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Abstract. In order to conserve energy, battery powered embedded systems are 

typically designed with very low-power modules that offer limited computational 

power and communication bandwidth and therefore, are generally applicable to 

low-sample-rate intermittent applications. On the other hand, enabling an 

embedded system with a high-throughput processing resource such as an FPGA, 

high-throughput processing performance that is typically required in high-sample 

rate monitoring applications can be achieved. However, the high power 

consumption associated with an FPGA poses a major challenge in attaining 

significant lifetime for a battery-powered embedded system. In this paper, we 

investigate energy consumption of an SRAM-based FPGA in relation to duty-

cycle applications. In order to achieve long operational lifetime in an FPGA-based 

embedded system, the possible options to dynamically manage the power 

consumption are studied and discussed. The experimental results suggest that the 

SRAM-based FPGA, XC6SLX16 that provides ample logic resources in relation to 

typical high-sample rate monitoring applications, can be used in a battery operated 

embedded systems while minimizing the energy consumption to 2.56 mJ for 

inactive duration of 235 ms or above. 

Keywords. Energy optimization; SRAM-based FPGA; High-sample rate; 

Dynamic power management; Duty-cycling 

Introduction 

With the recent advancement in electronics, battery-powered wireless embedded 

systems have emerged as a low-cost alternative to fixed wired-based monitoring 

solutions in many fields. However, the power consumption of these battery-powered 

systems has been a challenge to achieve a significant operational lifetime. In order to 

minimize power consumption, such systems are typically designed using modules with 

ultra low-power characteristics. These low-power modules, however, provide limited 

computational and communication capabilities. Therefore, such embedded systems are 

generally suitable for low-sample rate intermittent applications, in which a small 

amount of data is transmitted to a remote station without any significant processing 

locally in an embedded system. 

Nevertheless, the high-sample rate applications can also take advantage of such 

potentially low-cost and autonomous wireless systems, provided that these are enabled 

to fulfill relatively high processing and communication requirements while maintaining 

low-power characteristics. For example, enabling a wireless embedded system with a 



high-throughput processing resource such as an FPGA, high-sample rate applications, 

such as vibration-based industrial condition monitoring, structural health monitoring, 

and image-based tracking can be realized by processing data locally in an embedded 

system [1]-[3]. In this approach, raw data is processed in an embedded system and only 

the results are transmitted wirelessly and therefore, the communication activity and the 

associated energy consumption are reduced. On the other hand, the energy 

consumption associated with processing data locally becomes a challenge to achieve 

long operational lifetime. However, by exploiting the hardware parallelism in an FPGA, 

the actual processing can be completed in a much shorter period of time as compared to 

that for a low-power micro-controller that processes data in a sequential manner and, 

following on for the rest of the duration during which an FPGA is idle, it can be 

switched to a low-power state so as to conserve energy.     

In relation to integrating an FPGA in an embedded system, it is the static random 

access memory (SRAM) based FPGAs that are commonly used [1]-[9]. This is mainly 

because these FPGAs not only offer embedded resources such as block RAM and 

Multiply-and-Accumulate (MAC) units in addition to basic logic cells, but they are 

typically built on a relatively more advance semiconductor technology as compared to 

their re-configurable counterparts such as flash-based FPGAs and therefore, provide a 

better performance [10]. However, their relatively high static power consumption, as 

compared to the flash-based FPGAs, often limits their potential advantages in battery-

powered embedded systems. In addition, dynamic power management and duty-cycling 

techniques [11]-[12] that can be applied to conserve static power when an FPGA is idle 

are typically limited by the energy consumption associated with the resulting re-

configuration process. Therefore, it is interesting to investigate SRAM-based FPGAs 

so as to evaluate their feasibility for duty-cycle applications, in which power to an 

FPGA is turned-off and thus, requires re-configuration when it is powered-on. 

 The literature related to battery-powered embedded systems that integrate SRAM-

based FPGAs, such as [1]-[9] is generally focused on application specific performance 

issues. The energy consumption of these FPGAs during idle, low-power and re-

configuration states that are required to determine the effective energy conservation 

through dynamic power management and duty-cycling and, hence, to determine 

operational lifetime, is least explored. Therefore, in this paper, we investigate the 

energy consumption of an SRAM-based FPGA in relation to idle, low-power, and 

configuration states so as to determine the feasibility with regards to using a SRAM-

based FPGA for duty-cycle applications.  

