
Mid Sweden University

This is an accepted version of a paper published in IEEE transactions on circuits and
systems for video technology (Print). This paper has been peer-reviewed but does not
include the final publisher proof-corrections or journal pagination.

Citation for the published paper:
Imran, M., Khursheed, K., Lawal, N., O'Nils, M., Ahmad, N. (2012)
"Implementation of wireless Vision Sensor Node for Characterization of Particles in
Fluids"
IEEE transactions on circuits and systems for video technology (Print), 22(11):
1634-1643

Access to the published version may require subscription.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-14389

http://miun.diva-portal.org

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Wireless Vision Sensor Networks (WVSNs) have a

number of wireless Vision Sensor Nodes (VSNs), often spread

over a large geographical area. Each node has an image capturing

unit, a battery or alternative energy source, a memory unit, a

light source, a wireless link and a processing unit. The challenges

associated with WVSNs include low energy consumption, low

bandwidth, limited memory and processing capabilities. In order

to meet these challenges, our research is focused on the

exploration of energy efficient reconfigurable architectures for

VSN. In this work, the design/research challenges associated with

the implementation of VSN on different computational platforms

such as micro-controller, FPGA and server, are explored. In

relation to this, the effect on the energy consumption and the

design complexity at the node, when the functionality is moved

from one platform to another are analyzed. Based on the

implementation of the VSN on embedded platforms, the lifetime

of the VSN is predicted using the measured energy values of the

platforms for different implementation strategies. The

implementation results show that an architecture, where the

compressed images after pixel based operation are transmitted,

realize a WVSN system with low energy consumption. Moreover,

the complex post processing tasks are moved to a server, with

reduced constraints.

Index Terms—Reconfigurable architecture, Image processing,

Wireless vision sensor networks, Wireless vision sensor node.

I. INTRODUCTION

ireless vision sensor networks have proved to be useful

in many applications, including industrial control and

monitoring [1], surveillance [2][3], environmental monitoring

[4] and personal care [5]. The application area, which is the

focus of this work, is in the monitoring of industrial machines.

Traditional imaging systems used a wired link, centralized

network, high processing capabilities, unlimited storage and a

wall power supply. In many applications, the wired solution

results in high installation and maintenance costs. However, a

wireless solution is the preferred choice as it offers less

Manuscript received March 07, 2011. This work was supported by

STC@miun, Sweden and Higher Education Commission (HEC), Pakistan.

Muhammad Imran, Khursheed Khursheed, Najeem Lawal, Mattias O’Nils

and Naeem Ahmed are with Department of Information Technology and

Media, Mid Sweden University, Sweden. (phone: 060-148416; fax: 060-

148456; e-mail: muhammad.imran, khursheed.khuhrsheed, najeem.lawal,

mattias.onils,naeem.ahmed@miun.se).

Copyright (c) 2012 IEEE. Personal use of this material is

permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-

permissions@ieee.org.

maintenance, infrastructure costs and greater scalability. Due

to technological developments, smart camera networks,

usually referred to as WVSNs, can perform complex tasks

using limited resources such as batteries or alternative energy

sources, embedded platform, a wireless link and a limited

storage facility. WVSNs produce large amounts of data in two

dimensional forms and this places higher requirements on the

power, bandwidth, memory and on the processing capabilities.

The limited bandwidth of the wireless link makes it difficult to

transmit all the visual data. There is a need for local processing

on the node so that the amount of data required to be

transmitted is reduced and only relevant information is sent

over the wireless link. Energy consumption is a critical factor

in a WVSN as the sensing nodes are powered by batteries or

through alternative energy sources. Therefore the focus of

researchers is on the reduction of energy consumption so as to

maximize the lifetime of the VSN [6].

In this work, the energy consumption of different VSN

implementation strategies are analyzed for software and

hardware platforms in order to prolong the lifetime of the

node. It must be noted that by software platform, we mean a

micro-controller and by hardware platform, we mean FPGAs

(Field Programmable Logic Arrays). After analyzing the

strategies on these computational platforms, the results are

verified by implementing the different processing strategies of

the VSN on a hardware platform, which has small sleep power

consumption together with a software platform and the server.

The proposed VSN resulted in a greater lifetime under a set of

resource constraints such as the limitations with respect to

energy, local processing capabilities and bandwidth for

wireless transmission.

Following the introduction, Section II provides a recap of

related work whereas Section III considers the experimental

system. Section IV covers the analysis of the VSN on the

software and the hardware-software platform, Section V

presents the target architecture, Section VI discusses the final

implementation of the VSN and Section VII summarizes the

conclusions drawn from this work.

II. RELATED WORK

WVSNs have been designed and implemented on both a

micro-controller/micro-processor and on a FPGA. The first

discussion will be with regards to three WVSN systems that

have been developed on a micro-controller/micro-processor

Implementation of Wireless Vision Sensor Node

for Characterization of Particles in Fluids

Muhammad Imran, Khursheed Khursheed, Najeem Lawal, Mattias O’Nils and Naeem Ahmad

W

mailto:pubs-permissions@ieee.org
mailto:pubs-permissions@ieee.org

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

namely FireFlye Mosaic [5], CMUcam3 [7] and SensEye [3].

FireFly Mosaic [5] is a wireless camera which consists of a

wireless sensor platform. It uses a real-time distributed image

processing infrastructure with a collision free TDMA based

communication protocol. FireFly is a low-cost, low power

sensor platform that uses a real time operating system and an

expansion board. However, a CMUcam3 [7] was used with

FireFly, which possesses both limited RAM and a reduced

computational speed, which is essential for more complex

image processing systems. SensEye [3] is a multi-tier of

heterogeneous wireless nodes and cameras which aims at low

power, low latency detection and low latency wakeup. In this

case, low power elements were used in order to wake-up high

power elements. It should be noted that these software

solutions can have a high power consumption and can exhaust

the energy consumption quickly if operated on batteries.

Application Specific Integrated Circuits (ASICs) often

provide a better performance and low power consumption for

dedicated applications but, the design may be expensive due to

Non-Recurring Engineering (NRE) costs and that there is no

flexibility in relation to accommodating changes and upgrades

in the future [8]. Reconfigurable design technologies are

required to provide a competitive level of performance while

still having the flexibility to incorporate design changes.

