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Abstract

With the recent comeback of three-dimensional (3D) movies to the cinemas, there
have been increasing efforts to spread the commercial success of 3D to new mar-
kets. The possibility of a 3D experience at home, such as three-dimensional television
(3DTV), has generated a great deal of interest within the research and standardiza-
tion community.

A central issue for 3DTV is the creation and representation of 3D content. Scene
depth information plays a crucial role in all parts of the distribution chain from con-
tent capture via transmission to the actual 3D display. This depth information is
transmitted in the form of depth maps and is accompanied by corresponding video
frames, i.e. for Depth Image Based Rendering (DIBR) view synthesis. Nonetheless,
scenarios do exist for which the original spatial resolutions of depth maps and video
frames do not match, e.g. sensor driven depth capture or asymmetric 3D video cod-
ing. This resolution discrepancy is a problem, since DIBR requires accordance be-
tween the video frame and depth map. A considerable amount of research has been
conducted into ways to match low-resolution depth maps to high resolution video
frames. Many proposed solutions utilize corresponding texture information in the
upscaling process, however they mostly fail to review this information for validity.

In the strive for better 3DTV quality, this thesis presents the Edge-Weighted Opti-
mization Concept (EWOC), a novel texture-guided depth upscaling application that
addresses the lack of information validation. EWOC uses edge information from
video frames as guidance in the depth upscaling process and, additionally, confirms
this information based on the original low resolution depth. Over the course of
four publications, EWOC is applied in 3D content creation and distribution. Vari-
ous guidance sources, such as different color spaces or texture pre-processing, are
investigated. An alternative depth compression scheme, based on depth map up-
scaling, is proposed and extensions for increased visual quality and computational
performance are presented in this thesis. EWOC was evaluated and compared with
competing approaches, with the main focus was consistently on the visual quality
of rendered 3D views. The results show an increase in both objective and subjective
visual quality to state-of-the-art depth map upscaling methods. This quality gain
motivates the choice of EWOC in applications affected by low resolution depth.

In the end, EWOC can improve 3D content generation and distribution, enhanc-
ing the 3D experience to boost the commercial success of 3DTV.
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Ulf Jennehag, and again Mårten and Roger for going the extra mile and providing
tailored courses for our individual studies. Furthermore I thank all members of the
Division of Information and Communication Systems at Mid Sweden University, in
particular Annika Berggren, for organizational support in countless occasions and
Jamie Walters for showing me around the place.

Moreover I want to thank all other parties involved in my work. Especially our
project partners at Ericsson AB for their many ideas and suggestions within the field
of depth map upscaling, and the people at Fotonic and Optronic for their technical
advice with time-of-flight cameras.

To my friends, thank you so much for dragging me away from work every now
and then. To my family, thanks for all the love and support over the years (decades!),
I could have never done this work without you. And finally, thank you Papitchaya
for giving all of this a reason.

vii



viii



Table of Contents

Abstract v

Acknowledgements vii

List of Papers xiii

Terminology xv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Three-Dimensional Television . . . . . . . . . . . . . . . . . . . . 2

1.2 Overall Research Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Concrete and Verifiable Goals . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Depth Map Acquisition 11

2.1 Depth Map Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Depth from Stereo Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Image Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Depth from Range Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Time-of-Flight Principle . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Structured Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ix



x Table of Contents

2.4 Depth Acquisition Comparison . . . . . . . . . . . . . . . . . . . . . . . 16

3 Depth Map Upscaling 19

3.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 ToF Scene Capture . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 3D Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Stereo Matching Algorithms . . . . . . . . . . . . . . . . . . . . 21

3.3 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Markov Random Field Approach . . . . . . . . . . . . . . . . . . 22

3.3.2 Joint Bilateral Upscaling . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Pixel Weighted Average Strategy . . . . . . . . . . . . . . . . . . 24

3.3.4 Depth Upscaling Classification . . . . . . . . . . . . . . . . . . . 24

4 The Edge-Weighted Optimization Concept 27

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Upscaling Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Depth Value Mapping . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Spatial Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Edge Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.4 Edge Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Multistep Upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Contributions 35

5.1 Paper I: Introducing EWOC . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Paper II: MVD Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Paper III: Improved Edge Detection . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Paper IV: Incremental Upscaling . . . . . . . . . . . . . . . . . . . . . . 42



Table of Contents xi

5.4.1 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.2 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusions 45

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

Biography 57



xii



List of Papers

This thesis is based on the following papers, herein referred to by their Roman nu-
merals:
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Chapter 1

Introduction

Television is probably the most important visual information and entertainment sys-
tem of the last century. While modern trends, such as the increase in web-based
applications and the spread of hand-held devices, move the focus more to the inter-
net, TV still occupies a stable place in present society. Nevertheless, constant effort
has to be made to remain competitive and to provide interesting entertainment for
the viewer.

In recent years, three-dimensional television (3DTV) and its applications has re-
ceived considerable attention within the research community [Onu11]. Moving the
well established 3D cinema into the living room brings many new challenges. The
explication of the three-dimensional (3D) scene geometry and acquisition is a clas-
sic problem in this field of research. An important task in this area is to match low
resolution scene geometry data, i.e. depth maps, with a higher target resolution for
three-dimensional video (3DV).

This thesis presents a novel depth upscaling approach, utilizing corresponding
edge information from video, and the evaluation and application of this approach.
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2 Introduction

1.1 Background

This thesis addresses depth map upscaling for 3DTV. It is important to understand
the background and motivation behind this task. This section will present the mo-
tivation behind the requirement for depth map upscaling and will provide a brief
overview with regards to important aspects of 3DTV.

1.1.1 Motivation

The continuous success of 3D movies in the cinema is the driving force behind the
idea of 3DTV for our living rooms. However, while some viewing limitations might
be acceptable in the movie theater, restrictions such as glass-aided view separation
and the limited viewing angle hinder the commercial success of 3DTV.

Recently, researchers have become increasingly interested in autostereoscopic
multiview displays. Such displays can provide a three-dimensional viewing expe-
rience without additional eye-wear and a larger viewing angle. Scene geometry in-
formation, i.e. depth maps, is utilized to increase the number of available views
without a dramatic increase of inputs. Fig. 1.1 shows the concept of a multiview dis-
plays with reduced input views. The necessary depth information must be created
by some means. A standard procedure for capturing depth is stereo analysis from
two or more viewpoints. Such view matching methods are often criticized for poor
performance in low texturized or occluded areas. In recent years, depth from dedi-
cated range sensors has gained a great deal of interest in this context. It is commonly
suggested that such dedicated range sensors can deliver more accurate depth read-
ings than stereo matching. In particular, there has been significant attention given
to the Microsoft Kinect, a low-cost, easily accessible structural lighting sensor and
to Time-of-Flight (ToF) cameras. However, these sensors suffer from limited spa-
tial resolution compared to modern high definition (HD) video. This lack of spatial
resolution motivates the search for sophisticated depth upscaling algorithms.

Another scenario, where spatial resolution of depth and texture sequences might
not match, is the transmission of 3D video. The special characteristics of depth
maps allow for some spatial downsampling to increase the overall coding efficiency
[KWD09]. Well-conceived depth upscaling at the receiver’s side can then reconstruct
the full resolution depth map.

1.1.2 Three-Dimensional Television

The term 3DTV stands for the efforts to provide a more immersive viewing experi-
ence to the people in their every day media consumption. Since the latest break-
through of 3D movies in cinemas, there has been increased activity in research,
product development and marketing to spread the success of 3D entertainment into
new markets. In this context, 3DTV not only involves living rooms but many more
aspects of daily life, such as mobile devices [GAC+11], communication and telep-
resence [KS05], advertising and signage [RBV+06], and also medical applications
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Figure 1.1: View generation for multiview displays from a small set of view inputs V and

corresponding depth maps D.

[NBM+12]. The following paragraphs offer a brief summary of the idea, history and
technology behind 3DTV.

Human Depth Perception

For the first-time reader, the idea of 3DTV might prove to be rather confusing. After
all, there is no actual three-dimensional picture, just an illusion of depth. To un-
derstand how this illusion is created, it is important to understand how depth is
perceived: Our human visual system (HVS) perceives depth based on a variety of
information. This information, or cues, can be categorized in monocular and binoc-
ular cues. Binocular cues require both eyes, while monocular cues can be perceived
with a single eye. The different cues are:

Monocular Depth Cues

• Perspective: Parallel lines merge in a single vanishing point on the horizon.
Points closer to the vanishing point are more distant.

• Occlusion: Closer objects occlude objects behind them.

