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Abstract—Wireless Vision Sensor Networks (WVSNs) have a 

number of wireless Vision Sensor Nodes (VSNs), often spread 

over a large geographical area. Each node has an image capturing 

unit, a battery or alternative energy source, a memory unit, a 

light source, a wireless link and a processing unit. The challenges 

associated with WVSNs include low energy consumption, low 

bandwidth, limited memory and processing capabilities. In order 

to meet these challenges, our research is focused on the 

exploration of energy efficient reconfigurable architectures for 

VSN. In this work, the design/research challenges associated with 

the implementation of VSN on different computational platforms 

such as micro-controller, FPGA and server, are explored. In 

relation to this, the effect on the energy consumption and the 

design complexity at the node, when the functionality is moved 

from one platform to another are analyzed. Based on the 

implementation of the VSN on embedded platforms, the lifetime 

of the VSN is predicted using the measured energy values of the 

platforms for different implementation strategies. The 

implementation results show that an architecture, where the 

compressed images after pixel based operation are transmitted, 

realize a WVSN system with low energy consumption. Moreover, 

the complex post processing tasks are moved to a server, with 

reduced constraints.  

Index Terms—Reconfigurable architecture, Image processing, 

Wireless vision sensor networks, Wireless vision sensor node.  

I. INTRODUCTION 

ireless vision sensor networks have proved to be useful 

in many applications, including industrial control and 

monitoring [1], surveillance [2][3], environmental monitoring 

[4] and personal care [5]. The application area, which is the 

focus of this work, is in the monitoring of industrial machines. 

Traditional imaging systems used a wired link, centralized 

network, high processing capabilities, unlimited storage and a 

wall power supply. In many applications, the wired solution 

results in high installation and maintenance costs. However, a 

wireless solution is the preferred choice as it offers less  
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maintenance, infrastructure costs and greater scalability. Due 

to technological developments, smart camera networks, 

usually referred to as WVSNs, can perform complex tasks 

using limited resources such as batteries or alternative energy 

sources, embedded platform, a wireless link and a limited 

storage facility. WVSNs produce large amounts of data in two 

dimensional forms and this places higher requirements on the 

power, bandwidth, memory and on the processing capabilities. 

The limited bandwidth of the wireless link makes it difficult to 

transmit all the visual data. There is a need for local processing 

on the node so that the amount of data required to be 

transmitted is reduced and only relevant information is sent 

over the wireless link. Energy consumption is a critical factor 

in a WVSN as the sensing nodes are powered by batteries or 

through alternative energy sources. Therefore the focus of 

researchers is on the reduction of energy consumption so as to 

maximize the lifetime of the VSN [6].  

In this work, the energy consumption of different VSN 

implementation strategies are analyzed for software and 

hardware platforms in order to prolong the lifetime of the 

node. It must be noted that by software platform, we mean a 

micro-controller and by hardware platform, we mean FPGAs 

(Field Programmable Logic Arrays). After analyzing the 

strategies on these computational platforms, the results are 

verified by implementing the different processing strategies of 

the VSN on a hardware platform, which has small sleep power 

consumption together with a software platform and the server. 

The proposed VSN resulted in a greater lifetime under a set of 

resource constraints such as the limitations with respect to 

energy, local processing capabilities and bandwidth for 

wireless transmission.  

Following the introduction, Section II provides a recap of 

related work whereas Section III considers the experimental 

system. Section IV covers the analysis of the VSN on the 

software and the hardware-software platform, Section V 

presents the target architecture, Section VI discusses the final 

implementation of the VSN and Section VII summarizes the 

conclusions drawn from this work. 

II. RELATED WORK 

WVSNs have been designed and implemented on both a 

micro-controller/micro-processor and on a FPGA. The first 

discussion will be with regards to three WVSN systems that 

have been developed on a micro-controller/micro-processor 
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namely FireFlye Mosaic [5], CMUcam3 [7] and SensEye [3]. 

FireFly Mosaic [5] is a wireless camera which consists of a 

wireless sensor platform. It uses a real-time distributed image 

processing infrastructure with a collision free TDMA based 

communication protocol. FireFly is a low-cost, low power 

sensor platform that uses a real time operating system and an 

expansion board. However, a CMUcam3 [7] was used with 

FireFly, which possesses both limited RAM and a reduced 

computational speed, which is essential for more complex 

image processing systems. SensEye [3] is a multi-tier of 

heterogeneous wireless nodes and cameras which aims at low 

power, low latency detection and low latency wakeup. In this 

case, low power elements were used in order to wake-up high 

power elements. It should be noted that these software 

solutions can have a high power consumption and can exhaust 

the energy consumption quickly if operated on batteries. 

Application Specific Integrated Circuits (ASICs) often 

provide a better performance and low power consumption for 

dedicated applications but, the design may be expensive due to 

Non-Recurring Engineering (NRE) costs and that there is no 

flexibility in relation to accommodating changes and upgrades 

in the future [8]. Reconfigurable design technologies are 

required to provide a competitive level of performance while 

still having the flexibility to incorporate design changes.  

Due to the rapid development in semiconductor 

technology, the single chip capacity of an FPGA increases 

greatly at the same time as its power consumption is 

significantly reducing [9]. The advantages and disadvantages 

of FPGA technology and its suitability for computer vision 

tasks were discussed in detail in [10] and its optimization in 

[11]. A design methodology for mapping the computer vision 

algorithm onto an FPGA through the use of a coarse grain 

reconfigurable data flow graph was discussed in detail in [12]. 

WVSN platforms that have been developed using FPGAs 

together with micro-controllers will now be discussed. In [13] 

the authors have designed a novel VSN, based on a low cost, 

low power FPGA plus a micro-controller System On 

Programmable Chip (SOPC). The authors in [14] proposed an 

approach involving integrating the hardware content analysis 

engine into smart camera systems. The content analysis engine 

consists of dedicated accelerators and a programmable 

morphology coprocessor to provide functionality relating to 

object segmentation, object description and tracking.  

