(W×H) 

Avg. Power* 

(mW) 

Output data 

(Bytes) 

Bits/pixels Frame rate 

(FPS) 

Gasparini et al. [5] FLASH FPGA (128×64)  4.22 2048 2.0 15 

Kerhet et al. [8] Microcontroller  + 
SRAM FPGA 

(320×240)  500  N.A. N.A. 15 

Sanchez et al.[23] DSP + FPGA (640 × 480)  1110 N.A. N.A. 7.5 

Casares et al. [24] Microprocessor (320×240)  822 N.A. N.A. 12 

MeshEye [25] Microprocessor (640×480)+ 
(30×30) 

290 900 0.02 10 

CMUcam3 [13] Microprocessor (352×288) 500 N.A. N.A. 14 

Ferrigno et al. [3] Microcontroller (384×288) 86 6912 0.500 0.04 

SENTIOF-CAM SRAM FPGA (640×400) 670 83 0.003 48 

     NOTE: *  IT IS PROCESSING POWER AS COMMUNICATION POWER IS NOT SPECIFIED 
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data. In relation to this, three published systems including 

particle detection [2], remote meter reading [3] and people 

counting [5], having the same class as the proposed system, 

are identified for comparison with the proposed system.  

In the particle detection system [2], the video contents, 

resolution and environment are similar because experiments 

were performed under similar conditions. For SENTIOF-

CAM, the energy values were measured on real hardware in 

which all the components were integrated in a single prototype 

board. The energy values for the published particle detection 

system were measured for individual components with a 

FLASH based FPGA. The processing time of the published 

system did not include the configuration time which could 

increase the energy consumption values. In addition to this, 

the sleep power for the published system was taken from a 

datasheet, which may lead to unrealistic values.  Therefore, for 

the processing time, the power values have been extrapolated 

for the published system, according to the components used in 

the SENTIOF-CAM. The sleep energy of the SENTIOF-CAM 

is considered for the published particle detection system in 

order to provide a fair comparison. In remote meter reading 

and people counting, we have performed experiments in a real 

environment as described in the published system. The 

proposed VSN and the published system have similar 

functionalities and the output is the same for the total system. 

The main difference is that in published systems, the vision 

tasks together with conventional compression schemes are 

processed locally on the VSN. In comparison to this, in the 

proposed system, only the pre-processing tasks together with a 

lightweight bi-level coding are implemented on the VSN by 

using a hardware reconfigurable platform whereas the control 

dominated tasks are moved to a server. This approach offers 

flexibility to use efficient algorithms for control dominated 

tasks i.e. detection, classification and recognition on the 

server. This approach will reduce design complexity on the 

hardware and will reduce the processing energy consumption 

[30]. For fair comparisons, we have performed the 

experiments in a real environment for 100 different samples in 

order to obtain average values for the output data.   

 

TABLE 5. COMPARISON OF PROPOSED VSN WITH MEASURED ENERGY VALUES AGAINST PUBLISHED 

 SYSTEMS FOR ENERGY CONSUMPTION, OUTPUT DATA AND PERFORMANCE.  

Applications Systems 

 

Image size 

(width×height) 

E_Proc 

(mJ)  
E_Comm 

(mJ)  
Avg. Output 

data (bytes) 

Bits/ pixel Max. Freq. 

(FPS) 

Particle 

detection 

Published [2] (640×400) 9.6 3.52 500 0.016 48 

Measured (640×400) 13.9 0.44 70 0.002 48 

Meter  

reading 

Published [3] (384×288) 430.3 207.9 6912 0.500 0.04 

Published_scaled [3] (640×400) 515.3 478.3 16000 0.500 0.03 

Measured (640×400) 13.9 0.58 83 0.003 48 

People  

counting 

Published [5] (128×64) 0.004 4.29 2048 2.000 15 

Published_scaled (640×320) 0.08 27.06 51200 2.000 5 

Measured (640×320) 11.5 8.6 1715 0.067 16 
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                  Fig. 16. VSN Lifetime over a different sample rates for published and proposed systems. 
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A brief discussion relating to the comparison of energy 

consumption, output data reduction and performance is 

provided in the following section. 

B. Energy, output data and performance comparison 

The comparison of energy consumption for the proposed 

VSN against the published systems is shown in Table 5. In 

Table 5, E_Proc shows the processing energy consumption, 

E_Comm shows the communication energy consumption and 

FPS is the frames per second. For particle detection, the 

published system being selected is implemented on a FLASH 

based FPGA [2]. The comparison in Table 5 shows that the 

processing energy of the SENTIOF-CAM for particle 

detection increases by approximately 1.4 times but the 

communication energy reduces by approximately 8 times. The 

processing energy of the FLASH based system is different 

from previous values because, to offer a fair comparison, the 

energy consumption of the image sensor AVR32 and the 

FLASH memory is also included, in order to have a similar 

setup to that for the SENTIOF-CAM. With regards to the 

performance parameter in Table 5, the investigated system 

frame rate is the same as that for the published system. This 

shows that the SRAM FPGA based VSN can achieve similar 

results to that for a FLASH based FPGA. 

