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Abstract. Wireless vision sensor network is an emerging 
field which combines image sensor, on board computation and 
communication links. Compared to the traditional wireless 
sensor networks which operate on one dimensional data, 
wireless vision sensor networks operate on two dimensional 
data which requires both higher processing power and 
communication bandwidth. The research focus within the field 
of wireless vision sensor network has been based on two 
different assumptions involving either sending data to the 
central base station without local processing or conducting all 
processing locally at the sensor node and transmitting only the 
final results. In this paper we focus on determining an optimal 
point for intelligence partitioning between the sensor node and 
the central base station and by exploring compression 
methods. The lifetime of the visual sensor node is predicted by 
evaluating the energy consumption for different levels of 
intelligence partitioning at the sensor node. Our results show 
that sending compressed images after segmentation will result 
in a longer life for the sensor node.

I.      INTRODUCTION

The camera based networks for security purposes 
presented at an early stage in the literature included
independent cameras which transmitted continuous data 
streams to the central base station for further processing. 
This required a great deal of resources such as a wired 
network, high energy consumption and significant amounts 
of storage space [2]. The technological development in 
image sensors, sensor networking, distributed processing, 
low power processing and embedded systems have paved 
the way for smart camera networks which have the ability 
to perform even the more complex jobs by using batteries, 
a wireless link and possessing only a limited storage 
facility. Such camera based networks could easily be 
installed in out-door areas where there is a limited power 
availability, where access is difficult and where it is 
inconvenient to modify the locations of the nodes or to 
frequently change the batteries. Later work in Wireless 
Vision Sensor Networks (WVSN) consisted of a number of 
smart cameras in which an individual smart camera is 
referred to as a sensor node. The node is built from an 
image sensor, local processor, storage facility and wireless 
transceiver [9, 12]. The WVSN is expected to work under 

stringent power supply conditions, on board processing 
capability and storage and transmission bandwidth 
requirements. In order to have real-time performance, the 
smart cameras must be able to perform processing, be able 
to make some subsequent intelligent decisions and then to 
provide successful transmission over the wireless link.  The 
focus is on producing a system which is power aware, is 
able to perform the necessary on board computations, has
sufficient on board storage, and is able to fulfill the energy 
requirements of the system and transmission bandwidth.

The energy consumption and bandwidth are major 
constraints in wireless vision sensor networks. A low
energy requirement is of great interest as the choice of 
wireless for sensor network means that wiring is a difficult 
option. The large amount of data generated by a vision 
sensor node requires a great deal of energy for processing 
and transmission bandwidth compared to other types of 
sensor networks [2, 3, 5]. It is the case that on board 
processing and communication both influence the energy 
consumption and that more on board processing reduces
the energy consumption due to communication and vice 
versa [1]. Different software and hardware approaches are 
proposed in order to minimize the energy consumption in 
wireless sensor networks [1, 4]. The majority of the work 
has concluded that by reducing the energy consumption due 
to communication this will result in less total energy 
consumption. A hybrid vision system is proposed in [7],
which uses two kilo pixel imagers for low resolution images
and one high resolution camera module for detailed object 
snapshots. One of the kilo pixel imagers constantly 
monitors objects entering the field of view and when an 
object is detected, the second low resolution image sensor 
is activated to compute the location and size of the object 
based on stereo vision. Subsequently, a high resolution 
camera is triggered so as to capture a high resolution gray 
or color region of interest including only the detected 
object.  CMUcam3 [8] was presented by Carnegie Mellon 
University in 2007. It was the third version of CMUcam. 
FireFly Mosaic [9] wireless camera and consists of a 
wireless sensor platform FireFly [10] node together with a 
CMUcam3. It uses a real-time distributed image processing 
infrastructure together with a collision free TDMA based 
communication protocol. The FireFly Mosaic has the 
ability to handle multiple cameras performing local 

Exploration of Local and Central Processing for 
a Wireless Camera Based Sensor Node

Khursheed Khursheed, Muhammad Imran, Mattias O’Nils, Najeem Lawal                                                                             
Department of Information Technology and Media, Division of Electronics Design,                                      