In [15], the design principles for the video node are 

presented in the context of a long-lifetime. The authors have 

developed a prototype to validate the approach. In the system, 

a low power flash FPGA and a CMOS camera are used. The 

imager used is a 128×64-pixel binary contrast based sensor. 

However, for the majority of applications, a binary image 

sensor is used and this small resolution would not be feasible. 
In [16] an image sensor node is presented which includes an 

embedded processor, a memory, a CMOS image sensor, image 

processing on an FPGA, an RF module and a power unit, but, 

no experimental verification was provided in relation to how 

the power consumption is reduced in the presence of an 

embedded processor.  

Compared to the work of other researchers, our research is 

focused on the exploration of energy efficient and 

reconfigurable architectures for a VSN by partitioning the 

vision tasks among three computational platforms namely 

software, hardware platforms and the server. The challenges 

associated with the implementation of VSN on both hardware 

and software platforms are shown in this work. The effect on 

the energy consumption and design complexity at the node, 

when the functionality is moved from one platform to another, 

is investigated. This study can be used to determine, which 

general programmable and low energy architecture is suitable 

for VSN implementation and what are the relevant design/ 

research challenges.   

III. EXPERIMENTAL SYSTEM 

The main task for this system is to develop image 

processing and analysis methods that are able to discover 

particles in the fluid, extract the features of these particles and 

analyze them.  

The following are the main components and vision tasks 

involved in this work.  

A. System description 

In industry, a network of cameras is used in order to obtain 

real-time data for monitoring and control. These networks are 

wire based for both data and control transmission and for 

power supply purposes. The wired solution in an industrial 

application usually results in high installation and maintenance 

cost. In this situation, wireless solutions are attractive as they 

offer lower system and infrastructure costs, improve the 

product quality and provide simple upgradability and physical 

mobility [1].  

In this work, we are interested in monitoring the health 

status of hydraulic machines used in industry, as these become 

worn out after a certain amount of time. The failure of a 

hydraulic machine can be predicted by means of the detection 

of magnetic particles in the fluid, flowing in the machine. At 

the present time, this is monitored manually, which means that 

the machines must be stopped by the engineers in order to 

check the fluid quality and to determine whether any of the 

magnetic particles have detached from the engine.  A machine 

stoppage reduces the production rate in addition to the labor 

and time costs involved. If the smart cameras detect particles 

in the fluid while the machine is running and transmit data to 

the user over the wireless link, then this would be an entirely 

new scenario for the manufacturers of hydraulic machines. 

This will reduce the maintenance costs and will increase the 

productivity of the machine. 

B. Generalization of vision systems 

At this point, some common characteristics of wireless 

vision systems will be presented.  Although it is difficult to 

generalize the image processing flow, some common vision 

tasks employed in different vision systems implemented on 

smart cameras will be provided. These vision tasks include 
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frame subtraction[7], segmentation [2],[6],[7],[15], 
filtering[7],[15],[16], labeling [15], classification [14][15] and 

post processing such as compression[5][7]. These types of 

systems [2],[6],[15],[7],[16] have similar operations and 

information reduction characteristics. The approach in this 

work is useful for all such systems.  

C.  Processing platforms 

All vision tasks for our application were implemented on 

both the software and hardware platforms and the server. The 

software platform, in this case, is the SENTIO32 platform which 

is basically a development of the original SENTIO platform [17] 
with a high performance processing capability. SENTIO32 has a 

32 bit AVR micro-controller, AVR32, AT32UC3B0256 [18]. 
Moreover, the SENIO32 has a CC2520 RF transceiver [19] 
with 2.4 GHz IEEE 802.15.4.  

For the analysis of VSN on hardware platforms, two 

FPGAs, namely, ACTEL AGL600V5 FPGA [20] and Xilinx 

Spartan6 XC6SLX9L FPGA [21] were used. In order to test 

all cases, the  Xilinx FPGA was selected as it has sufficient  

logic cells to accommodate each of the processing strategies 

for the power calculation.  The dynamic power of Xilinx was 

used and the sleep power of the ACTEL FPGA as this has the 

smallest sleep power consumption currently available in the 

market. A serial flash memory of 64 Mbits [22] is used for the 

background storage. All possible strategies are analyzed in 

Table 3 and the results are verified by implementing the 

processing strategies, which fit on the ACTEL FPGA. The 

energy values are then measured for the implemented 

strategies and are shown in Table 4.   

Following this discussion, now a description of the 

algorithm flow is given. We have developed two algorithms 

for the magnetic particles analysis, in which one approach is 

object based while the other is pixel based. Both algorithms 

have the same flow, the exception being the pre-processing 

and the bubble remover step. In the pixel based method, the 

background is captured at the initial stage and is stored in the 

memory, while, in the object based method, the background is 

generated in real-time using a spatial filter. In the pixel based 

method, bubble removal is performed after morphology, while, 

in the object based method, bubble removal is performed after 

classification. Fig. 1 shows the algorithm flow for the different 

processing strategies in which each vision task is represented 

by a symbol. The dashed lines represent a possible 

combination of processing strategies for the final 

implementation of the VSN and this is shown in Table 4. 

D.  Image capturing 

The image is captured using a Micron Imaging MT9V032, 

which is a 1/3-inch wide-VGA format CMOS active-pixel 

digital image sensor. The camera is programmed through an 

I2C interface for a resolution of 640×400 in real time. The 

camera clock is running at a frequency of 13.5 MHz, with 30 

frames per second. The captured image using the CMOS 

sensor is represented by caption I in Fig. 1.  

E.  Pre-Processing 

In the object based method, the background is generated 

using an averaging filter, while, in the pixel based method, the  
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Fig. 1. Algorithm flow of different possible processing strategies 

background is captured and stored in a flash memory at the 

initial stage. An averaging filter with a mask of 21x21, used for 

the background generation took 5 minutes on the software 
platform, which is not realistic for the implementation of 
VSN. Instead of this approach, the preference was to store 
the background image in the flash memory. The 
background is stored in the flash memory via a Serial 
Peripheral Interface (SPI) at an initial stage. The 
background image is accessed via the SPI and then 
subtracted from the current frame in order to detect objects, 
which could either be magnetic particles or air bubbles.   