Due to the rapid development in semiconductor

technology, the single chip capacity of an FPGA increases

greatly at the same time as its power consumption is

significantly reducing [9]. The advantages and disadvantages

of FPGA technology and its suitability for computer vision

tasks were discussed in detail in [10] and its optimization in

[11]. A design methodology for mapping the computer vision

algorithm onto an FPGA through the use of a coarse grain

reconfigurable data flow graph was discussed in detail in [12].

WVSN platforms that have been developed using FPGAs

together with micro-controllers will now be discussed. In [13]

the authors have designed a novel VSN, based on a low cost,

low power FPGA plus a micro-controller System On

Programmable Chip (SOPC). The authors in [14] proposed an

approach involving integrating the hardware content analysis

engine into smart camera systems. The content analysis engine

consists of dedicated accelerators and a programmable

morphology coprocessor to provide functionality relating to

object segmentation, object description and tracking.

In [15], the design principles for the video node are

presented in the context of a long-lifetime. The authors have

developed a prototype to validate the approach. In the system,

a low power flash FPGA and a CMOS camera are used. The

imager used is a 128×64-pixel binary contrast based sensor.

However, for the majority of applications, a binary image

sensor is used and this small resolution would not be feasible.
In [16] an image sensor node is presented which includes an

embedded processor, a memory, a CMOS image sensor, image

processing on an FPGA, an RF module and a power unit, but,

no experimental verification was provided in relation to how

the power consumption is reduced in the presence of an

embedded processor.

Compared to the work of other researchers, our research is

focused on the exploration of energy efficient and

reconfigurable architectures for a VSN by partitioning the

vision tasks among three computational platforms namely

software, hardware platforms and the server. The challenges

associated with the implementation of VSN on both hardware

and software platforms are shown in this work. The effect on

the energy consumption and design complexity at the node,

when the functionality is moved from one platform to another,

is investigated. This study can be used to determine, which

general programmable and low energy architecture is suitable

for VSN implementation and what are the relevant design/

research challenges.

III. EXPERIMENTAL SYSTEM

The main task for this system is to develop image

processing and analysis methods that are able to discover

particles in the fluid, extract the features of these particles and

analyze them.

The following are the main components and vision tasks

involved in this work.

A. System description

In industry, a network of cameras is used in order to obtain

real-time data for monitoring and control. These networks are

wire based for both data and control transmission and for

power supply purposes. The wired solution in an industrial

application usually results in high installation and maintenance

cost. In this situation, wireless solutions are attractive as they

offer lower system and infrastructure costs, improve the

product quality and provide simple upgradability and physical

mobility [1].

In this work, we are interested in monitoring the health

status of hydraulic machines used in industry, as these become

worn out after a certain amount of time. The failure of a

hydraulic machine can be predicted by means of the detection

of magnetic particles in the fluid, flowing in the machine. At

the present time, this is monitored manually, which means that

the machines must be stopped by the engineers in order to

check the fluid quality and to determine whether any of the

magnetic particles have detached from the engine. A machine

stoppage reduces the production rate in addition to the labor

and time costs involved. If the smart cameras detect particles

in the fluid while the machine is running and transmit data to

the user over the wireless link, then this would be an entirely

new scenario for the manufacturers of hydraulic machines.

This will reduce the maintenance costs and will increase the

productivity of the machine.

B. Generalization of vision systems

At this point, some common characteristics of wireless

vision systems will be presented. Although it is difficult to

generalize the image processing flow, some common vision

tasks employed in different vision systems implemented on

smart cameras will be provided. These vision tasks include

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

frame subtraction[7], segmentation [2],[6],[7],[15],
filtering[7],[15],[16], labeling [15], classification [14][15] and

post processing such as compression[5][7]. These types of

systems [2],[6],[15],[7],[16] have similar operations and

information reduction characteristics. The approach in this

work is useful for all such systems.

C. Processing platforms

All vision tasks for our application were implemented on

both the software and hardware platforms and the server. The

software platform, in this case, is the SENTIO32 platform which

is basically a development of the original SENTIO platform [17]
with a high performance processing capability. SENTIO32 has a

32 bit AVR micro-controller, AVR32, AT32UC3B0256 [18].
Moreover, the SENIO32 has a CC2520 RF transceiver [19]
with 2.4 GHz IEEE 802.15.4.

For the analysis of VSN on hardware platforms, two

FPGAs, namely, ACTEL AGL600V5 FPGA [20] and Xilinx

Spartan6 XC6SLX9L FPGA [21] were used. In order to test

all cases, the Xilinx FPGA was selected as it has sufficient

logic cells to accommodate each of the processing strategies

for the power calculation. The dynamic power of Xilinx was

used and the sleep power of the ACTEL FPGA as this has the

smallest sleep power consumption currently available in the

market. A serial flash memory of 64 Mbits [22] is used for the

background storage. All possible strategies are analyzed in

Table 3 and the results are verified by implementing the

processing strategies, which fit on the ACTEL FPGA. The

energy values are then measured for the implemented

strategies and are shown in Table 4.

Following this discussion, now a description of the

algorithm flow is given. We have developed two algorithms

for the magnetic particles analysis, in which one approach is

object based while the other is pixel based. Both algorithms

have the same flow, the exception being the pre-processing

and the bubble remover step. In the pixel based method, the

background is captured at the initial stage and is stored in the

memory, while, in the object based method, the background is

generated in real-time using a spatial filter. In the pixel based

method, bubble removal is performed after morphology, while,

in the object based method, bubble removal is performed after

classification. Fig. 1 shows the algorithm flow for the different

processing strategies in which each vision task is represented

by a symbol. The dashed lines represent a possible

combination of processing strategies for the final

implementation of the VSN and this is shown in Table 4.

D. Image capturing

The image is captured using a Micron Imaging MT9V032,

which is a 1/3-inch wide-VGA format CMOS active-pixel

digital image sensor. The camera is programmed through an

I2C interface for a resolution of 640×400 in real time. The

camera clock is running at a frequency of 13.5 MHz, with 30

frames per second. The captured image using the CMOS

sensor is represented by caption I in Fig. 1.

