
Investigating Energy Consumption

of an SRAM-based FPGA for Duty-

Cycle Applications
Khurram Shahzad and Bengt Oelmann

Department of Electronics Design

Mid Sweden University

Sundsvall, Sweden

{khurram.shahzad, bengt.oelmann}@miun.se

Abstract. In order to conserve energy, battery powered embedded systems are

typically designed with very low-power modules that offer limited computational

power and communication bandwidth and therefore, are generally applicable to

low-sample-rate intermittent applications. On the other hand, enabling an

embedded system with a high-throughput processing resource such as an FPGA,

high-throughput processing performance that is typically required in high-sample

rate monitoring applications can be achieved. However, the high power

consumption associated with an FPGA poses a major challenge in attaining

significant lifetime for a battery-powered embedded system. In this paper, we

investigate energy consumption of an SRAM-based FPGA in relation to duty-

cycle applications. In order to achieve long operational lifetime in an FPGA-based

embedded system, the possible options to dynamically manage the power

consumption are studied and discussed. The experimental results suggest that the

SRAM-based FPGA, XC6SLX16 that provides ample logic resources in relation to

typical high-sample rate monitoring applications, can be used in a battery operated

embedded systems while minimizing the energy consumption to 2.56 mJ for

inactive duration of 235 ms or above.

Keywords. Energy optimization; SRAM-based FPGA; High-sample rate;

Dynamic power management; Duty-cycling

Introduction

With the recent advancement in electronics, battery-powered wireless embedded

systems have emerged as a low-cost alternative to fixed wired-based monitoring

solutions in many fields. However, the power consumption of these battery-powered

systems has been a challenge to achieve a significant operational lifetime. In order to

minimize power consumption, such systems are typically designed using modules with

ultra low-power characteristics. These low-power modules, however, provide limited

computational and communication capabilities. Therefore, such embedded systems are

generally suitable for low-sample rate intermittent applications, in which a small

amount of data is transmitted to a remote station without any significant processing

locally in an embedded system.

Nevertheless, the high-sample rate applications can also take advantage of such

potentially low-cost and autonomous wireless systems, provided that these are enabled

to fulfill relatively high processing and communication requirements while maintaining

low-power characteristics. For example, enabling a wireless embedded system with a

high-throughput processing resource such as an FPGA, high-sample rate applications,

such as vibration-based industrial condition monitoring, structural health monitoring,

and image-based tracking can be realized by processing data locally in an embedded

system [1]-[3]. In this approach, raw data is processed in an embedded system and only

the results are transmitted wirelessly and therefore, the communication activity and the

associated energy consumption are reduced. On the other hand, the energy

consumption associated with processing data locally becomes a challenge to achieve

long operational lifetime. However, by exploiting the hardware parallelism in an FPGA,

the actual processing can be completed in a much shorter period of time as compared to

that for a low-power micro-controller that processes data in a sequential manner and,

following on for the rest of the duration during which an FPGA is idle, it can be

switched to a low-power state so as to conserve energy.

In relation to integrating an FPGA in an embedded system, it is the static random

access memory (SRAM) based FPGAs that are commonly used [1]-[9]. This is mainly

because these FPGAs not only offer embedded resources such as block RAM and

Multiply-and-Accumulate (MAC) units in addition to basic logic cells, but they are

typically built on a relatively more advance semiconductor technology as compared to

their re-configurable counterparts such as flash-based FPGAs and therefore, provide a

better performance [10]. However, their relatively high static power consumption, as

compared to the flash-based FPGAs, often limits their potential advantages in battery-

powered embedded systems. In addition, dynamic power management and duty-cycling

techniques [11]-[12] that can be applied to conserve static power when an FPGA is idle

are typically limited by the energy consumption associated with the resulting re-

configuration process. Therefore, it is interesting to investigate SRAM-based FPGAs

so as to evaluate their feasibility for duty-cycle applications, in which power to an

FPGA is turned-off and thus, requires re-configuration when it is powered-on.