F. Segmentation 

The process of spatial partitioning of an image into 

mutually exclusive connected image regions is known as 

image segmentation [23] and the typical segmentation 

algorithms include thresholding and clustering, boundary 

detection and region growing. In this application, thresholding 

has been used as the objects that must be detected are white 

and the background is relatively black. All pixels having a 

gray scale value less than a predefined threshold are assigned a 

zero value and all other pixels in the image are assigned the 

value one. The resulting image after segmentation is a binary 

image. The image after segmentation is shown by caption II in 

Fig. 1 in which noise is visible. 

G.  Morphology 

A morphological operation is then performed on the 

segmented image in order to remove one or two pixel false 

objects. The morphology operation used in our algorithm is 

erosion followed by dilation using a mask of 3×3. During the 

erosion and dilation, two complete rows must be stored in the 

line buffers so that we have the necessary neighborhood 

information for the operation. The morphology is a spatial 

domain image processing operation in which the neighborhood 

processing of the values of a group of pixels in an input image 

is required in order to compute only one pixel in the output 

image. This type of processing requires a processing mask or 

kernel, which defines the operation. In this process, the output 

image size is the same as that of the input. At the image 

boundary, the central pixel is copied into the invalid boundary 

pixel. Fig. 2 (B) shows the memory architecture that provides 

the necessary storage of the previous pixel values in order to  
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Fig. 2. Part a) shows 3x3 neighborhood processing, Part b) shows its 

implementation using line buffers 

facilitate the sliding window shown in Fig. 2 (A). The line 

buffers must hold the pixels in a row. In the figure, Pij 

represents the pixel data at the i-th row and j-th column in the 

neighborhood and R represents the register. The size of each 

element in this buffer depends on the dynamic range of the 

pixel. The line buffers are implemented in the FPGA using 

block RAMs. The other groups of elements, with down arrows, 

are the registers where the morphological operation is 

performed. The resultant image after morphology is shown by 

caption III in Fig. 1 in which noise is removed. 

H.  Bubble Remover  

The flowing fluid in the system might contain air bubbles, 

which must be identified and removed as these are unwanted 

objects and the only interest is in relation to the magnetic 

particles. Bubbles are removed either by the pixel based 

method or by an object based method.  In the pixel based 

method, the bubbles are removed after the morphology. 

Bubbles can be identified as moving objects, so if an object 

changes its location in two consecutive frames, this confirms 

that it is a bubble. The corresponding pixels in two 

consecutive frames are compared and if their binary values are 

different, which confirms that it is a bubble, then a zero is 

placed at that pixel location. In this manner, the bubbles are 

identified and removed. For bubble removing, in the pixel 

based method, the entire frame must be stored so that the 

previous frame can be compared with the current frame. 

In the object based method, the bubbles, as well as the 

particles, are treated as objects at the initial stage and the 

bubbles are removed after the classification stage. Bubbles are 

removed by comparing the area and location of the objects in 

the current frame with the objects of the previous frame. 

Objects whose area and location are not same will be treated 

as bubbles and hence removed. The challenge associated with 

this method is that, sometimes, due to changes in the 

illumination, the area of the object could either  decrease or 

increase in consecutive frames and thus the possibility exists 

that the magnetic particles might be treated as bubbles. We 

have dealt with this challenge by introducing a flexibility of 

one to three pixel variations in the area and location of the 

objects in consecutive frames. The image after the bubble 

removal step is depicted by caption IV in Fig. 1. In images I, II 

and III, the bubbles are visible but these are removed in image 

IV by applying the bubble removing step. 

I.  Labeling and Classification  

During labeling, the pixels belonging to the same image 

component are assigned a unique label. After labeling, an 

image component is described in terms of a region's features 

such as its area, mean gray value or position [24]. This feature 

information can then be used for the classification of the image 

components.   

J.  Image Compression 

Since the data that is available after segmentation is in a 

binary format, a bi-level compression scheme was used. There 

are many compression schemes for bi-level images such as 

CCITT group3 1D and 2D [25], CCITT group4 [25] and 

JBIG2 [26].  The CCITT group4 has been used in this case as 

it provides a compression ratio that is sufficient to show the 

effect on energy consumption, when compressed images are 

transmitted and when uncompressed images are transmitted. 

However, the comparisons of bi-level compression schemes do 

not fall within the scope of this paper.    

The CCITT group4 is a lossless compression algorithm 

which encapsulates data in a TIFF file format. The coding 

scheme uses a two-dimensional line-by-line coding method in 

which the position of each changing picture element, rather 

than alternating white and black runs in each scan line, is 

considered. In this manner, the vertical features in the source 

image can be used to achieve better compression ratios. The 

position of each changing pixel element on the current coding 

line is coded with respect to the position of a corresponding 

reference element situated on either the coding line or on the 

reference line, which is immediately above the coding line. 

After the coding line has been coded, it becomes the reference 

line for the next coding line [25].  

Three line buffers are used in order to implement the 

CCITT group4 compression. Two of these are used to act as 

the stored reference line and the coding line and the third line 

buffer is used for saving the current row data. When the data is 

being saved, it then becomes the   coding line and the previous 

coding line becomes the reference line, while the previous 

reference line becomes the saving line for the next row and is 

overwritten by the new pixel data. In our case, the CCITT 

group4 could be performed after the segmentation, 

morphology or bubble removal as shown in Fig. 1.  

The CCITT group4 compression produces varying 

compressed data based on the input image. Thus, the amount 

of data after segmentation, morphology and bubble removal is 

different. The CCITT group4 encoded data may be different 

on the software and hardware platforms, because in the 

software platform, the available C library was used, which uses 

all the header information of the TIFF file format. For the 

hardware implementation, a group4 compression scheme was 

developed in which the header information of only the CCITT 

group4 is used. Using the CCITT group4 compression, the 

data being transmitted is reduced to few hundred bytes. This, 

in turn, will lead to a low energy consumption for the overall 

system as the communication process is the main factor 

involved in the energy consumption [1].  
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K.  Communication 

The final results are transmitted to the server using an 

IEEE 802.15.4 compliant transceiver [19], embedded in the 

SENTIO32 platform.  

