¥t

Downloaded from the open archive of Mid Sweden University DIVA.

This is the accepted version of a paper published in Communications (ICC), 2012 IEEE International
Conference on. See full citation below.

Shen, Wei; Zhang, Tingting; Gidlund, Mikael, "Distributed data gathering scheduling protocol for
wireless sensor actor and actuator networks," Communications (ICC), 2012 IEEE International
Conference on, pp.7120-7125, 10-15 June 2012

http://dx.doi.org/10.1109/1CC.2012.6364802

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

http://dx.doi.org/10.1109/ICC.2012.6364802

Distributed Data Gathering Scheduling Protocol for
Wireless Sensor Actor and Actuator Networks

Wei Shen, Tingting Zhang

Department of Information Technology and Media

Mid Sweden University, Sundsvall, Sweden
Email: {wei.shen, tingting.zhang} @miun.se

Abstract—This paper presents a cross-layer distributed
scheduling protocol for sensor data gathering transmission in
wireless sensor actor and actuator networks. We propose the
parent-dominant decision scheduling with collision free (PDDS-
CF) algorithm to adapt the dynamics of links in a realistic
low-power wireless network. In addition, the protocol has a
light-weight mechanism to maintain the conflict links. We have
evaluated the protocol and implementation in TinyOS and Telosb
hardware. The experiment shows that our protocol has robustness
to the topology changes and it has significant improvements to
reduce the traffic load in realistic wireless networks.

Index Terms—Data Gathering, Distributed Scheduling,
WiSAAN, Wireless HART

I. INTRODUCTION

Using wireless technologies within industrial automation
is becoming more and more popular, especially within the
process automation domain. Being able to quickly and cost
effectively obtain real-time data from anywhere in the field
at any time is now essential for an industrial automation
system. The obvious advantage of wireless automation is the
immediate savings that can be realized in installation and
maintenance-wireless installation typically costs as much as
50-60 percent less than the wired alternative [1]. Typically
today there are mostly wireless installations on field instru-
mentation level and a prime example is ABB’s installation
on the oil rig “Goliat” which contains more than 400 wireless
vibration sensors connected to several gateways. These sensors
are based on Wireless HART [2] which is the only standard
for wireless sensor networks within process automation.

In these applications, the traffic load sharply increases when
the network scale increases, which makes the performance
of the whole network, e.g., delay, throughput and power
consumption, becomes worse and worse. In such a network,
there is typically a short-length sensor data with a relatively
large overhead in each packet. The scheme of the data
gathering transmission is therefore able to improve the QoS
of the network by means of efficiently scheduling packets
transmission and combining packets from multiple sources
and then forwarding a new packet. Previous work evolving
data gathering transmission for sensor networks can be clas-
sified into two types. The first one is a “randomly waiting
gathering” which typically uses a gathering mechanism in the
buffer of each node without any scheduling [3][4][5]. This
method cannot guarantee the gathering performance because

Mikael Gidlund
ABB Corporate Research
Visteras, Sweden
Email: mikael.gidlund@se.abb.com

the outbound link is not always transmitted after the inbound
link. The other type is a scheduled gathering which generates
a minimum possible traffic load, i.e., the number of slots, with
collision-free schedules [6][7][8].

However, there are two key issues which have not been
dealt with in a satisfactory manner for the previous gathering
scheduling algorithms. Firstly, most of the solutions, e.g., [6]-
[8], have not considered the case involving topology changes
and retransmission in realistic wireless networks. Wireless sen-
sor and actuator network undergo frequent topology changes
due to physical environmental changes, node join, node fail-
ures, and time-varying channel conditions [9]. An individual
wireless link is inherently unreliable. It has observed from
using real-platform testbeds with a low power wireless net-
work (IEEE 802.15.4) that links have a wide range of packet
reception ratios (PRR) which can vary significantly over time
even without intra-collisions and heavy external interference
[10][11]. Tt is even worse for industrial applications in harsh
environment as both humans and machinery alter the RF
environment. In addition, the case involving retransmission
due to unreliable and asymmetric wireless links have to be
considered when designing the protocols.

