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Abstract 

When studying events involving locomotive exercise, such as cross-country skiing, one generally 

assumes that pacing strategies (i.e. power distributions) have a significant impact on performance. In 

order to better understand the importance of pacing strategies, a program is developed for numerical 

simulation and optimization of the pacing strategy in cross-country ski racing. This program computes 

the optimal pacing strategy for an arbitrary athlete skiing on a delineated course. The locomotion of 

the skier is described by introducing the equations of motion for cross-country skiing. A 

transformation of the motion equations is carried out in order to improve the simulation. Furthermore, 

a nonlinear optimization routine is connected to the simulation program. Simulation and optimization 

are performed on a fictional male skier. Results show that it is possible to attain an optimal pacing 

strategy by simulating cross-country skiing while connecting nonlinear optimization routines to the 

simulation. It is also shown that an optimal pacing strategy is characterized by minor variations in 

speed. In our opinion, this kind of optimization could serve as essential preparations before important 

competitions. 

Keywords 

Optimization · Numerical simulation · Cross-country skiing · Pacing strategy · Power 

distribution

1 Introduction 

Cross-country skiing is a winter sport in which the athlete’s ability to cover the 

course distance in the shortest time possible is of decisive importance in its 

performance. Because the athlete has a limited ability to generate power, the efforts 

must be distributed in a rational way. Mathematical modeling of a ski race, combined 

with efficient nonlinear optimization routines, provides a tool for analyzing how 

these efforts should be best distributed. Carlsson et al. (2011) showed how numerical 

simulations in cross-country skiing can be performed in order to calculate the total 

race time for an arbitrary athlete. The simulation model solves the equations of 

motion for constant time steps. This has the disadvantage of giving us an inexact 

course length when finishing the race. As the last time step is solved, the simulated 

athlete has already passed some distance over the finish line. In order to keep this 

distance as low as possible, very small time steps are required. However, if the 

equations of motion are expressed as a function of travelled distance, the athlete will 

always finish at the exact course distance. Additionally, this enables the use of an 
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adaptive step length estimator which shortens the simulation time dramatically, as 

well as increase the accuracy.  

 

van Ingen Schenau and Cavanagh (1990) and Moxnes and Hausken (2008) described 

the equations of motion in endurance sports and cross-country skiing respectively. 

Carlsson et al. (2011) came up with a model which can simulate a skier along a 

predetermined course profile by utilizing these motion equations. These equations 

are generally built up by expressions that involve parameters derived from both 

internal and external factors. Internal factors adhere to the athlete and are for 

example energy expenditure, body mass, drag area, etc. External factors are linked to 

the surrounding environment, such as air density, snow conditions, inclination, wind 

velocity, etc. 

 

There has been extensive research into pacing strategies (i.e. power distributions) for 

constant external factors (Foster et al. 1993; Foster et al. 1994; Liedl et al. 1999; 

Hettinga et al. 2006; Hettinga et al. 2007; Hanon et al. 2008; Lima-Silva et al. 2010; 

Hettinga et al. 2010; Thomas et al. 2011). Atkinson et al. (2000; 2007b) and Swain 

(1997) studied how varying external conditions (wind and inclination) influence the 

optimal choice of pacing strategy in cycling. All suggest that a variable pacing 

strategy is beneficial if external conditions are changing along the course. Therefore, 

increased opposing forces from wind and inclination result in a corresponding rise of 

the current propulsive power. However, none of the mentioned studies state the exact 

magnitude of propulsive power alteration to make an optimal pacing strategy. 

Furthermore, all preceding simulations of this type have been performed on made-up 

course profiles with no connection to real course profiles. de Koning et al. (1999) 

and Hettinga et al. (2011) optimized the pacing strategy in track cycling (1 km 

individual time trial and 4 km pursuit) and speed skating (1500 m) respectively, by 

iterative calculations using a broad range of variable data. As these events usually 

take place in a controlled indoor environment, no variations in external factors were 

modeled. They determined the optimal pacing strategy by varying three variables 

simultaneously. As far as we know, no one has studied optimal pacing strategies in 

cross-country skiing and no study has investigated the potential of utilizing non-
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linear iterative optimization routines to optimize pacing strategies in locomotive 

sports.  