IV. ANALYSIS OF VSN ON SOFTWARE AND HARDWARE-

SOFTWARE PLATFORM 

In our previous work [27] it was shown that, if the 

compressed binary image after segmentation is transmitted 

from the VSN to the server, it will have a low energy 

consumption. The reason given was that, at this stage the 

energy consumption, due to the processing and the 

communication, falls in such proportions that it results in a 

lower energy consumption. Performing the same vision tasks 

on the hardware reconfigurable platform, with small sleep 

power consumption, further improves the results [28]. We 

have extended the previous work [29] and analyzed different 

design/research challenges when the VSN is implemented on 

both software and hardware platforms and these have been 

verified for different strategies.  

The vision tasks for the different processing strategies are 

shown in Fig. 1, where each task is represented by a symbol 

such as image capturing by A, pre-processing by B and so on. 

These symbolized letters are used in Table 1, Table 2, Table 3 

and Table 4 in order to visualize all the possible partitioning 

strategies on the software, hardware and the server. For 

example, in Table 1, ABC represents the energy consumption 

of the vision tasks,   image capture, preprocessing and 

segmentation on the software solution and ABC in Table 2 

shows the energy consumption for the same vision tasks when 

implemented on the hardware platform. 

A. Energy calculations of VSN modules  

In order to calculate the energy consumption of the vision 

tasks, it is necessary to calculate the execution time of the 

vision tasks on the hardware and software platforms. The 

execution time of all the vision processing strategies involved 

in this application, such as ABC or ABCDEFG are calculated 

on both the software and hardware-software platforms as 

shown in Table 1 and Table 2. 

In order to calculate the execution time on the software 

platform, a high signal was sent to one of the output pins of the 

SENTIO32 at the initiation of the vision task and this was then 

returned to low at the conclusion of the task. During this 

operation a time stamp was recorded using the logic analyzer. 

The execution time for the operation performed on the 

hardware platform is determined by the camera clock speed. 

For this work, the CMOS camera is programmed for a 

resolution of 640×400 and the operating clock frequency is 

13.5 MHz. The horizontal low line sync is required to be 

considered while calculating the execution time on the 

hardware platform. The execution time for each strategy on the 

hardware platform is calculated by using formula (1) where Lt 

is the latency of each tasks, f is frequency, R represent rows, C 

represents columns and Ls represents low line sync. In this 

case, R is 400, C is 640, Ls is 32 and f is 13.5 MHz.   

 

TABLE 1. ENERGY CONSUMPTION OF INDIVIDUAL STRATEGY ON SOFTWARE 

Individual Modules Time (ms)  Energy (mJ)  

ABC 584.60 45.34 

ABCH 929.68 72.10 

ABCD 2911.69 225.80 

ABCDH 3256.77 252.56 

ABCDE 3114.19 241.51 

ABCDEH 3459.27 268.27 

ABCDEFG 5724.90 443.97 

 

TABLE 2. ENERGY AND AREA OF EACH STRATEGY ON HARDWARE 

Individual strategies Time (ms) Energy (mJ)  Logic cells 

ABC 0.01991 0.038 705 

ABCH 0.01996 0.066 1190 

ABCD 0.01996 0.061 1388 

ABCDH 0.01996 0.089 1873 

ABCDE 0.01996 0.064 1406 

ABCDEH 0.02001 0.093 1891 

ABCDEFG 0.01996 0.118 2279 

 

(1)                                      / fLt)+Ls)+(C(R=T             

The time spent on transmitting the results to the server is 

calculated as 

(2)        (sec)  10192103219T_IEEE -6-6  +)+(X=                                                             

where X is the number of bytes transmitted, 19 bytes are the 

overhead involved due to the header information, 32 µsec is 

the processing time of one byte while 192 µsec is the settling 

time of the radio transceiver. 

The energy consumption of the external flash light, used to 

achieve a sufficiently high signal to noise ratio, is 0.085mJ, 

which is included in the energy calculation of the embedded 

platform for each strategy. The power consumption of the 

IEEE 802.15.4 transceiver is 132mW while that of the AVR32 

is 77.55mW, when operating. The total energy spent on 

sending data over the wireless link is the combination of the 

individual energy consumption of the IEEE 802.15.4 

transceiver and the software platform because both are running 

when the data is communicated to the server. The power 

consumption of the CMOS camera is 160 mW and its 

processing time is 33.3 ms, so its energy consumption for 

processing one image is 5.3 mJ.  

The time spent and the energy consumed by each strategy 

running on the software platform is given in Table 1. The time 

spent for performing vision tasks on the hardware platform is 

calculated using formula (1), and this is used to determine the 

energy consumption of the individual modules in Table 2, 

using the Xilinx Spartan6 FPGA. The Xilinx power measuring 

tool, called the XPower Analyzer [30] was used for the power 

analysis of post-implement placing and routed designs. It 

supports entries from a user constraint file (PCF) so as to 

provide an accurate definition of the operating clock 

frequencies as well as the stimulus data (VCD) generated from 

the HDL simulators to determine the device power and the 

individual net power utilization. Input stimuli of dimensions 

640×400 have been provided. In relation to the analysis 

purposes, the sleep power consumption of the ACTEL FPGA 

was used as it has a sleep power consumption of 5µW. The 

cost of each individual strategy in terms of logic cells is also 

shown in Table 2. 
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A. Partitioning tasks between hardware, software and 

Locality  

In this section we will discuss different challenges when 

VSN tasks are partitioned among the  software platform, 

hardware platform and the server. In relation to this, the 

energy consumption and design complexity of the VSN, when 

functionality is moved from one platform to another, is 

investigated. All possible scenarios involved in the software, 

hardware and the server are analyzed and displayed  in Table 3, 

where some are discussed in detail. The maximum achievable 

frequency (fps), energy consumption, cost in terms of FPGA 

logic cells, block RAMs and data transmitted from VSN for 

each strategy is given in Table 3. It must be noted that when 

processing is performed on the hardware or software platform, 

the communication, is performed on the software platform as 

an IEEE 802.15.4 transceiver is embedded with the AVR32 on 

SENTIO32 platform.  