Secondly, most of the previous gathering scheduling al-
gorithms has not considered another important problem: the
scheduling configuration overhead. The previous work needs
to maintain one-hop and two-hop neighbors. Each node has
to construct its “competitor set” from the two neighbors and
decides its schedule by itself. We call these algorithms as node-
dominant decision scheduling (NDDS). They only consider the
delay after scheduling. But the scheduling procedure should
reduce traffic load and delay.

In this paper, we present a novel cross-layer scheduling
protocol for data gathering transmission. A parent-dominant
decision scheduling with collision free (PDDS-CF) algorithm
is proposed to adapt the dynamics of links in a realistic low-
power wireless network. In addition, the protocol reduces
the scheduling traffic through maintaining distributed light-
weight conflict-links tables. We have implemented the protocol
in TinyOS and Telosb hardware. The results show that the
protocol has robustness to the topology changes and it has
significant improvements to reduce the traffic load.

The remainder of the paper is organized as follows. Section
II presents the network and transmission model. We propose

the adaptive cross-layer data gathering scheduling protocol in
section III. Section IV provides the performance evaluation
of the protocol and implementation in real platforms. We
conclude the paper in section V.

II. NETWORK AND TRANSMISSION MODEL

A. Network topology and routing protocol

The Collection Tree Protocol (CTP), which has become a
de-facto standard in collection routing in CSMA based sensor
networks, uses adaptive beaconing and datapath validation
mechanisms [12] to form and maintain a spanning tree topol-
ogy in dynamic low power wireless environment. We distill
the routing discovery, routing change mechanism of the CTP
routing protocol. The protocol we proposed in this paper is
smoothly compatible with the CTP protocol.

B. Wireless interference model

In a wireless network, wireless links whose transmissions
may interfere with each other cannot be scheduled to transmit
at the same time. Wireless transmission may collide in two
ways that are typically referred to as primary and secondary
interference [13]. Primary interference occurs when one node
has to perform more than one action in a single time slot, i.e.,
this node receives messages from two different transmitters,
transmits a message to two different receivers, or transmits
a message to a receiver and receives a message from a
transmitter at the same time. Secondary interference occurs
when the receiver Rx of transmitter Tx is within the radio
range of another transmitter which does not intend to transmit
a message to Rx.

III. PROPOSED DISTRIBUTED DATA GATHERING
SCHEDULING PROTOCOL

This section presents the distributed data gathering schedul-
ing protocol that we have proposed, namely parent-dominant
decision scheduling with collision free (PDDS-CF).

A. Overview

PDDS-CF builds and maintains a distributed scheduling
for packet gathering transmission in low power and lossy
networks. It is designed to adapt the inconsistencies of the
topology, node join, node failures and link transmission fail-
ures. The data gathering procedure is triggered by a route
found or a route changed and it proceeds iteratively from the
end nodes towards the root by multi-hop routing. An end node
is one whose in-degree is zero, i.e., which has no children
nodes. Upon the discovery of either a found or changed route
at a node, a one-shot timer called a “route timer” is initiated.
The motivation behind the setting up of this timer is to await
the change of route for the local node’s neighbors. The reason
for this is because both a new node joining the network and
finding its route and a node changing its route may cause its
neighbors to change the routes. When this timer is expired,
the node sends its expected schedule according to its conflict
table to its parent if it determines that it is an end node. After
collecting all the schedules of its children, a parent node will

make them schedules. If it is a non-end node, the node is not
allowed to populate its schedule until all its children have valid
schedules. The detailed description is discussed in the rest of
the section and a schematic of the protocol is shown in Fig. 2.

During the sensor data transmission procedure, each sched-
uled non-end node receives packets from its children, decodes
the sensor data, jointly collects the sensor data into one packet
and forwards this packet to its parent. The performance of
the data gathering transmission also depends on the medium
access protocol (MAC), the exceptions being the scheduling
protocol and the routing protocol.

The PDDS-CF supports both non-slotted carrier sense mul-
tiple access with collision avoidance (CSMA-CA) and slot-
ted CSMA-CA, and also the time division multiple access
(TDMA) based MAC, e.g., WirelessHART MAC, which is
a hybrid protocol that uses slotted Aloha and TDMA with
channel hopping. In the TDMA based MAC, a schedule
assigned by our protocol represents a time slot number in a
superframe composed of a continuation of time slots which
are repeated periodically. In the slotted CSMA, a schedule
is an order of a back-off time unit order, while a schedule
represents an order of a global backoff logic-time unit order
in non-slotted CSMA. A distributed total order algorithm is
required in order to execute the scheduling result in the non-
slotted CSMA due to the fact that there is no global time
synchronization.