Mid Sweden University, Sweden                                                                                                
{khursheed.khursheed,muhammad.imran,mattias.onils,najeem.lawal}@miun.se



processing. The FireFly is a low-cost, low power sensor 
platform that uses a real time operating system and supports 
an expansion board for light, temperature and battery-
voltage level sensing capabilities. SensEye[11] is a multi-
tier of heterogeneous wireless nodes and cameras which 
aims at low power, low latency detection and low latency 
wake-up. In this approach low power elements are used to 
wake up high power elements. Resource-constraints mean 
that low power sensors are used to perform simple tasks 
while high power sensors conduct the more complex tasks.    
      In the literature many authors have focused on different 
implementation strategies for vision processing at the 
sensor nodes. Some authors have taken the images of the 
field of view, compressed the images and sent them to the 
base station for further processing [1]. In this case the 
communication cost is much higher because they have not 
performed any vision processing at the sensor node and are 
sending compressed images directly to the base station. The 
main processing unit at the sensor node must also be alive 
for the communication of these compressed raw images and 
hence its power must be considered. On the other hand 
some authors have performed all the vision processing at 
the sensor nodes and have merely sent the object features to 
the base station as the final results. In this case the 
communication costs are much lower but the computational
costs are very high because the sensor node is performing 
operations for a longer time. An algorithm is required for 
partitioning the level of vision processing between the 
sensor node and the central base station, so that the overall 
power consumption is reduced. In our work we have 
addressed this intelligence partitioning between sensor 
nodes and the central base station. We have calculated the 
total energy consumption for different levels of intelligence 
at the sensor nodes by means of a summation of the 
communication and computational energy. Fig.1 shows the 
different levels of partitioning in our algorithm. Based on 
our results for the total energy consumption we have 
determined that the energy consumption will be at a 
minimum if we perform computation up to segmentation at 
the node, perform TIFF compression and then send the 
results. The dashed lines after some stages in Fig. 1 show
that the results after these stages could be compressed and 
sent to the base station. 

II.      TEST SYSTEM

The application for our work is the detection of magnetic 
particles in a flowing liquid. The particles are classified 
both by their size and number and this   system is used for 
failure detection in machinery. The flowing liquid in the 
system might contain air bubbles which can be identified as
objects. The removal of the bubbles can be handled in two 
different ways. In the pixel based method, the individual 
pixels of each bubble are identified and removed from the 
image, while in an object based method, the whole bubble 
is treated as a moving object, which can be identified and 

removed. The following are the main stages of our 
algorithm.
Pre-Processing: In this step the image is subtracted from 
the background. In the pixel based method, the background 
is initially stored and this stored background is used for the 
subtraction operation. In the object based method, a real 
time background is generated from the original image by 
using a low pass filter. This real time estimated background 
is then subtracted from the image in order to detect objects 
which could be magnetic particles or bubbles. All pixels
having a gray scale value less than a pre-defined threshold 
are assigned a zero(representing black) value and all other 
pixels in the image are assigned the value one (representing 
white). A morphological operation is then performed on the 
segmented image in order to remove one to two pixel false
objects. 
Bubble Remover: Bubbles can be identified as moving 
objects, so if an object changes its location in two 
consecutive frames, this provides confirmation that it is a
bubble. In the pixel based method, the corresponding pixels 
in two consecutive frames are compared and if their gray 
scale values are   different then a zero is placed at that pixel 
location. In this way, the bubbles are easily identified and 
removed. In the object based method, the location and area 
of the objects are compared in two consecutive frames and 
if the location or area for any object has changed, this 
means that it is a bubble and is removed. The challenge 
associated with this method is that, sometimes, due to 
changes in the illumination, the area of the object could be 
decreased or increased in consecutive frames and that 
magnetic particles might be treated as bubbles.  We have 
dealt with this challenge by introducing a flexibility of one 
to three pixel variations in the area and location of objects 
in consecutive frames.  The bubbles in two consecutive 
frames definitely have a variation which exceeds three 
pixels because of the high speed of the oil. In the pixel 
based method the bubbles are removed after the 
morphological operations while in the object based method 
the bubbles are removed after classification as shown by 
the dotted lines in Fig. 1.
Labeling and Classification: Each object is assigned a 
unique label. Following this, the areas and locations of each 
object are determined. The final results are transmitted to 
the central base station through an IEEE 802.15.4
transceiver.
Image Compression: TIFF compression could be 
performed after stages A, B, C or D as shown in Fig. 1.
In Fig.1, images are taken from a setup of the system in 
which A is the image after the image has been subtracted 
from the background, B is the image after segmentation and 
C is the result after the morphological operation. In images 
A, B and C bubbles are visible which are removed in image 
E. For these images we have applied an object based 
bubbles remover algorithm.



Fig.1. Algorithm flow for possible intelligence partitioning

III.      TARGET PLATFORM

The target Platform is SENTIO32 [12], a platform for 
wireless sensor networks developed at Mid Sweden 
University. It has a CC2520 RF transceiver with 2.4 GHz 
IEEE 802.15.4, with on-board antenna. SENTIO 32 has a 
high performance low power AVR32 32bit RISC MCU 
running at 60MHz for only 23.5mA. It has 256KB flash, 
32KB SRAM, DSP instruction set and peripheral DMA 
channels. It has a low sleep power consumption of 60μA 
when only the 32 KHz clock is running. It has a support to 
integrate a microSD card up to 16GB and data I/O speeds
up to 50Mb/s. Images are captured using the CMOS Image 
Sensor.

