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ABSTRACT

Autostereoscopic multi view displays require multiple views of a scene to provide motion parallax. When an observer
changes viewing angle different stereoscopic pairs are perceived. This allows new perspectives of the scene to be seen
giving a more realistic 3D experience. However, capturing arbitrary number of views is at best cumbersome, and in some
occasions impossible. Conventional stereo video (CSV) operates on two video signals captured using two cameras at two
different perspectives. Generation and transmission of two views is more feasible than that of multiple views. It would be
more efficient if multiple views required by an autostereoscopic display can be synthesized from these sparse set of views.
This paper addresses the conversion of stereoscopic video to multiview video using the video effect morphing. Different
morphing algorithms are implemented and evaluated. Contrary to traditional conversion methods, these algorithms dis-
regard the physical depth explicitly and instead generate intermediate views using sparse sets of correspondence features
and image morphing. A novel morphing algorithm is also presented that uses scale invariant feature transform (SIFT) and
segmentation to construct robust correspondences features and qualitative intermediate views. All algorithms are evaluated
on a subjective and objective basis and the comparison results are presented.
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1. INTRODUCTION

The use of conventional stereo video (CSV) has in the last years produced a large amount of content to provide a 3D
experience at the cinema, on TV, and in home entertainment systems such as video game consoles. CSV consists of a
left and right view pair that is presented to the viewer’s left and right eye respectively. This enables the fundamental
depth cue binocular parallax, which greatly contributes to the experience of 3D. 1 A more realistic 3D experience also
requires another depth cue: motion parallax, or look-around capability. Motion parallax relies on the availability of a
sequence of views rather than just a single pair. The viewer then perceives different view pairs depending on his/her
position relative to the display. Hence, converting from the single view pair of CSV, into a view sequence consisting of
an arbitrary set of views in multi view video (MVV), is a necessity for both providing a more life-like 3D experience as
well as enabling the presentation of CSV content on current and future autostereoscopic multi view displays. Many current
CSV-to-MVV conversion methods use depth image based rendering (DIBR) for synthesizing intermediate views. 2 DIBR
is also a vital component of the 3D video compression standard that is currently under way within MPEG 3DV. Given that
the source signal is CSV the required depth is inferred using knowledge about the geometry of the stereo camera setup
and the disparity map (D), which is calculated from the left and right view. Unfortunately, deriving the disparity map
D is an ill-posed problem that is difficult to solve algorithmically with sufficient quality. Moreover, morphing, contrary
to DIBR, does not rely on explicit pixel dense knowledge about scene depth, nor camera parameters in order to produce
intermediate views. Instead a set of feature pairs with accompanying left to right (or vice versa) correspondence mappings
are used together with an image warping method to generate novel views. Steps have been taken recently to investigate
this alternative to DIBR.3 This paper evaluates the approach of converting from CSV to MVV and the work is presented
as follows. Section 2 describes the way morphing may be used for synthesizing novel views from CSV, and a set of design
choices that was considered in this work. A description of the experimental design used to evaluate these design choices is
presented in Section 3 and the evaluation results are shown in Section 4. Section 5 concludes the paper and elaborates on
future work.
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Figure 1. Left and right image IL and IR with examples of the feature types point P (red), line segment L (green), mesh M (gray), and
feature vector V (blue). Note the features’ changes in horizontal position between IL and IR.

2. VIEW SYNTHESIS USING MORPHING

Morphing is the combination of image warping and color interpolation. Image warping aims to align common features in
two separate images using local 2D geometrical transformation functions, and color interpolation blends the two warped
images together into an intermediate image.4 Hence, a set of design choices must be made when adopting morphing
as a way for view synthesis. What are the features that should be used? What metric should determine the feature
correspondences between the two images? How spatially dense should the feature set be? What method should be used to
produce a pixel dense warping function from the sparse feature set? In the following subsections we will present how we
addressed these questions in this work.

