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Abstract 
This paper presents a multi objective chance constrained 
programming model for matching of goods and transports in an 
intermodal transport chain under uncertain delivery time. The 
objectives in the proposed model are cost, emission, and 
transport time, where time is considered as an uncertain 
parameter. An approach to solve the model is proposed, and this 
approach has been implemented in a web-based system for 
transport matching in order to provide clients with alternative 
transport routes in a large system of possible transport solutions. 
A case study of a Swedish shipping company is analyzed, and the 
results are presented through comparisons of results from 
deterministic and stochastic models. The suggested model can 
help a decision maker to select transport alternative 
compromising between time, cost, emission, and with respect to 
uncertainty in transport time parameters. 
 
Keywords: Decision Support Systems, Intelligent 
Transportation Systems, Logistics Network, Stochastic Multi 
Objective Optimization. 

1. Introduction 
Modeling of an intermodal freight transport system is a 
more complex task than modeling a uni-modal system [1]. 
In an intermodal logistics environment, there are two main 
specificities of the decision problem which we consider. 
The first of these is conflicting objectives when jointly 
minimizing cost, time and emission. The second is the 
uncertainty associated with incompleteness of available 
data causing uncertainties. With respect to second 
specificity, we focus on the transport time between two 
transport nodes in the intermodal transport chain. The 
ways in which these both specificities are incorporated 
into previous approaches vary greatly. 
For instance, efficient coordination using single objective 
optimization methods have been used for a long time. 
These methods focus on low cost, or short time or a mix of 
these, and a survey can be found in [2]. For the freight 
transport sector, many initiatives have been initiated such 
as promoting “green corridors” with one example being 

the “Mid Nordic Green Transport Corridor” [3]. A 
mapping of tools and/or techniques for green supply-chain 
management is found in [4].  
Further, a great deal of research has been performed 
studying a single transport and the so-called “external 
costs” associated with the transport such as different types 
of emission costs and noise cost included [5], [6], [7]. In 
this case, efforts have been made in order to convert, for 
instance, carbon emission quantities and time quantities 
into a total cost in a life-cycle assessment and cost-benefit 
paradigm to be compared with other costs. This is similar 
to the way carbon emissions contracts are traded, for 
instance at the ICE ECX Emissions [8]. Succeeding with 
this would make the necessary optimization calculations 
again single objective and solvable in a straightforward 
manner using optimization methods. Unfortunately, it is 
not straightforward to fetch the needed inherent trade-offs 
in such approaches and the solution will not involve 
compromise amongst conflicting objectives. Other 
approaches instead consider multi objective, or multi 
criteria optimization, to address the general problem of 
assessing transport alternatives from many perspectives, 
cf., e.g., [9]. 
Accounting for parameter uncertainty may be handled by 
different approaches such as stochastic programming, 
fuzzy mathematical programming, probabilistic 
programming, or a combination of these approaches, cf., 
e.g., [10], [11], [12]. In an intermodal freight transport 
system, the uncertainty of transport time becomes crucial 
since there are multiple transportation times depending of 
several kinds of transports as well as several transportation 
companies. This paper, therefore, aims to formulate a 
multi objective optimization model taking uncertainty in 
transport time into account. The model proposed assumes 
that some information about uncertain time is available 
and that the mean and the standard deviation of the time 
random variable can be estimated in a reasonable way. 
Furthermore, the historical data of the transport time can 
be used to obtain estimates of future transport times.  
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The model is implemented in a web-based transport 
matching system and solved using the Lingo solver [13]. 
The model is tested on a small but illustrative case study of 
a Swedish shipping company in order to provide clients 
with alternative transport routes. Future practical 
extensions of the model will be based on the test of large 
size cases. 
The paper is organized as follows. Section 2 contains the 
literature review of existing approaches in the intermodal 
systems. Section 3 is devoted to the basic concept. A multi 
objective chance constrained programming model is 
proposed in Section 4. In section 5, we present a solution 
approach. On a case study of a Swedish shipping company 
is demonstrated the proposed model and solution approach 
in section 6.  Finally, Section 7 contains the conclusion 
and the sketch of some perspectives.  

2. Related work 
In this section, we summarize existing approaches for 
intermodal freight transportation systems which treated the 
multi criteria relationship between components and/or 
uncertainty of components. 
In the context of joint minimization of cost and emission, 
Kim et al. [9] present a study of intermodal networks of 
different freight combinations; a truck-only system, a rail-
based system, and a short sea-based system. The authors 
propose a two objective optimization model, which 
simultaneously minimize costs and the level of emissions 
subject to the demand and capacity. For simplicity reasons, 
the objective functions were expressed in a linear form, 
and the arising linear programming problem is solved by 
the Microsoft Excel solver. Six different scenarios that 
related to demand and capacity is studied, and it is shown 
that increasing the capacity of low emitting systems 
capacity will reduce emissions. However, the authors 
emphasized that a more precise formulation of the problem, 
leading to nonlinear programming could find a more 
accurate solution. 
Park et al. [14] study the relationships between logistics 
cost, time and CO2 emissions of the intermodal freight 
transportation systems. Their case study of the freight 
transportation systems of Korea involves the road network 
for trucks and the railway network. Minimizing of the total 
cost in the transportation network is conducted using linear 
programming optimization method with the CO2 emission 
as constraints, and the relationship between all 
components is studied pairwise. The authors conclude that 
there are trade-off relationships between cost, time, and 
emission in the truck- and rail- based intermodal system. 
Winebrake et al. [15] introduce the geospatial model, 
which can be used to analyze the cost, the delivery time, 
the energy and the environmental impacts of intermodal 
freight transports. Their network supporting truck, ship 
and rail transports routes may have multiple modes. Each 
route of the network is connected to dataset information 