 The literature related to battery-powered embedded systems that integrate SRAM-

based FPGAs, such as [1]-[9] is generally focused on application specific performance

issues. The energy consumption of these FPGAs during idle, low-power and re-

configuration states that are required to determine the effective energy conservation

through dynamic power management and duty-cycling and, hence, to determine

operational lifetime, is least explored. Therefore, in this paper, we investigate the

energy consumption of an SRAM-based FPGA in relation to idle, low-power, and

configuration states so as to determine the feasibility with regards to using a SRAM-

based FPGA for duty-cycle applications.

The remaining sections are organized as follows. In section 1, the theoretical aspects

of energy optimization/conservation are discussed. In section 2, the factors that have an

impact on the choice of an FPGA are discussed. In section 3, the experimental setup is

explained. In section 4, the results are presented together with the supporting

discussion. In section 5, the concluding remarks are given.

1. Theory

Energy consumption ET, of an embedded system that consumes power, P watts for

operational time duration of T seconds, can be calculated as given in Eq. (1),

E� = P × T (1)

During this operational time T, an individual module of an embedded system can be in

one or more of the following states and therefore, the energy consumption can be

analyzed according to these states.

Active The FPGA performs desired task(s). The power consumption during this

state is the sum of both the dynamic and static power consumption.

Idle There is no switching activity, and therefore the power consumption

corresponds only to the static power.

Sleep A built-in state, in which power consumption of a module is reduced as

compared to that of the idle state.

Power-off Power supply to a module is turned-off so as to minimize power

consumption.

Active-to-sleep This is a transitional state, in which a module transitions from active

to sleep state.

Sleep-to-active A transitional state during which a module is switched to active state

from sleep state.

Active-to-power-off A transitional state that corresponds to switching a module

from active to power-off state.

Power-off-to-active This is also a transitional state in which a module is powered-

on and thus, transitions from power-off to active state.

All of the above states may not be applicable to each individual module in an

embedded system. However, as all integrated modules are supposed to perform certain

operations during operational time T and therefore, each module experiences at-least

active and idle states. Accumulating energy consumption of all N modules of an

embedded system associated with active and idle states, the Eq. (1) can be expanded to

Eq. (2),

E� = ∑ 	(P
��
��_
 ×	T
��
��_
 + P
���_
 ×	T
���_
)
�

�� (2)

The active energy consumption (P
��
��_
 ×	T
��
��_
) in Eq. (2) depends on the

required performance in an application and therefore, provides limited options that can

be exploited to optimize it in an application independent embedded system. One

possible option is to integrate low-power modules that can be dynamically configured

to different operating frequencies, so as to optimize the operating frequency and the

associated power consumption for a module whenever possible. In addition, for certain

high-energy consuming activities, integrating more than one module with different

performance and power consumption specifications can assist in optimizing the energy

consumption. For example, a processing unit may include a micro-controller and an

FPGA in order to optimize the performance and power consumption according to the

requirements of an underlying application.

In relation to the idle state, during which the energy consumption is the product of

the application dependent idle time and the system dependent power consumption,

minimizing static power consumption can lead to overall energy optimization. This can

be achieved by integrating modules that support sleep states and, by designing an

embedded system such that the individual modules can be switched to sleep states

dynamically. With this method in practice, an individual module can either be in one of

the four states, active, sleep, active-to-sleep, and sleep-to-active state. Based on these

states, the resulting energy consumption can then be calculated as given in Eq. (3). In

relation to an FPGA-based system, it is important to consider the energy consumption

during all these states in general and during the sleep-to-active state in particular, as it

plays an significant role in deciding whether or not to switch an FPGA in the sleep

state for a given time period.

