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Abstract

The rapid development of video applications for TV, the internet and mobile phones
is being taken one step further in 2010 with the introduction of stereo 3D TV. The 3D
experience can be further improved using multiple views in the visualization. The
transmission of 2D and 3D video at a sufficiently perceived quality is a challenge
considering the diversity in content, the resources of the network and the end-users.
Two problems are addressed in this thesis. Firstly, how to improve the perceived
quality for an application with a limited bit rate. Secondly, how to ensure the best
perceived quality for all end-users in a heterogeneous network.

A solution to the first problem is region-of-interest (ROI) video coding, which
adapts the coding to provide a better quality in regions of interest to the viewer. A
spatio-temporal filter is proposed to provide codec and standard independent ROI
video coding. The filter reduces the number of bits necessary to encode the back-
ground and successfully re-allocate these bits to the ROI. The temporal part of the
filter reduces the complexity compared to only using a spatial filter. Adaption to
the requirements of the transmission channel is possible by controlling the standard
deviation of the filter. The filter has also been successfully applied to 3D video in the
form of 2D-plus-depth, where the depth data was used in the detection of the ROI.

The second problem can be solved by providing a video sequence that has the
best overall quality. Hence, the best quality for each part of the network and for
each 2D and 3D visualization system over time. Scalable video coding enables the
extraction of the parts of the data to adapt to the requirements of the network and
the end-user. A scheme is proposed in this thesis that provides scalability in the
depth and view domain of multi-view plus depth video. The data are divided into
enhancement layers depending on the content’s distance to the camera. Schemes
to divide the data into layers within a view and between adjacent views have been
analysed. The quality evaluation indicates that the position of the layers in depth
as well as the number of layers should be determined by analysing the depth dis-
tribution. The front-most layers in adjacent views should be given priority over the
others unless the application requires a high quality of the center views.





Sammanfattning

Den snabba utvecklingen av videoapplikation för TV, Internet och mobiltelefoner
tar ytterliggare ett steg i och med introduceringen av stereo 3D TV under 2010. Up-
plevelsen av 3D kan förstärkas ytterliggare genom att använda multipla vyer i visu-
aliseringen. Skillnaden i innehȧll, nätverksresurser och slutanvändare gör överföring
av 2D och 3D video med en tillräcklig hög upplevd kvalitet till en utmaning. För det
första, hur man ökar den upplevda kvalitén hos en applikation med en begränsad
överföringshastighet. För det andra, hur man tillhandahȧller den bästa upplevda
kvalitén hos alla slutanvändare i ett heterogent nätverk.

Region-of-interest (ROI) videokodning är en lösning till det första problemet,
vilken anpassar kodningen för att ge högre kvalitet i regioner som är intressanta
för användaren. Ett spatio-temporalt filter är föreslaget för att tillhandahȧlla codec-
och standardoberoende ROI videokodning. Filtret reducerar antalet bitar som krävs
för att koda bakgrunden och omfördelar dessa till ROI:t. Den temporala delen av
filtret minskar komplexiteten jämfört med att använda enbart spatiala filter. Filtret
kan anpassas till överföringshastigheten genom att ändra standardavvikelsen för fil-
tret. Filtret har ocksȧ använts pȧ 3D video i formen 2D-plus-depth, där djupdata
användes i ROI detektionen.

Det andra problemet kan lösas genom att tillhandahȧlla en videosekvens som
har högsta möjliga kvalitet i hela nätverket. Därmed även den bästa kvaliteten
för for varje del av nätverket och för varje 2D- och 3D-skärm. Skalbar videokod-
ning gör det möjligt att extrahera delar av datan för anpassning till de rȧdande
förutsättningarna. En metod som ger skalbarhet i djupet och mellan kameravyer
hos multi-view plus depth video har föreslagits. Videosekvensen delas upp i lager
beroende pȧ innehȧllets avstȧnd till kameran. Metoder för att fördela data över lager
i djupet och mellan närliggande vyer har analyserats. Kvalitetsutvärderingen visar
att lagrens position i djupet och antalet lager bör bestämmas utifrȧn fördelningen
av djupdata. De främsta lagren i närliggande vyer bör ges högre prioritet om inte
applikationen kräver hög kvalitet hos vyer i centrum.
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VII L. S. Karlsson and M. Sjöström. Multiview scalable video coding based on depth
data distribution. Submitted to IEEE Transactions on Circuits and Systems for Video
Technology





Terminology

Abbreviations and Acronyms

2D Two-Dimensional
3D Three-Dimensional
B 8x8 pixels Block
B-frame Bidirectionally predictive coded frame
CABAC Context-based Adaptive Binary Arithmetic Coding
CGS Corse Grain quality Scalability
DCT Discrete Cosine Transform
DES Depth Enhanced Stereo
FGS Fine Grain quality Scalability
fps Frames Per Second
GOP Group Of Pictures
GGOP Group of GOPs
HVS Human Visual System
I-frame Intra coded frame
ITU International Telecommunication Union
kbps Kilobits Per Second
MB 16x16 pixels Makroblock
MGS Medium Grain quality Scalability
MOP Matrix of pictures
MPEG Moving Photographic Experts Group
MSE Mean Square Error
MVC Multi-View Codin
MVD Multi-View plus Depth
LDV Layered Depth Video
P-frame Predictive coded frame



xviii CONTENTS

PSNR Peak Signal to Noise Ratio
RGB Red, Gren, Blue.
ROI Region Of Interest
SAD The Sum of Absolute Differences.