Our protocol has currently not considered the case that
exceeding the maximum packet size when combining packets
from multiple sources.

B. Messages and tables maintained by PDDS-CF

The PDDS-CF specifies five messages and maintains three
tables as shown in Table L.

C. Collision free scheduling

As discussed in section I, collision free is one of the
important goals for the data gathering scheduling problem. We
classify the contenders of a node as three types: parent and
children contenders, sibling contenders and hidden terminal
contenders. The first-type conflict can be avoided by means of
aggregating the schedules from bottom to top when populating
the schedule. The sibling nodes may be one-hop neighbors or
two-hop neighbors, e.g., v1, v2, v3 and vy are sibling nodes
in Fig. 1. Node vy and node v5 in Fig. 1 neither have parent-
children relationship nor are sibling nodes. Node v4’s parent
is a neighbor of node vs. We call node v4 and v5 are hidden
terminal contenders each other. Previous work, e.g., [6]-[8],
avoids this type of conflict through maintaining both one-hop
and two-hop neighbor table. Only one-hop neighbor table is
enough in our protocol. We use two tables, HCT _Expc and
HCT _Par, allocated separately at one node and its parent.
A node, e.g., vs, records every P2C_Sched message from
the parent of its hidden terminal contenders (e.g., v1-v4) in
HCT_Expc. Each entry of HCT_Expc contains the address of
the hidden terminal contender’s parent, a schedules set and the
size of the schedules set. The parent of each node (e.g., v4’s

TABLE I
MESSAGES AND TABLES IN THE PDDS-CF PROTOCOL

Messages Description

/Tables

C2P_New Unicast message from a child to its parent to inform
the parent of its presence.

C2P_Del Unicast message from a child to its parent to notify
its parent to delete this child.

C2P_Expc Unicast message from a child to its parent to send
its expected schedule and the underlying conflict
schedules.

P2C_Sched Broadcast message from a parent after making sched-
ules for its children. This message contains child-
schedule pairs.

C2P_Conf Unicast message from a child to its parent to confirm
or not to confirm the schedule assigned by the parent.

ChildrenTbl A table for each entry which contains a child id, a
schedule, a “valid” bit, an “expected” bit, a “sched-
uled” bit and a “confirm” bit.

HCT_Expc A table is used to avoid a conflict from hidden
terminal contenders when calculating an expected
schedule.

HCT_Par A table is used to avoid a conflict from hidden

terminal contenders when populating schedules for
children.

Vo

f//\

\Y) 3L
4

Fig. 1. An example of the topology.

parent vg) records every C2P_Conf message it snooped from
its hidden terminal contender (e.g., v4’s contender vs) in the
HCT_Par table. An entry of HCT_Par contains the address of
the hidden terminal contender and a corresponding schedule.
In our protocol, the schedule of a node is decided by its parent
and this node. Traffic can be significantly reduced using this
method because it is not necessary to maintain the two-hop
neighbor table.

D. Parent-dominant decision scheduling

We discuss the skeleton of the PDDS-CF. Fig. 2 shows the
steps that a node passes through in the case of scheduling as
a finite state automation. After a new node joins and finds its
route or an existing node changes its route from the routing
layer, it initiates a one-shot “route timer” as discussed in
subsection A. In addition, the node sends a unicast C2P_New
message to inform its current parent of its presence if it finds

Algorithm 1 Calculating an expected schedule

1: Initialize a temporary schedule 7 < 0.
2: if this node is NOT an end node then
3: 7 < MAX(Children’s schedules).
47+ T17+1
5: while 3 entry € HCT_FExzpc and 3 e €
entry.schedules_set, satisfying e = 7 do
T4 T74+1
7. Expected_schedule < 1.

Algorithm 2 Populating schedules for children

1: Initialize SiblingSchedulesTable <— empty entries.

2: for each entry € ChildrenTbl do

3. if entry. flags & VALID_BIT = true and entry. flags

& EXPECTED_BIT = true then
: T < entry.schedule.