about mode accessibility, operating cost, average speed, 
distance and emissions. Depending on a decision maker’s 
goal, for instance the least-cost or shortest-distance, the 
corresponding single objective problem will be solved, and 
the result is to be analyzed by the decision maker. The 
authors demonstrate their approach on three case studies. 
Moccia et al. [16] have focus on a multimodal 
transportation problem with timetables, flexible-time 
transportation, and consolidation options. Their suitable 
network representation of the problem is in the form of a 
directed graph where each arc is associated with related 
cost and traveling time. In order to solve the problem, a 
heuristic algorithm based on performing a time-limited 
branch-and-cut search on the set of generated columns is 
suggested. The final problem is an integer programming 
problem which is solved with the help of the MILP solver. 
The authors demonstrate the efficacy of the proposed 
approach on real-life data. 
Notably, in the most of the models, the minimization of 
the transportation time and the uncertainty of 
transportation time are not considered. Moreover, these 
approaches do not incorporate the stochastic nature of the 
transport time and the use of historical data. In this paper, 
we therefore propose the multi objective chance 
constrained model in order to manage the inherent conflict 
between cost, emission and time, taking into account 
uncertainty of transportation time. 

3. Background 
3.1 The multi-objective optimization 
The general multi objective optimization problem is stated 
in the following way: 
 

minimize f (x) = (𝑓1(x), . . . , 𝑓𝑘(x))  
  

subject to x ∈ X 
 
where X ⊂ 𝑅𝑛 is a feasible set of decision variables and is 
called the alternative space and the space 𝑅𝑛  is called the 
variable space. The functions 𝑓𝑖, i = 1, . . . , k, are objective 
functions (or criteria) such that 
 
 𝑓𝑖: X→ 𝑅𝑘 
 
where the space 𝑅𝑘 is called the criterion space. The image 
of the feasible set f(X) = {q | q = f (x), x ∈ X}, is called a 
feasible criterion region, and the vector f(x) is called an 
outcome vector. In this setting, we speak about an 
alternative x ∈ X and the corresponding outcome vector of 
this alternative x, f(x). 
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The following definitions will be taken into consideration. 
  
Definition 1: An outcome vector f (x), x ∈ X, is said to 
dominate another vector f (y), y ∈ X, if 𝑓𝑖 (x) ≤ 𝑓𝑖(y) for all i 
= 1,…,k, and the inequality is strict for at least one i. A 
vector f(x) strongly dominates another vector f(y) iff 𝑓𝑖(x) 
< 𝑓𝑖(y) for all i. 
 
Definition 2: A vector f (x∗), x∗ ∈ X, is non-dominated if 
there does not exist another x ∈ X such that f (x) dominates 
f (x∗). 
 
Note that dominance relations relate to the concept of 
Pareto-optimality and efficiency.  
 
Definition 3: An alternative is said to be Pareto-optimal, 
iff its outcome vector is not dominated by any other vector 
(which belongs to a feasible alternative). The 
corresponding vector is called efficient. 
 
Definition 4: An alternative x is said to be a weak Pareto 
optimum, if there is no other feasible alternative y with an 
outcome vector f(y) strongly dominating f(x). The 
corresponding outcome vector f(x) is called weakly 
efficient. 
 
Obviously, weakly efficient outcomes are less desirable, 
but for the considered problem, weakly efficient outcomes 
can be taken into account due to that the identified 
efficient solution may be undesired due to factors not 
captured by the model. Reasons for searching efficient 
outcomes are explained in the solution approach's section 
5.1. 

3.2 Chance constrained multi objective 
optimization 
Many parameters of a real-life problem are of a stochastic 
nature. In order to integrate the available stochastic 
information into an optimization problem formulation, 
chance constraints can be used. By using a chance-
constrained optimization model, can be achieved system 
reliability under uncertainty [17]. 
The general chance constrained multi objective 
optimization problem can be formulated as follows 
 

minimize f (x) = (𝑓1(x,ω), . . . , 𝑓𝑘(x,ω)) 
 

subject to x ∈ X,  Pr{𝑔𝑖(x,ω)≤ 𝛽𝑖}≥ 𝛼𝑖 
 
where  ω  ∈ Ω are uncertain variables, X ⊂ 𝑅𝑛  is a 
feasible set of decision variables, and the real-valued 
random variables 𝑓𝑖(x,ω) with known joint distribution are 
defined on X × Ω, i = 1, . . . , k. Further, 𝑔𝑖(x,ω)≤ 𝛽𝑖 refer 
to inequalities and 𝛼𝑖 ∈ [0,1] are user-defined confidence 
levels. 