• Relative size: Close objects appear bigger than distant objects. Memory about
standard sizes, e.g. trees, people, allows a distance estimation.

• Accommodation: Changes in focus give feedback about absolute and relative
distances.

• Motion Parallax: Objects closer to the viewer cover a bigger visual angle when
moving at the same speed as objects further away.
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Binocular Depth Cues

• Stereopsis: Object points in 3D space are projected on different positions in the
left and right eye. The distance between the two projections forms a depth cue.

• Vergence: Left and right eyes are trimmed on the same point in 3D space. The
vergence angle between the two eyes gives a cue for depth.

While monocular cues are already used in traditional, two-dimensional televi-
sion, 3DTV introduces stereopsis to the viewing experience. To perceive depth, it is
important to maintain all the depth cues to be as consistent as possible [CV95]. This
is particularly true in relation to the conflict between accommodation and vergence
which might lead to problems when combined with stereopsis in 3DTV [IO90]. Since
a detailed discussion about aspects and effects of depth cues is beyond the purpose
of this thesis, interested readers are referred to [CV95] and [Sed08].

History

The development of 3DTV is strongly interlinked with the history of stereoscopic
movies and cannot be described separately.

Early research in binocular vision lead to Wheatstone’s ”stereoscope” for still
photographs in 1838 [Whe38]. With the rise of motion pictures, the idea was trans-
ferred to early concepts of stereoscopic cinema. In 1903, the Lumière brothers showed
the first 3D short movie and in 1922 the first 3D feature film was released. The first
experiments in 3DTV followed quickly in 1928, still based on mechanical TV. De-
spite these successful experiments in stereoscopic cinema, the first big impact was
between 1952 and 1954, with over sixty-five Hollywood 3D movies. Unfortunately,
the lack of stereographic experience hindered the commercial success and 3D movies
were more or less forgotten, except for a small revival between 1981 and 1983. It took
a hundred years, from the introduction by the Lumière brothers, to the final break-
through of 3D movies. In 2008 the new 3D boom hit the cinemas. With the support
of new digital movie cameras and a deeper understanding of the human depth per-
ception, the viewing experience was dramatically increased. Since then, the number
of new 3D movie productions has risen year by year, with over 150 feature-length
movies in 2011 alone [Pro12].

Broadcast television had a much more difficult start into the 3D era. While the
first experiments were conducted in 1953 and the first ”non-experimental” broadcast
was aired in 1980, analogue TV provided only poor quality. In the early 1990s, the
upcoming transition to digital services lead to increased research efforts in 3DTV
[IJs03]. Soon the Moving Pictures Expert Group (MPEG) picked up on that trend and
started working on compression standards for stereoscopic video, resulting in the
multiview profile (MVP) for the MPEG-2 standard. In 1998 stereoscopic broadcast
started with the transmission of the Winter Olympics in Nagano to special viewing
venues. In 2010 the world’s first stereoscopic 3D channel started in South Korea.
Since then, 3DTV has slowly made its way in the living room. As of July 2012 there
are currently thirty-four running stereoscopic 3D channels in the world.
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Figure 1.2: Autostereoscopic view separation for 3D display technology.

This summary is only a short excerpt, a more comprehensive history of stereo-
scopic cinema and 3DTV can be found in [Zon07] and [Feh05].

3D Display Technology

The key idea behind 3DTV is to provide stereopsis, two different views for each eye.
That means that the views for the left and right eye must somehow be separated.
While Wheatstone’s stereoscope achieved this view separation mechanically, solu-
tions for more than one viewer were necessary. Early experiments with anaglyph
glasses provided only limited quality. Most modern 3D movie systems nowadays
use active shutter glasses or polarization. Current available TV displays, marketed
for 3DTV at home, adopt these view separation techniques from the movie theater
and bring them into our living rooms. The common threads for all systems is the
requirement for special eye-wear for the view separation and are therefore classified
as ”aided-viewing” 3D display technologies. They provide only a single stereo view
pair from a single viewpoint. Since no additional depth information is required,
these viewing setups are of no further interest for this thesis.

In recent years, a new kind of 3DTV display has emerged, providing multiple
stereo view pairs without the need to wear glasses. These autostereoscopic displays
separate the different views for the left and right eye with lenticular lenses or par-
allax barriers in front of the display’s pixel array, as shown in Fig. 1.2. Autostereo-
scopic multiview displays are predicted to be the future for the consumer 3DTV
market, nonetheless a great deal of research still remains.

Discussing all different kinds of 3D display technologies lies beyond the scope
of this thesis. A comprehensive overview is given in [Pas05], also covering more
futuristic 3D technologies, such as electroholography and volumetric displays. A
detailed survey of current stereoscopic and autostereoscopic displays can be found
in [UCES11] and the next section explains how such displays can be provided with
3DTV content.
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It is important to note, that this procedure requires per-pixel depth information, i.e.
video and depth sequences must be of the same spatio-temporal resolution.

In this thesis, view synthesis is used as a tool for evaluation. Describing the differ-
ent synthesis concepts falls outside of the scope of this thesis. A detailed description
of the underlying geometry is found in [HZ03] and a good overview of different
synthesis algorithms in [KES05].

1.2 Overall Research Aim

The intention of this work is to increase the quality of the 3DTV experience by over-
coming today’s shortcomings in the 3DTV distribution chain, specifically in the con-
tent creation and distribution.

3D content creation is still a complex and challenging task, especially for photo-
graphic content. New approaches to scene depth capture can simplify the capturing
process and increase the quality of 3D content. The coding and transmission of 3DTV
is still in an early stage and can profit largely from new compression concepts to limit
the necessary bandwidth for the increased amount of data. Finally, good quality 3D
content will provide benefits for the DIBR view synthesis and will deliver a more
convincing experience on the viewer’s 3D display.

In the end a simplified capturing process will increase the amount of 3D con-
tent available and efficient 3D coding allows for more 3DTV channels on the same
bandwidth. Together these two factors will bring a larger content variety to the cus-
tomer. In addition, combined with the increase in content quality, this will boost the
commercial success of 3DTV.

1.3 Scope

The work presented here addresses the spatial upscaling of depth maps for DIBR
view synthesis. For this thesis the depth map source is not further defined and stan-
dardized material is used [DGK+09, SS02]. The only precondition for the upscaling
process is the existence of a corresponding texture frame, at the same time instance,
with the desired target resolution. Such scenarios can, for example, originate from
downsampled depth map sequences to save bandwidth for transmission or dedi-
cated range sensors such as time-of-flight (ToF) cameras.

The understanding of depth acquisition and its special characteristics is an im-
portant background for this thesis, but the actual capture process itself is not part of
this work. Only pre-existing, open available video and depth test sequences are used
and considered as reference in the upscaling evaluation. The necessary downscaled
depth sequences were generated by downsampling original depth map sequences
which have been provided. Parts of the evaluation are based on DIBR view synthe-
sis and were carried out with the MPEG View Synthesis Reference Software (VSRS,
[vsr10]). The references were generated using original full resolution depth with
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identical VSRS settings, since the perceived quality of virtual views is difficult to
measure. The upscaling quality itself was assessed objectively, based on the peak-
signal-to-noise ratio (PSNR) metric. This metric is very common and widely used in
the field of video coding, although it is not without criticism for its poor correspon-
dence to the HVS. Therefore additional metrics, such as the Structural Similarity
(SSIM, [WBSS04]) index and subjective evaluations were also applied. More details
concerning the used evaluation methodology are given in Chapter 5.

1.4 Concrete and Verifiable Goals

In order to achieve a better 3DTV experience, a sophisticated algorithm for fusing
low resolution depth maps with high resolution texture video is necessary. Such
an algorithm can provide depth maps suitable for DIBR view synthesis in scenarios
where there is a mismatch between texture frame and depth map resolution. Depth
map upscaling can provide a more accurately captured scene depth due to the use
of dedicated range sensors and higher coding efficiency due to asymmetric 3D video
coding. Affecting the entire distribution chain for 3DTV, depth map upscaling can
finally lead to a better 3DTV experience.

A possible algorithm should utilize information from the corresponding texture
frames, and it should be examined how this information can be best processed for
good visual quality in virtual views. While the origin of the low resolution depth
can vary, e.g. acquired from range sensors or downsampled for transmission, the
upscaling procedure and outcome should not be affected.

In the strive for a better 3DTV experience, the following three goals are defined
for this thesis:

I Investigate the upscaling of limited range information, utilizing additionally
available data to improve the 3DTV quality, and propose an alternative concept
to depth map upscaling.