2.1 Feature definition

Various geometrical forms can be considered describing common features in the two images, eg. points, line segments,
splines, polygons, meshes.4 Using higher order geometry allows for better approximations of the salient features of the
images. However, higher order geometry often leads to a more complex subsequent image warping step. In this work we
focus on four feature types:

• Point. P = (u, v), where u and v are image coordinates.

• Line segment. L = [P,Q] = [(uP , vP ) , (uQ, vQ)]

• Mesh. M = [P1, P2, P3, . . .]

• Features vector. V = [v1, v2, v3, . . .]

Figure 1 illustrates the above feature types, where the V is presented as an image patch with location, direction and size.
We denote the set of common features F = FL ∪ FR, where FL and FR are the features in the left image IL and right
image IR respectively.

2.2 Correspondence matching

In order to match common features between two images, a source and destination set must be defined. In this work we set
the source to be FL and the destination is then FR. We investigate three different approaches to populate the source set of
features:

• Local variance
A sliding window W is used to calculate the local variance of IL, and each resulting maxima are selected as a feature
point P ∈ FL.



• SIFT
The Scale Invariant Feature Transform transforms the image IL into a number of feature vectors describing inter alia
spatial location and dominant direction.5 Each SIFT feature vector V ∈ FL is invariant to translation, rotation, scale
and partially invariant or robust to other changes or distortions.

• Canny-based line segmentation
Canny edge detection results in a binary image where pixels that are determined to be part of an edge is set to 1. The
edge points are then linked into a list of line segments,6 where each line segment is selected as a feature line L ∈ FL.

A correspondence matching function c : FL → FR must be determined after the source set has been defined. How c is
constructed can be largely divided into two main approaches:

I) Construct the destination set FR in the same way as for the source set FL and use a quality metric Q to determine the
correspondences,

II) Copy FL into FR and adjust feature parameters using some transformation T .

An advantage of approach I) is that the sets FL and FR have equal properties in terms of feature type characteristics. A
disadvantage is that I) might result in a 1-to-many and/or many-to-1 mapping instead of the desirable 1-to-1 relationship
between FL and FR. Hence, additional processing of c might be required to achieve this. In approach II) the property of
1-to-1 mapping is a natural consequence of transforming the source set. For the feature types P and M we use block based
normalized cross-correlation (NCC) as Q, which determines the correspondences. Under the assumption of a perfectly
calibrated parallel stereo camera setup the correspondence mapping is a strictly horizontal translation d. For each feature,
located at IL (u, v), d is then calculated as:

argmax
d

r(d) :=
1

σ2
I′
L
σ2
I′
R

∑

s,t∈B

(
IL(u + s, v + t)− Ī ′L

) (
IR(u+ s+ d, v + t)− Ī ′R

)
(1)

For the feature vector V stemming from SIFT, the quality metric used is the minimum Euclidian distance between each
V ∈ FL and all feature vectors in FR. When using line segments L, approach I) is not as straightforwardly pursued
as when the feature type is P or M . Although the main difference between FL and FR is expected to be horizontal
translation a common line pair might differ slightly in length and slope. This gives an increased dimensionality of the
search space within which Q must be evaluated for correspondence matching. We address this complexity problem by
adopting approach II). Each L ∈ FL is divided into its start and end point (P1, P2) and the corresponding point pair is
searched for in IR using Eq. (1). In order to remedy incorrect mismatches each resulting L ∈ FR is compared to its
corresponding L ∈ FL. Any significant deviation in slant disqualifies the line pair, which is then discarded from F.

2.3 Warping

The above step results in feature correspondences between the left and right image that are sparse in relation to the pixel
lattice, as the examples in Figure 2 shows. Figure 2 (a) only presents FL, in order not to clutter the image IL, whereas
Figures 2 (b) and (c) also show FR as overlaid circles connected with FL using horizontal lines. However, in order to
sufficiently align the two images so that the subsequent blending does not introduce ghosting, an accurate pixel-dense
correspondence must exist. A warping function performs the necessary transition from sparse feature-correspondence to
dense pixel-correspondence, which may be of arbitrary complexity. 7 In this work we have evaluated thin plate spline
interpolation, mesh morphing,4 and field morphing.