 If a chance constraint Pr{𝑔𝑖(x,ω)≤ 𝛽𝑖}≥ 𝛼𝑖 has the same 
confidence level for all i, then this is called a joint chance 
constraint. Joint chance constraints thus require a user-
defined confidence level for the whole feasible region.  
In an intermodal logistics environment, both kinds of 
chance constraints can be applied. The single chance 
constraints can help to handle uncertainty of each 
constraint individually. For instance, in the case when the 
transportation time on some leg is more crucial than for 
another leg. Furthermore, the joint chance constraints can 
be used in the case when information about some crucial 
legs is not available. 
 

4. Problem description and proposed model 
In intermodal logistics, there are trucks, trains and vessels 
involved on various sizes and used different types of 
engines and fuels. Some cargo is also transported by 
airplanes. The upcoming conflict between time, cost and 
emission objectives come from the fact that all involved 
parties have different interests and that different transport 
nodes have different properties and pros and cons that 
making the problem multi-objective in nature. For instance, 
if we consider medium length transports we have the 
following situation 
 

• Trucks are fast, flexible but with high carbon 
emissions 

• Electrical trains, usually used in Sweden, are slow 
in average speed with low carbon emissions 

• Sea vessels usually take too long time for this 
transport but are otherwise very good in both cost 
and carbon emissions due to the vast amount of 
goods that can be transported one a single vessel. 

• Airplanes are fast but in all other aspects not good. 
The emissions are not only high they are pollute 
with greenhouse gases on high altitude, which is 
even worse for the environment. 
 

An intermodal distribution network consists of several 
distinct transport legs and several routes. The required 
information can be collected from the supplier and the 
shipping agent, and additional information regarding 
emissions can be calculated. The collected information can 
then be stored in a database. One main concern for 
intermodal transport logistics is that different load carriers 
must be on time at the intermediate nodes of the network 
for future transportation. The aim is to fill up the 
individual transport capacity on every leg used for the 
routes in the system that consist of empty or partial loaded 
load carriers. These load carriers can be added from 
databases or manually by the shipping agents in the system 
with the shipper’s front-end in real-time.  
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The deterministic multi objective model has been proposed 
by Olsson and Larsson [18] and in Kalinina et al. [19] and 
is presented below. 
 
Sets, Constants and variables 
N The set of all nodes defining the legs in the 

network with unique identities 
R The set of all routes in the network 
cT

ijpqmlk The cost of transport on leg (i, j) with identity 
p, load carrier q for commodity m on route (l, 
k) 

cs
lk   The cost of shortage on route (l, k) 

eijpqm The actual emission on  leg (i, j) vid identity p, 
load carrier q and commodity m 

dt
lk The total demand on route (l, k) 

mmax
ijpqm The maximum transport volume on leg (i, j) 

for  identity p, load carrier q and commodity m 
mmin

ijpqm The minimum transport volume on leg (i, j) 
for identity p, load carrier q and commodity m 

tst
lk Start time for transport on route (l, k) 

ts
ijpqm Start time on leg (i, j) with identity p, load 

carrier q for commodity m 
tt

ijpqm Transport time on leg (i, j) with identity p, 
load carrier q for commodity m 

vijpqmlk Volume transported on leg (i, j) with identity 
p, load carrier q for commodity m on route (l, 
k) 

slk Shortage on route (l, k) e.g. the amount that 
can’t be sent due to lack of transport capacity 

emax The total calculated amount of emissions 
ds

lk The demand sent on route (l, k) 
ttot

lk Maximum transport time for a transport on 
route (l, k) 
 

Decision variables 
xijpqmlk xijpqmlk equals 1 if  leg (i, j) with identity p, load 

carrier q for commodity m on route (l, k) is used, 
otherwise 0 

fijpqm fijpqm equals 1 if  leg (i, j) with identity p, load 
carrier q for commodity m is used, otherwise 0 

The deterministic multi objective mathematical model 
formulates as follows. 
 
min𝑧𝑐 = ∑ 𝑐𝑖𝑗𝑝𝑞𝑚𝑙𝑘

𝑇 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑖,𝑗,𝑝,𝑘,𝑙)∈𝑁 + ∑ 𝑐𝑙𝑘𝑠 𝑠𝑙𝑘(𝑘,𝑙)∈𝑅  (1) 
 
min𝑧𝑒 = ∑ 𝑒𝑖𝑗𝑝𝑞𝑚𝑣𝑓𝑖𝑗𝑝𝑞𝑚(𝑖,𝑗,𝑝,𝑞,𝑚,𝑙,𝑘)∈𝑁      (2) 
 
min𝑧𝑡 = ∑ (𝑡𝑖𝑗𝑝𝑞𝑚𝑠 + 𝑡𝑖𝑗𝑝𝑞𝑚𝑡 )𝑓𝑖𝑗𝑝𝑞𝑚(𝑖,𝑗,𝑝,𝑞,𝑚,𝑙,𝑘)∈𝑁     (3) 
 
s.t. 
𝑑𝑙𝑘𝑠 =𝑑𝑙𝑘𝑡 -𝑠𝑙𝑘, (l,k)∈R      (4)
      