5: while 3 s € SiblingScheduleT able, satisfying s =
T or 3 e € HCT_Par, satisfying e.schedule = 7
or 9 ¢ € entry.underlyingConflictSchedules,
satisfying ¢ = 7 do

T+ T174+1
entry.schedule < T
Add entry.schedule into SiblingSchedulesTable
entry. flags |= SCHEDULED_BIT

0 % 3D

its route. When its route changes, it sends a C2P_Del to its
old parent and sends a C2P_New to its new parent. During
the period awaiting the expiration of the “route timer”, the
node may receive either a C2P_New or a C2P_Del. When
the timer is expired, the node is an end node if it does not
find any valid children in its ChildrenTbl. After calculating an
expected schedule and a set of underlying conflict schedules
it sends them to its parent via the C2P_New. The underlying-
conflict-schedules set contains those schedules that belong to
the HCT_Expc and are bigger than the expected schedule.
Algorithm 1 shows the pseudo code that describes in more
detail the calculation of the expected schedule.

There is a possibility that there are valid children, but, all
of them are scheduled when the timer is expired. The reason
may be that the scheduled children do not need to change
their routes after the node changes its route. In this case,
the node also calculates an expected schedule and a set of
underlying conflict schedules, and sends them to the parent.
Then the node waits for the P2C_Sched message to receive its
schedule which has been assigned by its parent. After receiving
the P2C_Sched message, the node looks up the HCT_Expc
table to check whether the schedule is a conflict one with
the hidden contenders in the table. If there is a conflict, the
node sends a negative confirmed C2P_Conf message with a
new expected schedule to its parent. Otherwise, it sends a
confirmed C2P_Conf message.

There is a third possibility when the “route timer” is expired,
namely that there are valid children which are not scheduled
in the ChildrenTbhl. In this case, the node has to wait for

‘(/ Idle)

C = Condition, A = Action

C: route changed
A: start a one-shot route timer; send C2P_Del
to old parent; send C2P_New to new parent

C: route found
A start a one-shot route

timer; send C2P_New

C: timer fired && there are
\ valid children that are not
- ' scheduled in ChildrenTbl

(/Await the route \A: update ChildrenThl
‘ ‘

\ timer fired
\ 4

\\,
C: timer fired && there are
valid children all of which
are scheduled in ChildrenTb
(Non-end node)

A: calculate an expected
schedule and the underlying
conflict schedules; send
C2P_Expc

C: timer fired && there are NO
valid children in ChildrenTbl
(End node)

A: calculate an expected schedule
and the underlying conflict
schedules; send C2P_Expc

Y

4>i/Await P2C Sched\‘ €
o - /

Y

C:rcv P2C Sched && the
schedule conflicts with
HCT _Expc

A: re-calculate an expected
schedule and underlying
conflict schedules; send
negative confirmed

) > Await C2P_Expc ‘7
/

C:rcv a C2P_Expc from a child
A: mark the “expected” bit and
update this schedule in ChildrenTbl

C: rev all children’s C2P_Expc

A: make schedules for its children;
mark the ’scheduled” bits and
update schedules in ChildrenTbl,
send P2C_Sched

(Await C2P_Conf ¢
_ 7/

wait P2C Sched from noh\
| parent and non-children |
neighbors if not idle /

=

C: rev this kind of P2C_Sched
A: update HCT Expc

[Await C2P_New if
not idle /

C:rcv C2P_New

A: mark the ”valid” bit|
__in ChildrenTbl

N

idle

rev this kind of C2P_Conf
:update HCT_Par

> 10

not idle J
C: rcv C2P Del

A: delete this child
in ChildrenTbl

\\
C: rev a negative
confirmed C2P_Conf

A: re-make a schedule for
this child; update
ChildrenTbl; send 1
P2C Sched

(Await C2P_Delif\ |

C2P_Conf

C:rev P2C _Sched &&
the schedule does not
conflict with HCT Expc
A: send confirmed

C2P_Conf
) Y)
4 N
(Idle)
./

Fig. 2.

the C2P_Expc message from the unscheduled children. After
receiving the C2P_Expc messages from all its children, the
node populates schedules for its children. The pseudo code is
shown in Algorithm 2. Then the node broadcasts a P2C_Sched
message. Upon receiving a negative confirmed C2P_Conf
message, the node has to calculate a schedule for this child
and sends P2C_Sched message again until it receives the
confirmed C2P_Conf messages from all its children. Then
it starts to calculate its own expected schedule and a set of
underlying conflict schedules, and sends a C2P_Expc message
to its parent. After that, the node starts to wait for the
P2C_Sched message and follows the steps described in the
previous paragraph.