 The different VSN implementation strategies are firstly 

analyzed on the software platform. Strategy28 to Strategy34 in 

Table 3 are software implemented strategies. The energy 

consumption for  each strategy is shown in Fig. 3 and in Fig. 5, 

the processing energy is represented by 

E_SOFTWARE_PROC. The communication energy is a 

combination of the energy consumption of the software 

platform, when it is running for communication, represented 

by E_SOFTWARE_COM and the energy consumption of the 

transceiver, represented by E_IEEE 802.15.4. The absolute 

energy consumption in Fig. 3 shows the trend of different VSN 

implementation strategies.  Fig. 5 shows the relative energy 

consumption of each strategy, in which the energy contribution 

of the VSN modules such as processing 

(E_SOFTWARE_PROC) or communication 

(E_SOFTWARE_COM+ E_IEEE 802.15.4) can be observed. 

By looking at all the strategies implemented on the 

software platform, shown in Fig. 3 and Fig. 5, it must be noted 

that when the binary data (32000 bytes) is transmitted from the 

VSN to the server, the energy consumption is higher due to the 

higher communication energy. This is depicted by Strategy28, 

Strategy30 and Strategy32. The communication energy 

consumption on the software platform can be reduced by 

transmitting compressed binary data or by sending only 

features. Strategy29, Strategy31 and Strategy33 show that 

when compressed data is transmitted from the VSN, the 

communication energy is lower. The processing energy would 

increase to some extent, as compression is a complex vision 

task. It must be noted that more vision processing on the 

software implemented VSN will increase the energy 

consumption as shown by Strategy34. In this strategy all tasks 

are performed on the VSN and only the features are 

transmitted,  but, the overall energy is still high due to the high 

processing energy even if the communication energy is small.  

It is evident in Fig. 3 that Strategy29 has a low energy 

consumption. The reason for this is that the proportion of 

energy consumption due to the processing and communication 

is such that this results in the low energy consumption shown 

in Fig. 5. This strategy offers a  general and low energy 

architecture on a software platform as complex vision tasks 

(DEFG) are moved to the server. The design complexity for 

this strategy is moved from the embedded software platform to 

the server with reduced constraints. 

After the analysis of the software implemented VSN, the 

strategies in which VSN is implemented on the 

hardware/software platforms will be included for discussion. 

The introduction of the hardware platform for vision tasks 

would improve the results. In order to provide a comparison 

with respect to the software implemented strategies shown in 

Fig. 3 and Fig. 5, the strategies with similar vision tasks on the 

hardware platform are shown in Fig. 4 and Fig. 6. Fig. 4 and 

Fig. 6 show the energy consumption for different processing 

strategies on the hardware platform in absolute and relative 

graphs respectively. It can be observed that the energy 

consumption due to processing on the hardware platform 

(E_HARDWARE_PROC) is small in all cases as compared to 

the software implemented vision processing denoted by 

E_SOFTWARE_PROC. The reason is that when 

implementing vision tasks on a parallel computing platform 

such as an  FPGA, the execution time of the tasks is small, 

which results in a low energy consumption.  

TABLE 3. ESTIMATED ENERGY VALUES AND OTHER MEASURES OF EACH VSN 

STRATEGY ON HARDWARE/SOFTWARE PLATFORM 
S

tr
at

eg
y

 VSN Tasks Server 

Tasks  

Max 

Fequen

cy (fps) 

E(mJ) 

Node 

logic 

cells  

FPGA 

brams 

data 

sent 
Hardware Software 

1 ABC HP DEFG 2.89 40.55 705 N.A. 1218 

2 ABC DHP EFG 0.37 221.45 705 N.A. 1282 

3 ABC DEHP FG 0.34 231.62 705 N.A. 458 

4 ABC P DEFG 0.97 220.20 705 N.A. 32000 

5 ABC DP EFG 0.43 400.67 705 N.A. 32000 

6 ABC DEP FG 0.39 416.37 705 N.A. 32000 

7 ABC DEFGP N.A. 0.19 405.02 705 N.A. 114 

8 ABCH P DEFG 44.3 10.21 1190 3 680 

9 ABCD EHP FG 1.82 51.18 1388 4 458 

10 ABCD P EFG 0.97 220.22 1388 4 32000 

11 ABCD EP FG 0.97 235.93 1388 4 32000 

12 ABCD EFGP N.A. 0.35 224.57 1388 4 114 

13 ABCDH P EFG 59.5 9.03 1873 7 500 

14 ABCDE P FG 0.97 220.23 1406 5 32000 

15 ABCDEH P FG 82.0 8.07 1891 8 356 

16 ABCDEFG P N.A. 224 6.47 2279 12 114 

17 AB CHP DEFG 1.75 54.39 702 N.A. 1218 

18 AB CDHP EFG 0.34 238.89 702 N.A. 1282 

19 ABCD HP EFG 2.89 41.00 1388 4 1282 

20 AB CDEHP FG 0.32 249.07 702 N.A. 458 

21 ABCDE HP FG 2.89 35.48 1406 5 458 

22 AB CP DEFG 0.97 237.65 702 N.A. 32000 

23 AB CDP EFG 0.39 418.11 702 N.A. 32000 

24 AB CDEP FG 0.36 433.82 702 N.A. 32000 

25 AB CDEFGP N.A. 0.18 422.46 702 N.A. 114 

26 ABCDE FGP N.A. 0.38 208.87 1406 5 114 

27* A BP CDEFG 0.12 1748.0 329 N.A. 256000 

28 A BCP DEFG 0.97 263.41 329 N.A. 32000 

29 A BCHP DEFG 1.10 83.76 329 N.A. 1218 

30 A BCDP EFG 0.34 443.88 329 N.A. 32000 

31 A BCDHP EFG 0.31 264.66 329 N.A. 1282 

32 A BCDEP FG 0.32 459.58 329 N.A. 32000 

33 A BCDEHP FG 0.29 274.84 329 N.A. 458 

34 A BCDEFG N.A. 0.17 448.23 329 N.A. 114 

35* A P BCDEFG 0.12 1722.2 329 N.A. 256000 

36* AB P CDEFG 0.12 1722.2 702 N.A. 256000 
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For the hardware implementation, it is the communication 

energy consumption depicted in Fig. 6 by 

E_SOFTWARE_COM and E_IEEE 802.15.4 which is 

required to be addressed. Depending on the requirement and 

budget involved in an application, it is possible to implement 

any of the 36 strategies mentioned in Table 3, except those 

strategies denoted by the symbol * as they generate large 

amounts of data (256000 bytes). All strategies have their own 

pros and cons. By looking at all the strategies, it can be 

observed that the energy consumption is small for strategies 8, 

13, 15 and 16.  