II Investigate the utility of depth map upscaling for 3D video coding and propose
an alternative compression scheme for 3DTV distribution utilizing depth map
upscaling.

III Investigate the relationship between the visual quality and computational com-
plexity for depth map upscaling and propose enhancements to the introduced
depth map upscaling concept.

1.5 Outline

The remainder of this thesis is structured as follows: Chapter 2 discusses the char-
acteristics and capture procedures for scene depth information. Different upscaling
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scenarios for this depth information are presented in Chapter 3. The main contri-
bution of this thesis, the Edge-Weighted Optimization Concept (EWOC) for depth
upscaling, is introduced in Chapter 4. Chapter 5 investigates the author’s contribu-
tion in more detail. Finally, the thesis is summarized in Chapter 6, concluding the
presented work and giving an outlook on future research.

1.6 Contributions

The author’s contributions for this thesis are presented in the previously listed pa-
pers. The author is responsible for the concept and ideas, evaluation criteria and
design, result analysis and presentation in all four papers. The co-authors have con-
tributed to the definition of evaluation criteria and the analysis. The contributions in
this thesis are:

I The introduction of the Edge Weighted Optimization Concept (EWOC) for depth
map upscaling based on texture information.

II An application of EWOC for depth map compression in 3D video coding.

III Deeper analysis of the edge weighting process for increased upscaling perfor-
mance.

IV Quality and performance improvement by an incremental upscaling approach.

More details to each single contribution are presented in Chapter 5.
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Chapter 2

Depth Map Acquisition

The ideas for 3DTV distribution, mentioned in Sec. 1.1.2, are based upon depth in-
formation accompanying the traditional 2D video. This depth information usually
comes in the form of depth maps, a grayscale representation of the video scene.
For Computer-Generated Imagery (CGI) content, such depth maps can be easily be
obtained via the 3D rendering software. For photographic content, the depth extrac-
tion is more complex. There are two widespread methods used to extract depth from
photographic scenes: Stereo analysis and sensor-based depth capture, each of which
has different advantages and drawbacks.

Both, the characteristics of depth maps and the differences in depth capture are
important in order to understand the ideas behind this thesis and are described in
this chapter.

11
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2.1 Depth Map Characteristics

Before providing more detail in realtion to how depth maps are generated, it is im-
portant to understand depth map characteristics. There are many different ways
to describe a 3D scene. Depth maps are the fundamental depth representation for
3DTV. They can be classified as ”Dense Depth Representations” [AYG+07]. For each
pixel in the 2D video sequence a corresponding pixel exists in the depth map. Each
depth map pixel value corresponds to the distance between a point in 3D space, cap-
tured by the corresponding video pixel, and the camera. Together with additional
metadata, i.e. camera parameters, this depth value enables a video pixel to be pro-
jected into 3D space. From there, the pixel is then re-projected onto a virtual viewing
plane, generating a new virtual view.

Traditionally depth maps are represented as 8-bit grayscale images. This repre-
sentation allows for 255 depth steps between the minimum and maximum distance
given in the metadata. It is important that depth maps are dense, i.e. every video
pixel has a depth pixel associated with it, otherwise missing depth values will lead
to errors in the view synthesis.

Since depth maps represent the scene geometry and not the texture, they usually
consist of several regions with smooth gradual value changes and sharp value tran-
sitions at the region borders. Fig. 2.1 shows an example for a video frame and the
corresponding depth map.

Figure 2.1: Example of a video frame with corresponding depth map.

2.2 Depth from Stereo Analysis

Image analysis from two or more cameras is the traditional depth extraction ap-
proach for view synthesis of photographic content [Sch99]. The idea is to find cor-
responding picture points between the different views. Together with information
about the capturing process, i.e. extrinsic and intrinsic camera parameters, the corre-
spondences allow for extracting depth from a 3D space. Extrinsic camera parameters
describe the camera position and orientation in 3D space. The intrinsic parameters
describe the internal camera configuration, i.e. focal length, resolution and pixel
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Figure 2.2: Concept of disparity.

aspect ratio. Because the correspondence matching between the views is based on
likelihood calculations, this process is also called ”depth estimation”.

2.2.1 Image Disparity

The relationship between points in corresponding views is described by an offset in
pixels, called ”Disparity”. Fig. 2.2 shows the concept of disparity: A point a in 3D
space, seen from camera C1 at focal length f , will be projected at position b image
plane I1, with distance u1 to the central point. From a different camera position C2,
the point will be projected at b′ on I2, with a different distance u2. The difference
between u1 and u2 is the disparity δ.

δ = u1 − u2 (2.1)

Using the intercept theorem, the depth z of point a is given by the disparity δ, the
focal length f and the distance B between the two cameras, also called ”baseline”:

z =
Bf

δ
(2.2)

In other literature, the terms positive, or uncrossed, and negative, or crossed, dispar-
ity might occur. These terms describe a depth relationship with respect to a plane,
usually the display plane of a 3D source. Positive values describe points behind the
relation plane, e.g. in front of the display whereas negative values lie behind the
plane, e.g. ”inside” the display [ISM05].

2.2.2 Stereo Matching

Stereo analysis or stereo matching relies on image and feature correspondences be-
tween two views. Based on the knowledge about the capturing system and the re-
lation between the corresponding image points, it is possible to estimate the scene
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depth. Determining the corresponding image points between two or more views is
critical for the quality of the estimated depth maps and the resulting view synthesis.
There are a multitude of different approaches for stereo matching, this thesis is only
able to mention the two main categories:

• Area-based approaches consider a window around the pixels to consider sim-
ilarity and to handle ambiguity between two views. They deliver dense depth
maps, but fail in low texturized areas and occluded regions in one or more
views.

• Feature-based approaches use edge, line and corner correspondences in two
views for sparse but robust depth maps.

State-of-the-art stereo matching algorithms rely on a combination of both ap-
proaches [SB12], however, they are still unable to compensate for the main short-
comings of stereo matching:

• Occlusions: If parts of the scenery are not visible in one of the stereo views, it
is impossible to establish a correspondence and therefore no depth value can
be estimated.

• Low texture: Feature- and area-based correspondence relies on texture infor-
mation. Low texturized areas do not deliver sufficient information to create
robust correspondences and result in erroneous depth estimations.

• Repetitive texture: Again, stereo matching relies on texture information. Repet-
itive texture will lead to ambiguous correspondences, resulting in inaccurately
estimated depth values.

Stereo matching is a complex and time consuming process and is usually per-
formed in post processing. It is not necessary for this thesis to understand the deeper
concepts of stereo matching. It is only important to understand the basic idea and the
shortcomings which have been presented in this section. A comprehensive overview
can be found in [AM05], a list of up-to-date stereo matching algorithms and their
evaluation is found in [SB12].

2.3 Depth from Range Sensors

Sensor based solutions for scene depth extraction have been around for some time,
it is only recently that they have started to be used in depth map creation. Tradi-
tional range sensors could only generate a single depth value at any time instance
and had to scan models line by line. Model scanning is not feasible for moving
scenery as intended for 3DTV. Nowadays, new sensor arrays, capable of measuring
a whole scene in real-time, are entering the market. These Focal Plane Array (FPA)
sensors for range sensing are the focus of this section. Additionally, structured light-
ing is addressed briefly, which is another depth capture approach without point-wise
scanning. A wider description of alternative range sensors can be found in [GS05].
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(a) Pulse Runtime (b) Continuous Wave

Figure 2.3: Classification of ToF systems according [KI06].

2.3.1 Time-of-Flight Principle

FPA sensors measure distance based on the signal travel time between sender, ob-
ject and detector. This principle is called time-of-flight (ToF) and those sensors are
usually referred to as ToF cameras. There are two basic categories for ToF measure-
ments:

• Pulse Runtime Sensors: A pulsed wave is sent out and a clock measures the
time which has passed until it has again been received (Fig. 2.3.1). Such sen-
sors can deliver depth accuracy between 10-20mm for distances of up to a few
hundred meters, but have low temporal resolution due to their pulsed nature
[GS05].

• Continuous Wave Sensors: A modulated wave is sent out. When this wave
hits an object, the reflected signal will be phase-shifted. This shift allows for
the measurement of the travel distance (Fig. 2.3.1). In an FPA setup, such
sensors have an accuracy of around ten millimeters and a maximum distance
of about ten meters [KI06]. They can capture in real-time with sixty frames per
second and more [Fot12].