∑ 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑖,𝑗,𝑝,𝑞,𝑚)∈𝑁 =𝑑𝑙𝑘𝑠 , j=k, (l,k)∈R    (5)
  

∑ 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑗,𝑖,𝑝,𝑞,𝑚)∈𝑁 =0, j=k, (l,k)∈R  (6)
   
∑ 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑗,𝑖,𝑝,𝑞,𝑚)∈𝑁 =𝑑𝑙𝑘𝑠 , j=l, (l,k)∈R  (7) 
 
∑ 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑖,𝑗,𝑝,𝑞,𝑚)∈𝑁 =0, j=l, (l,k)∈R  (8)
  
∑ 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑖,𝑗,𝑝,𝑞,𝑚)∈𝑁 -∑ 𝑣𝑗𝑖𝑝𝑞𝑚𝑙𝑘(𝑖,𝑗,𝑝,𝑞,𝑚)∈𝑁 =0, 
i≠k, j≠l, (l,k)∈R     (9)
                 
∑ 𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑙,𝑘)∈𝑅 ≤ 𝑚𝑖𝑗𝑝𝑞𝑚

𝑚𝑎𝑥 , (i,j,p,q,m)∈N  (10)
            
𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ≤ 𝑚𝑖𝑗𝑝𝑞𝑚

𝑚𝑎𝑥 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘, (i,j,p,q,m)∈N, (l,k)∈R (11) 
 
𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ≥ 𝑚𝑖𝑗𝑝𝑞𝑚

𝑚𝑖𝑛 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘, (i,j,p,q,m)∈N, (l,k)∈R (12)
    
𝑡𝑙𝑘𝑠𝑡-𝑡𝑖𝑗𝑝𝑞𝑚𝑠 ≤(𝑡𝑙𝑘𝑠𝑡 + 1)(1-𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘) 
i=l, (i,j,p,q,m)∈N,(l,k)∈R    (13)
                     
𝑡𝑖𝑗𝑝𝑞𝑚𝑠 +𝑡𝑖𝑗𝑝𝑞𝑚𝑡 + 𝑡𝑖𝑗𝑝𝑞𝑚𝑡 − 𝑡𝑗𝑛𝑟𝑞𝑚𝑠 ≤  
(𝑡𝑖𝑗𝑝𝑞𝑚𝑠 +𝑡𝑖𝑗𝑝𝑞𝑚𝑡 )(2-𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘-𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘),  
j≠k, n≠i, r≠p, (l,k)∈R          (14) 
 
𝑡𝑖𝑗𝑝𝑞𝑚𝑠 +𝑡𝑖𝑗𝑝𝑞𝑚𝑡 − 𝑡𝑙𝑘𝑡𝑜𝑡 ≤ (𝑡𝑖𝑗𝑝𝑞𝑚𝑠 +𝑡𝑖𝑗𝑝𝑞𝑚𝑡 )(1−𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘), 
j=k, (i,j,p,q,m)∈N,(l,k)∈R    (15)
              
𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ≤ 𝑓𝑖𝑗𝑝𝑞𝑚     (16)
             
𝑓𝑖𝑗𝑝𝑞𝑚 ≤ ∑ 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑙,𝑘)∈𝑅              (17) 
 
∑ 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘(𝑖,𝑚)∈𝑁,(𝑙,𝑘)∈𝑅 ≤1, (j,p,q) ∈N  (18)           
𝑣𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ≥0, 𝑠𝑙𝑘 ≥0,  
 
𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ∈ {0,1}, 𝑓𝑖𝑗𝑝𝑞𝑚 ∈ {0,1}    (19) 
 