In Strategy16, all the vision tasks for this application are 

processed on the VSN using the hardware platform and only 

features are transmitted (P, Radio) using the software platform. 

The cost of this strategy is high compared to other strategies as 

2279 logic cells and 12 block RAMs are required. Similarly, 

there is also a high design time for this strategy as it involves 

complex post processing tasks on the hardware platform. In 

strategies 15 and 16, the previous frame must be stored in 

order to remove the bubbles in the current frame. Storing a 

binary frame (640×400) requires 256k bits of memory which 

may prove to be large for some specific development boards. 

Following the analysis,  an architecture  used for the final 

implementation is now presented. 

V. TARGET ARCHITECTURE 

The target architecture for our work is presented in Fig. 7 

which includes a CMOS camera, a light source, FPGA, micro-

controller, flash memory, radio transceiver and the server. The 

vision tasks can be performed on the ACTEL FPGA, micro-

controller or at the server side. Communication is handled on 

the SENTIO32 platform, which has AVR32 micro-controller 

and IEEE 802.15.4 compliant transceiver. The board to board 

communication between ACTEL and SENTIO32 is handled 

using an RS232 with a baud rate of 115200. Buffers are 

required when data is communicated between different boards 

due to the different processing speeds. The sleep power 

consumption affects the results as the VSN is switched to sleep 

power mode when it is not transmitting data. Therefore the 

selection of a suitable processing platform is necessary.  

   

Vision 

Processning

Capture

Flash 

Controller

SERVER

SENTIO32

Camera

ACTEL FPGA

WIRELESS VISION SENSOR NODE

SPI

R
S

2
3

2

Radio

Transceiver

Radio

Transceiver

Flash 

Memory
Processning

Light

AVR32

Micro-

controller

 
Fig. 7. Target architecture of VSN 
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Fig. 3. Absolute energy consumption of each strategy on software platform 
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Fig. 4. Absolute energy consumption of each strategy on hardware/software 

platform 
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Fig. 5. Relative energy consumption of each strategy on software platform 
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Fig. 6. Relative energy consumption of each strategy on hardware/software 
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ACTEL FPGA has the lowest sleep power consumption 

(5µW) currently available in the market. In addition, the 

ACTEL flash FPGAs allow the user to quickly enter and exit 

from the Flash Freeze mode. This occurs almost instantly 

(within 1 µs) and the device retains the configuration and data 

in registers and RAM [20]. 

VI. IMPLEMENTATION OF VSN 

In order to validate the simulation results of Table 3, the 

strategies from 1 to 13 were implemented on the ACTEL 

FPGA, as these strategies fit on the target platform. The 

measured energy values are shown in Table 4. The energy 

consumption of each VSN strategy is measured when it is 

running on the FPGA together with the AVR32 micro-

controller. The Strategy16, which has a low energy 

consumption, is extrapolated by the difference factor of the 

simulated and measured power values of the FPGA. The 

strategies in Table 3, in which the hardware platform sends 

gray scale data to the software platform or to the server, are 

not feasible for implementation as the amount of data is quite 

large. The architecture for our work is shown in Fig. 7. The 

demonstration setup is shown in Fig. 8 where the results after 

segmentation are shown on the display unit. In the figure, the 

setup is represented by capital letters including A1 for the 

light, B1 for the CMOS camera, C1 for the machine setup, D1 

for the LCD display unit and E1 for the ACTEL FPGA.  

The power consumption of the ACTEL FPGA is measured, 

when it is running a particular strategy, using the two output 

pins of the ACTEL platform. The current is measured by using 

a shunt resistor with a value 0.33Ω between the two pins. The 

FPGA utilization for each strategy on the ACTEL FPGA is 

shown in Table 5 where the core is the logic used, IO is the 

input and output pins, global is the clock network resources 

and RAM/FIFO are the memories used.  

The result of each strategy is verified by reconstructing and 

comparing the images on the server using MATLAB. The 

maximum achievable frequency of each implementation 

strategy is shown in Table 4. It must be noted that in strategies 

4, 10, and 11, the transceiver speed is limiting the frame rate. 

In these strategies, the time spent on task execution is small as 

the vision tasks are implemented on the hardware platform but, 

the time spent on transmission is large due to the large amount 

of data transmission (32000 bytes). In strategies 7 and 12, the 

transmission time is small but, the execution time is high, as 

complex vision tasks are implemented on the software 

platform. The execution time on the software platform is 

limiting the frame rate. The strategies 8, 13 and 16 have higher 

frame rates as complex vision tasks are implemented on the 

hardware platform and the amount of data being transmitted is 

small.  The amount of data required to be communicated for 

each strategy is shown in Table 4 and the differences for each 

strategy are based on the CCITT group4 compression, which 

produces varying compressed data based on the incoming data 

from each of the vision tasks.  

The lifetime for the different VSN strategies is predicted 

using 4 AA batteries and is shown in Fig. 9. It is assumed that 

the batteries would provide a constant performance and zero 

leakage current. When VSN transmits data after 5   

 

minutes, the lifetimes of VSNs are 5 years for Strategy8, 

5.1 years for Strategy13 and 5.2 years for Strategy16. It must 

be noted that the differences in lifetimes and the energy 

consumption are small in these strategies, whereas, the design 

complexity and costs are large. In Strategy16, the vision tasks 

(ABCDEFG) are implemented while in Strategy8, the vision 

tasks ABCH are implemented on the VSN.  Strategy8 has a 

small design complexity and cost compared to Strategy16 and 

provides a more general solution because the complex post 

processing vision tasks are moved to the server. Implementing 

the vision tasks on general programmable platforms, such as a 

server, has small design complexity compared to FPGA 

implementation. This approach can be used for other smart 

camera systems as many vision tasks are common in different 

VSN applications as discussed in section III (B). The energy 

contribution of each sensor module for Strategy8 is shown in 

Fig. 10 for different sample periods. 