E� =

∑ (P
��
��� ×	T
��
��� + P������ ×	T������ +	P
��
��_��_�����_� ×	T
��
��_��_������ 	+
�

��

P�����_��_
��
��_� ×	T�����_��_
��
���)	 (3)

By switching individual modules to sleep states, energy consumption can be reduced

significantly as compared to the case in which they were in idle states. However, the

resulting energy consumption can still be a challenge for energy constrained

applications. In order to minimize the energy consumption associated with the sleep

state of a module, the power supply to the module can be turned-off. In this way, the

energy consumption of a module can be reduced to zero joules. With this state in

practice, which we call the power-off state in this paper, the total energy consumption

ET given in Eq. (3) can be calculated by replacing the power and timing parameters

corresponding to the sleep state with those of the power-off state.

In addition to dynamically switching an individual module to sleep or power-off

state when it is idle, whole embedded system can also be operated in a duty-cycle

manner so as to conserve energy and to maximize the operational lifetime. In a duty-

cycle approach, an embedded system periodically performs the required task(s) for a

short period of time, τ, in relation to the total time period, T as shown in Figure 1.

During time period (T-τ), which is called inactive duration in this paper, all integrated

modules can be switched to the power-off state in order to conserve energy. This,

however, requires one module to keep track of the time duration so that it has the

ability to switch all modules to active states after inactive duration. For example a low-

power micro-controller can be used for this purpose. In relation to an embedded system

that integrates an FPGA, the effective energy conservation that can be achieved by

means of dynamic power management and duty-cycling depends on the energy

consumption during sleep, power-off, sleep-to-active, and power-off-to-active states

and, is typically dictated by a number of factors related to an FPGA in use and are

discussed in the next section.

Figure 1. Duty-cycling; an embedded system performs desired operations during active duration, and then

remains inactive for (T-τ) duration

2. Choosing an FPGA for duty-cycle applications

In an FPGA-based embedded system that is targeted to achieve high-performance,

re-configurability, low-cost, compact size, and low-power consumption, the choice of

an FPGA plays a crucial role. The factors that influence the choice include the size of

an FPGA in terms of logic resources, the underlying technology, availability of low-

power states and, support for easy and fast development of hardware and software.

In relation to logic resources, modern FPGAs typically consists of logic

cells/elements (i.e. look-up tables, flip-flops, etc.), memory buffers, and embedded

logic units such as multipliers, circuitry for synthesizing different clock frequencies, etc.

As the number of logic resources in an FPGA has an impact on cost, physical size and

power consumption, it is important to choose an FPGA with the right amount of

resources so that, for a given set of applications, an integrated FPGA results in both an

optimal logic resource utilization and power consumption. For an FPGA-based

embedded system that is targeted to achieve high-throughput processing performance

and low-power characteristics, example applications include vibration-based condition

monitoring, structural health monitoring, image-based industrial and environmental

monitoring. The actual type and amount of logic resources required to synthesize these

applications will vary. However, to provide an indication to the readers, a list of major

resources and their utilization (i.e. number of resources used to synthesize an

application) as found in published literature [1]-[3] and [6]-[9] is complied in Table 1.

In addition to logic resources, the underlying technology of an FPGA also affects the

performance, power-consumption, re-configurability, cost etc. and therefore, requires

equal consideration in the selection of an FPGA. In relation to technology, modern

FPGAs can be classified into three major categories, anti-fuse, flash, and SRAM-based

FPGAs, and different pros and cons are associated with each category. Unlike anti-fuse