 

The aim of this study was to design a model which can calculate the optimal pacing 

strategy for a predetermined athlete on a hilly course in an individual start cross-

country skiing sprint competition. 

2 Method 

In order to develop a model of a cross-country skiing course that is suitable for 

numerical simulations, assumptions are made about a ‘straightened’ two-dimensional 

course. The disadvantage, compared to a complete three-dimensional course, is that 

any effect from turns in the excluded direction is not considered. Moreover, the 

model does not account for any inertial forces in that third direction, nor the 

decelerating forces associated with sharp turns. The two-dimensional assumption 

enables us to express the course as a connected chain of cubical splines. This makes 

it easy to calculate both the inclination and the curvature at any point along the 

course. Equations of motion are derived from the forces acting on the skier, as well 

as the propulsive force generated by the skier. These motion equations are 

transformed into a system of connected first order differential equations that are 

implemented into a MATLAB program and solved with the Runge-Kutta-Fehlberg 

method.  

 

Input data for solving the differential equations are the skier’s mass, starting speed   

and available propulsive power   during the various parts of the race. The propulsive 

power considered in the model is the external mechanical power generated by the 

athlete. When there is no acceleration, this corresponds to the speed multiplied by the 

sum of external forces acting on the athlete. The propulsive power is available from 

the athlete´s rate of energy expenditure   , subsequently reduced by the mechanical 

efficiency for skiing,  . The mechanical efficiency derives from the external work 

done divided by the energy expenditure of the athlete. The waste energy here is 

unspecified but include losses due to friction inside the body (heat) and the 

movement of limbs (internal work) as well as deformation of the skis, poles and 

snow (deformation energy) etc. Input data also includes the course profile expressed 
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as a connected chain of cubical splines, the glide friction coefficient   and drag area 

    for standing and semi-squatting postures. For simulated input values, see section 

2.6. 

2.1 Course and athlete 

The planned course for the Swedish national sprint championships in 2007 is 

modeled as a chain of 36 connected cubical splines (Fig. 1). The course length is 

1425 m and the total climb is 29.5 m. Skiing is simulated for an imaginary world 

class male athlete with a body mass of      78 kg. The athlete’s equipment mass is 

set to      4 kg in total. The equipment mass includes all the gear that an athlete 

wears during a cross-country skiing competition. The total mass of athlete and his 

equipment is        82 kg.  

 

Simulation is performed on a freestyle sprint qualification race which is an individual 

start race. This implies that the athlete does not benefit from the reduced drag that 

can be attained when the skier is situated behind another competitor (Spring et al. 

1988). 

2.2 Forces and scaling 

The propulsive force    generated by the athlete is expressed as the propulsive power 

divided by the current speed in the direction of the course (      ). This effective 

propulsive force consists of the effective component of the forces generated through 

both the skis and poles. Consequently, the effective propulsive force acts in the 

direction of the course (the s-direction in Fig. 2) and the propulsive power is the 

product of the speed   and the propulsive force   .  

 

The external forces acting on the athlete are the gravitational force, the frictional 

force between skis and snow and the air resistance (i.e. drag). The gravitational force 

is expressed as           , where      is the skiers total mass and   is the gravity 

acceleration. The frictional force is expressed as         where   is the normal 

force between the snow and the ski (including centripetal forces) and   is the friction 

coefficient. If no environmental wind is present, the air resistance is expressed as 

   
 

 
      , where    is the drag coefficient,   is the projected frontal area,   is 
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the air density and   is current speed. The drag force acts in the direction of the 

course but opposite to the propulsive force. The drag area     is determined by 

scaling, using the reference value for an 80 kg athlete  which is 0.65 m
2
 in the upright 

posture and 0.27 m
2
 in the semi-squatting posture (Spring et al. 1988) (Fig. 3).  

 

Scaling is performed using the equation: 

 
   

      
  

  

      
 

 
  

  (1) 

where     is the requested drag area,        is the reference drag area,    is the 

skier’s body mass and        is the reference skier’s body mass. The drag areas are 

assumed to scale like the projected frontal areas on their own, which behave like 

body masses raised to 2/3. This is true for homogenous scaling, however deviations 

from this scaling is not analyzed in this study. 