The reason for using the C2P_Conf message for a node to
confirm the schedule instead of the reception of the schedule
assigned by its parent is explained as follows. After a node
sends its expected schedule to its parent, the parent does not
immediately assign a schedule for the node until it has received
the expected schedules from all its children. During the waiting
time, the node may receive a new underlying conflict schedule
in the HCT_Expc table which has the possibility to conflict

C: rcv confirmed C2P_Conf

A: mark the “confirmed” bits

‘/ Await neighbor evicted\‘
_ eventifnotidle /

C: aneighbor is evicted

from all of the children

from the NeighborTbl
expected schedule for itself; && it is a child
send C2P_Expc A delete this child in
N ChildrenTbl

in ChildrenTbl; calculate an

Schematic of the PDDS-CF protocol.

with the schedule assigned by the parent.

E. Robustness to frequent topology inconsistencies

The authors in paper [6] have discussed how to detect the
node join and failure for maintenance. They assume that the
wireless sensor network is stationary if there are no nodes
joining and failing. However, wireless sensor and actuator
network undergo frequent topology changes due to physical
environmental changes, node join, node failures, and time-
varying channel conditions. It is even worse for industrial
applications in harsh environment as both humans and ma-
chinery alter the RF environment. Besides, the case involving
retransmission due to unreliable and asymmetric wireless links
have to be considered when designing the protocols.

The PDDS-CF protocol proposed in this paper is smoothly
compatible with the CTP protocol which is a de-facto routing
protocol in wireless sensor network and has been tested in
many hardware platforms and implemented in TinyOS, Contiki
and other operating systems.

The link estimator of the CTP protocol measures the
bidirectional characteristics of links through calculating the

reception probabilities of broadcasting and unicast packets. In
order to adapt the frequent topology changes and transmission
failures, we distill the mechanism of this link estimator.
One node pending a schedule from its parent detects the
gap of sequence numbers suffixed with the beacon and the
P2C_Sched and reports this to the link estimator for populating
the reception probabilities. If the link towards to a parent
has a bad quality, the route change would be triggered and
a scheduling combination would be launched. A success or
failure of acknowledgment of each unicast message is recorded
for populating the reception probabilities of unicast packets.
The four unicast messages, C2P_New, C2P_Del, C2P_Expc
and C2P_Conf, in our protocol stop retransmission when
exceeding the maximum retransmission numbers, which in-
troduces the route change and then initiate a new scheduling
combination. Both a new node joining and an existing node
failing are easily to solve because they directly cause the
route changes and then the scheduling combination engine is
triggered.

Furthermore, a node always awaits C2P_New, P2C_Sched,
C2P_Del and the neighbor evicted event to update the Chil-
drenTbl, HCT_Par and HCT_Expc if it is not idle, as shown
in the right side of Fig. 2.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the PDDS-CF
protocol and the implementation.

A. Experimental Methodology

We have implemented and evaluated the PDDS-CF proto-
col in TinyOS and Telosb hardware platform. TinyOS uses
CSMA-CA as its default MAC layer. Our protocol is running
over this MAC layer and CTP routing layer and calculates a
schedule for each node in a dynamic topology. The schedule
of each node can be used in a hybrid CSMA and TDMA
MAC as we discussed in section III-A. A schedule represents
an order of a slot occupied by a node in a TDMA superframe.
A superframe is a collection of consecutive time slots.

The experiment has been carried out in an office environ-
ment in Mid Sweden University. We have deployed 24 Telosb
motes on 2nd, 3rd, 4th and 5th floors in the building. We have
collected the schedules of each node every 8 seconds through
a single hop or multiple hops.