IV.      RESULTS

Table 1 shows the energy consumption of individual 
components in the sensor node. These energies are captured 
by characterizing each function separately on the SENTIO 
32 platform. Table 2 shows a comparison of the energy 
consumption of the AVR32 for different intelligence 
partitioning strategies. It can be observed from Table 2 that 
sending the raw images (RAW_IMG) directly to the base 
station results in the minimum computational energy 
(0.835 mJ) but if we perform all image processing tasks at 
the sensor node and only transmit the final object features 
(FEATURES) to the base station, a higher computational
energy is required (639.408mJ). Sending raw images
implies that more data is sent over the wireless link which 
will contribute to the higher communication energy shown
in Table 3. If only FEATURES are sent, it will contribute 
to a minimum communication energy (1.0179 mJ) but on 
board computational energy is much higher (639.408 mJ).
Sending a compressed image after segmentation is the 
optimal solution. 
If raw data (RAW_IMG) or compressed raw data 
(COMPRES_RAW) is sent from the sensor node, then the 
energy consumption is higher due to the higher 
communication cost as shown in Fig. 4 and Fig. 5. When 
each strategy is repeated, after a particular length of time it 
becomes visible in the life time curves of Fig. 6 that the life 

time of the strategy when a raw image is sent (RAW_IMG) 
is at a minimum, while at the other extreme, if a 
compressed binary image after segmentation is sent over 
the wireless link, this will result in a longer life time. The 
reason for this is that, at the COMPRESS_AF_SEG stage, 
the proportions in relation to the energy consumption due to
the processing and communication are such   that   this 
results in the minimum energy consumption. The life time 
is calculated using 4 AA batteries, see Fig. 6. It can be 
observed in Fig.1 that when the sample period increases,
the sleep energy also increases. For the analysis we have 
used the case in which a compressed binary image after 
segmentation (COMPRESS_AF_SEG) is sent over the 
wireless link (this strategy is chosen because it is optimal).
The conclusion drawn in this case is that as the sample 
period is increasing, the sleep energy will dominate the 
other energies.

TABLE 1. ENERGY CONSUMPTION OF INDIVIDUAL COMPONENTS

Component I (mA) V (v) T (ms) E (mJ)
Light 15 3.3 1.484 0.0734
Camera 35 3.3 9.2857 1.1
IEEE 802.15.4 40 3.3 39.78 5.250
AVR32 23.5 3.3 910.83 72.78

TABLE 2. ENERGY OF AVR32 FOR  DIFFERENT PROCESSING STRATEGIES

Processing stages No. of bytes T_AVR(ms) E_AVR (mJ)
RAW_IMG 241078 11.01 0.835
BINARY_AF_SEG 30134.75 617.43.8 46.811

COMPRESS_AF_SEG 1218 910.838 69.96
COMPRESS_AF_MOR 1282 3244.43 247.088
BUBBLE REMOVER 458 3428.56 261.064
FEATURES 114 6009.53 639.408

TABLE 3. ENERGY OF IEEE 802.15.4 FOR DIFFERENT STRATEGIES

Processing stages No. of bytes T_IEEE (ms) E_IEEE(mJ)
RAW_IMG 241078 7715.29 1018.419
BINARY_AF_SEG 30134.75 965.112 127.394

COMPRESS_AF_SEG 1218 39.78 5.250
COMPRESS_AF_MOR 1282 41.82 5.520
BUBBLE REMOVER 458 15.46 2.040
FEATURES 114 3.84 1.0179

In Table 2, E_AVR and T_AVR are the energies consumed 
and the time spent on the computation of the operations 
respectively. Similarly in table 3, the E_IEEE and T_IEEE 
are the energies consumed and the time spent on the 
communication of the results respectively.

Fig.2. Individual Components of the Sensor Node



In table 3, the T_IEEE is calculated using equation 1.
0.0001920.00003219)(XT_IEEE            (1)

where X is the number of bytes transmitted.

Fig.3. Energy consumption showing sleep energy dominancy

Fig.4. Absolute Energy Consumption for Each Strategy.

Fig.5. Relative Energy for Each Strategy.

V.       CONCLUSION

We have shown that partitioning between local and central 
computation affects the energy consumption in visual 
sensor nodes. When compressed data is sent after 
segmentation, it will result in less energy consumption and 
hence the sensor nodes will last longer. For a high sample 
frequency the main challenge of increasing the life time of 
the sensor node is to optimize the vision processing. When 
the sample period is 15 minutes, the life time of the sensor 
node for sending raw data is less than a year and, for the 

optimum case, when the local node is performing the 
operations of preprocessing, compression and then sending 
the compressed binary image to the central base station for 
further processing, the life time of sensor node is 4.22 years
as shown in Fig. 6.

Fig.6. Life time of sensor node for different strategies.
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