 

Certain restrictions are set to decrease the mechanical efficiency of the athlete at high 

speed. An increased travelling speed requires an equivalent raise in the muscles 

contraction velocity. Too high contraction velocity will dramatically decrease the 

muscle force, thus reducing the mechanical efficiency of the athlete. Consequently, 

the propulsive power is expressed as: 

        (2) 

where   is the base value of mechanical efficiency,    is the rate of energy 

expenditure and the reducing function   (Fig. 4) is calculated as: 

   
 

 
 

 

 
                 (3) 

where,   is a parameter that controls the shape of the function,   is the current speed  

and      is the limit speed where the efficiency is reduced to the half of  . Varying 

mechanical efficiency associated with different skiing techniques (classic or 

freestyle) as well as different gears (e.g. double poling and diagonal stride) (Sidossis 

et al. 1992; Sandbakk et al. 2010), are however not considered in this study.  

 

A restriction is also constructed for the athlete to crouch when speed rises. It 

incorporates the above reducing function  . The drag area (   ) is reduced when the 
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athlete crouches to a semi-squatting posture from an upright posture (Spring et al. 

1988) (see (4) and Fig. 4). The effective drag area      is calculated as: 

                              (4) 

where        is the athlete’s drag area in the upright posture and        is the drag 

area in the semi-squatting posture. The reduced functions in (2) and (4) are 

synchronized in speed.  

2.3 Derivation of the equations of motion 

Because the inclination of a cross-country skiing course changes continuously, it is 

useful to describe the equations of motion in the natural directions of movement, 

normal and tangential to the course, see Figure 2. However, in the simulation it is 

beneficial to solve the motion equations in the same global directions at every point 

along the course (Carlsson et al. 2011). Therefore, equations of motion are 

transformed to the global  - and  -coordinates. 

 

Speed and acceleration relationships are shown in (5) and geometric relationships 

from the course profile equation are shown in (6):  

 

            

   (5) 

 
  
  
   

        
         

   
  
  
  

  

            

   (6) 

 

 
 

   

            
 

 

where   and   are local coordinates for tangential and normal directions respectively 

(Fig. 2) and the dots denote differentiation by time. Transformation to the global  - 

and  -coordinates gives the following equations of motion: 
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  cos   sin , 

      (7) 

                                            

  sin + cos       . 

 

where the frictional force is      , normal force is              
   

 
 , 

propulsive force is    
 

  
 and the drag force is    

 

 
              

where   
 

 
    . For simplicity reasons, no environmental wind is considered in 

the equations of motion. For consideration of environmental wind, the expression for 

the drag force will change according to appendix. By inserting the above mentioned 

force expressions (without environmental wind) into (7) and dividing by the skier’s 

mass      gives the following set of second order differential equations: 

 

    
 

       
     

 

    
                

   

 
             , 

      (8) 

    
 

       
     

 

    
               

   

 
               . 

 

2.4 Transformation of the equations of motion 

From (6),   and   depend on    and    , and from (5),    can be expressed in terms 

of    and   . So (8) is a system of ordinary differential equations for   and   as 

functions of course time  . In addition, the course profile specifies   as a function of 

 , which means that the equation for    is superfluous. Thus the system can be 

reduced to one second order ordinary differential equation for   as a function of  . 

 

The problem with using (8) in a numerical scheme is that the endpoint, the total race 

time  , of the interval in   is not known beforehand. In fact, estimating   is the main 
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point of the scheme. If    is discretized in time intervals of a given length, there will 

be an overshooting error in   since the position of the skier is only checked at the 

end of each time subinterval. Also, the singularity at      in the first term of the 

right-hand side might need high numerical resolution to avoid instabilities for low 

speeds. 

 

Fortunately, (8) can be reformulated using   as a function of   instead. The inversion 

fails whenever    
  

  
  , which corresponds to     , where the system in (8) is 

singular. But the singular term is proportional to      and will dominate the other 

terms for small   . This will increase    and drive the solution away from     . So    

will never reach 0, and the interesting case is of course when    is strictly positive. 