Thin plate spline interpolation is the two-dimensional equivalent to one-dimensional cubic spline interpolation. 8 The
set of splines are centered on the sparse feature correspondences c that, when weighted together, produces an interpola-
tion surface from which a pixel-dense warping function can be derived. Compared to the other warping methods, spline
interpolation relies more on the availability of a large number of feature correspondences in order to produce intermediate
images of high quality.

In mesh morphing the defined feature points are considered nodes in a mesh M . Restricting the mesh to be made
from triangles allows Delaunay triangulation to be applied to the feature points, which results in triangle meshes similar



(a) (b) (c)

Figure 2. Example of (a) feature set FL, derived using Canny based line segmentation; and (b) sparse feature correspondences c, based
on local variance and NCC; and (c) c based on SIFT and minimized Euclidian distances

Figure 3. Field morphing where two correspondence line pairs (L′
1, L1) and (L′

2, L2) contribute to the correspondence for the pixel
pair (X ′, X). Note that the calculated position of X′ is the average of the two positions resulting from each line pair.

to those shown in Figure 1. The benefit of a mesh is that interpolation is performed within each triangle. This increases
the quality of the resulting warping function as interpolated values are determined locally and not influenced from distant
feature points.

Contrary to the two previous warping methods, field based morphing relies on line pairs for correspondence rather
than point features.9 Figure 3 shows a field morphing example where two correspondence line pairs are used to determine
the pixel correspondence of X and X ′. When a single line pair is used the line pair jointly defines a coordinate system
transformation, which is applied to all pixels in IL and IR. For each pixel position X in the destination IR, its distance to
line L (in terms of a and b) is calculated. The corresponding pixel position X ′ in IL is then found using the same distances
a and b relative to L′. For more line pairs than one, each transformation contributes to an weighted average that determines
the correspondence between X and X ′. Pixels nearby a specific line are influenced more by that specific line than by
others. The interested reader is referred to the paper by Beier and Neely for further details about field morphing. 9

After the pixel-dense correspondence mapping, or warping function w, is determined, the color values of an interme-
diate image In are calculated using linear interpolation:

In =
N − n

N
InL +

n

N
InR, (2)

where N − 2 is the total number of intermediate images between IL and IR. InL and InR are the intermediate left and right
warped images respectively, where a fraction of the translation determined by the warping function w is used. Extending



the morphing process to consider extrapolated images, to the left of IL or to the right of IR, is straightforward although it
may require additional processing to handle e.g. image border constraints.

3. EXPERIMENT DESIGN

Section 2 presented a set of tools contributing to view synthesis using morphing. These tools were evaluated for

1. intermediate view quality using PSNR as a function of image complexity, disparity variation and maximum disparity

2. computational complexity in terms of execution time as a function of feature set size and image resolution

Execution time was measured on an Intel Pentium Dual-Core 2.1GHz processor with 4GB RAM running Windows 7 64bit
and Matlab R2009b.

A set of multiview image sequences were selected for evaluation based on their individual number of unique objects
in depth and total disparity range; features that were determined using disparity histogram. Four image sets were used to
evaluate view quality: Teddy (450x375), Venus (434x383), Tsubuka, Art (1390x1110) and Penguin (640x360); 10–12 each
containing at least three images used as left IL, right IR, and middle IM . The latter located halfway between IL and IR.
In Teddy, there are a larger number of objects distributed at different disparities or depth levels within the scene, but with a
lower spread in disparity of a particular object. For Venus on the other hand the number of objects are less but the spread
in disparity of an object is larger. In Penguin there is only one foreground object in addition to a background wall and the
maximum disparity is large when compared to the other images. In all PSNR calculations IM was used as reference to a
generated intermediate image In with n = N

2 . When studying PSNR as a function of maximum disparity, four different
stereo pairs were selected from the image sets, with increasing inter-camera distance and thereby disparity.