The first objective function in (1) minimizes the total cost, 
the second objective function in (2) minimizes the total 
emission, the third objective function in (3) minimizes the 
total time. In constraints (4), the actual volume sent from 
supplier l to customer k equals the demand from supplier l 
at customer k minus the amount that can’t be sent due to 
limits in the transportation system. Constraints (5) 
guarantee that the actual volume sent from supplier l to 
customer k is equal to the demand minus the unsent 
amount. Constraints (6) ensure that, in supplier node l, the 
sent volume is equal with the actual demand at the 
destination k. Constraints (7) enforce that in customer node 
(k) is received a volume that equals the actual sent volume 
from the supplier node (l) for the specific route (l, k). 
Constraints (8) guarantee that in a customer node cannot 
have that node as a supply node for that route. Constraints 
(9) ensure that whole the volume forwarded in the 
transshipment nodes. Constraints (10) are related to the 
load carriers current transport capacity. Constraints (11) 
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and (12) indicate maximal and minimal transport capacity 
for every volume variable, moreover, it indicates if a 
specific leg is used. Constraints (13) are time constraints 
for start node at the supplier; the arriving time has to be 
earlier than departing time from a node. Time constraints 
(14) ensure that the arriving time has to be earlier than 
departing time from a node for transshipment nodes, and 
time constraints (15) are designed for end node where the 
sent volume should be arrive no later than the pre-
determined maximum transport time set by the supplier. 
Constraints (16) indicate that if a leg is used on any route 
it has to be related to a load carrier. Constraints (17) show 
that a load carrier can only be used if a transport is needed 
on that leg.  Constraints (18) guarantee that transports are 
distinct for a route. Constraints (19) indicate that the 
variables for transported volume and the variable for the 
shortage is greater or equal to zero and are continuous; the 
variable indicating if a specific leg and transport carrier is 
used are binary variables. 
To deal with the uncertainty of the time, we extend the 
model with chance constraints. We then consider the 
transportation time parameters at the nodes as stochastic 
parameters. In the model, uncertainties of time 
components are present in the time constraints and in the 
time objective function. Assume that the transport time 
𝑡𝑖𝑗𝑝𝑞𝑚𝑡  on leg (i,j) with identity p, load carrier q for 
commodity m  components follows the normal distribution 
N(µ𝑡𝑖𝑗𝑝𝑞𝑚 ,𝜎𝑡𝑖𝑗𝑝𝑞𝑚

2 ). According Charnes and Cooper [20], 
the stochastic coefficients in the objective function can be 
managed by using the expected value of those coefficients, 
and, thus, the time objective can be written 
 
min𝐸(𝑧𝑡) = ∑ (𝑡𝑖𝑗𝑝𝑞𝑚𝑠 + µ𝑡𝑖𝑗𝑝𝑞𝑚)𝑓𝑖𝑗𝑝𝑞𝑚(𝑖,𝑗,𝑝,𝑞,𝑚,𝑙,𝑘)∈𝑁  (20) 
 
The time constraints (14) and (15) can be rewritten as 
follows. 
 
𝑡𝑖𝑗𝑝𝑞𝑚𝑡 (𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘 + 𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘)  ≤ 
𝑡𝑖𝑗𝑝𝑞𝑚𝑠 (𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘+𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘)+𝑡𝑗𝑛𝑟𝑞𝑚𝑠    (14) 
𝑡𝑖𝑗𝑝𝑞𝑚𝑡 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ≤ 𝑡𝑙𝑘𝑡𝑜𝑡 − 𝑡𝑖𝑗𝑝𝑞𝑚𝑠 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘  (15) 
 
Then, the probability that transport time on leg (i,j) with 
identity p, load carrier q is a smaller than the value  
𝑡𝑖𝑗𝑝𝑞𝑚𝑠 (𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘+𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘)+𝑡𝑗𝑛𝑟𝑞𝑚𝑠  and it is bigger than a 
user predefined confidence level 𝛼, (0≤ 𝛼 ≤ 1). 
 
P(𝑡𝑖𝑗𝑝𝑞𝑚𝑡 (𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘 + 𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘)  ≤ 
𝑡𝑖𝑗𝑝𝑞𝑚𝑠 (𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘+𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘)+𝑡𝑗𝑛𝑟𝑞𝑚𝑠 ) ≥ 𝛼  (21) 
 
A probabilistic form of the time constraints for the end at 
the customer (15) is 
 
𝑃(𝑡𝑖𝑗𝑝𝑞𝑚𝑡 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘 ≤ 𝑡𝑙𝑘𝑡𝑜𝑡 − 𝑡𝑖𝑗𝑝𝑞𝑚𝑠 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘) ≥  𝛼 (22) 

By the assumption, transport time tijpqmt  follows the 
normal distribution N( µ𝑡𝑖𝑗𝑝𝑞𝑚 , 𝜎𝑡𝑖𝑗𝑝𝑞𝑚

2 ). Then, the 
deterministic equivalent to the chance constraints (21) are 
µ𝑡𝑖𝑗𝑝𝑞𝑚 ≤
 𝑡𝑖𝑗𝑝𝑞𝑚𝑠 (𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘+𝑥𝑗𝑛𝑟𝑞𝑚𝑙𝑘)+𝑡𝑗𝑛𝑟𝑞𝑚𝑠 −𝛷−1(α) 𝜎𝑡𝑖𝑗𝑝𝑞𝑚  (23) 
 
Corresponding deterministic constraints to the chance 
constraints (22) are 
 
µ𝑡𝑖𝑗𝑝𝑞𝑚 ≤ 𝑡𝑙𝑘𝑡𝑜𝑡 − 𝑡𝑖𝑗𝑝𝑞𝑚𝑠 𝑥𝑖𝑗𝑝𝑞𝑚𝑙𝑘−𝛷−1(𝛼) 𝜎𝑡𝑖𝑗𝑝𝑞𝑚 , (24) 
 
where Φ−1 ( α)  is inverse of the standard normal 
cumulative distribution. 
Thus, the multi objective chance constrained model can be 
formulated using the equations (1), (2), (20), (4)-(13), (23), 
(24), (16)-(19) as described above.  