For remote meter reading, the proposed solution can offer 

up to a 69 times energy reduction as compared to the existing 

solution as shown in Table 5. With regards to individual 

components, for the proposed solution, processing energy is 

reduced by approximately 37 times and the communication 

energy is reduced by approximately 825 times. One of the 

reasons is that the published solution has been implemented by 

using a software platform. The performance of the system is 

increased to 48 FPS from 0.03 FPS. The processing energy in 

Table 5 is different to that of  the previously published work 

[30] because of different processing platforms and coding 

modification for SRAM FPGA as discussed in section IV-C. 

In relation to the people counting application, the proposed 

solution offers an approximately 3 times smaller 

communication energy for the same resolution. In addition to 

this, the proposed solution offers a 3 times greater 

performance in terms of FPS while still having 

programmability as compared to the published customized 

based solution. The conclusion which can thus be drawn is 

that strategies are required to be devised for customized 

solutions which can efficiently handle both the processing and 

communication energy of the VSN. 

C. Life time 

The lifetime prediction is based on measured energy values  

of sleep-to-wakeup, wakeup and sleep states. The lifetimes of 

the systems for particle detection, remote meter reading and 

people counting are given in Fig. 16. For the lifetime 

calculation, the active time was considered to be 100 ms and 

after this, the VSN is required to be switched to a sleep state. 

A battery with a capacity of 37.44 kJ energy was considered 

for the lifetime calculation. It is assumed that the battery 

would offer a constant performance and zero leakage. The 

lifetime for the published particle detection system is 

approximately 3.5 years, whereas, the lifetime of the proposed 

VSN is approximately 3.2 years with a sample period of 5 

minutes. 

The lifetime for a published remote meter reading VSN 

with an 8 bit PIC microcontroller is approximately 0.34 years 

(4 months), whereas, the lifetime of the proposed VSN is 

approximately 3.2 years with a sample period of 5 minutes. It 

is, however, noted that for greater sample rates such as those 

greater than 45 minutes, the lifetime of the published system 

increases because of the smaller sleep power (0.09 mW) 

consumption of the published solution. This shows that for 

high sample rates, the proposed solution offers good results, 

whereas for low sample rates, the published system offers 

good results. The lifetime of the published VSN system for the 

people counting application is 2.9 years, whereas, the lifetime 

for the FLASH based FPGA and microcontroller contribute to 

the proposed system is 3.11 years. In the published system, 

sleep energy, whereas, in the proposed system, only the 

microcontroller contributes to the sleep energy. It is thus 

concluded that a SRAM based FPGA can be effectively used 

for duty cycled WVSN applications. It is further concluded 

that a VSN with a smaller energy consumption, a generic 

architecture and low complexity can be achieved by using the 

design matrix of tasks' partitioning, bi-level video coding, low 

complexity background subtraction and duty cycling on 

existing reconfigurable platforms. 

ACKNOWLEDGMENT 

The authors would like to thank Aart Mulder and M. A. 

Yousaf for the support in the transmission and sensor modules. 

VI. CONCLUSION 

In this work, a low complexity, energy efficient and 

reconfigurable wireless vision sensor node architecture has 

been presented by using a SRAM FPGA. The proposed sensor 

node architecture has been the result of an analysis, which 

considers tasks' partitioning between the sensor node and 

server, low complexity background subtraction, bi-level video 

coding and duty cycling on a SRAM based FPGA. In our 

proposed sensor node architecture, the initial data dominated 

vision tasks are implemented locally on the SRAM FPGA and 

the control dominated complex tasks are processed on the 

server. For the smaller memory requirement and duty cycling 

scenario, a low complexity background model was developed 

with the assistance of image scaling techniques in order to 

store a scaled version of a background image in the FLASH 

memory. For the subtraction operation, the image is  upscaled 

by using a suitable interpolation technique. By using a scaling 

factor of 8, for both the height and width, the proposed 

subtraction model reduced the memory requirement by a 

factor of 64.  

This work investigates the use of duty cycling for a SRAM 

FPGA based VSN. The investigation based on an actual 

hardware implementation shows that the SRAM FPGA based 

sensor node can effectively utilize duty cycling for energy 
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conservation. The measured energy values shows that a sensor 

on the SRAM based FPGA can achieve a lifetime of 3.2 years 

for a sample period of 5 minutes, for the available 37.44 kJ 

energy. The conclusion thus drawn is that a SRAM FPGA 

based wireless vision sensor node can achieve a smaller 

energy consumption, a generic architecture and low 

complexity by using the proposed design matrix of tasks 

partitioning, low complexity background subtraction, bi-level 

video coding and duty cycling. 
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