 
Fig. 8. Industrial setup with ACTEL platform 

TABLE 4.MEASURED ENERGY VALUES OF EACH  VSN STRATEGY ON 

HARDWARE/SOFTWARE PLATFORMS  

Strat

egies 

VSN Tasks Server 

Tasks 

Max 

frequency 

(fps) 

Energy 

(mJ) 

Node 

Bytes 

sent Hardware Software 

1 ABC HP DEFG 2.89 40.6 1218 

2 ABC DHP EFG 0.37 221 1282 

3 ABC DEHP FG 0.34 231 1014 

4 ABC P DEFG 0.97 220 32000 

5 ABC DP EFG 0.43 400 32000 

6 ABC DEP FG 0.39 416 32000 

7 ABC DEFGP N.A. 0.19 405 114 

8 ABCH P DEFG 44.3 10.5 680 

9 ABCD EHP FG 1.82 51.3 1014 

10 ABCD P EFG 0.97 220 32000 

11 ABCD EP FG 0.97 236 32000 

12 ABCD EFGP N.A. 0.35 224 114 

13 ABCDH P EFG 59.5 9.57 500 

16 ABCDEFG P N.A. 224 7.19 114 

 

 

TABLE 5. ACTEL FPGA RESOURCE UTILIZATION AND ENERGY CONSUMPTION 

 ABC ABCH ABCD ABCDH Available 

CORE 556 2357 1602 2778 13824 

IO (W/ clocks) 20 20 20 20 177 

GLOBAL  6 6 6 6 18 

RAM/FIFO               8 17 16 21 24 

Energy(mJ) 0.152 0.758 0.455 1.061  
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It must be noted, when the VSN transmits data after a short 

duration such as after every 2 sec (0.03 minutes), then at this 

sample rate, the communication energy is high as shown by 

(E_IEEE 802.14.5, E_SOFTWARE_COM), which must  be 

addressed. The communication energy can be reduced by 

sending compressed data, by sending data when new changes 

are detected or by sending data of regions of interest. For 

applications, where the node transmits data after a long period 

such as after 5 minutes or 15 minutes, the sleep energy 

depicted by (E_SLEEP_PLATFORM) is the dominant factor. 

It can be seen in Fig. 10  that after a sample period of 5 

minutes the sleep energy starts to dominates. The sleep energy 

can be reduced by selecting platforms with a small sleep 

power. 

 

 
Fig. 9. Life time of  VSN for different strategies implemented on 

hardware/software platform. 

 
Fig. 10. Energy contribution of different modules of  VSN for Strategy8 over 

different sample periods. 

VII. CONCLUSION 

Different VSN implementation strategies were analyzed on 

different computational platforms such as a micro-controller 

and an FPGA together with a server. The results are verified 

by implementing VSNs for different strategies and measuring 

the energy values. The VSN architecture included an FPGA, a 

micro-controller, an IEEE 802.15.4 compliant transceiver, a 

flash memory, a light source and a CMOS camera. The visions 

tasks are partitioned in the three target platforms including the 

FPGA, micro-controller and server, in order to determine its 

effect on the energy consumption and the design complexity. 

This work will assist the designers and researchers in relation 

to knowledge concerning the challenges associated with the 

implementation of VSN. Moreover, the study can be used to 

determine which general programmable and low energy 

architecture is suitable for a VSN when functionality is moved 

from one platform to another.  

For a software implemented VSN, the processing energy is 

high and it is better to perform the initial vision tasks on the 

VSN and then transmit the compressed binary data to the 

server for processing. In this way, the energy consumption is 

reduced as well as the design complexity being moved from 

the embedded platform to the server with reduced constraints. 

The challenge in relation to a software implemented VSN is to 

reduce the processing energy while still having a small design 

complexity on the node. 

In relation to a hardware implemented VSN, the processing 

energy is reduced and the results are improved compared to 

those for a software implemented node. However, there is 

large space for further improvements if the communication is 

handled efficiently. It has been shown in this work that there 

can be two approaches for VSN implementation on the 

hardware platform. In one approach, all vision tasks for a 

specific application are processed and the final features can be 

transmitted to the user. In the second approach, some initial 

vision tasks are processed on the VSN and then compressed 

binary data is transmitted to the server for processing. In this 

manner, complex post processing tasks are moved to the 

server. It is concluded that the difference, between the two 

approaches, in terms of energy consumption and lifetime, is 

small but the difference in terms of design complexity is high. 

The difference in design complexity is high because 

implementing vision tasks on general programmable platforms 

such as a server has a small design complexity as compared to 

an FPGA implementation.    

The challenge in relation to the hardware platform is in the 

reduction of communication energy while still having a small 

design complexity at the node. The communication energy can 

be reduced by reducing the amount of data being transmitted. 

The amount of data can reduced by transmitting compressed 

data, by sending regions of interest or by transmitting data 

when new changes are detected. By addressing all these issues, 

the lifetime of the VSN can be prolonged while still having a 

low design complexity at the node. 

ACKNOWLEDGMENT 

M. Imran thanks Kotte Hari Babu and Ambatipudi Radhika for 

discussion relating to the measurement setup. 

REFERENCES 

[1] K K. S. Low, W. N. Win, M. J. Er, “Wireless Sensor Networks for 

Industrial Environments”, Intl Conf. on Intelligent Agents, Web 

Technologies and Internet Commerce, Austria, Nov, 2006.  
[2] L. Ferrigno, S. Marano, V. Paciello, A. Pietrosanto, “Balancing 

computational and transmission power consumption in wireless image 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

sensor networks”. IEEE Intl Conf. on Virtual Environments, Human-
Computer Interfaces, and Measurement Systems, Italy, July, 2005. 