The remaining sections are organized as follows. In section 1, the theoretical aspects 

of energy optimization/conservation are discussed. In section 2, the factors that have an 

impact on the choice of an FPGA are discussed. In section 3, the experimental setup is 

explained. In section 4, the results are presented together with the supporting 

discussion.  In section 5, the concluding remarks are given. 

1. Theory 

Energy consumption ET, of an embedded system that consumes power, P watts for 

operational time duration of T seconds, can be calculated as given in Eq. (1), 

E� = P × T                                                                                                                (1) 



During this operational time T, an individual module of an embedded system can be in 

one or more of the following states and therefore, the energy consumption can be 

analyzed according to these states. 

Active The FPGA performs desired task(s). The power consumption during this 

state is the sum of both the dynamic and static power consumption. 

Idle There is no switching activity, and therefore the power consumption 

corresponds only to the static power. 

Sleep A built-in state, in which power consumption of a module is reduced as 

compared to that of the idle state. 

Power-off Power supply to a module is turned-off so as to minimize power 

consumption. 

Active-to-sleep This is a transitional state, in which a module transitions from active 

to sleep state. 

Sleep-to-active A transitional state during which a module is switched to active state 

from sleep state. 

Active-to-power-off A transitional state that corresponds to switching a module 

from active to power-off state. 

Power-off-to-active This is also a transitional state in which a module is powered-

on and thus, transitions from power-off to active state. 

All of the above states may not be applicable to each individual module in an 

embedded system. However, as all integrated modules are supposed to perform certain 

operations during operational time T and therefore, each module experiences at-least 

active and idle states. Accumulating energy consumption of all N modules of an 

embedded system associated with active and idle states, the Eq. (1) can be expanded to 

Eq. (2),  
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The active energy consumption (P
��
��_
 ×	T
��
��_
 ) in Eq. (2) depends on the 

required performance in an application and therefore, provides limited options that can 

be exploited to optimize it in an application independent embedded system. One 

possible option is to integrate low-power modules that can be dynamically configured 

to different operating frequencies, so as to optimize the operating frequency and the 

associated power consumption for a module whenever possible. In addition, for certain 

high-energy consuming activities, integrating more than one module with different 

performance and power consumption specifications can assist in optimizing the energy 

consumption. For example, a processing unit may include a micro-controller and an 

FPGA in order to optimize the performance and power consumption according to the 

requirements of an underlying application.  

In relation to the idle state, during which the energy consumption is the product of 

the application dependent idle time and the system dependent power consumption, 

minimizing static power consumption can lead to overall energy optimization. This can 

be achieved by integrating modules that support sleep states and, by designing an 

embedded system such that the individual modules can be switched to sleep states 

dynamically. With this method in practice, an individual module can either be in one of 

the four states, active, sleep, active-to-sleep, and sleep-to-active state. Based on these 

states, the resulting energy consumption can then be calculated as given in Eq. (3). In 

relation to an FPGA-based system, it is important to consider the energy consumption 

during all these states in general and during the sleep-to-active state in particular, as it 



plays an significant role in deciding whether or not to switch an FPGA in the sleep 

state for a given time period.  
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By switching individual modules to sleep states, energy consumption can be reduced 

significantly as compared to the case in which they were in idle states. However, the 

resulting energy consumption can still be a challenge for energy constrained 

applications. In order to minimize the energy consumption associated with the sleep 

state of a module, the power supply to the module can be turned-off. In this way, the 

energy consumption of a module can be reduced to zero joules. With this state in 

practice, which we call the power-off state in this paper, the total energy consumption 

ET given in Eq. (3) can be calculated by replacing the power and timing parameters 

corresponding to the sleep state with those of the power-off state.  

In addition to dynamically switching an individual module to sleep or power-off 

state when it is idle, whole embedded system can also be operated in a duty-cycle 

manner so as to conserve energy and to maximize the operational lifetime. In a duty-

cycle approach, an embedded system periodically performs the required task(s) for a 

short period of time, τ, in relation to the total time period, T as shown in Figure 1. 

During time period (T-τ), which is called inactive duration in this paper, all integrated 

modules can be switched to the power-off state in order to conserve energy. This, 

however, requires one module to keep track of the time duration so that it has the 

ability to switch all modules to active states after inactive duration. For example a low-

power micro-controller can be used for this purpose. In relation to an embedded system 

that integrates an FPGA, the effective energy conservation that can be achieved by 

means of dynamic power management and duty-cycling depends on the energy 

consumption during sleep, power-off, sleep-to-active, and power-off-to-active states 

and, is typically dictated by a number of factors related to an FPGA in use and are 

discussed in the next section.  