4. RESULTS

4.1 Generated intermediate images

Figure 4 shows typical examples of intermediate images generated by the evaluated methods spline interpolation using
NCC points, mesh morphing using canny-based line segment points, and field morphing using canny-based line segments.
When studying In in Figure 4(b), and the utilized c of Figure 2(b), the ghosting seen to the right of the pink bear is due to
mismatches when performing NCC. Reducing the variance threshold increases the number of correspondences, potentially
increasing the intermediate image quality. However, this also potentially increase the number of erroneous correspondence
matches. Using canny-based line segment points as mesh nodes reduces the risk of assigning non-correct correspondence
since points are restricted to lie on edges in the image. However, ghosting might still appear like at the top left intersection
of the white and purple cloth. In this case due to lack of correspondence features, as can be seen in the top left part of
Figure 2(a), were no lines have been assigned to that specific edge. This is less of a problem for field morphing, as can
be seen in Figure 4(d), even though both the mesh and field morphing results are using the same canny edge detector
output. The reason being that field morphing utilize the edges as line segments and calculate the warping function globally,
contrary to the point based local interpolation performed by mesh morphing. Remember that pixels close to, or at, a line,
will be preserved in field morphing.

4.2 Quality as a function of disparity

In order to evaluate the quality as a function of disparity, pixels belonging to a specific disparity range must be ex-
tracted and evaluated separately. This is done using the available ground truth disparity information D present in the
example image sets. The evaluated approaches are applied to Art and the disparity is sampled at four ranges (70<d<90,
130<d<140,170<d<180, d>213). The resulting PSNR is presented in the middle of each disparity interval in Figure 5(a).
Field morphing with a single line placed at the foreground, using SIFT correspondences, results in superior quality at
foreground disparities. As expected this comes at the expense of worse quality at middle- and background parts. Spline
interpolation and mesh morphing performs similarly although spline results in better foreground quality, which is caused
by NCC providing better correspondences for Art than Canny.

Quality as a function of maximum disparity is shown in Figure 5(b) where it is seen that field morphing is better to use
for stereo images with lower disparity ranges. The difference between the methods are not big though. They all have more
difficulties in producing high quality images when the inter-camera distance, and the resulting disparity, increases.



(a) (b)

(c) (d)

Figure 4. Morph results compared to (a) original middle image IM and intermediate images In with n = N
2

for (b) spline interpolation,
(c) mesh morphing, and (d) field morphing.
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Figure 5. Peak Signal to Noise Ratio as a function of (a) disparity variation and (b) disparity range.
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(b) image size

Figure 6. Execution time as a function of (a) number of features and (b) image size.

4.3 Execution time

The size of the feature set has a significant impact on the quality of the final morph, but also on execution time. This
dependency is shown in Figure 6(a). From the figure, it can be noticed that field morphing suffers from the drawback that
execution time increases significantly as the size of the feature set grows. This is because all line segments need to be
referenced for every pixel. In case of field morphing with a single line, the execution time is less than that required by
spline interpolation and mesh morphing. Dependency of execution time on image size is shown in Figure 6(b). Image
size has a significant impact on mesh morphing because of the increase in number of pixels to be handled in a Delaunay
triangle.

5. CONCLUSION

In this paper we have investigated the use of morphing for view synthesis when converting conventional video frames to
multi view video content. Three morphing methods have been evaluated with respect to image quality and computational
complexity. We have concluded that mesh morphing produce high PSNR values but is sensitive to having the mesh nodes
positioned at edges in the images. If not, mesh morphing tends to introduce stretched and/or squeezed regions, which



reduce quality. Field morphing with line correspondences generated by Canny also provides high quality results, yet at
the expense of long execution times. We have proposed a way to reduce the execution time by transforming found edges,
rather than finding new, when producing the required correspondence feature set. Using this field morphing approach with
single line gives robust performance and good quality in solving the CSV to MVV conversion problem.
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