E. Pre-Processing

In the object based method, the background is generated

using an averaging filter, while, in the pixel based method, the

I

MorphologySegment

Compress

Capture

Remove

Bubble

Radio

Pre

Processing
Labelling

classifica

tion

A B C D

E

F G

H

P

I II

III
IV

II III IV

Remove

Bubble

E

B
u

b
b

le
s

Fig. 1. Algorithm flow of different possible processing strategies

background is captured and stored in a flash memory at the

initial stage. An averaging filter with a mask of 21x21, used for

the background generation took 5 minutes on the software
platform, which is not realistic for the implementation of
VSN. Instead of this approach, the preference was to store
the background image in the flash memory. The
background is stored in the flash memory via a Serial
Peripheral Interface (SPI) at an initial stage. The
background image is accessed via the SPI and then
subtracted from the current frame in order to detect objects,
which could either be magnetic particles or air bubbles.

F. Segmentation

The process of spatial partitioning of an image into

mutually exclusive connected image regions is known as

image segmentation [23] and the typical segmentation

algorithms include thresholding and clustering, boundary

detection and region growing. In this application, thresholding

has been used as the objects that must be detected are white

and the background is relatively black. All pixels having a

gray scale value less than a predefined threshold are assigned a

zero value and all other pixels in the image are assigned the

value one. The resulting image after segmentation is a binary

image. The image after segmentation is shown by caption II in

Fig. 1 in which noise is visible.

G. Morphology

A morphological operation is then performed on the

segmented image in order to remove one or two pixel false

objects. The morphology operation used in our algorithm is

erosion followed by dilation using a mask of 3×3. During the

erosion and dilation, two complete rows must be stored in the

line buffers so that we have the necessary neighborhood

information for the operation. The morphology is a spatial

domain image processing operation in which the neighborhood

processing of the values of a group of pixels in an input image

is required in order to compute only one pixel in the output

image. This type of processing requires a processing mask or

kernel, which defines the operation. In this process, the output

image size is the same as that of the input. At the image

boundary, the central pixel is copied into the invalid boundary

pixel. Fig. 2 (B) shows the memory architecture that provides

the necessary storage of the previous pixel values in order to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

P11 P12 P13

P21 P22 P23

P31 P32 P33

R
o

w

Column

R R
Line

buffer
R R

Line

buffer
R R

A)

B)

P33 P11P12P13P21P22P23P31P32

Fig. 2. Part a) shows 3x3 neighborhood processing, Part b) shows its

implementation using line buffers

facilitate the sliding window shown in Fig. 2 (A). The line

buffers must hold the pixels in a row. In the figure, Pij

represents the pixel data at the i-th row and j-th column in the

neighborhood and R represents the register. The size of each

element in this buffer depends on the dynamic range of the

pixel. The line buffers are implemented in the FPGA using

block RAMs. The other groups of elements, with down arrows,

are the registers where the morphological operation is

performed. The resultant image after morphology is shown by

caption III in Fig. 1 in which noise is removed.

H. Bubble Remover

The flowing fluid in the system might contain air bubbles,

which must be identified and removed as these are unwanted

objects and the only interest is in relation to the magnetic

particles. Bubbles are removed either by the pixel based

method or by an object based method. In the pixel based

method, the bubbles are removed after the morphology.

Bubbles can be identified as moving objects, so if an object

changes its location in two consecutive frames, this confirms

that it is a bubble. The corresponding pixels in two

consecutive frames are compared and if their binary values are

different, which confirms that it is a bubble, then a zero is

placed at that pixel location. In this manner, the bubbles are

identified and removed. For bubble removing, in the pixel

based method, the entire frame must be stored so that the

previous frame can be compared with the current frame.

In the object based method, the bubbles, as well as the

particles, are treated as objects at the initial stage and the

bubbles are removed after the classification stage. Bubbles are

removed by comparing the area and location of the objects in

the current frame with the objects of the previous frame.

Objects whose area and location are not same will be treated

as bubbles and hence removed. The challenge associated with

this method is that, sometimes, due to changes in the

illumination, the area of the object could either decrease or

increase in consecutive frames and thus the possibility exists

that the magnetic particles might be treated as bubbles. We

have dealt with this challenge by introducing a flexibility of

one to three pixel variations in the area and location of the

objects in consecutive frames. The image after the bubble

removal step is depicted by caption IV in Fig. 1. In images I, II

and III, the bubbles are visible but these are removed in image

IV by applying the bubble removing step.

I. Labeling and Classification

During labeling, the pixels belonging to the same image

component are assigned a unique label. After labeling, an

image component is described in terms of a region's features

such as its area, mean gray value or position [24]. This feature

information can then be used for the classification of the image

components.

J. Image Compression

Since the data that is available after segmentation is in a

binary format, a bi-level compression scheme was used. There

are many compression schemes for bi-level images such as

CCITT group3 1D and 2D [25], CCITT group4 [25] and

JBIG2 [26]. The CCITT group4 has been used in this case as

it provides a compression ratio that is sufficient to show the

effect on energy consumption, when compressed images are

transmitted and when uncompressed images are transmitted.

However, the comparisons of bi-level compression schemes do

not fall within the scope of this paper.

The CCITT group4 is a lossless compression algorithm

which encapsulates data in a TIFF file format. The coding

scheme uses a two-dimensional line-by-line coding method in

which the position of each changing picture element, rather

than alternating white and black runs in each scan line, is

considered. In this manner, the vertical features in the source

image can be used to achieve better compression ratios. The

position of each changing pixel element on the current coding

line is coded with respect to the position of a corresponding

reference element situated on either the coding line or on the

reference line, which is immediately above the coding line.

After the coding line has been coded, it becomes the reference

line for the next coding line [25].

Three line buffers are used in order to implement the

CCITT group4 compression. Two of these are used to act as

the stored reference line and the coding line and the third line

buffer is used for saving the current row data. When the data is

being saved, it then becomes the coding line and the previous

coding line becomes the reference line, while the previous

reference line becomes the saving line for the next row and is

overwritten by the new pixel data. In our case, the CCITT

group4 could be performed after the segmentation,

morphology or bubble removal as shown in Fig. 1.