We can conclude that, with the inverse function theorem, the inverse      of      is 

well defined. 

 

Differential identities are needed to rewrite (8). Differentiating        implicitly 

with respect to   gives: 

   
  

  

  

  
      or    

 

    (9) 

where the prime denotes differentiation by  . Differentiating again gives: 

                 or by using (9)     
 

     
    (10) 

Also, from (5) and (6) and using that           and       , 

             
        

   
 

      
  (11) 

Using (10) and (11) transforms the first part of (8) into: 

      
 

 
            

 

     
                     

tan cos2 . (12) 

Note that the right-hand side of (12) is a fourth order polynomial in    without 

singularities. 

 

The second order differential equation in (12) can be transformed into a system of 

two first order equations by the standard method of introducing a new variable for   . 
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Subsequently, the system may be solved by a standard numerical solver (Carlsson et 

al. 2011). 

 

Since the transitions between different splines can now occur at given points in  , it 

is possible to use adaptive step refinement to significantly speed up the simulation 

process. The step length estimator makes the step length longer on parts of the course 

where the change in inclination is small, and shorter on parts of the course where the 

inclination changes more rapidly. 

2.5 Optimization 

Optimization is performed on the numerical simulation program using the Method of 

Moving Asymptotes (MMA) (Svanberg 1987). The optimization routine is set to 

minimize the total race time   (Objective function) by varying the propulsive power 

   at predetermined positions along the course, see (13). In mathematical terms, the 

optimization problem is formulated as: 

 

Minimize  

       
 
       (13) 

subject to the constraints  

                        (14) 

 
 

 
          

 

 
   (15) 

 

where   is the total race time,     is the time segment during iteration  ,   is the total 

number of time segments during the actual simulation,    is the  :th optimization 

variable (i.e. propulsive power at  ),      and      are the minimum and maximum 

available propulsive power for the optimization variables and    is the mean 

propulsive power limit for the simulated skier. The positions for the optimization 

variables are selected so that they are closer to each other where the slope is 

changing rapidly and further apart in areas of more constant inclination. The 

propulsive power between these positions is available from linear interpolation 



 

11 

 

between the variables and subsequently reduced by  . The number of optimization 

variables is       . 

 

To prevent the skier from generating unnaturally high propulsive power over a 

longer period of time, a constraint for mean propulsive power (  ) is added, see (15). 

Considering that the athlete is moving forward his propulsive power will be equal to, 

or larger than zero. On the other hand, the athlete can not generate unlimited high 

propulsive power. Therefore, a global constraint for a minimal and maximal 

propulsive power is introduced, see (14). In order to stabilize the numerical process, 

all constraints were normalized during the optimization. 

2.6 Simulation input data  

Simulation and optimization were performed on a fictional 78 kg male skier. The 

imaginary athlete has a specific         of 76 ml∙kg
-1

∙min
-1

, which is typical for a 

world class male cross-country sprint skier. This gives him a         of 5.93 l∙min
-1

 

and a maximal rate of aerobic energy expenditure of about 2086 W. Considering a 

typical male cross-country skier, his mechanical efficiency will be about   = 0.15 in 

the freestyle technique (Ainegren et al. 2012) resulting in a maximal aerobic 

propulsive power of 313 W. In the current study a mean propulsive power of 120% 

of the maximal aerobic propulsive power is used. Brickley et al. (2007) reported a 

similar value of 107% for trained cyclists performing an all-out exercise for about 3 

min. The higher percentage makes sense considering that an elite cross-country 

sprint skier is considered to have a relatively greater anaerobic capacity than the less 

anaerobically trained cyclist. This together with the reducing function   gives a 

mean propulsive power of    = 376    W for (15). The maximum attainable peak 

propulsive power in (14) is set to 2.5 times the aerobic power at      = 782    W 

(Brickley et al. 2007). 