[3] P. Kulkarni, D. Ganesan, P. Shenoy, Q. Lu. ”SensEye, A multi-tier 
camera sensor network”. 13th annual ACM Intl Conf. on Multimedia, 
Singapore, pp. 229 – 238, 2005. 

[4] H. Sato, K. Kawabata, T. Suzuki, H. Kaetsu, Y. Hada, Y. Tobe, 

“Information Gathering by wireless camera node with Passive 

Pendulum Mechanism”, Intl Conf. on Control, Automation and 

Systems, ICCAS 2008. 
[5] A. Rowe, D . Goel,  R . Rajkumar. “FireFly Mosaic, A vision-enabled 

wireless sensor networking system”.  28th IEEE Intl.  Real-Time 
Systems Symposium. Pages, pp. 459-468, 2007. 

[6] I.F. Akyildiz, T. Melodia, K. Chowdhur, “A survey on wireless 
multimedia sensor networks”, Elsevier–Computer Networks, Mar. 2007. 

[7] A. Rowe, A. Goode, D. Goel, I. Nourbakhsh , “CMUcam3: An Open 
Programmable Embedded Vision Sensor”, http://cmucam.org/, 2007. 

[8] N. K. Ratha, A. k Jain, “Computer Vision Algorithms on 
Reconfigurable Logic Arrays”, IEEE Transactions on Parallel and 
Distributed Systems, vol 10, pp. 29-43, Jan. 1999. 

[9] L. Shang, A. S. Kaviani, K. Bathala, “Dynamic Power Consumption in 
Virtex-II FPGA Family”, ACM/SIGDA 10th Intl. Symposium on Field-
Programmable Gate Arrays, pp. 157– 164. 2002. 

[10] W. J. MacLean. “An Evaluation of the Suitability of FPGAs for 
Embedded Vision Systems”. IEEE Computer Society Conf. on 
Computer Vision and Pattern Recognition, pp.25-25 Jun. 2005.  

[11] N. Lawal, B. Thörnberg, M. O' Nils, “Power-aware automatic constraint 
generation for FPGA based real-time video processing systems”, Proc. 
IEEE Norchip Conf., 2007, pp. 124-128, 2007. 

[12] M. Sen, I . Corretjer, T . Lv, S.S.Bhattacharyya, F. Haim, W. Wolf, S . 
Saha, S. Jason. “Dataflow-Based Mapping of Computer Vision 
Algorithms onto FPGAs”. Hindawi Publishing Corporation EURASIP 
Journal on Embedded systems, vol. 2007, Jan 2007. 

[13] C.H. Zhiyong, L. Y.Pan, Z. Zeng, M.Q.-H Meng. “A Novel FPGA-
Based Wireless Vision Sensor Node”. Proc. the IEEE Intl Conf. on 
Automation and Logistics Shenyang, China. 2009.   

[14] W. Chan, J. Chang,T. Chen, Y. Tseng, S. Chien, “Efficient Content 
Analysis Engine for Visual Surveillance Network”, IEEE Transactions 
on Circuits and Systems for Video Technology, pp. 693-703, vol,19, 
2009. 

[15] L. Gasparini, R. Manduchi, M. Gottardi, D. Petri, “An Ultralow-Power 
Wireless Camera Node: Development and Performance Analysis”, IEEE 
Transactions on Instrumentation and Measurement, vol PP, pp1-9, 
2011.  

[16] Z. Y. Cao, Z. Z. Ji, M. Z.Hu,” An image sensor node for wireless sensor 
networks”, Intl Conf. on    Information Technology: Coding and 
Computing, vol. 2, pp. 740-745, 2005.  

[17] F. Linnarsson, C. Peng, B. Oelmann. ” SENTIO: A Hardware Platform 
for Rapid Prototyping of Wireless Sensor Networks”. IECON 2006-
32nd Annual Conf. of IEEE Industrial Electronics, 2007. 

[18] AT32UC3B0256, AVR32, Available: http://www.atmel.com/ 

[19] CC2520 transeiver, Available: http://www.ti.com/ 

[20] IGLOO video kit (2009), Available:  http://www.actel.com/ 

[21] Spartan-6 family overview (2010), Available: http://www.xilinx.com/ 

[22] Numonyx Serial Flash Memory, Available: http://www.micron.com/ 

[23] N. R. Pal and S. K. Pal, “A Review on Image Segmentation 
Techniques,” Pattern Recognition, vol. 26, pp. 1,277–1,294, Sept. 
1993. 

[24] A. W. Malik, B. Thörnberg, X. Cheng and N. Lawal, “Real-time 
Component Labelling with Centre of Gravity Calculation on FPGA”, 
The Sixth Intl Conf. on Systems, St. Maarten, 23-28 Jan, 2011.  

[25] TIFF, Revision 6.0, 1992, Available: http://www.itu.int/itudoc/itu-
t/com16/tiff-fx/docs/tiff6.pdf 

[26] JBIG2, Available: http://jbig2.com/jb2com_toc.html 

[27] K. Khursheed, M. Imran, M. O’ Nills, N. Lawal. “Exploration of Local 
and Central Processing for a Wireless Camera Based Sensor Node”. 
Proc. IEEE Intl Conf. on Signal & Electronic System, Gliwice, Poland, 
Sept. 2010. 

[28] M. Imran., K. Khursheed, M. O’ Nills, N. Lawal. “Exploration of Target 
Architecture for a Wireless Camera Based Sensor Node“. 28th Norchip 
Conference, Finland,  Nov. 2010. 

[29] K. Khursheed, M. Imran, A.W. Malik, M. O'Nils, N. Lawal,   B. 
Thornberg, ”Exploration of Tasks Partitioning between Hardware 
Software and Locality for a Wireless Camera Based Vision Sensor 
Node”, 6th Intl. Symposium on Parallel Computing in Electrical 
Engineering, UK, pp. 127-132, 2011.  

[30] Xilinix power tools tutorial (2010), Available: http://www.xilinx.com/ 