5. Solution approach 
The proposed reliable network model is a probabilistic 
constrained three objective mixed integer linear 
programming problem. In order to solve this model, we 
suggest the following approach.  

5.1 The procedure for generating of non-
dominated freight transport alternatives 
A lot of methods have been developed for generating of 
Pareto optimal solutions in the case of a convex objective 
space, see, e.g., [21], [22], [23]. For a non-convex 
objective space, the ɛ-constraint method can be used as the 
generating method [24]. The ɛ-constraint method is based 
on minimizing one of the objectives and restricting the rest 
of the objectives within predefined values. To ensure 
Pareto optimality we should solve three different problems 
through perturbing of the upper bounds for those 
problems. In view of the non-convexity of the feasible set 
and for the need of a generating method, the ɛ-constraint 
method has been used. The multi-objective problem (1)-
(19) and the multiobjective chance constrained problem 
can be thus reformulated as three single objective 
problems. 
 
minimize fcost(x) 
s. t. femission(x)≤ 𝜀𝑒

(2) − 𝛽, ftime(x) ≤ 𝜀𝑡
(2) − 𝛽, x ∈ X   (25) 

 
minimize femission(x) 
s. t. fcost(x) ≤ 𝜀𝑐

(3) − 𝛽, ftime(x) ≤ 𝜀𝑡
(3) − 𝛽, x ∈ X.  (26) 

 
minimize ftime(x) 
s. t. femission(x)≤ 𝜀𝑒

(4) − 𝛽, fcost(x)≤ 𝜀𝑐
(4) − 𝛽,  x ∈ X.  (27) 

 
The following procedure then generates Pareto optimal 
alternatives. 
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• Initial step: Set 𝜀𝑖
(𝑗)  sufficiently large, where 

j∈ {2,3,4}, i ∈ {𝑐, 𝑒, 𝑡} and 𝛽 sufficiently small.  
• Step 1: Solve the optimization problems (25-27) 

with given  𝜀𝑖
(𝑗). Let 𝑥(2)

∗ , 𝑥(3)
∗ , 𝑥(4)

∗  be solutions of 
problems (25-27) respectively. 

• Step 2: If for all j shortage cost is not equal to 
zero stop, else ∃𝑗  such as shortage cost is equal 
to zero, set 𝜀𝑖

(𝑗) = 𝑓𝑖 (𝑥(𝑗)
∗ ) and go to step 1and 

solve the problem (j). 
 
In the initial step, the values 𝜀𝑖

(𝑗)  can be selected using 
preference information from a decision maker, for 
instance, upper bounds for cost and time function can be 
desirable values and upper bound for emission function 
can be the accepted level of emission for company. With 
each new step, the found solutions will be forced to 
comply with the stronger restrictions. The solutions of 
problems (25)-(27) with such defined upper bounds will be 
efficient [24]. The solutions with nonzero shortage cost 
can be taking into consideration in the some cases. It is 
possible to see on which leg does not exist any amount of 
transports or on which leg is exceeding the maximal 
transport capacity. In this case, a new leg can be created by 
new shipping agents in the portal. 

5.2 The procedure for generating of weak Pareto 
freight transport alternatives 
In certain cases, the generated non-dominated alternatives 
do not meet a decision maker’s requirements due to 
contracts, accidents or other circumstances. Then the 
generating of weak Pareto freight transport alternatives 
will be substantiated. Obviously, weakly efficient 
outcomes are less desirable. Nonetheless, when obtained 
Pareto optimal alternatives are useless due to that there are 
obstacles in the form of an accident on one leg or the 
weather situation, weakly Pareto optimal alternatives can 
be taken into consideration. 
The procedure requires information from a decision maker 
about which objective function is deemed more important. 
Without loss of generality, we assume that the most 
important objective is the cost function and denote the 
desirable value of the cost function by 𝜀. At this point, the 
multi-objective problem (1)-(19) and the multi objective 
chance constrained problem can be formulated in the form 
of two single objective problems as follows 
 
minimize femission(x) 
s. t. fcost(x) ≤ 𝜀, ftime(x) ≤ 𝜀𝑡

(5) − 𝛽, x ∈ X.  (28) 
 
minimize ftime(x) 
s. t. femission(x)≤ 𝜀𝑒

(6) − 𝛽, fcost(x)≤ 𝜀, x ∈ X. (29) 
 

The following procedure then generates the weak Pareto 
alternatives. 
 

• Initial step: Specify a desirable value 𝜀 for 
desired objective function. Set 𝜀𝑖

(𝑗)  sufficiently 
large, where j∈ {5,6}, i ∈ {𝑒, 𝑡} and α sufficiently 
small.  

• Step 1: Solve the optimization problems (28-29) 
with given   𝜀𝑖

(𝑗) . Let  x(5)
∗ , x(6)

∗  be solutions of 
problems (28-29) respectively. 