B. Experimental Results

In order to evaluate the robustness to the topology changes,
we added the number of nodes at random time during the 10-
hours measurement. Fig. 3 shows the schedules of nodes at
five time points. The protocol reflects changes in the nodes
joining and other topology changes in a few packet times. A
new joining node typically chooses a schedule as small as
possible and cause its ancestors to increase their schedules.

We assume that one time slot is the time length of a
transaction from a node to its parent. The traffic load is defined
as the number of slots required for each node in the network to
transmit an end-to-end packet to the root. We roughly calculate

SNttt |t =SSON et bt
0x01 1(1)[6(1) 6(1) 6(1)/6(1)] 0x0d | - | - 2(2)2(2)2(3)
0x02 |3(1)[8(1)8(1)8(1)|7(2)] 0x0e | - | - 4(1)4(1)4(2)
0x03 2(1)[7(1)7(3)|7(3)/8(1)] OxOF | - | - [1(2)[1(2)1(3)
0x04 | - 9(1)9(2)9(2)/9(2)) 0x10 | - | - - | - 3(3)
0x05 | - 12)12)12)1@) ox11 | - | - | - | - 6(4)
0x06 | - [2(2)3(3)/3(3)/3(3)] O0x12 | - | - | - | - |54)
0x07 | - |5(2)6(3)6(3)6(3) 0x13 | - | - - | - 2(4)
0x08 | - |4(2)5(3)/5(3)/5(4) Ox14 | - | - | - | - |44)
0x09 | - [3(2)4(3)4(3)/4(3)] O0x15 | - | - | - | - [1(3)
0x0a | - [1(3)1@)1(4)1@) ox16 | - | - - | - 1(3)
0x0b | - [13)12)1(2)1(3)] 0x17 | - | - 2(3)12(4)
0x0c - | - 13(2)[3(2)/3(3)] 0x00 root node
Fig. 3. “-”means absence of this node at this time; ¢; ~ 2.7min, t2 =~

14.0min, t3 =~ 49.6min, t4 ~ 86.8min and t5 ~ 124.3min; “id”is the address

of nodes; “S”is the schedule; “h”in the brackets represents the hop count.

the average traffic load using the real-time measured schedule
of each node and the topology information. The average traffic
load is calculated over these time intervals, 1%, 15, 153, Ty, 15,
where T; represents the time interval between ¢; — 1 and t;
and 1 = 1,2,3,4,5. tg is the time when the first non-root
node joining the network. During these intervals, the number
of nodes in the network does not change but the topology may
change.

In order to evaluate the performance of our algorithm, we
have implemented a centralized scheduling algorithm, the level
based scheduling algorithm [14] which is a heuristic algorithm
to reduce the slots number (the traffic load) without data
gathering transmission. We use the collected topology infor-
mation by the root as an input of this level-based algorithm
and calculate the average traffic load over the same time
intervals. Since the centralized scheduling algorithm has the
whole topology information, there is hardly possibility for a
distributed algorithm to have less traffic load under the same
topology.

The comparison of our protocol and the level-based al-
gorithm is shown in Fig. 4. There are 15 and 16 nodes in
the interval 73 and T, while the traffic load are 15 and
16 respectively. Both the two values of the traffic load are
the optimal values for the scheduling algorithm without data
gathering transmission because they are the maximum load of
the root node. The PDDS-CF which carries out the adaptive
data gathering scheduling algorithm performs better than these
optimal ones. There is a delay when the PDDS-CF reflects
the topology change which may cause the outbound link of
a node is scheduled before its inbound link. In this case, the
traffic load is at least more than the maximum schedule of
the network. This is the reason that the traffic load of PDDS-
CF during T, has not been reduced much. The amount of
the performance improvement of our protocol increases as the

45
—~ P . ¥
0 407 |—=Distributed PDDS-CF algorithm K]
Ton - *-Centralized level-based algorithm)
35 ‘ S |
()] ’
S /!
S 30r : 1
5 2
O 25¢ /! :
e!
§ 20F 1
£
o 15+]
Q15
o
L 10r]
=
©
= 5f]
O L L L L L
T T T3 T4 T5
Time intervals
Fig. 4. The average traffic load of PDDS-CF is much lower than the

centralized level-based algorithm when the topology scale increases; 77, 1o,
T3, Ty and T5 are time intervals during which the average traffic load is
calculated; the number of nodes during these interval are 3, 12, 15, 16 and
23 respectively (not including the root node).

number of nodes increases. The average traffic load of the
level-based algorithm during 7% is 41, while PDDS-CF only
has an average traffic load of 21. In summary, our protocol has
significant improvements to reduce the traffic load in realistic
wireless networks because it outperforms the centralized level-
based scheduling algorithm.