 
Figure 1.  Duty-cycling; an embedded system performs desired operations during active duration, and then 

remains inactive for (T-τ) duration 

2. Choosing an FPGA for duty-cycle applications 

In an FPGA-based embedded system that is targeted to achieve high-performance, 

re-configurability, low-cost, compact size, and low-power consumption, the choice of 

an FPGA plays a crucial role. The factors that influence the choice include the size of 

an FPGA in terms of logic resources, the underlying technology, availability of low-

power states and, support for easy and fast development of hardware and software. 



In relation to logic resources, modern FPGAs typically consists of logic 

cells/elements (i.e. look-up tables, flip-flops, etc.), memory buffers, and embedded 

logic units such as multipliers, circuitry for synthesizing different clock frequencies, etc. 

As the number of logic resources in an FPGA has an impact on cost, physical size and 

power consumption, it is important to choose an FPGA with the right amount of 

resources so that, for a given set of applications, an integrated FPGA results in both an 

optimal logic resource utilization and power consumption. For an FPGA-based 

embedded system that is targeted to achieve high-throughput processing performance 

and low-power characteristics, example applications include vibration-based condition 

monitoring, structural health monitoring, image-based industrial and environmental 

monitoring. The actual type and amount of logic resources required to synthesize these 

applications will vary. However, to provide an indication to the readers, a list of major 

resources and their utilization (i.e. number of resources used to synthesize an 

application) as found in published literature [1]-[3] and [6]-[9] is complied in Table 1.  

In addition to logic resources, the underlying technology of an FPGA also affects the 

performance, power-consumption, re-configurability, cost etc. and therefore, requires 

equal consideration in the selection of an FPGA. In relation to technology, modern 

FPGAs can be classified into three major categories, anti-fuse, flash, and SRAM-based 

FPGAs, and different pros and cons are associated with each category. Unlike anti-fuse 

FPGAs, both the flash and the SRAM-based FPGAs can be configured multiple times 

and thus, can be integrated in a generic embedded system in order to realize different 

applications. Therefore, we restrict our discussion to only these two categories. The 

major difference in these two categorizes is the manner in which the configuration data 

is stored in the device. In flash-based FPGAs, the configuration data is stored in flash 

memory cells and is retained even when power to the FPGA is turned-off. On the other 

hand, the configuration data in SRAM-based FPGAs is stored in SRAM cells and is 

lost when the power is turned-off. Therefore, an SRAM-based FPGA is required to be 

re-configured each time the power is turned-on. In relation to dynamic power 

management and duty-cycling in which the power supply to an FPGA is turned-off so 

as to conserve energy, a flash-based FPGA is likely to result in a shorter power-off-to-

active time and the associated energy consumption. However, typical SRAM-based 

FPGAs not only offer additional embedded resources such as block RAM, and MAC 

units, but are built on relatively more advanced semiconductor process technology as 

compared to their contemporary flash-based counterparts, and thus provide a better 

performance [10]. Therefore, it is interesting to investigate their energy consumption 

during different states in relation to duty-cycle applications. 

Table 1. Type of logic resources and their utilization in realizing certain monitoring applications on FPGAs 

Resource Type Four –Input Look-up 

Tables 

Flip-Flops Dedicated 

RAM (kb) 

Multipliers 

(18x18 bits) 

Number of 

resources used 

7000 to 11000 2800 to 6900 24 to 300 4 to 35 

   

In order to choose a reconfigurable, low-cost, and low-power FPGA able to 

provide ample amount of resources as described in Table 1, there are number of FPGAs 

from different vendors that can be considered. However, at present, both in terms of 

volume and revenue, the Xilinx and the Actel are the leading manufacturers of the 

SRAM and flash-based FPGAs, respectively and therefore, provided the motivation to 

consider the FPGAs from these two manufacturers. The Spartan-6 is a low-power and 

low-cost family of Xilinx’s SRAM-based FPGAs, where as the IGLOO family can be 



associated with the same attributes among the Actel’s flash-based FPGAs. Among the 

Spartan-6 FPGAs, it is the XC6SLX16-2CPG196 [13] that has the desired amount of 

resources as given in Table 1 and therefore, it is used to investigate the energy 

consumption in relation to duty-cycling applications. Among the Actel’s IGLOO 

family, it is the AGL1000V2FBGA144 [14] that provides a similar amount of 

resources as compared to that of the XC6SLX16-2CPG196 and therefore, we find it 

interesting to investigate its energy consumption so as to compare the SRAM-based 

FPGA with the flash-based FPGA. 