 

The two drag areas in (4) for upright posture (URP) and semi-squatting posture 

(SSP) are calculated to            0.639 m
2
 and            0.265 m

2 

respectively, using the scaling law in (1). A dynamic friction coefficient of     0.03 

is used in the simulation. It represents a typical tribological interface between 

polyethylene and snow in temperatures around -1°C to -5°C in dry snow (Buhl et al. 
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2001). No wind is assumed. The air density is estimated at     1.3163 kg∙(m
3
)
-1

 

considering skiing at sea level (the course is located near the town of Hudiksvall on 

the east coast of Sweden) at -5 °C with air pressure at 101.325 kPa. The starting 

speed is set to 3 m∙s
-1

 in the course direction (the s-direction in Fig. 2). For the 

reducing function, the shape parameter is set to     4 and the speed limit is set to 

       10 m∙s
-1

 (36 km∙h
-1

) derived from Andersson et al. (2010).  

3 Results 

Optimization starts with initial values of        376    W for all variables   . 

After 20 iterations, an optimized propulsive power distribution has been calculated 

that gives the total time of 3 min 7.4 s. This must be compared to the time for an 

more or less even propulsive power distribution, where every variable is set to 

          376    W. This pacing strategy gives a total race time of 3 min 20.4 s. 

Consequently, the optimized pacing strategy gives a time gain for this athlete of 13.0 

s. All constraints are still fulfilled and the divergence from the stipulated reference 

value of the mean propulsive power in (15) is less than 0.0021 W. The optimized 

pacing strategy for a 78 kg male athlete is presented in Figure 5. 

 

The propulsive mean power (  ) that the athlete is able to sustain for a longer period 

of time is shown as a dotted line in Figure 5. Because of the formulation of the 

constraint in (15), the area within the line for the propulsive power distribution 

should be equal above and below the mean propulsive power (provided that this 

constraint is fulfilled with equality). The athlete’s average speed in the simulation is 

7.60 m∙s
-1

 (27.38 km∙h
-1

). Minimum speed is equal to the starting speed 3 m∙s
-1

 

(10.80 km∙h
-1

) and maximum speed is 11.75 m∙s
-1

 (42.32 km∙h
-1

).  

4 Discussion 

The results of this study confirm the results of Swain (1997), i.e. that major time 

savings can be realized by utilizing a variable pacing strategy. The propulsive power 

distribution in Figure 5 clearly indicates that the optimization routine strives to 

increase propulsive power in the uphill slopes and decrease it in the downhill slopes. 

Palmer et al. (1999)reported a significant increase in blood lactate concentration 
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when altering exercise intensity (40-80%        ) compared to a similar constant 

intensity cycling time trial. Contradictory results have been presented by Atkinson et 

al. (2007a) and Liedl et al. (1999), showing no significant alteration in either heart 

rate,     , blood lactate, perceived exertion or pedal rate when altering the propulsive 

power ±5% from the propulsive mean power in time trial cycling (1-hour and 800-

kJ). This propulsive power interval is considerably narrower than the whole range 

from 0 W to      applied in this study. With that in mind the result reported from 

Palmer et al. (1999) would be more applicable to this kind of simulation. 

Consequently, the constraint for mean propulsive power limit in (15) may be 

reformulated to consider the increased accumulation of fatigue-related substances in 

variable pacing strategies. 

 

Figure 5 clearly shows that the athlete benefits from maintaining his speed as 

constant as possible in order to optimize his pacing strategy. This is easy to realize 

when considering that great variations in speed yield a higher average drag force than 

even pacing. This is due to the exponential behavior of the expression for the drag 

force   . 

 

It might seem strange that an optimized pacing strategy lowers the propulsive power 

at the very end of the race. In real cross-country skiing it is common sense to keep 

the propulsive power high in the end of a race, so as to finish as fast as possible. The 

kinetic energy at the end of the race will be wasted after the finish line. Therefore, it 

is rational to use higher propulsive power at earlier stages of the race. This implies 

that the optimization routine, due to the constraint in (15), iterates to a lower 

propulsive power at the very end of the race while increasing the propulsive power 

along sections of greater impact. Obviously, the inclination in the last sections of the 

course also affects this energy-saving phenomenon. 