V. CONCLUSION

The motivation behind this paper is a desire to enable data
gathering scheduling algorithms to adapt the dynamics of links
in a low power wireless sensor and actuator network and
to significantly reduce the traffic load in such a network.
The PDDS-CF protocol we proposed targets this problem
in practical industrial applications, such as monitoring and
supervision of industrial automation in a large-scale network.

We have evaluated the protocol and implementation in
TinyOS and Telosb hardware. The experiment shows that our
protocol has robustness to the topology changes. The protocol
outperforms the centralized level-based scheduling algorithm
and therefore it has significant improvements to reduce the
traffic load in realistic wireless networks. In the future, we will
implement the protocol over multiple MAC protocols, further
evaluate and improve the scalability and the scheduling delay.

ACKNOWLEDGMENT

We would like to thank Luyuan Zou who helped us to set
up the experiments. This work has been supported by Swedish
Knowledge Foundation (KK-stiftelsen) and Sensible Things
That Communicate (STC) research program at Mid Sweden
University.

[1]

[2]
[3]

[4]

[5]

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

J. Akerberg, M. Gidlund, and M. Bjorkman, “Future research challenges
in wireless sensor and actuator networks targeting industrial automa-
tion,” in Industrial Informatics (INDIN), 2011 9th IEEE International
Conference on, july 2011, pp. 410 —415.

Hart specification. [Online]. Available: http://www.hartcomm.org

D. Kliazovich and F. Granelli, “Packet concatenation at the ip level for
performance enhancement in wireless local area networks,” Wirel. Netw.,
vol. 14, pp. 519-529, August 2008.

H. Zhai and Y. Fang, “A distributed packet concatenation scheme for
sensor and ad hoc networks,” in Military Communications Conference,
2005. MILCOM 2005. IEEE, oct. 2005, pp. 1443 —1449 Vol. 3.

J. Neander, T. Lennvall, and M. Gidlund, “Prolonging wireless hart
network lifetime using packet aggregation,” in Industrial Electronics
(ISIE), 2011 IEEE International Symposium on, june 2011, pp. 1230
—1236.

B. Yu, J. Li, and Y. Li, “Distributed data aggregation scheduling in
wireless sensor networks,” in INFOCOM 2009, IEEE, april 2009, pp.
2159 -2167.

X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation time problem
in wireless sensor networks,” in Mobile Ad-hoc and Sensor Networks,
ser. Lecture Notes in Computer Science, X. Jia, J. Wu, and Y. He, Eds.
Springer Berlin / Heidelberg, 2005, vol. 3794, pp. 133-142.

S.-H. Huang, P.-J. Wan, C. Vu, Y. Li, and F. Yao, “Nearly constant
approximation for data aggregation scheduling in wireless sensor net-
works,” in INFOCOM 2007. 26th IEEE International Conference on
Computer Communications. IEEE, may 2007, pp. 366 —372.

I. Rhee, A. Warrier, M. Aia, J. Min, and M. Sichitiu, “Z-mac: A hybrid
mac for wireless sensor networks,” Networking, IEEE/ACM Transactions
on, vol. 16, no. 3, pp. 511 =524, june 2008.

K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis, “The -
factor: measuring wireless link burstiness,” in Proceedings of the 6th
ACM conference on Embedded network sensor systems, 2008, pp. 29—
42.

K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study
of low-power wireless,” ACM Trans. Sen. Netw., vol. 6, pp. 16:1-16:49,
March 2010.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, 2009, pp. 1-14.

S. Ramanathan and E. Lloyd, “Scheduling algorithms for multihop radio
networks,” Networking, IEEE/ACM Transactions on, vol. 1, no. 2, pp.
166 —177, apr 1993.

S. C. Ergen and P. Varaiya, “Tdma scheduling algorithms for wireless
sensor networks,” Wirel. Netw., vol. 16, pp. 985-997, May 2010.