FPGAs, both the flash and the SRAM-based FPGAs can be configured multiple times

and thus, can be integrated in a generic embedded system in order to realize different

applications. Therefore, we restrict our discussion to only these two categories. The

major difference in these two categorizes is the manner in which the configuration data

is stored in the device. In flash-based FPGAs, the configuration data is stored in flash

memory cells and is retained even when power to the FPGA is turned-off. On the other

hand, the configuration data in SRAM-based FPGAs is stored in SRAM cells and is

lost when the power is turned-off. Therefore, an SRAM-based FPGA is required to be

re-configured each time the power is turned-on. In relation to dynamic power

management and duty-cycling in which the power supply to an FPGA is turned-off so

as to conserve energy, a flash-based FPGA is likely to result in a shorter power-off-to-

active time and the associated energy consumption. However, typical SRAM-based

FPGAs not only offer additional embedded resources such as block RAM, and MAC

units, but are built on relatively more advanced semiconductor process technology as

compared to their contemporary flash-based counterparts, and thus provide a better

performance [10]. Therefore, it is interesting to investigate their energy consumption

during different states in relation to duty-cycle applications.

Table 1. Type of logic resources and their utilization in realizing certain monitoring applications on FPGAs

Resource Type Four –Input Look-up

Tables

Flip-Flops Dedicated

RAM (kb)

Multipliers

(18x18 bits)

Number of

resources used

7000 to 11000 2800 to 6900 24 to 300 4 to 35

In order to choose a reconfigurable, low-cost, and low-power FPGA able to

provide ample amount of resources as described in Table 1, there are number of FPGAs

from different vendors that can be considered. However, at present, both in terms of

volume and revenue, the Xilinx and the Actel are the leading manufacturers of the

SRAM and flash-based FPGAs, respectively and therefore, provided the motivation to

consider the FPGAs from these two manufacturers. The Spartan-6 is a low-power and

low-cost family of Xilinx’s SRAM-based FPGAs, where as the IGLOO family can be

associated with the same attributes among the Actel’s flash-based FPGAs. Among the

Spartan-6 FPGAs, it is the XC6SLX16-2CPG196 [13] that has the desired amount of

resources as given in Table 1 and therefore, it is used to investigate the energy

consumption in relation to duty-cycling applications. Among the Actel’s IGLOO

family, it is the AGL1000V2FBGA144 [14] that provides a similar amount of

resources as compared to that of the XC6SLX16-2CPG196 and therefore, we find it

interesting to investigate its energy consumption so as to compare the SRAM-based

FPGA with the flash-based FPGA.

3. Experimental setup

In order to obtain energy consumption parameters associated with SRAM-based FPGA,

an FPGA-based embedded system, the SENTIOF [15] is used for experimental

purposes. The SENTIOF is an FPGA-based high-performance embedded system that

has been developed at Mid Sweden University, Sweden. The simplified architecture of

the SENTIOF is shown in Figure 2. In addition to other modules such as micro-

controller, radio transceiver, SRAM, etc. it integrates the Spartan-6 XC6SLX16-

2CPG196 FPGA in order to achieve high-throughput computationally intensive

processing within the embedded system. The low-power micro-controller performs

control specific operations such as dynamic power management. With dynamic power

management, each module including the FPGA can be switched to sleep and power-off

state. The built-in sleep state of the FPGA, which is called the “suspend state” in

relation to this FPGA, is activated by de-asserting the SUSPEND input signal of the

FPGA as shown in Figure 3. When it is in the suspend state, the micro-controller can

de-assert this signal to switch it back to the active state. The micro-controller is also

able to monitor the AWAKE signal, which is asserted by the FPGA when it is ready to

perform the desired operations. In order to switch the FPGA to the power-off state, the

power-supplies to the FPGA that are VCCINT (1.2V), VCCAUX (3.3V) and VCCIO

(3.3V) are turned-off. In the SENTIOF, it is only the FPGA’s core that is powered

through the 1.2V voltage regulator, therefore, in order to turn-off the 1.2V supply to the

FPGA, the regulator is disabled. On the other hand, the 3.3V is supplied to other

modules in addition to FPGA, therefore, P-type power MOSFET transistors, as shown

in Figure 3, are used to turn-off VCCAUX and VCCIO of the FPGA.