• Step 2: If for all j shortage cost is not equal to 
zero stop else ∃𝑗  such as shortage cost is equal to 
zero, set 𝜀𝑖

(𝑗)= 𝑓𝑖(𝑥(𝑗)
∗ ) and go to step 1and solve 

the problem (j). 
 

The procedure enables to find the solutions that are close 
to or less than the desired value of the objective function. 
Since the upper limit is perturbed only for one objective in 
the problems (28) - (29), the obtained alternatives will be 
weak Pareto optimal alternatives. 

6. Case study 
In this section, we present the result of applying our 
proposed approach on the real-life case study.  

6.1 Case description 
Today pellets are transported from the port of Söråker near 
Sundsvall in Sweden to places in the northern regions of 
Sweden. Pellets arrive with both trucks and trains to this 
port, but in this case we have only considered the 
distribution of Pellets out from this port to 8 customers 
with one hub on the way. The nodes for Pellets 
distribution for this case are depicted in Figure 1. The 
actual network of transport links consists of several time 
dependent transport links between the hub and the final 
destinations, including capacities, demand, and other 
constraints. In total, the transport links are 56, see Table 5. 
For instance, there are 15 transports available only 
between the node 1 and 2 in the network. Thus, the 
network consists of the legs that are the actual load carriers 
and the routes which can consist of one or more load 
carriers and many shifts between different transport 
modes.  
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Figure 1: The real world map with some placeholders to the left 
indicating the nodes used in the case study. To the right the network is 
defined in this map 
 
The web-based portal prototype has been developed for 
real time matching of cargo from suppliers with load 
carriers from the shipping agents, see Figure 2. Available 
information about cost, transportation time and emission, 
type of transports can be added manually or connected 
directly to a database for real time matching. We measure 
the costs in monetary terms, the carbon emissions in 
CO2/mt and the time in hours. The data have been taken 
from the real world data flow at the company, and the 
carbon emissions on a single leg in the pellets transport 
system was calculated by the Ecotransit calculator [25]. 
 

 
Figure 2: The front page of the demo of the portal for matching cargo 
from suppliers with load carriers from the shipping agents. 
 
With this suggested approach and the MILP solver, the 
necessary calculation can be performed in real time and 
suggestions for transports will be presented to the supplier 
instantly in the web portal. In Figure 3, data received from 
the shipping agents for the pellets case are visualized.  

 
Figure 3: The portal from the shipping agents point of view for the pellets 
case. 
 
The corresponding mathematical model has 927 variables, 
392 integer variables and 1926 constraints. The Lingo 
solver [13] was used for the calculation. 

6.2 Result and Analysis of Case Study 
We compare the solutions to the stochastic model with 
solutions to the deterministic model. Solutions to the 
deterministic model are reported in Table 1. 

Table 1: Pareto optimal alternatives from deterministic model 
Transport  
alternatives 

Cost Time Emission 

A 29130 155,58 0,582 
B 29194 152,58 0,588 
C 29337 151,58 0,598 
D 29401 148,58 0,604 
E 29930 163,58 0,576 
F 30474 138,58 0,607 
G 30681 134,58 0,623 

 
It can be noted that the solution will have lowest emission 
with highest time. If one focuses on the minimal time, the 
solution will often have high cost and a high emission. In 
other words, cost, time, and emissions are not independent. 
There are various relationships between them. The 
relationship between cost and emission indicates that 
reduction of cost is not always accompanied also reduction 
of emissions, for instance alternative D has highly 
emission and lowly cost and time values than alternative 
E. There are trade-offs relationships between cost, time 
and emission, where improvements in the cost or the 
emission dimensions cannot occur without impairment of 
the time dimension. The compromise between cost, time 
and emission should be considered in order to meet the 
needs of various interests. Solutions to the stochastic 
model are reported in Table 2.  

Table 2: Pareto optimal alternatives from stochastic model 
Transport 
alternatives 

Cost Time Emission 

Cs 29337 155,08 0,598 
Ds 29401 152,08 0,604 
I 30137 163,08 0,592 
Gs 30681 138,08 0,623 
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Obviously, different efficient solutions are obtained from 
the deterministic and the stochastic model. We can, 
however, conclude that alternatives Cs, Ds and Gs are 
robust since they differ only by the total travel time and 
have the same cost and emission. Additionally, a new 
Pareto optimal alternative I is revealed from the stochastic 
model. Alternative Gs has the highest cost and the highest 
emission but the lowest transportation time, and it may be 
suitable if finally selected alternative should be have the 
least travel time.  
In the case when the identified alternatives do not meet the 
needs of a decision maker, the procedure for generating of 
weak Pareto alternatives may be applied. With the 
procedure was created six weak efficient solutions, see 
Table 3. The alternatives A1, B1, C1, D1, F1, and G1 have 
the same emission and time as alternatives A, B, C, D, F 
and G but higher cost. These dominated alternatives may 
be relevant. Out of the alternatives obtained from the 
procedure for generating of weak optimal Pareto 
alternatives, the solutions A1, B1,C1,D1,F1,G1 differ from 
solutions A,B,C,D,F,G on costs values, i.e. they can be 
considered as a complementary to each other. It is, 
however, important to note that alternatives A1-G1 are 
weak Pareto optimal and the procedure should be applied 
in the case when the desirable alternatives could not be 
selected from non-dominated alternatives A-G. 