The CCITT group4 compression produces varying

compressed data based on the input image. Thus, the amount

of data after segmentation, morphology and bubble removal is

different. The CCITT group4 encoded data may be different

on the software and hardware platforms, because in the

software platform, the available C library was used, which uses

all the header information of the TIFF file format. For the

hardware implementation, a group4 compression scheme was

developed in which the header information of only the CCITT

group4 is used. Using the CCITT group4 compression, the

data being transmitted is reduced to few hundred bytes. This,

in turn, will lead to a low energy consumption for the overall

system as the communication process is the main factor

involved in the energy consumption [1].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

K. Communication

The final results are transmitted to the server using an

IEEE 802.15.4 compliant transceiver [19], embedded in the

SENTIO32 platform.

IV. ANALYSIS OF VSN ON SOFTWARE AND HARDWARE-

SOFTWARE PLATFORM

In our previous work [27] it was shown that, if the

compressed binary image after segmentation is transmitted

from the VSN to the server, it will have a low energy

consumption. The reason given was that, at this stage the

energy consumption, due to the processing and the

communication, falls in such proportions that it results in a

lower energy consumption. Performing the same vision tasks

on the hardware reconfigurable platform, with small sleep

power consumption, further improves the results [28]. We

have extended the previous work [29] and analyzed different

design/research challenges when the VSN is implemented on

both software and hardware platforms and these have been

verified for different strategies.

The vision tasks for the different processing strategies are

shown in Fig. 1, where each task is represented by a symbol

such as image capturing by A, pre-processing by B and so on.

These symbolized letters are used in Table 1, Table 2, Table 3

and Table 4 in order to visualize all the possible partitioning

strategies on the software, hardware and the server. For

example, in Table 1, ABC represents the energy consumption

of the vision tasks, image capture, preprocessing and

segmentation on the software solution and ABC in Table 2

shows the energy consumption for the same vision tasks when

implemented on the hardware platform.

A. Energy calculations of VSN modules

In order to calculate the energy consumption of the vision

tasks, it is necessary to calculate the execution time of the

vision tasks on the hardware and software platforms. The

execution time of all the vision processing strategies involved

in this application, such as ABC or ABCDEFG are calculated

on both the software and hardware-software platforms as

shown in Table 1 and Table 2.

In order to calculate the execution time on the software

platform, a high signal was sent to one of the output pins of the

SENTIO32 at the initiation of the vision task and this was then

returned to low at the conclusion of the task. During this

operation a time stamp was recorded using the logic analyzer.

The execution time for the operation performed on the

hardware platform is determined by the camera clock speed.

For this work, the CMOS camera is programmed for a

resolution of 640×400 and the operating clock frequency is

13.5 MHz. The horizontal low line sync is required to be

considered while calculating the execution time on the

hardware platform. The execution time for each strategy on the

hardware platform is calculated by using formula (1) where Lt

is the latency of each tasks, f is frequency, R represent rows, C

represents columns and Ls represents low line sync. In this

case, R is 400, C is 640, Ls is 32 and f is 13.5 MHz.

TABLE 1. ENERGY CONSUMPTION OF INDIVIDUAL STRATEGY ON SOFTWARE

Individual Modules Time (ms) Energy (mJ)

ABC 584.60 45.34

ABCH 929.68 72.10

ABCD 2911.69 225.80

ABCDH 3256.77 252.56

ABCDE 3114.19 241.51

ABCDEH 3459.27 268.27

ABCDEFG 5724.90 443.97

TABLE 2. ENERGY AND AREA OF EACH STRATEGY ON HARDWARE

Individual strategies Time (ms) Energy (mJ) Logic cells

ABC 0.01991 0.038 705

ABCH 0.01996 0.066 1190

ABCD 0.01996 0.061 1388

ABCDH 0.01996 0.089 1873

ABCDE 0.01996 0.064 1406

ABCDEH 0.02001 0.093 1891

ABCDEFG 0.01996 0.118 2279

(1) / fLt)+Ls)+(C(R=T

The time spent on transmitting the results to the server is

calculated as

(2) (sec) 10192103219T_IEEE -6-6 +)+(X=

where X is the number of bytes transmitted, 19 bytes are the

overhead involved due to the header information, 32 µsec is

the processing time of one byte while 192 µsec is the settling

time of the radio transceiver.

The energy consumption of the external flash light, used to

achieve a sufficiently high signal to noise ratio, is 0.085mJ,

which is included in the energy calculation of the embedded

platform for each strategy. The power consumption of the

IEEE 802.15.4 transceiver is 132mW while that of the AVR32

is 77.55mW, when operating. The total energy spent on

sending data over the wireless link is the combination of the

individual energy consumption of the IEEE 802.15.4

transceiver and the software platform because both are running

when the data is communicated to the server. The power

consumption of the CMOS camera is 160 mW and its

processing time is 33.3 ms, so its energy consumption for

processing one image is 5.3 mJ.

The time spent and the energy consumed by each strategy

running on the software platform is given in Table 1. The time

spent for performing vision tasks on the hardware platform is

calculated using formula (1), and this is used to determine the

energy consumption of the individual modules in Table 2,

using the Xilinx Spartan6 FPGA. The Xilinx power measuring

tool, called the XPower Analyzer [30] was used for the power

analysis of post-implement placing and routed designs. It

supports entries from a user constraint file (PCF) so as to

provide an accurate definition of the operating clock

frequencies as well as the stimulus data (VCD) generated from

the HDL simulators to determine the device power and the

individual net power utilization. Input stimuli of dimensions

640×400 have been provided. In relation to the analysis

purposes, the sleep power consumption of the ACTEL FPGA

was used as it has a sleep power consumption of 5µW. The

cost of each individual strategy in terms of logic cells is also

shown in Table 2.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

A. Partitioning tasks between hardware, software and

Locality

In this section we will discuss different challenges when

VSN tasks are partitioned among the software platform,

hardware platform and the server. In relation to this, the

energy consumption and design complexity of the VSN, when

functionality is moved from one platform to another, is

investigated. All possible scenarios involved in the software,

hardware and the server are analyzed and displayed in Table 3,

where some are discussed in detail. The maximum achievable

frequency (fps), energy consumption, cost in terms of FPGA

logic cells, block RAMs and data transmitted from VSN for

each strategy is given in Table 3. It must be noted that when

processing is performed on the hardware or software platform,

the communication, is performed on the software platform as

an IEEE 802.15.4 transceiver is embedded with the AVR32 on

SENTIO32 platform.