Due to their real-time capabilities, continuous wave ToF cameras are predestined
for 3DTV capture. They can deliver accurate depth maps at the point of capture,
without any time intensive stereo matching in post production. Also, unlike stereo
analysis, they deliver reliable and accurate depth information in low or repetitively
texturized areas and do not suffer from occlusions, as there is no requirement for
multiple viewpoints . Nevertheless, ToF cameras are not without their shortcomings:

• Spatial resolution: Current ToF sensors are still unable to deliver suitable spa-
tial resolution to match HD video material [BOL+05]. Some kind of depth
upscaling is necessary.

• Ambiguity problem: The sensor cannot distinguish between multiples of the
modulation frequency, reducing the usable range coverage [BOL+05].
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• Sensor noise: The ToF signal is not without noise affecting the depth accuracy.
Noise reduction and filtering can improve the result [FPR+09].

Again, a deeper understanding of the ToF principle is not necessary for this the-
sis. The important aspects have been presented in this section. A detailed explana-
tion of the ToF principle can be found in [LS01].

2.3.2 Structured Lighting

Structured lighting refers to scene geometry analysis based on a structured light
source [YA88]. A scene is lit with a known pattern, e.g. a grid. This pattern is
then captured by a camera. The relationship between the distorted pattern on the
scene and the known pattern allows for the reconstruction of a 3D model. Modern
structured light scanners send the pattern in a non-visible spectrum, so the depth
capture does not interfere with the video capture. A very popular example is the Mi-
crosoft Kinect system [Zha12], which recently initiated significant attention to struc-
tural lighting due to the low cost and open availability of the Kinect. The downsides
of depth from structural lighting involve the complicated geometric distortions from
the pattern processing and the strong inaccuracies at object boundaries [CKH12].

Depth from structured light is not part of this thesis and is only mentioned in
sake of completeness due to the recent boom of the Kinect within the consumer mar-
ket. However, it is important to mention that the current Microsoft Kinect system
does not deliver full resolution depth maps compared to the video resolution and
therefore requires some sort of depth map upscaling.

2.4 Depth Acquisition Comparison

This chapter presented two common approaches for scene depth extraction, namely,
stereo matching and range sensors. For range sensors, two approaches currently
form the focus of the research community: 1) ToF cameras and 2) structural lighting
with the Microsoft Kinect system. The different characteristics between these three
different depth capture approaches are presented in Tab. 2.1.

In many areas ToF cameras and the Kinect system are superior to depth estimated
from stereo analysis. The capture setup is simpler and occlusions or texture do not
affect the outcome. Since there is only one capturing camera, no problems occur in
relation to color differences between the two cameras. The limited operating range of
the Kinect system restricts its use to close-up scenarios. ToF cameras can be operated
in a more versatile manner. Together with their real-time capabilities of around 60
frames per second, ToF cameras are very interesting for 3DTV capture, especially for
live broadcasting. The main drawback is the low spatial resolution of depth values,
compared to the corresponding video frame. This lack of spatial resolution has been
the motivation behind the search for sophisticated depth upscaling algorithms and
will be addressed in the following chapter.
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Chapter 3

Depth Map Upscaling

The previous chapter dealt with the idea of depth maps and explained their charac-
teristics. It also explained different approaches in relation to extracting depth maps
during or after the capture process and the difficulties that might arise. One key
problem was a possible discrepancy between the video and depth resolution. There
are possible solutions for this problem if the depth maps are accompanied with cor-
responding video texture sequences, a typical scenario in 3DTV.

For this scenario, it is not essential to know where the depth maps have come
from. They could be captured from a ToF camera, or be a downscaled version of
previously recorded depth maps in order to save transmission bandwidth. All that
is important is that there exist corresponding color video frames, in the desired target
resolution, for each depth map at exactly the same time instance.

This chapter will address the basic idea of depth map upscaling with combined
video data, depth upscaling application for 3DTV and will summarize the existing
proposals.

19
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3.1 Basic Idea

Depth maps can be seen as simple grayscale 2D images, and the idea of image up-
scaling is quite old. The pixel grid of a low resolution image is expanded to a higher
resolution. Missing values are filled using different approaches, the most common
of which involves interpolation between close known values. For the major part of
a depth map this works in an acceptable manner, since it mainly consists of smooth
areas with gradual value changes, as described in Sec. 2.1. The problems occur at the
hard depth transitions at object borders. These sharp depth changes determine the
foreground and background objects in the view synthesis. They must be preserved
since the HVS is most sensitive to such depth changes [DRE+11]. Interpolation ap-
proaches would smooth out these transitions in depth. Other edge-preserving ap-
proaches such as ”nearest-neighbor” or median filtering do not work in an adequate
manner for higher upscaling factors where they might separate depth from texture
edges [KCLU07].

However, for a 3D video signal, more information exists which can then be uti-
lized in the depth upscaling process. Depth maps are merely additional information
added to the target resolution 2D video stream. With respect to the depth map, these
high resolution images can deliver important data to the upscaling process. Combin-
ing a low resolution depth map with a high resolution video texture frame can assist
in containing the edge-blurring interpolation effects and generate high resolution
depth maps of good quality.

3.2 Applications

There are many different scenarios for which low resolution information from one
source, e.g. depth, is required to be fused with a high resolution source, such as tex-
ture video. This thesis addresses the two major scenarios for depth map upscaling,
namely, ToF scene capture and depth map compression for 3D video coding. Other
possible applications lie in stereo matching algorithms and other complex computer
vision tasks [KCLU07].

3.2.1 ToF Scene Capture

As mentioned in Sec. 2.3.1, ToF cameras can deliver reliable depth in scenarios where
stereo analysis fails. Their real-time capabilities make ToF cameras interesting for
3DTV capture. However, due to their low spatial resolution the raw depth signal is
not feasible for DIBR view synthesis and some sort of upscaling must be applied.

A typical ToF capture scenario for 3DTV consists of one or more standard cam-
eras for 2D video and one or more ToF cameras for depth. Video and depth cameras
should be synchronized, i.e. capturing at the same temporal instance. It is also im-
portant to know the spatial relationship between the cameras, to enable the different
viewing angles to be merged to a single point of view. Once video and depth are
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aligned, the video texture can be used to assist in upscaling the ToF depth to the
desired target resolution.

The most popular approach for guided depth map upscaling is probably Joint
Bilateral Upscaling (JBU), introduced in 2007 by Kopf et al. in 2007 [KCLU07]. A
slightly earlier proposal, based on a Markov Random field, came 2006 from Diebel
and Thrun [DT05] and is explained below in Sec. 3.3.1.

3.2.2 3D Video Coding

Another application for the joint upscaling of depth maps is 3D video compression.
A typical transmission format for 3DTV is the multiview video plus depth format
(MVD): Multiple video streams together with matching depth map sequences allow
for a DIBR view synthesis at the receiver side [KAF+07]. Due to their special char-
acteristics, explained previously in Sec. 2.1, depth maps can be compressed very
efficiently. The European ATTEST project [FKB+02] has shown that depth maps can
be compressed at 10-20% of the overall bit rate budget [SMS+07]. Klimaszewski et
al. [KWD09] showed that coding efficiency can be further increased by transmitting
downscaled depth maps.

Several proposals have been made to increase coding efficiency by low resolu-
tion depth maps, upscaling to the desired target resolution with the corresponding
texture information at the receiver’s side, e.g. utilizing texture edges [EMWK09] or
weighting color similarity [WYT+10, LS10].

3.2.3 Stereo Matching Algorithms

As presented in 2.2, scene depth can also be generated from two or more matching
camera views. Stereo correspondence search and analysis is a very complex task and
is often carried out over downsampled versions of the original source [SS02]. The
low resolution representations can offer more reliable correspondences and speed up
the overall disparity matching process. Guided upscaling with the original source
provides a full resolution depth map.

This upscaling idea is not only limited to stereo depth applications. It is a com-
mon approach in computer vision to apply complex tasks on downsampled sources
to increase computational performance. Popular examples are tone mapping for
High Dynamic Range (HDR) imaging [LFUS06], colorization or recoloring [LLW04]
and graph-cut based image operations [BVZ01], to name but a few.

3.3 Existing Approaches

The idea of joint depth upscaling is not new and several proposals have been made
previously. This section provides a brief chronological overview of existing solu-
tions, with a special focus on Joint Bilateral Upscaling. JBU has received a great deal
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Figure 3.1: The MRF for range measurement upscaling according to [DT05].

of attention in this research field and is the basis for many subsequent proposals. It
is also the main competing reference in the contributions I, III and IV of this thesis
and therefore deserves more notice.