Figure 2. A simplified architecture of the SENTIOF that is used in experiments

The typical current drawn by the P-type transistor is 1uA, and can typically be

turned-on and off in 1 µs and 3 µs, respectively. It should be noted that Figure 2 is

included to show the reader a simplified implementation view related to the suspend

and power-off state and therefore, does not include pull-up/pull-down circuits etc. that

are required to provide a stable operation. In order to switch the FPGA back to the

active state from power-off state, the micro-controller enables the 1.2V voltage

regulator, turns-on the MOSFET and then asserts the PROGRAM signal such that the

FPGA can load the configuration data from the associated flash memory. When the

configuration is completed and the FPGA is ready to operate, it asserts the DONE

signal.

The timing and power consumption parameters that are presented in this paper, in

relation to the SRAM-based FPGA, are measured using the SENTIOF. The power

consumption is measured by recording the current drawn through a 3.6 V main power

source for the SENTIOF. The parameters associated with the flash-based FPGA,

AGL1000V2 are extracted from the manufacturer’s specifications and the software

tools (LiberoIDE) provided by the manufacturer. The power consumption for the

AGL1000V2 corresponds to the power supply voltage of 1.2 V and 3.3 V for the core

and IOs, respectively.

Figure 3. A simplified depiction of implementation details related to the suspend and power-off state

4. Results

The typical static power consumption of the SRAM-based FPGA, XC6SLX16 is 24

mW. In order to conserve static power during idle state, it can be switched to the

suspend state. During the suspend state, the FPGA maintains all the design states and

the configurations data while reducing the static power consumption to a lower level.

The average power consumption measured during the suspend state is about 11 mW,

which corresponds to more than a 50% reduction as compared to that of the idle state.

The important feature of this state is that the FPGA can be switched to the suspend

state in less than 14 ns, and back to active state in less than 20 µs. With this short

transition time to and from the suspend state, it is possible to conserve energy by

frequently switching the FPGA to the suspend state.

Based on this fast transition time and a more than 50% reduction in power

consumption, the suspend state can be an ideal option to conserve energy when the

FPGA is idle for short durations. However, for longer durations that are typically

associated with duty-cycle applications, the power consumption of 11 mW can lead to

the wasting of a valuable amount of energy. For example, if the FPGA is switched to

the suspend state for 5 minutes, the resulting energy consumption is 3.6 joules, which

can otherwise be used to perform certain other functions. Therefore, when the FPGA is

idle for long durations we opt to switch it to the power-off state so as to minimize the

energy consumption. However, by switching the FPGA to power-off state, all the

design states and the configuration data are lost. As a consequence, on the next power-

up, the FPGA requires to be re-configured by loading the configuration data (bit

stream) from the associated non-volatile memory.

The SRAM-based FPGA, XC6SLX16 can be configured through a serial peripheral

interface (SPI) interface with a selectable data bus width of single, dual and quad-bits

and a maximum transfer rate of 66 MHz. In order to achieve a fast configuration time

for the FPGA, a non-volatile memory that provides quad SPI interface and an operating

frequency of upto 85 MHz is used. In an uncompressed format, a configuration time of

15.16 ms is recorded for loading the bit stream of 3,731,264 bits from the associated

non-volatile memory to the FPGA. During this configuration process, the SPI bus width

and configuration speed were set to quad-mode and 66 MHz, respectively. In order to

further minimize the configuration time, the FPGA can also be configured using a

compressed bit-stream. However, the size of such a bit-stream depends on the

synthesized application and therefore, results in an application dependent configuration

time. It should be noted that during the power-off-to-active state, an additional delay of

about 8 ms, apart from the actual configuration time, was measured. This delay

corresponds to the time at which the power to the FPGA is turned-on to the instant at

which it becomes ready to load the bit stream and, thus, leads to the power-off-to-

active time to 23.5 ms.