3. Experimental setup 

In order to obtain energy consumption parameters associated with SRAM-based FPGA, 

an FPGA-based embedded system, the SENTIOF [15] is used for experimental 

purposes. The SENTIOF is an FPGA-based high-performance embedded system that 

has been developed at Mid Sweden University, Sweden. The simplified architecture of 

the SENTIOF is shown in Figure 2. In addition to other modules such as micro-

controller, radio transceiver, SRAM, etc. it integrates the Spartan-6 XC6SLX16-

2CPG196 FPGA in order to achieve high-throughput computationally intensive 

processing within the embedded system. The low-power micro-controller performs 

control specific operations such as dynamic power management. With dynamic power 

management, each module including the FPGA can be switched to sleep and power-off 

state. The built-in sleep state of the FPGA, which is called the “suspend state” in 

relation to this FPGA, is activated by de-asserting the SUSPEND input signal of the 

FPGA as shown in Figure 3. When it is in the suspend state, the micro-controller can 

de-assert this signal to switch it back to the active state. The micro-controller is also 

able to monitor the AWAKE signal, which is asserted by the FPGA when it is ready to 

perform the desired operations. In order to switch the FPGA to the power-off state, the 

power-supplies to the FPGA that are VCCINT (1.2V), VCCAUX (3.3V) and VCCIO 

(3.3V) are turned-off. In the SENTIOF, it is only the FPGA’s core that is powered 

through the 1.2V voltage regulator, therefore, in order to turn-off the 1.2V supply to the 

FPGA, the regulator is disabled. On the other hand, the 3.3V is supplied to other 

modules in addition to FPGA, therefore, P-type power MOSFET transistors, as shown 

in Figure 3, are used to turn-off VCCAUX and VCCIO of the FPGA.  

 

Figure 2.  A simplified architecture of the SENTIOF that is used in experiments 



The typical current drawn by the P-type transistor is 1uA, and can typically be 

turned-on and off in 1 µs and 3 µs, respectively. It should be noted that Figure 2 is 

included to show the reader a simplified implementation view related to the suspend 

and power-off state and therefore, does not include pull-up/pull-down circuits etc. that 

are required to provide a stable operation. In order to switch the FPGA back to the 

active state from power-off state, the micro-controller enables the 1.2V voltage 

regulator, turns-on the MOSFET and then asserts the PROGRAM signal such that the 

FPGA can load the configuration data from the associated flash memory. When the 

configuration is completed and the FPGA is ready to operate, it asserts the DONE 

signal. 

The timing and power consumption parameters that are presented in this paper, in 

relation to the SRAM-based FPGA, are measured using the SENTIOF. The power 

consumption is measured by recording the current drawn through a 3.6 V main power 

source for the SENTIOF. The parameters associated with the flash-based FPGA, 

AGL1000V2 are extracted from the manufacturer’s specifications and the software 

tools (LiberoIDE) provided by the manufacturer. The power consumption for the 

AGL1000V2 corresponds to the power supply voltage of 1.2 V and 3.3 V for the core 

and IOs, respectively. 

 

Figure 3.  A simplified depiction of implementation details related to the suspend and power-off state 

4. Results 

The typical static power consumption of the SRAM-based FPGA, XC6SLX16 is 24 

mW. In order to conserve static power during idle state, it can be switched to the 

suspend state. During the suspend state, the FPGA maintains all the design states and 

the configurations data while reducing the static power consumption to a lower level. 

The average power consumption measured during the suspend state is about 11 mW, 

which corresponds to more than a 50% reduction as compared to that of the idle state. 

The important feature of this state is that the FPGA can be switched to the suspend 

state in less than 14 ns, and back to active state in less than 20 µs. With this short 

transition time to and from the suspend state, it is possible to conserve energy by 

frequently switching the FPGA to the suspend state.  