 The different VSN implementation strategies are firstly

analyzed on the software platform. Strategy28 to Strategy34 in

Table 3 are software implemented strategies. The energy

consumption for each strategy is shown in Fig. 3 and in Fig. 5,

the processing energy is represented by

E_SOFTWARE_PROC. The communication energy is a

combination of the energy consumption of the software

platform, when it is running for communication, represented

by E_SOFTWARE_COM and the energy consumption of the

transceiver, represented by E_IEEE 802.15.4. The absolute

energy consumption in Fig. 3 shows the trend of different VSN

implementation strategies. Fig. 5 shows the relative energy

consumption of each strategy, in which the energy contribution

of the VSN modules such as processing

(E_SOFTWARE_PROC) or communication

(E_SOFTWARE_COM+ E_IEEE 802.15.4) can be observed.

By looking at all the strategies implemented on the

software platform, shown in Fig. 3 and Fig. 5, it must be noted

that when the binary data (32000 bytes) is transmitted from the

VSN to the server, the energy consumption is higher due to the

higher communication energy. This is depicted by Strategy28,

Strategy30 and Strategy32. The communication energy

consumption on the software platform can be reduced by

transmitting compressed binary data or by sending only

features. Strategy29, Strategy31 and Strategy33 show that

when compressed data is transmitted from the VSN, the

communication energy is lower. The processing energy would

increase to some extent, as compression is a complex vision

task. It must be noted that more vision processing on the

software implemented VSN will increase the energy

consumption as shown by Strategy34. In this strategy all tasks

are performed on the VSN and only the features are

transmitted, but, the overall energy is still high due to the high

processing energy even if the communication energy is small.

It is evident in Fig. 3 that Strategy29 has a low energy

consumption. The reason for this is that the proportion of

energy consumption due to the processing and communication

is such that this results in the low energy consumption shown

in Fig. 5. This strategy offers a general and low energy

architecture on a software platform as complex vision tasks

(DEFG) are moved to the server. The design complexity for

this strategy is moved from the embedded software platform to

the server with reduced constraints.

After the analysis of the software implemented VSN, the

strategies in which VSN is implemented on the

hardware/software platforms will be included for discussion.

The introduction of the hardware platform for vision tasks

would improve the results. In order to provide a comparison

with respect to the software implemented strategies shown in

Fig. 3 and Fig. 5, the strategies with similar vision tasks on the

hardware platform are shown in Fig. 4 and Fig. 6. Fig. 4 and

Fig. 6 show the energy consumption for different processing

strategies on the hardware platform in absolute and relative

graphs respectively. It can be observed that the energy

consumption due to processing on the hardware platform

(E_HARDWARE_PROC) is small in all cases as compared to

the software implemented vision processing denoted by

E_SOFTWARE_PROC. The reason is that when

implementing vision tasks on a parallel computing platform

such as an FPGA, the execution time of the tasks is small,

which results in a low energy consumption.

TABLE 3. ESTIMATED ENERGY VALUES AND OTHER MEASURES OF EACH VSN

STRATEGY ON HARDWARE/SOFTWARE PLATFORM
S

tr
at

eg
y

 VSN Tasks Server

Tasks

Max

Fequen

cy (fps)

E(mJ)

Node

logic

cells

FPGA

brams

data

sent
Hardware Software

1 ABC HP DEFG 2.89 40.55 705 N.A. 1218

2 ABC DHP EFG 0.37 221.45 705 N.A. 1282

3 ABC DEHP FG 0.34 231.62 705 N.A. 458

4 ABC P DEFG 0.97 220.20 705 N.A. 32000

5 ABC DP EFG 0.43 400.67 705 N.A. 32000

6 ABC DEP FG 0.39 416.37 705 N.A. 32000

7 ABC DEFGP N.A. 0.19 405.02 705 N.A. 114

8 ABCH P DEFG 44.3 10.21 1190 3 680

9 ABCD EHP FG 1.82 51.18 1388 4 458

10 ABCD P EFG 0.97 220.22 1388 4 32000

11 ABCD EP FG 0.97 235.93 1388 4 32000

12 ABCD EFGP N.A. 0.35 224.57 1388 4 114

13 ABCDH P EFG 59.5 9.03 1873 7 500

14 ABCDE P FG 0.97 220.23 1406 5 32000

15 ABCDEH P FG 82.0 8.07 1891 8 356

16 ABCDEFG P N.A. 224 6.47 2279 12 114

17 AB CHP DEFG 1.75 54.39 702 N.A. 1218

18 AB CDHP EFG 0.34 238.89 702 N.A. 1282

19 ABCD HP EFG 2.89 41.00 1388 4 1282

20 AB CDEHP FG 0.32 249.07 702 N.A. 458

21 ABCDE HP FG 2.89 35.48 1406 5 458

22 AB CP DEFG 0.97 237.65 702 N.A. 32000

23 AB CDP EFG 0.39 418.11 702 N.A. 32000

24 AB CDEP FG 0.36 433.82 702 N.A. 32000

25 AB CDEFGP N.A. 0.18 422.46 702 N.A. 114

26 ABCDE FGP N.A. 0.38 208.87 1406 5 114

27* A BP CDEFG 0.12 1748.0 329 N.A. 256000

28 A BCP DEFG 0.97 263.41 329 N.A. 32000

29 A BCHP DEFG 1.10 83.76 329 N.A. 1218

30 A BCDP EFG 0.34 443.88 329 N.A. 32000

31 A BCDHP EFG 0.31 264.66 329 N.A. 1282

32 A BCDEP FG 0.32 459.58 329 N.A. 32000

33 A BCDEHP FG 0.29 274.84 329 N.A. 458

34 A BCDEFG N.A. 0.17 448.23 329 N.A. 114

35* A P BCDEFG 0.12 1722.2 329 N.A. 256000

36* AB P CDEFG 0.12 1722.2 702 N.A. 256000

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

For the hardware implementation, it is the communication

energy consumption depicted in Fig. 6 by

E_SOFTWARE_COM and E_IEEE 802.15.4 which is

required to be addressed. Depending on the requirement and

budget involved in an application, it is possible to implement

any of the 36 strategies mentioned in Table 3, except those

strategies denoted by the symbol * as they generate large

amounts of data (256000 bytes). All strategies have their own

pros and cons. By looking at all the strategies, it can be

observed that the energy consumption is small for strategies 8,

13, 15 and 16.