During the power-off-to-active state, the instantaneous current drawn from a 3.6V

power source is shown in Figure 4. It should be noted that during the configuration

process, both the FPGA and the FLASH memory are ON and therefore, the current

drawn corresponds to both of these modules. Upon power-up, the FPGA causes the

instantaneous current to exceed a little over 1A. The average current consumption

Figure 4. Instantaneous current consumption during power-off-to-active state of the FPGA

0 5 10 15 20 25 30 35

0

20

40

60

80

100

120

140

160

180

200

Time (ms)

In
s
ta

n
ta

n
e
o
u
s
 C

u
rr
e
n
t
(m

A
)

Power
-off state

FPGA is powered-ON

Starts loading
bitstream

Power-off-to-active state

Configuration
ends

during power-off-to-active state is measured to be 30.3 mA, which leads to the energy

consumption of 2.56 mJ in relation to the power-off-to-active of the FPGA. This, in

other words, means that the FPGA should only be switched to power-off state if the

energy conserved is more than 2.56 mJ. The resulting duration for which the energy

conservation is more than 2.56 mJ is 82.5 ms or more. The results relating to different

states of the FPGA are also summarized in Table 2.

Table 2. Average power consumption, switching time, and energy consumption during different states of the

SRAM-based FPGA

 Idle state Suspended

state

Power-off

state

Power-off-to-

active state

Average power consumption 24 mW 11 mW 0 109 mW

Time required to switch the FPGA to - 14 ns < 10 ns 23.5 ms

Energy consumption Time dependent Time dependent 0 2.56 mJ

In order to compare the effective energy conservation that can be achieved by

switching the FPGA to the suspend and power-off state in relation to that of idle state,

the percentage energy conservation for a wide range of inactive duration is shown in

Figure 5. For a given inactive duration, the energy conservation corresponds to the ratio

of the energy consumption during the idle state and the suspend state or the power-off

state. The energy consumption corresponding to the suspend and the power-off state

also includes the energy consumed to switch the FPGA to the respective state and back

to the active state. From Figure 5, we can observe that for inactive duration of less than

38 µs, the FPGA should not be switched to the suspend or power-off state. However,

for inactive duration of 38 µs to 235 ms, switching the FPGA to the suspend state

results in more energy conservation as compared to the power-off state. This is mainly

due to the short transition time to/from the suspend state. On the other hand, for

inactive duration longer than 235 ms, it is the power-off state that results in the

maximum energy conservation. The maximum energy conservation during the suspend

and power-off state is around 54.1% and 99.9%, respectively. The 99% energy

conservation can be achieved for an inactive duration of 10 seconds, which suggests

that the SRAM-based FPGA can be a suitable choice for a wide range of duty-cycle

applications.

Figure 5. Percentage energy conservation during the suspend and power-off state in relation to idle mode

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0

20

40

60

80

100

Inactive duration (seconds)

%
 E

n
e
rg

y
 C

o
n
s
e
rv

a
ti
o
n

Suspend state

Power-off state

107 ms

235 ms

38 µs

Flash-based FPGAs generally consumes less static power, and can also be switched

to low-power states in less time as compared to SRAM-based FPGAs. Therefore, it is

interesting to compare the SRAM-based FPGA with an equivalent flash-based FPGA.

For this purpose, we estimated the energy consumption of the flash-based FPGA,

AGL1000V2 for different inactive durations. The typical static power consumption of

the flash-based FPGA is 75 µW [14]. This FPGA can also be switched to a low-power

state, known as the FlashFreeze state. The typical power consumption during this state

is 50 µW and, the time required to enter and exit from the FlashFreeze state is about 1

µs. The energy consumption of both the flash and SRAM-based FPGAs for different

inactive durations is shown in Figure 6. For a given inactive duration, the energy

consumption of the flash-based FPGA corresponds to the energy consumed during the

FlashFreeze state and during switching the FPGA to FlashFreeze state and back to

active state. The energy consumption of the SRAM-based FPGA corresponds to that of

the suspend state for in-active duration of up to 235 ms, and to the power-off state for

durations longer than 235 ms. From Figure 6, we can observe that for inactive duration

of 100 µs to 10 ms, the difference in energy consumption between the two FPGAs is

negligible. After 10 ms, the energy consumption associated with SRAM-based FPGA

increases and leads to a maximum difference of 2.4 mJ at inactive duration of 234 ms.