3.3.1 Markov Random Field Approach

In 2006 Diebel and Thrun presented a Markov Random Field (MRF) to fuse high-
resolution texture data with low-resolution depth data, which was particularly aimed
at range sensors, e.g. laser range measurement or ToF cameras. Exploiting the fact
that discontinuities in depth and texture tend to co-align, this approach scales the
spatial depth map resolution to the texture image.

Their MRF contains five types of nodes in two layers, namely, the range measure-
ment, the reconstructed range, the image pixel, the image gradient and the depth dis-
continuity nodes. The interconnections between the nodes are shown in Fig. 3.1. The
reconstructed range nodes have the same density as the image pixel nodes, whereas
the original range measurement nodes are of lower density. The auxiliary nodes for
image gradient and depth discontinuity mediate texture and depth information for
the reconstructed range nodes.

Diebel and Thrun claim this work to be the first application of MRF in relation
to multi-modal data integration and show that the use of MRF can substantially
improve existing range imaging technology (in 2005), generating high-resolution,
low-noise range images [DT05].

3.3.2 Joint Bilateral Upscaling

Kopf et al. [KCLU07] investigated into the upscaling of low-resolution images for
different image analysis applications, such as tone mapping, colorization, graph-
cut image operations and stereo depth. Such tasks are often run over a downsam-
pled input image in order to reduce computational complexity. The solution is then
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upscaled to the original resolution. However, since traditional upscaling methods
assume a smoothness-prior for the interpolation, a new upscaling method was pro-
posed, using the original high resolution input image as a prior for a joint bilateral
upsampling procedure based on bilateral image filtering introduced by Tomasi and
Manduchi [TM98].

A bilateral filter is an edge-preserving smoothing filter, based on a nonlinear com-
bination of the surrounding pixel values I(x, y) in image I. The filter blends pixel
values based on geometric distance (spatial) and photometric similarity (range). In
this context, images are represented as two dimensional matrices of pixel values, e.g.
I = {I(x, y);x = 1, ..., X; y = 1, ..., Y } with X and Y as the maximum indices. The
bilateral filter has a symmetric spatial filter kernel h(·) with support Ω and a sym-
metric range filter kernel g(·). h : < → < uses the Euclidean distance and g : < → <
the absolute value difference between two pixels as input. For a pixel at position
(x, y)T , the filtered result J(x, y) of pixel I(x, y) from the image I is:

J(x, y) =
1
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where Ω is the spatial support of the kernel, centered at (x, y)T , and k is the number
of all pixels in Ω. Edges are preserved, since the filter outputs smaller values when
range or spatial differences increase.

It is not necessary that the filter kernel inputs come from the same source. If
the range kernel is applied to a second image, this process is called a joint or cross
bilateral filter. The second image can be used as guidance for an upscaling process.

Applying the spatial filter kernel h(·) on pixel I ′(m,n) at position (m,n)T =
(

x
γ
, y

γ

)T

of low resolution source I′ and the range filter kernel g(·) on pixel Ĩ(x, y) of a full

resolution guidance Ĩ, yields the joint bilateral upscaling result J̃(x, y):
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where γ is the upscaling factor between I′ and Ĩ. Since I ′(m,n) takes only integer

coordinates, the guidance image Ĩ is only sparsely sampled.

Kopf et al. demonstrated the benefit of JBU for upscaling low resolution depth
maps with high resolution texture guidance. Their results show high resolution
depth maps with accurate, sharp edges at object boundaries. However, solving
the edge smoothing problem with a range filter kernel introduced a new problem,
namely, texture copying. Highly structured texture, especially letters, will be trans-
ferred into the depth map, since they are regarded as edges which should be pre-
served. This problem motivated Garcia et al. to introduce the Pixel Weighted Aver-
age Strategy (PWAS) for depth upscaling [GMO+10] which will be addressed in the
next section.
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3.3.3 Pixel Weighted Average Strategy

The PWAS can be seen as an extension to JBU, particularly applied for ToF upscaling.
Garcia et al. aimed to reduce sensor noise by joint bilateral filtering, while avoiding
the effects of texture copying. Assuming that range values at depth transitions are
less reliable, they introduce a two-dimensional credibility map MC , generated from
the absolute gradient of the low resolution source I′,

MC = Gσc
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)

(3.3)

where Gσc
is a Gaussian kernel with variance σ2

c . The credibility map MC extends
the traditional bilateral JBU filter and provides a trilateral version of the JBU equa-
tion given in Eq. 3.2:
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The objective evaluation shows a reduction in texture copying, thus not completely
eliminating it. However, compared to JBU and MRF, PWAS yields better results.

3.3.4 Depth Upscaling Classification

Depth map upscaling approaches can be classified into two major groups: Guided
algorithms with additional information, i.e. texture, and unguided algorithms based
on the depth map alone. In other literature the term ”assisted” is also used to de-
scribe texture guidance. In recent years, there have been a multitude of proposals.
Many are particularly aimed at ToF capture or 3D video coding. It is often the case
that they are some sort of variation or extension to the JBU principle, e.g. the Noise
Aware Filter for Depth Upsampling (NAFDU, [CBTT08]) or [KYY11]. MRF-based
approaches are presented in [PKT+11] and [CLK+12].

The chart in Fig. 3.2 provides a graphical classification of different proposals
and their relationships, but it does not claim to be a complete list. Covering all depth
upscaling proposals of the last years would prove to be a work in itself. Nevertheless,
it is apparent that many proposals share similar foundations. The next chapter will
introduce a novel depth upscaling method, which is not based on JBU or MRF: The
Edge-Weighted Optimization Concept (EWOC).



Figure 3.2: Classification of depth upscaling approaches.
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Chapter 4

The Edge-Weighted

Optimization Concept

In the previous chapter, the requirement for depth map upscaling and the idea of
combined upscaling with texture information were introduced. Existing approaches,
such as JBU, deliver already sophisticated results and form the basis for many vari-
ations and extensions.

The Edge-Weighted Optimization Concept, or EWOC, opens up a new path: Us-
ing the same principles as Guttmann et al. [GWCO09], low resolution depth is seen
as a sparse representation of the target resolution depth. Missing values are filled by
diffusion in an optimization process weighted with edges from the high resolution
video frame. Additionally, these edges are validated with the low resolution depth
to accentuate correlated data.

27
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Figure 4.1: EWOC depth upscaling workflow.

4.1 Background

In [GWCO09], Guttmann et al. presented a semi-automatic system to convert con-
ventional video into a stereoscopic video pair. With only a few user generated depth
value inputs on one frame, so called ”scribbles”, a whole video sequence can be con-
verted from 2D to stereoscopic 3D. Together with other constraints, such as spatial
and temporal smoothness, the scribbles formed an over-determined linear equation
system for a dense depth map. This system was solved for a lower (one quarter)
resolution of the video input and then upscaled using JBU. Finally a simple forward
warping was applied to generate the left and right view for stereoscopic 3D.

The underlying idea of EWOC is an adaption of the Guttmann approach to depth
map upscaling for ToF capture or 3D video coding. In these scenarios, the temporal
smoothness can be ignored. Unlike the scribbles, reliable depth values are available
for every time instance. In addition, the low resolution depth still provides a great
deal of data to improve the upscaling process. Previous depth upscaling proposals
tend to ignore this data. Together, these ideas lead to the Edge-Weighted Optimiza-
tion Concept for depth upscaling.

4.2 Upscaling Principle

Fig. 4.1 shows the basic principle of EWOC depth upscaling. The low resolution
depth input is treated as a sparse depth representation at the video input resolution.
Edge information from the corresponding video frame is used in an weighted opti-
mization to fill out missing values for a dense, high resolution depth map. The single
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steps are now addressed in more detail.

4.2.1 Depth Value Mapping

The first step is to establish a spatial correspondence between the low resolution
depth map and the high resolution guidance frame. In a 3D video coding scenario
this mapping is straight-forward. Video and depth sequences are taken from the
same viewpoint and the downsampling scheme should be known from the encoder.
Known depth values are simply mapped to their original position prior to the down-
sampling, all other positions are left blank.