In Strategy16, all the vision tasks for this application are

processed on the VSN using the hardware platform and only

features are transmitted (P, Radio) using the software platform.

The cost of this strategy is high compared to other strategies as

2279 logic cells and 12 block RAMs are required. Similarly,

there is also a high design time for this strategy as it involves

complex post processing tasks on the hardware platform. In

strategies 15 and 16, the previous frame must be stored in

order to remove the bubbles in the current frame. Storing a

binary frame (640×400) requires 256k bits of memory which

may prove to be large for some specific development boards.

Following the analysis, an architecture used for the final

implementation is now presented.

V. TARGET ARCHITECTURE

The target architecture for our work is presented in Fig. 7

which includes a CMOS camera, a light source, FPGA, micro-

controller, flash memory, radio transceiver and the server. The

vision tasks can be performed on the ACTEL FPGA, micro-

controller or at the server side. Communication is handled on

the SENTIO32 platform, which has AVR32 micro-controller

and IEEE 802.15.4 compliant transceiver. The board to board

communication between ACTEL and SENTIO32 is handled

using an RS232 with a baud rate of 115200. Buffers are

required when data is communicated between different boards

due to the different processing speeds. The sleep power

consumption affects the results as the VSN is switched to sleep

power mode when it is not transmitting data. Therefore the

selection of a suitable processing platform is necessary.

Vision

Processning

Capture

Flash

Controller

SERVER

SENTIO32

Camera

ACTEL FPGA

WIRELESS VISION SENSOR NODE

SPI

R
S

2
3

2

Radio

Transceiver

Radio

Transceiver

Flash

Memory
Processning

Light

AVR32

Micro-

controller

Fig. 7. Target architecture of VSN

0
50

100
150
200
250
300
350
400
450
500

A
b

so
lu

te
 e

n
er

gy
 c

o
ns

u
m

p
ti

o
n

 [m
J]

Strategies on software platform

E_SOFTWARE_PROC

E_SOFTWARE_COM

E_IEEE 802.15.4

Fig. 3. Absolute energy consumption of each strategy on software platform

0

50

100

150

200

250

A
b

so
lu

te
 e

n
er

gy
 c

o
ns

u
m

p
ti

o
n

 [
m

J]

Strategies on hardware platform

E_HARDWARE_PROC

E_SOFTWARE_COM

E_IEEE 802.15.4

Fig. 4. Absolute energy consumption of each strategy on hardware/software

platform

0%

20%

40%

60%

80%

100%

R
e

la
ti

ve
 e

n
e

rg
y

co
n

su
m

p
ti

on

Strategies on software platform

E_SOFTWARE_PROC

E_SOFTWARE_COM

E_IEEE 802.15.4

Fig. 5. Relative energy consumption of each strategy on software platform

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
el

at
iv

e
en

er
gy

 c
o

n
su

m
pt

io
n

Strategies on hardware platform

E_HARDWARE_PROC

E_SOFTWARE_COM

E_IEEE 802.15.4

Fig. 6. Relative energy consumption of each strategy on hardware/software

platform

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

ACTEL FPGA has the lowest sleep power consumption

(5µW) currently available in the market. In addition, the

ACTEL flash FPGAs allow the user to quickly enter and exit

from the Flash Freeze mode. This occurs almost instantly

(within 1 µs) and the device retains the configuration and data

in registers and RAM [20].

VI. IMPLEMENTATION OF VSN

In order to validate the simulation results of Table 3, the

strategies from 1 to 13 were implemented on the ACTEL

FPGA, as these strategies fit on the target platform. The

measured energy values are shown in Table 4. The energy

consumption of each VSN strategy is measured when it is

running on the FPGA together with the AVR32 micro-

controller. The Strategy16, which has a low energy

consumption, is extrapolated by the difference factor of the

simulated and measured power values of the FPGA. The

strategies in Table 3, in which the hardware platform sends

gray scale data to the software platform or to the server, are

not feasible for implementation as the amount of data is quite

large. The architecture for our work is shown in Fig. 7. The

demonstration setup is shown in Fig. 8 where the results after

segmentation are shown on the display unit. In the figure, the

setup is represented by capital letters including A1 for the

light, B1 for the CMOS camera, C1 for the machine setup, D1

for the LCD display unit and E1 for the ACTEL FPGA.

The power consumption of the ACTEL FPGA is measured,

when it is running a particular strategy, using the two output

pins of the ACTEL platform. The current is measured by using

a shunt resistor with a value 0.33Ω between the two pins. The

FPGA utilization for each strategy on the ACTEL FPGA is

shown in Table 5 where the core is the logic used, IO is the

input and output pins, global is the clock network resources

and RAM/FIFO are the memories used.

The result of each strategy is verified by reconstructing and

comparing the images on the server using MATLAB. The

maximum achievable frequency of each implementation

strategy is shown in Table 4. It must be noted that in strategies

4, 10, and 11, the transceiver speed is limiting the frame rate.

In these strategies, the time spent on task execution is small as

the vision tasks are implemented on the hardware platform but,

the time spent on transmission is large due to the large amount

of data transmission (32000 bytes). In strategies 7 and 12, the

transmission time is small but, the execution time is high, as

complex vision tasks are implemented on the software

platform. The execution time on the software platform is

limiting the frame rate. The strategies 8, 13 and 16 have higher

frame rates as complex vision tasks are implemented on the

hardware platform and the amount of data being transmitted is

small. The amount of data required to be communicated for

each strategy is shown in Table 4 and the differences for each

strategy are based on the CCITT group4 compression, which

produces varying compressed data based on the incoming data

from each of the vision tasks.