However, with inactive duration of 235 ms or more, the energy consumption of the

SRAM-based FPGA remains almost constant where as the energy consumption

associated with the flash-based FPGA tends to increase. For an inactive duration of

more than 54 seconds, the energy consumption of the flash-based FPGA exceeds that

of the SRAM-based FPGA.

In Figure 6, the flash-based FPGA was switched to the FlashFreeze state during

which it consumed 50 µW and therefore, it can be argued that the power supply to the

flash-based FPGA can also be turned-off so as to minimize the energy consumption

associated with the flash-based FPGA. However, it should be noted that the time

required for the power-off-to-active state and the associated the energy consumption is

more than that of switching the flash-based FPGA from FlashFreeze to the active state.

This means that by switching the flash-based FPGA to the power-off state, the

maximum energy conserved in relation to the SRAM-based FPGA is likely to be less

Figure 6. Energy consumption of XC6SLX16 and AGL1000V2 during low-power states for a range of

inactive durations during which these FPGAs can be switched to their respective low-power states

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-1

0

1

2

3

4

5

Inactive duration (seconds)

E
n
e
rg

y
 C

o
n
s
u
p
m

ti
o
n
 (
m

J
)

AGL1000V2

XC6SLX16

at 54.1 s

2.4 mJ

than 2.4 mJ, which is otherwise achieved by switching the flash-based FPGA to the

FlashFreeze state as shown in Figure 6.

In summary, with dynamic power management, the energy consumption associated

with the idle state of the SRAM-based FPGA can be reduced significantly, and thus the

FPGA can be used for duty-cycle applications with both very short as well as long

inactive durations.

5. Conclusion

In this paper, we have investigated the energy consumption of an SRAM-based FPGA,

XC6SLX16 in relation to the idle, suspend, power-off, and transitional states that

include switching the FPGA from suspend to active, and power-off to active states, so

as to determine its feasibility for duty-cycle applications. In addition, these results are

compared with a flash-based FPGA that provides an equivalent amount of logic

resources.

The SRAM-based FPGA typically consumes 24 mW during the idle state, and can

be switched to the suspend state, in which it consumes 11 mW. The typical switching

time to and from the suspend state are 14 ns and 20 µs, respectively. Therefore, for

short inactive durations such as 38 µs to 235 ms, the power consumption can be

reduced to more than 50%. For inactive durations exceeding 235 ms, the FPGA should

be switched to the power-off state. In order to minimize both re-configuration time and

the associated energy consumption after the power-on, the SPI interface associated with

loading the bit stream can be operated at a maximum clock frequency of 66 MHz and a

data bus width of quad-bits. The resulting energy consumption of the power-off-to-

active state enables to switch the FPGA to the power-off state and thus conserves

energy up to 99.9 % in relation to that of idle state.

In relation to an equivalent flash-based FPGA, AGL1000V2 that consumes 50 µW

during its low-power state, we observe that by switching the SRAM-based FPGA to the

suspend and power-off states, its energy consumption is almost equivalent to that for an

inactive duration less than 100 ms. On the other hand, for an inactive duration greater

than 54 seconds, the energy consumption associated with SRAM-based FPGA is less

than that of the FLASH-based FPGA. Therefore, it can be concluded that the SRAM-

based FPGA that provides more logic resources and a higher operating frequency as

compared to the FLASH-based FPGA, can be used to achieve high-throughput

computationally intensive processing locally in an embedded system while maximizing

the operational lifetime through dynamic power management and duty-cycling.

References

[1] K. Shahzad, P. Cheng, and B. Oelmann, "Architecture exploration for a high-performance and low-power

wireless vibration analyzer," IEEE Sensors Journal, vol.13, no.2, pp.670-682, Feb. 2013.