For ToF depth upscaling, the depth value mapping requires slightly more atten-
tion. It is important to know the relationship between the video and ToF camera in
order to merge the two viewing angles into one. This relationship is expressed in the
projection matrix P, a 3 × 4 full rank matrix containing the rotation matrix R, trans-
lation vector t between the two cameras, and the intrinsic parameters of the video
camera in the calibration matrix KI ,

P = KI [R|t]. (4.1)

A combined video plus ToF recording setup delivers a high resolution texture
frame I, with the pixel values I(x, y), and a low resolution depth map Dlow, with the
depth values Dlow(m,n). The coordinates x,m and y, n are Euclidean pixel coordi-
nates in 2D space with max(m) < max(x) and max(n) < max(y). The homogeneous
pixel coordinates (m,n, 1)T can be translated to world coordinates by means of the
ToF camera calibration matrix KD. Together with Dlow(m,n) for the depth value z,
they give the world coordinates of point a in 3D space.

a = (m′, n′, z, 1)T = KD(m,n,Dlow(m,n), 1)T (4.2)

With the projection matrix P from Eq. 4.1, the depth value Dlow(m,n) is mapped
on the corresponding pixel coordinates (x, y)T for point b:

z · b = z ·
(x

z
,
y

z
, 1
)T

= Pa (4.3)

Performing the projection for every known value in Dlow on an empty frame with
an equal size as I gives the depth values D(x, y) of the depth map D from the same
viewing angle of as the video camera:

D(x, y) =

{

Dlow(m,n), ∀b from Eq. 4.3
not defined, otherwise

(4.4)

Fig. 4.2 illustrates the mapping process for a single point: A ToF camera at central
point CToF captures the depth z of 3D point a as depth value Dlow(m,n). With the
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Figure 4.2: Mapping ToF depth values on video camera viewing angle and resolution.

world coordinates from Eq. 4.2, the value Dlow(m,n) is projected onto pixel position
b using Eq. 4.3. The sum of all projected points results in the depth map D, as seen
from a video camera at central point Cvideo.

In both cases, 3D video coding and ToF upscaling, the mapping results in a depth
map D with the desired target resolution, but a sparse, possibly irregular, value dis-
tribution. For DIBR view synthesis it is important to have per-pixel depth values,
therefore it is essential to have some means of filling in the missing values.

4.2.2 Spatial Smoothness

For the majority of cases, the characteristics of the depth maps enables the assump-
tion that there is a similarity between a depth pixel D(x, y) at position (x, y)T and
its spatial neighbors. The similarity is represented by the horizontal error εh and the
vertical error εv :

εh(x, y) = D (x, y)−D (x+ 1, y) (4.5)

εv(x, y) = D (x, y)−D (x, y + 1) (4.6)

One exception for the similarity assumption is the sharp depth transition at the
borders of objects. Relying on the spatial smoothness errors alone would smooth out
these important transitions. Therefore a weighting function WE(x, y) is introduced,
relaxing the spatial smoothness constraints of Eq. 4.5 and 4.6 at the object bound-
aries. This weighting allows for sharp depth transitions between objects since there
is a reduced requirement for the neighboring pixels to be similar. The spatial smooth-
ness errors from Eq. 4.5 and 4.6 are converted into energy terms and weighted by
means of WE to form the horizontal and vertical error energies QH and QV :
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QH =
∑

x

∑

y

WE(x, y)ε
2
h(x, y) (4.7)

QV =
∑

x

∑

y

WE(x, y)ε
2
v(x, y) (4.8)

QS = QH +QV (4.9)

The sum of QH and QV provides the overall spatial error energy QS , which is then
minimized using a block-active method [PJV94], implemented in MATLAB by Adlers
[Adl98]. The optimization solution provides the missing values for D, which are
combined with the known values from Dlow to form a pixel-dense depth map.

4.2.3 Edge Weighting

The weighting function WE(x, y) is important in order to obtain sharp object bound-
aries in depth maps. Since depth maps describe the scene geometry for a video
sequence, it is possible to extract object boundaries from the corresponding video
frame. Assuming that the texture edges correspond to the object boundaries, which
then correspond to depth transitions, the weighting function WE(x, y) can be gained
from an edge detection function EI(x, y) on a video frame I:

WE(x, y) = 1− EI(x, y) (4.10)

Accurate and cohesive edges are the key to providing an adequate depth upscal-
ing. Missing or porous edges can lead to “depth leakage” where erroneous depth
values spread into the wrong areas as shown in Fig. 4.3. Different edge detectors,
pre-processing steps and color spaces can be utilized to influence the edge map ac-
curacy. For the sake of simplicity, a standard Canny edge detector [Can86] on the
video luminance channel is used at the present time.

4.2.4 Edge Validation

Thorough edge detection on a video frame will result in many more edges than there
are actual objects. Many edges do not comply with actual depth transitions and will
lead to an unwanted structurization effect in the upscaled depth map as shown in
Fig. 4.4. A higher threshold for the edge detector reduces the amount of unnecessary
edges, however it increases the risk of ”depth leakage”. Finding the correct edge
threshold for each sequence is difficult and often impossible. Therefore it is more
practical to use a lower edge detector threshold and validate the resulting edge map
with actual depth transitions.

With the original low resolution depth available, it is possible to reduce depth
structurization artifacts without increasing the risk of ”depth leakage”. The idea is,
that only edges in the depth map correspond to object boundaries. To remove re-
dundant edges in areas with uniform depth, another Canny edge detector is applied
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(a) (b)

Figure 4.3: Depth leakage in ’Ballet’ [ZKU+04]: Porous edges (white) in (a) can lead to depth

leakage marked in (b).

(a) (b)

Figure 4.4: Depth structurization in ’Breakdancing’ [ZKU+04]: Too many edges (white) in (a)

can lead to depth structurization seen in (b).

on the low resolution depth map Dlow. The resulting edge map ED is upscaled to
the target resolution and used to mask out unnecessary edges in EI , giving the new
weighting function WE :

WE(x, y) = 1− EI(x, y) · ED(x, y) (4.11)

4.3 Multistep Upscaling

Typical ToF upscaling scenarios require upscaling factors of 8 or higher, in the hor-
izontal and vertical directions respectively. While it is possible to upscale depth by
means of EWOC in one step, an incremental approach can increase the upscaling
performance. Multistep upscaling has already been presented to reduce computa-
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tional complexity for JBU in [RGBB09]. For EWOC it also offers a gain in upscaling
quality: As mentioned in Sec. 4.2.3, a major factor for the upscaling quality is the
edge detection from the video frame. Downscaled texture versions can deliver more
coherent edge maps, preventing erroneous depth values from spreading too far in
the consecutive upscaling steps. Fig. 4.5 shows the concept for incremental EWOC
depth upscaling with a factor of 8 in three steps. The downsampled texture versions
are gained using standard bilinear filtering. The edge weight block combines both
edge weighting and validation.

Figure 4.5: Different steps of incremental EWOC depth upscaling for a typical ToF depth

upscaling by factor 8. Images not according to scale.
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EWOC depth upscaling was introduced in [SSO12a] (Paper I) and an improved
edge detection was presented in [SSO12b] (Paper III). The multistep enhancement
was presented in [SSO12c] (Paper IV). The next chapter pools the separate contribu-
tions of this thesis.



Chapter 5

Contributions

This chapter presents a condensed analysis of the four papers included in this thesis.
After the concepts behind EWOC depth upscaling were addressed in Chapter 4, the
focus now lies on the novelty of each paper and its evaluation.

The addressed contributions are:

• Paper I: ”Depth map upscaling through edge weighted optimization”.

• Paper II: ”Adaptive depth filtering for HEVC 3D video coding”.

• Paper III: ”Improved edge detection for EWOC depth upscaling”.

• Paper IV: ”Incremental depth upscaling using an edge weighted optimization
concept”.
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5.1 Paper I: Introducing EWOC

The first paper introduced EWOC for depth map upscaling, fusing low resolution
depth maps with high resolution texture frames, and evaluated it against a number
of competing proposals [SSO12a].

Instead of widely-used ideas such as JBU or MRF, the upscaling process is con-
sidered as an energy minimization problem. By combining edge detectors on texture
and by cross-verifying the detector results with low resolution depth, upscaling arti-
facts were reduced. Objective tests verify EWOC as a valid addition to the wide field
of depth upscaling approaches with improvement to previous proposals.

5.1.1 Novelty

There are three major novelties in this contribution: Firstly, while many depth up-
scaling proposals are only extensions to existing solutions such as JBU, the EWOC
transfers a stereo-extraction approach [GWCO09] to a depth map upscaling scenario.
Secondly, in a similar manner to other approaches, EWOC uses information from a
texture frame, but further validates this information with the low resolution depth
map. Thirdly, while the stereo extraction approach still relied on JBU for the final
upscaling step, EWOC is capable of performing the whole upscaling in one opti-
mization step.

5.1.2 Evaluation and Results

Since this was the introductory paper for EWOC, an extensive evaluation was per-
formed. Two test scenarios were presented: The first investigated into depth distor-
tions introduced by the upscaling process and the second dealt with the actual view
synthesis quality using the upscaled depth.