Based on this fast transition time and a more than 50% reduction in power 

consumption, the suspend state can be an ideal option to conserve energy when the 



FPGA is idle for short durations. However, for longer durations that are typically 

associated with duty-cycle applications, the power consumption of 11 mW can lead to 

the wasting of a valuable amount of energy. For example, if the FPGA is switched to 

the suspend state for 5 minutes, the resulting energy consumption is 3.6 joules, which 

can otherwise be used to perform certain other functions. Therefore, when the FPGA is 

idle for long durations we opt to switch it to the power-off state so as to minimize the 

energy consumption. However, by switching the FPGA to power-off state, all the 

design states and the configuration data are lost. As a consequence, on the next power-

up, the FPGA requires to be re-configured by loading the configuration data (bit 

stream) from the associated non-volatile memory.  

The SRAM-based FPGA, XC6SLX16 can be configured through a serial peripheral 

interface (SPI) interface with a selectable data bus width of single, dual and quad-bits 

and a maximum transfer rate of 66 MHz. In order to achieve a fast configuration time 

for the FPGA, a non-volatile memory that provides quad SPI interface and an operating 

frequency of upto 85 MHz is used. In an uncompressed format, a configuration time of 

15.16 ms is recorded for loading the bit stream of 3,731,264 bits from the associated 

non-volatile memory to the FPGA. During this configuration process, the SPI bus width 

and configuration speed were set to quad-mode and 66 MHz, respectively. In order to 

further minimize the configuration time, the FPGA can also be configured using a 

compressed bit-stream. However, the size of such a bit-stream depends on the 

synthesized application and therefore, results in an application dependent configuration 

time. It should be noted that during the power-off-to-active state, an additional delay of 

about 8 ms, apart from the actual configuration time, was measured. This delay 

corresponds to the time at which the power to the FPGA is turned-on to the instant at 

which it becomes ready to load the bit stream and, thus, leads to the power-off-to-

active time to 23.5 ms. 

During the power-off-to-active state, the instantaneous current drawn from a 3.6V 

power source is shown in Figure 4. It should be noted that during the configuration 

process, both the FPGA and the FLASH memory are ON and therefore, the current 

drawn corresponds to both of these modules. Upon power-up, the FPGA causes the 

instantaneous current to exceed a little over 1A. The average current consumption 

 

Figure 4. Instantaneous current consumption during power-off-to-active state of the FPGA 
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during power-off-to-active state is measured to be 30.3 mA, which leads to the energy 

consumption of 2.56 mJ in relation to the power-off-to-active of the FPGA. This, in 

other words, means that the FPGA should only be switched to power-off state if the 

energy conserved is more than 2.56 mJ. The resulting duration for which the energy 

conservation is more than 2.56 mJ is 82.5 ms or more. The results relating to different 

states of the FPGA are also summarized in Table 2. 

Table 2. Average power consumption, switching time, and energy consumption during different states of the 

SRAM-based FPGA 

 Idle state Suspended 

state 

Power-off 

state 

Power-off-to-

active state 

Average power consumption 24 mW 11 mW 0 109 mW 

Time required to switch the FPGA to  - 14 ns < 10 ns 23.5 ms 

Energy consumption Time dependent Time dependent 0 2.56 mJ 

In order to compare the effective energy conservation that can be achieved by 

switching the FPGA to the suspend and power-off state in relation to that of idle state, 

the percentage energy conservation for a wide range of inactive duration is shown in 

Figure 5. For a given inactive duration, the energy conservation corresponds to the ratio 

of the energy consumption during the idle state and the suspend state or the power-off 

state. The energy consumption corresponding to the suspend and the power-off state 

also includes the energy consumed to switch the FPGA to the respective state and back 

to the active state. From Figure 5, we can observe that for inactive duration of less than 

38 µs, the FPGA should not be switched to the suspend or power-off state. However, 

for inactive duration of 38 µs to 235 ms, switching the FPGA to the suspend state 

results in more energy conservation as compared to the power-off state. This is mainly 

due to the short transition time to/from the suspend state. On the other hand, for 

inactive duration longer than 235 ms, it is the power-off state that results in the 

maximum energy conservation. The maximum energy conservation during the suspend 

and power-off state is around 54.1% and 99.9%, respectively. The 99% energy 

conservation can be achieved for an inactive duration of 10 seconds, which suggests 

that the SRAM-based FPGA can be a suitable choice for a wide range of duty-cycle 

applications.  

 

Figure 5. Percentage energy conservation during the suspend and power-off state in relation to idle mode 
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Flash-based FPGAs generally consumes less static power, and can also be switched 

to low-power states in less time as compared to SRAM-based FPGAs. Therefore, it is 

interesting to compare the SRAM-based FPGA with an equivalent flash-based FPGA. 