[2] K. Khursheed, M. Imran, A.W. Malik, M. O'Nils, N. Lawal, and B. Thörnberg, "Exploration of Tasks

Partitioning between Hardware Software and Locality for a Wireless Camera Based Vision Sensor

Node", 26th International Symposium on Parallel Computing in Electrical Engineering (PARELEC),

pp.127-132, 3-7 April 2011.

[3] C. H. Zhiyong, L. Y. Pan, Z. Zhenxing, and M. Q. H. Meng, "A novel FPGA-based wireless vision

sensor node," IEEE International Conference on Automation and Logistics, 2009, pp.841-846, 5-7 Aug.

2009.

[4] Y. Sun, L. Li, and H. Luo , "Design of FPGA-Based Multimedia Node for WSN", 7th International

Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), pp.1-5, 23-25

Sept. 2011.

[5] J. Portilla, T. Riesgo, and A. de Castro, “A Reconfigurable FPGA-Based Architecture for Modular

Nodes in Wireless Sensor Networks”, 3rd Southern Conference on Programmable Logic, pp.203-206,

28-26 Feb. 2007.

[6] J. Henaut, D. Dragomirescu, and R. Plana, "FPGA Based High Date Rate Radio Interfaces for Aerospace

Wireless Sensor Systems," 4rth International Conference on Systems, ICONS '09, pp.173-178, 1-6

March 2009.

[7] A.A.M Bsoul, R. Hoskinson, M. Ivanov, S. Mirabbasi, H. Abdollahi, "Implementation of an FPGA-based

low-power video processing module for a head-mounted display system", IEEE International

Conference on Consumer Electronics (ICCE), pp. 214,217, 11-14 Jan. 2013.

[8] E. C. Yepez, R. A Osornio-Rios, R. J. Romero-Troncoso, J. R. Razo-Hernandez, and R. Lopez-Garcia,

"FPGA-Based Online Induction Motor Multiple-Fault Detection with Fused FFT and Wavelet

Analysis," International Conference on Reconfigurable Computing and FPGAs, pp. 101,106, 9-11 Dec.

2009.

[9] M.L. Kaddachi, L. Makkaoui, A. Soudani, V. Lecuire, and J. Moureaux, "FPGA-based image

compression for low-power Wireless Camera Sensor Networks," 3rd International Conference on Next

Generation Networks and Services (NGNS), pp. 68-71, 18-20 Dec. 2011.

[10] D. G. Bailey, “Design for embedded image processing on FPGAs”, 2011 John Wiley & Sons (Asia) Pte

Ltd, ISBN 978-0-470-82849-6, pp. 54-72, 2011.

[11] R. Maheswar, P. Jayarajan, and F. N. Sheriff. "A Survey on Duty Cycling Schemes for Wireless Sensor

Networks." International Journal of Computer Networks and Wireless Communications (IJCNWC), vol.

3, no. 1,pp. 37-40, February 2013.

[12] H. Yoo, M. Shim, and D. Kim, "Dynamic Duty-Cycle Scheduling Schemes for Energy-Harvesting

Wireless Sensor Networks," IEEE Communications Letters, vol.16, no.2, pp.202-204, February 2012.

[13] Spartan-6 XCLS6X16-2CPG196 San Jose, CA: Xilinx Inc. 2013. [Online]. Available:

www.xilinx.com.

[14] IGLOO AGL1000V2FPGA144 Aliso Viejo, CA: Microsemi Corporation. 2013. [Online]. Available:

www.actel.com.

[15] K. Shahzad, P. Cheng, and B. Oelmann, “SENTIOF: An FPGA-Based High-Performance and Low-

Power Wireless Embedded Platform” Accepted for publication in International Conference on Wireless

Sensor Networks (WSN'13), 8-11 Sep. 2013.