For the first test, the Middlebury Stereo Vision data sets were used [SS02]. The
sets provide high quality depth maps as a reference, so the low resolution depth in-
puts can be easily achieved by subsampling the provided depth maps. Further, these
data sets are widely used in the scientific community and this thus enables there to
be an easy comparison between different proposals. Upscaling factors of 2, 4 and
8 were compared to the full resolution reference based on the mean square error
(MSE) between pixel values. The results in Fig. 5.1 show that EWOC performs es-
pecially well for higher upscaling factors, outperforming other proposals by a factor
of 2 or higher in MSE. The benefits of EWOC depth upscaling, particularly the more
accurate depth transitions, are shown in Fig. 5.2.

In the second test, VSRS virtual views were generated based on depth maps up-
scaled by a factor of 8 using EWOC, JBU and the combined ”2-step” approach from
[GWCO09]. Again, low resolution depth was generated by subsampling provided
depth maps. To remove possible synthesis artifacts from the evaluation, the results
were then compared with a reference synthesis based on the original depth maps.
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Figure 5.1: Comparison on depth map MSE between several approaches for the Middlebury

“Venus” set. Note that values marked with ”*” are taken from [GMO+10].

The evaluation criteria applied were PSNR, as a standard in image quality assess-
ment, and SSIM, with a more close resemblance to the HVS experience. Fig. 5.3,
shows the objective results for sequence ”Street” by the Poznań University of Tech-
nology [DGK+09]. Corresponding view synthesis examples are shown in 5.4, to-
gether with the difference compared to syntheses with the original depth maps. The
increase in visual quality is explicitly visible here around the side-view mirror of the
car in front.

5.2 Paper II: MVD Coding

While the previous paper saw EWOC more aimed at ToF depth upscaling, this paper
investigated possible applications in 3D video coding [SOST12].

The transmission of spatially downscaled depth maps is a common idea for MVD
coding [KWD09]. It was shown that EWOC is a valid upscaling approach at the de-
coder side, even if the corresponding video sequences are highly compressed and
guidance edges are harder to find. In addition, the special characteristics of EWOC
motivated an adaptive pre-filtering for depth maps, further increasing coding effi-
ciency.

5.2.1 Novelty

The idea of transmitting downscaled depth is not new and was already presented in
Sec. 3.2.2. This paper expands this compression idea with an adaptive low-pass filter
to reduce high energy parts in the depth maps prior to subsampling and compres-
sion. Fig. 5.5 shows the proposed coding scheme. Video coding algorithms are very
good in compressing uniform areas by removing redundancy, and depth maps con-
sist of large areas with redundant information. It is possible to increase redundancy
further, as long as the transitions at object boundaries stay untouched. Based on the
blur map Eblur from a edge detector on the texture frame I, all parts not correspond-
ing to object transitions are smoothed out. The original depth map D is convoluted
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(a) Reference (b) JBU

(c) PWAS (d) EWOC

Figure 5.2: Depth reference and upscaling examples from Fig. 5.1 for 8x upscaling.

(a) PSNR for synthesis with upscaled depth compared to view synthesis with full resolution
depth

(b) SSIM index for synthesis with upscaled depth compared to view synthesis with full resolu-
tion depth

Figure 5.3: PSNR & SSIM index comparison for view 4 of test sequence ”Poznań Street” in

Paper I. Upscaling factor 8.
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(a) JBU (b) Difference

(c) 2-step (d) Difference

(e) EWOC (f) Difference

Figure 5.4: Details of view synthesis with depth upscaling with different approaches by factor 8:

Left column shows the results using upscaled depth maps, right column shows the differences

to syntheses with original depth map. Frame 1 of test sequence ”Poznań Street”.
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Figure 5.5: Proposed depth coding scheme in Paper II.

with a Gaussian kernel G and multiplied with the blur map Eblur. The original depth
map D is multiplied with the inverted blur map (Eblur subtracted from the identity
matrix 1). Both multiplications are element-wise and represented by the symbol ”⊗”.
The two depth maps are added together and form the adaptively filtered depth map
Dadapt.

Dadapt = (D ∗ G)⊗ Eblur + D ⊗ (1 − Eblur) (5.1)

Then Dadapt is downscaled by factor 2, encoded using High Efficiency Video Cod-
ing (HEVC, [JV11b]), decoded and upscaled using EWOC.

5.2.2 Evaluation and Results

The idea for this paper was highly motivated by the MPEG call for proposals (CfP)
on 3D video coding technology [mpe11]. Therefore the evaluation can be related to
the requirements given in the CfP. The test sequences used were ”Poznań Street” and
”Poznań Hall2”. Video and depth sequences were coded using the HEVC test model
HM-4.0 [JV11a], with a group of pictures (GOP) size of 12 and clean decoding refresh
(CDR) for random access points every 0.5 seconds. Virtual views for evaluation were
synthesized using VSRS.

In a first test, the feasibility of the adaptive filter was assessed. A comparison be-
tween three different approaches was performed: The proposed adaptive filter ap-
proach with HEVC encoded, smoothed and downscaled depth maps, upscaled with
EWOC at the receiver’s side, HEVC encoded downscaled depth maps, upscaled with
JBU, and HEVC encoded full-scale depth maps. The different depth map sequences
were coded with QPs of 16 to 44 with a constant video encoding at a quantization
parameter (QP) of 32. The rate-distortion curves for ”Poznań Street” and ”Poznań
Hall2” are shown in Fig. 5.6 and favor the proposed approach at low depth bit rates.
A second test evaluated the processing for MVD coding at the MPEG CfP bit rate
anchors. Fig. 5.7 shows the resulting rate-distortion curves, while Fig. 5.8 shows the
result of a subjective evaluation with 20 test subjects. Again the proposed approach
was favored.
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Figure 5.6: Rate-distortion curves at different depth compressions.
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Figure 5.7: Rate-distortion curves at MPEG CfP bit rate anchors [mpe11].
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5.3 Paper III: Improved Edge Detection

The third paper concentrated on the edge weight extraction from the corresponding
texture frame. Different combinations of color spaces and pre-processing steps were
evaluated [SSO12b].

The outcome of EWOC is highly dependent on accurate edge detection, both
in texture and depth maps. Investigating several sources and pre-processing steps
showed that intensive edge detection can increase the upscaling quality. However,
this gain is achieved at the cost of computational complexity. Therefore the ideas for
intensive edge detection were not continued for the sake of a future real-time imple-
mentation of EWOC. However, they can be easily integrated for scenarios requiring
especially high depth quality with relaxed time restrictions.

5.3.1 Novelty

In the original EWOC proposal, the edge weight was generated from a combina-
tion of different edge detectors and color spaces and had a continuous value range
of [0, 1]. This paper showed that a combination of sources based on the HVS can
slightly improve the upscaling results. On the other hand, such improvements are
only achieved at the cost of high computational complexity.

5.3.2 Evaluation and Results

Similar to Paper I, the evaluation was based on different test sequences and view
synthesis with VSRS. Nine different sources for texture edge detectors were exam-
ined: Single channel grayscale and luminance, channel combinations for the RGB,
YUV and HSV color spaces, as well as mean-shift filtered [CM02] versions of the lu-
minance and the RGB color space, finally the CIE2000 color difference, which is sup-
posed to resemble the human color perception [LCR01]. The results in Tab. 5.1 show
that a combination of edges from luminance and CIE2000 color difference provided
the best view synthesis quality, but increased the processing time on edge detection
by a factor of 150 as compared to a simple Canny edge detector on the luminance
channel only. The quality difference between the approaches did not provide the
motivation for such an increase in complexity. It was also shown that mean-shift
filtering, although a popular approach in image segmentation, is not feasible in this
application. Based on the findings in this paper, the ideas of color space combina-
tions and a continuous value range were not continued. Instead of the intended
increase in quality, a decrease in complexity was found.

5.4 Paper IV: Incremental Upscaling

The last paper included in this thesis introduced the incremental upscaling enhance-
ment presented in Sec. 4.3 [SSO12c].
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Table 5.1: Comparison of different texture edge detector sources in Paper III. Mean PSNR and

SSIM for 20 frames of test sequence “Poznań Street”.

Texture information PSNR [dB] SSIM

Graylevel 38.230 0.980
Luminance (Y) 38.234 0.980
RGB 37.267 0.978
YUV 37.843 0.979
HSV 37.843 0.979
CIE2000 38.078 0.980
meanshift Y 33.006 0.960
meanshift RGB 33.005 0.960
Y + CIE2000 38.437 0.980

Dividing the upscaling process into several steps decreases complexity and causes
EWOC to be closer to real-time capability. Incremental upscaling allows for more co-
herent edges in lower resolutions, restricting the spread of erroneous depth in the
following stages. It was also shown that incremental upscaling for JBU leads to a
drop in quality, due to the lack of texture information in the early upscaling steps.