The lifetime for the different VSN strategies is predicted

using 4 AA batteries and is shown in Fig. 9. It is assumed that

the batteries would provide a constant performance and zero

leakage current. When VSN transmits data after 5

minutes, the lifetimes of VSNs are 5 years for Strategy8,

5.1 years for Strategy13 and 5.2 years for Strategy16. It must

be noted that the differences in lifetimes and the energy

consumption are small in these strategies, whereas, the design

complexity and costs are large. In Strategy16, the vision tasks

(ABCDEFG) are implemented while in Strategy8, the vision

tasks ABCH are implemented on the VSN. Strategy8 has a

small design complexity and cost compared to Strategy16 and

provides a more general solution because the complex post

processing vision tasks are moved to the server. Implementing

the vision tasks on general programmable platforms, such as a

server, has small design complexity compared to FPGA

implementation. This approach can be used for other smart

camera systems as many vision tasks are common in different

VSN applications as discussed in section III (B). The energy

contribution of each sensor module for Strategy8 is shown in

Fig. 10 for different sample periods.

Fig. 8. Industrial setup with ACTEL platform

TABLE 4.MEASURED ENERGY VALUES OF EACH VSN STRATEGY ON

HARDWARE/SOFTWARE PLATFORMS

Strat

egies

VSN Tasks Server

Tasks

Max

frequency

(fps)

Energy

(mJ)

Node

Bytes

sent Hardware Software

1 ABC HP DEFG 2.89 40.6 1218

2 ABC DHP EFG 0.37 221 1282

3 ABC DEHP FG 0.34 231 1014

4 ABC P DEFG 0.97 220 32000

5 ABC DP EFG 0.43 400 32000

6 ABC DEP FG 0.39 416 32000

7 ABC DEFGP N.A. 0.19 405 114

8 ABCH P DEFG 44.3 10.5 680

9 ABCD EHP FG 1.82 51.3 1014

10 ABCD P EFG 0.97 220 32000

11 ABCD EP FG 0.97 236 32000

12 ABCD EFGP N.A. 0.35 224 114

13 ABCDH P EFG 59.5 9.57 500

16 ABCDEFG P N.A. 224 7.19 114

TABLE 5. ACTEL FPGA RESOURCE UTILIZATION AND ENERGY CONSUMPTION

 ABC ABCH ABCD ABCDH Available

CORE 556 2357 1602 2778 13824

IO (W/ clocks) 20 20 20 20 177

GLOBAL 6 6 6 6 18

RAM/FIFO 8 17 16 21 24

Energy(mJ) 0.152 0.758 0.455 1.061

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

It must be noted, when the VSN transmits data after a short

duration such as after every 2 sec (0.03 minutes), then at this

sample rate, the communication energy is high as shown by

(E_IEEE 802.14.5, E_SOFTWARE_COM), which must be

addressed. The communication energy can be reduced by

sending compressed data, by sending data when new changes

are detected or by sending data of regions of interest. For

applications, where the node transmits data after a long period

such as after 5 minutes or 15 minutes, the sleep energy

depicted by (E_SLEEP_PLATFORM) is the dominant factor.

It can be seen in Fig. 10 that after a sample period of 5

minutes the sleep energy starts to dominates. The sleep energy

can be reduced by selecting platforms with a small sleep

power.

Fig. 9. Life time of VSN for different strategies implemented on

hardware/software platform.

Fig. 10. Energy contribution of different modules of VSN for Strategy8 over

different sample periods.

VII. CONCLUSION

Different VSN implementation strategies were analyzed on

different computational platforms such as a micro-controller

and an FPGA together with a server. The results are verified

by implementing VSNs for different strategies and measuring

the energy values. The VSN architecture included an FPGA, a

micro-controller, an IEEE 802.15.4 compliant transceiver, a

flash memory, a light source and a CMOS camera. The visions

tasks are partitioned in the three target platforms including the

FPGA, micro-controller and server, in order to determine its

effect on the energy consumption and the design complexity.

This work will assist the designers and researchers in relation

to knowledge concerning the challenges associated with the

implementation of VSN. Moreover, the study can be used to

determine which general programmable and low energy

architecture is suitable for a VSN when functionality is moved

from one platform to another.

For a software implemented VSN, the processing energy is

high and it is better to perform the initial vision tasks on the

VSN and then transmit the compressed binary data to the

server for processing. In this way, the energy consumption is

reduced as well as the design complexity being moved from

the embedded platform to the server with reduced constraints.

The challenge in relation to a software implemented VSN is to

reduce the processing energy while still having a small design

complexity on the node.

In relation to a hardware implemented VSN, the processing

energy is reduced and the results are improved compared to

those for a software implemented node. However, there is

large space for further improvements if the communication is

handled efficiently. It has been shown in this work that there

can be two approaches for VSN implementation on the

hardware platform. In one approach, all vision tasks for a

specific application are processed and the final features can be

transmitted to the user. In the second approach, some initial

vision tasks are processed on the VSN and then compressed

binary data is transmitted to the server for processing. In this

manner, complex post processing tasks are moved to the

server. It is concluded that the difference, between the two

approaches, in terms of energy consumption and lifetime, is

small but the difference in terms of design complexity is high.

The difference in design complexity is high because

implementing vision tasks on general programmable platforms

such as a server has a small design complexity as compared to

an FPGA implementation.

The challenge in relation to the hardware platform is in the

reduction of communication energy while still having a small

design complexity at the node. The communication energy can

be reduced by reducing the amount of data being transmitted.

The amount of data can reduced by transmitting compressed

data, by sending regions of interest or by transmitting data

when new changes are detected. By addressing all these issues,

the lifetime of the VSN can be prolonged while still having a

low design complexity at the node.

ACKNOWLEDGMENT

M. Imran thanks Kotte Hari Babu and Ambatipudi Radhika for

discussion relating to the measurement setup.