Table 3: Weak Pareto optimal alternatives from deterministic model 
Transport  
alternatives 

Cost Time Emission 

A1 29162 155,58 0,582 
B1 29226 152,58 0,588 
C1 29369 151,58 0,598 
D1 29433 148,58 0,604 
F1 30506 138,58 0,607 
G1 30713 134,58 0,623 

 
However, from a practical point of view, if time instances 
of uncertain situation could be taken into account, then, 
applying the procedure for generating weak Pareto optimal 
alternatives from multi objective chance constrained 
model can be used. In this case, we have four alternatives 
Cws, Dws, Gws which differ from alternatives C1, D1, G1 
only on travel time component, see Table 4. 

Table 4: Weak Pareto optimal alternatives from stochastic model 
Transport  
alternatives 

Cost Time Emission 

Cws 29369 155,08 0,598 
Dws 29433 152,08 0,604 

I 30137 163,08 0,592 
Gws 30713 138,08 0,623 

 
Despite this small amount of data, we can see that in the 
case when minimizing the travel time, we identify a 
different alternative in the stochastic optimization than for 

the deterministic case. This indicates that in real cases with 
large data sets, it is likely that undesirable alternatives will 
be promoted by the system if the uncertainty with respect 
to transportation time is not taken into account. 
The result obtained from a set of real data can be analyzed 
by a decision maker. In this case study, there are few 
alternatives from the stochastic model, and decision 
makers can select desirable transport alternative from this 
set of alternatives. In the case when the obtained sets of 
Pareto optimal and weak Pareto optimal alternatives are 
large, additional procedures for finally selecting a 
desirable alternative is needed. A candidate procedure for 
the selection of an alternative from the Pareto set is 
presented in [26]. This procedure allows selecting an 
alternative based on complete or incomplete preference 
information from a decision maker and, thus, is 
complementary to the above suggested approach. 
With respect to achieving low carbon transports in 
intermodal logistics, the proposed approach allows to view 
for shippers and suppliers emission related information 
and select the alternative in relation to emission, cost and 
time aspects. The possibility to use a system like the portal 
presented in this paper in order to match shipping agents 
empty volume to available cargo using an automatized 
optimization routine enable for larger utilization of carriers 
and thus a more effective value chain. By using the 
approach with multi-objective optimization enable for 
weighing carbon emissions against other objectives. In this 
manner, low carbon transports that meet other 
requirements of a supplier can be identified. From the 
results, it is obvious that solutions that have been lost 
when focusing on only one single objective at a time. 
Further, since the three objectives are dependent, an 
ordinary single objective approach cannot handle these 
interdependencies in a consistent manner, and, therefore, 
the use of multi-objective optimization is a good candidate 
for formal problem modeling. A distinctive feature of the 
suggested approach is the possible reduction of carbon 
emission achieved by stipulating a restriction on the 
emission level in the optimization model, and that finally 
selected alternative will be a compromise between cost, 
time and emission objectives.  
With respect to handling uncertainty of transportation time 
in intermodal logistics, the proposed approach allows to 
view for shippers and suppliers robust time related 
alternatives and relate this to cost and emission aspects 
when suggesting transport alternatives. 
The result of this case study shows that by using the 
proposed model, we can deal with uncertainty in the time 
components, in addition handling of uncertainty can be 
based on historical data of transportation time. Developed 
procedures can make the portal very flexible for the 
suppliers that want the transports. Therefore, managing 
simultaneously cost, time and emission and handling 
uncertainty of transportation time parameters will satisfy 
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both the shipping agent and supplier and contribute to a 
sustainable and scalable transport system in the future. 

7. Conclusions 
In this paper, we have developed a multi objective chance 
constrained programming model for the matching of goods 
and intermodal transports alternatives in the presence of 
conflict between time, cost and emission under uncertainty 
in the delay time. The model supports simultaneous 
minimization of cost, time and emission. To demonstrate 
the model, a case study of a Swedish shipping company is 
presented as a proof-of-concept. The future 
implementation of this model is a promising decision 
support framework for matching goods with intermodal 
transports alternatives. Result from the proposed model 
can be the alternative which has a slightly longer travel 
time, but it will be more reliable and thus preferred. The 
contribution of our work is that the solution results from 
the developed model can provide a substantial economic 
potential with reliable decision based on handling 
uncertainty using historical data and taking into account 
conflict between objectives. 

Appendix 

Appendix 1 

Table 5: Nodes at intermodal points 
Node City Number links 

1 Älandsbro 0 

2 Alnö 15 
3 Arjeplog 10 
4 Arvidsjaur 5 
5 Bergvik 1 
6 Boden 14 
7 Sidsjön 8 
8 Sundsvall 3 
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