 

The assumption that mechanical efficiency decreases rapidly at a      of 10 m/s can 

be supported by d-GNSS data presented by Andersson et al. (2010), which shows at 

which speed every “gear” (Nilsson et al. 2004) is performed. Judging by the 

deviation of gear speed in Andersson et al. (2010),      in (3) might be treated as an 

individual parameter, one that is probably affected by the size of the athlete as well 
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as his rapidness and technical skills. Skiers with longer limbs are more likely to be 

more effective at high speed due to a reduced cycle-rate (frequency) compared to 

skiers with shorter limbs.  

 

The time saved from utilizing an optimal pacing strategy, as in this study, compared 

to an even pacing strategy, is 13.0 s which is a reduction of 6.5%. In the men’s 

individual sprint qualification in the 2010 Olympics, this would be the difference 

between placing number 51 and winning the qualification. However, one can expect 

that today´s skiers have already opted for an improved pacing strategy compared to 

an even propulsive power distribution, but presumably not an optimal one. 

 

The simulated athlete’s average speed of 7.60 m∙s
-1

 may be compared to the results 

in the men's individual sprint qualification (classic technique) in the 2010 Olympics 

in Vancouver, Canada. The winner of the qualification had an average speed of 6.85 

m∙s
-1

 over the 1470 m course. Of course those races are not equivalent when it comes 

to skiing technique, course profile and environmental conditions, but the athletes’ 

body masses are equal in those two cases. The total climb on the courses is 44 m and 

29.5 m for the Olympic course and the simulated course respectively. No 

measurements of gliding friction were made on the race day of the individual sprint 

competitions in the 2010 Olympics but the glide friction in the simulation (    0.03) 

is considered to be typical for snow temperatures around -1°C to -5°C. This, in 

combination with the lower total climb and a different skiing technique (skating vs. 

classic), should contribute to the somewhat higher average speed in the simulation 

compared to the Olympic example. However, in the study of Andersson et al. (2010), 

a real cross-country sprint race (skating technique) was performed with the fastest 

athlete skiing an average speed of 7.39 m∙s
-1

. That is 2.8% lower than the simulated 

athlete in the present study. The course in the study of Andersson et al. (2010) had 

the same length (1425 m) as the one simulated in this study but had a greater total 

climb of 52 m. The difference in total climb may be one explanation of the lower 

average speed. Furthermore, that study used the same skiing technique (skating 

technique) and had similar environmental conditions (-2°C, no wind) as the present 

study. This does not clarify the significance of the numerical model, but it shows that 

the results are reasonable. 
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In order to analyze the robustness of the optimization model, calculations are 

performed with different starting values, such as: glide friction, body mass, mean and 

maximum propulsive power (not presented in this study). However, this results only 

in small variations of the end time and distribution of power. 

 

The skier’s ability to perform can of course vary from day to day and this “on the 

day” performance can have a great effect on the results. The simulations shown here 

do not take such variations into account, but it is still of great interest to study how 

the propulsive power should be distributed in the most efficient way during a cross-

country skiing race. Once the profile of a course is known, such studies might serve 

as an essential part of preparations for important championships. Athletes with 

known available propulsive power, drag area, mass etc. can be simulated to 

determine their optimal pacing strategy. However, the question is how to convey 

these results to an actual athlete. As there is no direct measurement of the propulsive 

power while skiing, it is hard if not impossible to follow the optimized distribution of 

power. Therefore, a more practical approach is to follow the optimized speed 

distribution, as this can be measured more easily. Subsequently, this can be 

transformed to visual or audio based stimuli in training.  
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Appendix 

To model environmental wind, the drag force would be expressed as    

 

 
                                           , where    is the speed in 

the direction of the course,   is the wind speed,   is the angle between the direction 
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of travel and the environmental wind direction and   is the air density.     is the 

drag area and it depends on the quantities of   ,   and  .  

Figure captions 

Fig. 1 Simulated course profile from the planned Swedish national sprint championships 2007 

Fig. 2 Arbitrary section of the course with forces on the skier and chosen coordinate system 

Fig. 3 Schematic view of the upright posture (left) and semi-squatting posture (right) 

Fig. 4     and      as functions of speed for a 78 kg male skier with   = 4 and      = 10 m∙s
-1

 

Fig. 5 Course profile, speed, optimized propulsive power distribution and mean propulsive power for 

a world class male skier of 78 kg 