REFERENCES

[1] K K. S. Low, W. N. Win, M. J. Er, “Wireless Sensor Networks for

Industrial Environments”, Intl Conf. on Intelligent Agents, Web

Technologies and Internet Commerce, Austria, Nov, 2006.
[2] L. Ferrigno, S. Marano, V. Paciello, A. Pietrosanto, “Balancing

computational and transmission power consumption in wireless image

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

sensor networks”. IEEE Intl Conf. on Virtual Environments, Human-
Computer Interfaces, and Measurement Systems, Italy, July, 2005.

[3] P. Kulkarni, D. Ganesan, P. Shenoy, Q. Lu. ”SensEye, A multi-tier
camera sensor network”. 13th annual ACM Intl Conf. on Multimedia,
Singapore, pp. 229 – 238, 2005.

[4] H. Sato, K. Kawabata, T. Suzuki, H. Kaetsu, Y. Hada, Y. Tobe,

“Information Gathering by wireless camera node with Passive

Pendulum Mechanism”, Intl Conf. on Control, Automation and

Systems, ICCAS 2008.
[5] A. Rowe, D . Goel, R . Rajkumar. “FireFly Mosaic, A vision-enabled

wireless sensor networking system”. 28th IEEE Intl. Real-Time
Systems Symposium. Pages, pp. 459-468, 2007.

[6] I.F. Akyildiz, T. Melodia, K. Chowdhur, “A survey on wireless
multimedia sensor networks”, Elsevier–Computer Networks, Mar. 2007.

[7] A. Rowe, A. Goode, D. Goel, I. Nourbakhsh , “CMUcam3: An Open
Programmable Embedded Vision Sensor”, http://cmucam.org/, 2007.

[8] N. K. Ratha, A. k Jain, “Computer Vision Algorithms on
Reconfigurable Logic Arrays”, IEEE Transactions on Parallel and
Distributed Systems, vol 10, pp. 29-43, Jan. 1999.

[9] L. Shang, A. S. Kaviani, K. Bathala, “Dynamic Power Consumption in
Virtex-II FPGA Family”, ACM/SIGDA 10th Intl. Symposium on Field-
Programmable Gate Arrays, pp. 157– 164. 2002.

[10] W. J. MacLean. “An Evaluation of the Suitability of FPGAs for
Embedded Vision Systems”. IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition, pp.25-25 Jun. 2005.

[11] N. Lawal, B. Thörnberg, M. O' Nils, “Power-aware automatic constraint
generation for FPGA based real-time video processing systems”, Proc.
IEEE Norchip Conf., 2007, pp. 124-128, 2007.

[12] M. Sen, I . Corretjer, T . Lv, S.S.Bhattacharyya, F. Haim, W. Wolf, S .
Saha, S. Jason. “Dataflow-Based Mapping of Computer Vision
Algorithms onto FPGAs”. Hindawi Publishing Corporation EURASIP
Journal on Embedded systems, vol. 2007, Jan 2007.

[13] C.H. Zhiyong, L. Y.Pan, Z. Zeng, M.Q.-H Meng. “A Novel FPGA-
Based Wireless Vision Sensor Node”. Proc. the IEEE Intl Conf. on
Automation and Logistics Shenyang, China. 2009.

[14] W. Chan, J. Chang,T. Chen, Y. Tseng, S. Chien, “Efficient Content
Analysis Engine for Visual Surveillance Network”, IEEE Transactions
on Circuits and Systems for Video Technology, pp. 693-703, vol,19,
2009.

[15] L. Gasparini, R. Manduchi, M. Gottardi, D. Petri, “An Ultralow-Power
Wireless Camera Node: Development and Performance Analysis”, IEEE
Transactions on Instrumentation and Measurement, vol PP, pp1-9,
2011.

[16] Z. Y. Cao, Z. Z. Ji, M. Z.Hu,” An image sensor node for wireless sensor
networks”, Intl Conf. on Information Technology: Coding and
Computing, vol. 2, pp. 740-745, 2005.

[17] F. Linnarsson, C. Peng, B. Oelmann. ” SENTIO: A Hardware Platform
for Rapid Prototyping of Wireless Sensor Networks”. IECON 2006-
32nd Annual Conf. of IEEE Industrial Electronics, 2007.

[18] AT32UC3B0256, AVR32, Available: http://www.atmel.com/

[19] CC2520 transeiver, Available: http://www.ti.com/

[20] IGLOO video kit (2009), Available: http://www.actel.com/

[21] Spartan-6 family overview (2010), Available: http://www.xilinx.com/

[22] Numonyx Serial Flash Memory, Available: http://www.micron.com/

[23] N. R. Pal and S. K. Pal, “A Review on Image Segmentation
Techniques,” Pattern Recognition, vol. 26, pp. 1,277–1,294, Sept.
1993.

[24] A. W. Malik, B. Thörnberg, X. Cheng and N. Lawal, “Real-time
Component Labelling with Centre of Gravity Calculation on FPGA”,
The Sixth Intl Conf. on Systems, St. Maarten, 23-28 Jan, 2011.

[25] TIFF, Revision 6.0, 1992, Available: http://www.itu.int/itudoc/itu-
t/com16/tiff-fx/docs/tiff6.pdf

[26] JBIG2, Available: http://jbig2.com/jb2com_toc.html

[27] K. Khursheed, M. Imran, M. O’ Nills, N. Lawal. “Exploration of Local
and Central Processing for a Wireless Camera Based Sensor Node”.
Proc. IEEE Intl Conf. on Signal & Electronic System, Gliwice, Poland,
Sept. 2010.

[28] M. Imran., K. Khursheed, M. O’ Nills, N. Lawal. “Exploration of Target
Architecture for a Wireless Camera Based Sensor Node“. 28th Norchip
Conference, Finland, Nov. 2010.

[29] K. Khursheed, M. Imran, A.W. Malik, M. O'Nils, N. Lawal, B.
Thornberg, ”Exploration of Tasks Partitioning between Hardware
Software and Locality for a Wireless Camera Based Vision Sensor
Node”, 6th Intl. Symposium on Parallel Computing in Electrical
Engineering, UK, pp. 127-132, 2011.

[30] Xilinix power tools tutorial (2010), Available: http://www.xilinx.com/