5.4.1 Novelty

The novelty for this paper lies in dividing up the upscaling process into several
smaller steps instead of one big step. EWOC performance is improved by reduc-
ing computational complexity and increasing upscaling quality.

5.4.2 Evaluation and Results

Two factors were interesting for the evaluation of this approach. The first was the
decrease in processing time compared to EWOC depth upscaling in one step, and
the second was the increase in synthesis quality.

The first factor was assessed by a simple comparison of the new incremental im-
plementation compared to a previous EWOC setup. It was possible to show that
upscaling by a factor of 2 in three consecutive steps reduces the mean processing
time per frame to less than half, compared to a single upscaling step by a factor of
8 (Fig. 5.9 (a)). For the second factor, the increase of view synthesis quality, again
the same evaluation methodology from Paper I was applied. Comparison partners
were the incremental JBU approach presented in [RGBB09], as well as full upscaling
in a single step using EWOC and JBU. The objective results are presented in Fig. 5.9
(b). Incremental EWOC depth upscaling provides a difference of about 1dB in PSNR
as compared to the second best approach, full EWOC. Two synthesis results, repre-
senting the difference between the incremental and full EWOC depth upscaling, are
shown in 5.10. The gain in quality for incremental EWOC is especially visible at the
traffic sign and the side-view mirror.
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(a) Mean processing time (b) Mean PSNR

Figure 5.9: Processing time comparison (a) over both sequences (400 frames) between

single-step EWOC and the proposed incremental implementation. Mean PSNR (b) for ”Street”

and ”Hall2” (200 frames each) with upscaled depth from different approaches.

(a) EWOC inc (b) EWOC full

Figure 5.10: Details of view synthesis with depth upscaling factor 8 for incremental and single-

step EWOC. Frame 40 of test sequence ”Poznań Street”.

It is interesting to note that the incremental upscaling with JBU leads to a quality
loss. It is assumed that this drop in quality occurs at the lower upscaling steps,
where a lot of filter information is missing due to the downscaled texture frame.
These errors are then inherited to the higher upscaling steps.



Chapter 6

Conclusions

The previous chapter provided a condensed summary of the contributions of this
thesis. It pointed out the novelty for each paper, recapped the evaluation process and
presented important results. Starting from the overall aim, this final chapter offers
a comprehensive conclusion in relation to all four publications, covering the whole
aspect of EWOC depth upscaling. The compliance to the given goals is analyzed and
the contribution of this work to the research community is presented. Finally, this
work will conclude with an outlook into future work: Enhancements, applications
and possible new related fields of research.
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6.1 Overview

The work presented here set out to achieve a better 3DTV experience. In this context,
improved depth map capture and encoding are crucial for the whole 3DTV distribu-
tion chain.

A new algorithm for texture guided depth map upscaling was proposed: The
Edge-Weighted Optimization Concept (EWOC). The algorithm occupies a new zone
in the field of guided depth upscaling. While other approaches often rely on (joint-)
bilateral filters or Markov Random fields, EWOC introduces the idea of energy min-
imization to depth map upscaling. With simple edge information from texture, vali-
dated by the low resolution depth and a step-by-step process, convincing upscaling
results are achieved. EWOC outperforms popular approaches in terms of objective
and subjective visual quality, in both, depth maps as well as DIBR view synthesis.

EWOC can be utilized for depth map upscaling in scenarios in which the spatial
resolutions of the texture frame and the depth map do not match. The application of
EWOC allows for better 3D content creation using dedicated range sensors, i.e. ToF
cameras, and more efficient 3D video coding with asymmetric depth compression.
Thereby the introduction of EWOC fulfills the aim of this research for a better 3DTV
experience. The following section will discuss the achievements of this thesis in more
detail.

6.2 Outcome

Sec. 1.4 defined three concrete and verifiable goals in order to validate the outcome
of the presented research. This section discusses the results for each goal with the
respect to the overall aim for an improved 3DTV experience.

• Goal I: ”Investigate the upscaling of limited range information, utilizing addition-
ally available data to improve the 3DTV quality, and propose an alternative concept to
depth map upscaling.”
Paper I investigated into texture guided depth map upscaling and introduced
EWOC as an alternative to established concepts. EWOC interprets the low res-
olution depth map as a sparse representation of the target resolution depth
map. Missing depth values are filled by edge weighted optimization. The
necessary edge weights are taken from the corresponding texture frame. Un-
like other guided depth upscaling solutions, EWOC additionally validates this
texture edge information with the low resolution depth map for object con-
sistency. This validation leads to improved depth upscaling results. Objec-
tive evaluations show increased quality in upscaled depth maps and resulting
DIBR view syntheses, compared to competing proposals.

• Goal II: ”Investigate the utility of depth map upscaling for 3D video coding and pro-
pose an alternative compression scheme for 3DTV distribution utilizing depth map
upscaling.”
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In Paper II the idea of EWOC depth upscaling was applied to depth upscaling
for 3D video coding, together with a new adaptive filtering concept. Subjec-
tive and objective evaluations show improvements compared to state-of-the-
art HEVC video coding, especially at lower bit rates. The proposed depth cod-
ing scheme leads to a higher coding efficiency in the 3DTV distribution chain.

• Goal III: ”Investigate the relationship between the visual quality and computational
complexity for depth map upscaling and propose enhancements to the introduced depth
map upscaling concept.”
Paper III and IV addressed the trade off between complexity and quality. The
former paper investigated different sources for texture and depth alignment
and proposed a simplified edge detection with higher real-time potential. Pa-
per IV improved visual quality and reduced computational complexity with an
incremental approach to EWOC depth upscaling. Together, the enhancements
introduced in these two publications lead to an improved relationship between
visual quality and computational complexity.

With regards to these three goals, the combination of all four publications ful-
fills the set aim of this work. Objective and subjective evaluation proves that the
introduction of EWOC indeed improves the quality of the 3DTV experience.

6.3 Impact

The introduction of EWOC allows for improved visual quality in all scenarios related
to low resolution depth. The research presented here leads to more efficient 3D video
coding for autostereoscopic displays, allowing for a more efficient 3DTV distribution
chain. EWOC also opens up the potential for full-scale scene depth capture with ToF
cameras without restrictions of stereo capture. Decreasing the capture complexity
and increasing the depth map quality is supposed to have a major impact on the
content creation for 3DTV, lowering production and post-processing costs. More
available content and improved distribution will lead to a wider variety and better
quality of offered 3DTV services and will finally result in the commercial success of
3DTV.

Furthermore EWOC is not only limited to 3DTV applications. ToF cameras are
also applied in different scenarios, often already combined with video cameras. In-
troducing EWOC can increase the spatial resolution of captured depth and can lead
to improvements in many different areas such as manufacturing, product quality
control, security and surveillance.

6.4 Future Research

As the name EWOC, or ”Edge-Weighted Optimization Concept”, states, the current
implementation merely utilizes edges in the upscaling process. However, additional
weights can be easily integrated. Possible ideas for such weights are:
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• Temporal weights: Either for smoothing out depth flickering over time or al-
lowing temporal subsampling in 3D video coding.

• Edge credibility weights: Defining certain edges as more reliable than others.

• Depth credibility weights: Defining certain depth values as more reliable than
others.

• Iterative weights: Refining depth values in an iterative process.

Depth credibility is particularly interesting for ToF upscaling, where additional
information about the received signal can be used to determine the depth accuracy.
This information should increase the upscaling quality and error robustness by re-
moving outliers and reducing sensor noise.

Possible future applications, apart from video coding and ToF upscaling, could
include full multiview capture from a single view point by combining a video plus
range capture system with EWOC and DIBR. Also integrated solutions to improve
the spatial resolution of ToF cameras in general are conceivable. As well as applying
EWOC to upscale other depth sensors, e.g. the Microsoft Kinect system. Finally,
EWOC upscaled depth maps could be utilized for real-time eye gaze correction in
teleconferencing systems.
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[SOST12] S. Schwarz, R. Olsson, M. Sjöström, and S. Tourancheau. Adaptive depth
filtering for HEVC 3D video coding. In Picture Coding Symposium (PCS),
2012, pages 49–52, 2012.

[SS02] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Com-
puter Vision, 47(1-3):7–42, 2002.
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