For this purpose, we estimated the energy consumption of the flash-based FPGA, 

AGL1000V2 for different inactive durations. The typical static power consumption of 

the flash-based FPGA is 75 µW [14]. This FPGA can also be switched to a low-power 

state, known as the FlashFreeze state. The typical power consumption during this state 

is 50 µW and, the time required to enter and exit from the FlashFreeze state is about 1 

µs.  The energy consumption of both the flash and SRAM-based FPGAs for different 

inactive durations is shown in Figure 6. For a given inactive duration, the energy 

consumption of the flash-based FPGA corresponds to the energy consumed during the 

FlashFreeze state and during switching the FPGA to FlashFreeze state and back to 

active state. The energy consumption of the SRAM-based FPGA corresponds to that of 

the suspend state for in-active duration of up to 235 ms, and to the power-off state for 

durations longer than 235 ms. From Figure 6, we can observe that for inactive duration 

of 100 µs to 10 ms, the difference in energy consumption between the two FPGAs is 

negligible. After 10 ms, the energy consumption associated with SRAM-based FPGA 

increases and leads to a maximum difference of 2.4 mJ at inactive duration of 234 ms. 

However, with inactive duration of 235 ms or more, the energy consumption of the 

SRAM-based FPGA remains almost constant where as the energy consumption 

associated with the flash-based FPGA tends to increase. For an inactive duration of 

more than 54 seconds, the energy consumption of the flash-based FPGA exceeds that 

of the SRAM-based FPGA. 

In Figure 6, the flash-based FPGA was switched to the FlashFreeze state during 

which it consumed 50 µW and therefore, it can be argued that the power supply to the 

flash-based FPGA can also be turned-off so as to minimize the energy consumption 

associated with the flash-based FPGA. However, it should be noted that the time 

required for the power-off-to-active state and the associated the energy consumption is 

more than that of switching the flash-based FPGA from FlashFreeze to the active state. 

This means that by switching the flash-based FPGA to the power-off state, the 

maximum energy conserved in relation to the SRAM-based FPGA is likely to be less  

 
Figure 6. Energy consumption of XC6SLX16 and AGL1000V2 during low-power states for a range of 

inactive durations during which these FPGAs can be switched to their respective low-power states 
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than 2.4 mJ, which is otherwise achieved by switching the flash-based FPGA to the 

FlashFreeze state as shown in Figure 6.  

In summary, with dynamic power management, the energy consumption associated 

with the idle state of the SRAM-based FPGA can be reduced significantly, and thus the 

FPGA can be used for duty-cycle applications with both very short as well as long 

inactive durations. 

5. Conclusion 

In this paper, we have investigated the energy consumption of an SRAM-based FPGA, 

XC6SLX16 in relation to the idle, suspend, power-off, and transitional states that 

include switching the FPGA from suspend to active, and power-off to active states, so 

as to determine its feasibility for duty-cycle applications. In addition, these results are 

compared with a flash-based FPGA that provides an equivalent amount of logic 

resources. 

The SRAM-based FPGA typically consumes 24 mW during the idle state, and can 

be switched to the suspend state, in which it consumes 11 mW. The typical switching 

time to and from the suspend state are 14 ns and 20 µs, respectively. Therefore, for 

short inactive durations such as 38 µs to 235 ms, the power consumption can be 

reduced to more than 50%. For inactive durations exceeding 235 ms, the FPGA should 

be switched to the power-off state. In order to minimize both re-configuration time and 

the associated energy consumption after the power-on, the SPI interface associated with 

loading the bit stream can be operated at a maximum clock frequency of 66 MHz and a 

data bus width of quad-bits. The resulting energy consumption of the power-off-to-

active state enables to switch the FPGA to the power-off state and thus conserves 

energy up to 99.9 % in relation to that of idle state. 

In relation to an equivalent flash-based FPGA, AGL1000V2 that consumes 50 µW 

during its low-power state, we observe that by switching the SRAM-based FPGA to the 

suspend and power-off states, its energy consumption is almost equivalent to that for an 

inactive duration less than 100 ms. On the other hand, for an inactive duration greater 

than 54 seconds, the energy consumption associated with SRAM-based FPGA is less 

than that of the FLASH-based FPGA. Therefore, it can be concluded that the SRAM-

based FPGA that provides more logic resources and a higher operating frequency as 

compared to the FLASH-based FPGA, can be used to achieve high-throughput 

computationally intensive processing locally in an embedded system while maximizing 

the operational lifetime through dynamic power management and duty-cycling. 
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