SDM Sample Density Measure
SNR Signal to Noise Ratio
SOM Self-Organizing Map
SSIM Structural Similarity Metric
SP Spatial
SPTP Spatio-temporal
SVC Scalable Video Coding
TSL Tint, Saturation, Luminance
TP Temporal
VLC Variable Length Code
VQM Video Quality Metric
YCbCr Colorspace with one luma component and two chrominance com-

ponents, blue and red

Mathematical Notation

α A linear weight.
B Blue component of the RGB color space.
Cb The blue-difference chrominance component in the YCbCr color

space.
Cr The red-difference chrominance component in the YCbCr color

space.
D A 4× 4 matrix that contains R and t.
G Green component of the RGB color space.
K Calibration matrix of a camera.
I(u, v), The color values of pixel (u, v).
IL(uL, vL), The color values of pixel (uL, vL).
IR(uR, vR), The color values of pixel (uR, vR).
M 3D point (x, y, z, 1) in the scene (homogenous coordinates).
m A point in the image plane (u, v) of a camera.
mL A point in the image plane (uL, vL) in the left view.
mv A point in the image plane (u, v) in a virtual view.
MSE Mean square error.



CONTENTS xix

N Total number of pixels in a video signal.
P Projection matrix of a camera.
PL Projection matrix of the left view.
Pv Projection matrix of the virtual view.
PSNRdB Peak signal to noise ratio.
R Red component of the RGB color space.
R Rotational matrix of a camera.
rij Component in row i, column j of R.
t Transformation vector of a camera.
tL Transformation vector of the left view.
tR Transformation vector of the right view.
ti Component in row i of t.
(u, v) Coordinate system of the image plane of a camera.
(uL, vL) Coordinate system of the image plane of the left camera.
(x, y, z) Coordinate system of a 3D scene.
xi Pixel i in the original video sequence.
yi Pixel i in the distorted video sequence.
Y The intensity component in the YCbCr color space.
Zfar The maximum depth value of the scene.
Znear The minimum depth value of the scene.





Chapter 1

Introduction

The interest in various types of media applications, including movies, TV-programs,
small video sequences, video conversations and surveillance applications has cre-
ated a demand for delivering large amounts of video data. High performance fiber
networks make it possible to transmit multiple video sequences at the same time. In
reality, wireless networks, mobile networks and low performance internet connec-
tions may be used to transmit this data and the applications may address a wide
variety of devices. In addition three dimensional video is gaining ground as a form
of entertainment, increasing the demand on the networks and the range of displays.

The task of transmitting a two-dimensional (2D) or three-dimensional (3D) video
sequence to all of the end-users in this kind of network and providing the highest
perceived quality for each end-user is a difficult problem to solve. This thesis ad-
dresses possible solutions regarding the use of source coding to improve the overall
quality under these limitations. The quality of a source coded video sequence is
dependant of the bit-rate. Hence, the source coding must adapt to any bit-rate lim-
itations in the network to enable a transmission with an as high perceived quality
as possible. In this thesis a heterogeneous network is defined as a network, where
a variation in the bit-rate budget exists both locally and over time. Two possible
solutions to the problem are proposed.

1. In low bit rate video transmission the necessary encoding causes reduced qual-
ity in regions of the video sequence with high detail and motion content. The
perceived quality is experienced as particularly poor if the region contains in-
formation that is important to the viewer. For example, in a video-conferencing
sequence the face is of interest. Region of interest (ROI) coding uses this infor-
mation to increase the quality in regions that are of interest to the viewer at the
expense of the quality in the background.
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Encoding DecodingChannel

Original video
sequence

Reconstructed
video sequence

Figure 1.1: Video transmission system

2. The perceived quality and bit rate can be adapted to the conditions of the re-
ceiver using scalable video coding (SVC). This enables the extraction of parts of
one transmitted video sequence. This is useful when the full video sequence ei-
ther contains more information than the receiver requires when displaying the
video, or it exceeds the bit rate budget. An example is 3D TV, which is transmit-
ted over a network of various bit rate requirements and where the end-users
are equipped with either 2D or 3D displays. The various 3D displays use dif-
ferent techniques to depict 3D video. SVC enables the extraction of the exact
3D video data required for each display in the network and the best quality un-
der the bit rate budget of each end-user. Thus, the overall perceived quality in
the network can be increased without the cost of sending one video sequence
per additional requirement.

1.1 Two-dimensional video

A digital video sequence consists of a sequence of images, which are called frames.
These are extracted at a sufficiently small time interval to preserve the continuity in
the sequence. Each frame is built up from small picture elements, pixels, which de-
scribe the color at that point in the frame using three different components. A large
amount of data is needed to completely describe the video sequence. The video se-
quence is therefore encoded to reduce the amount of data. This makes transmission
over channels with limited bandwidth possible. An example of a video transmission
system can be found in fig. 1.1, where the sequence is compressed by the encoder
before it is transmitted over the channel. In the decoding step the sequence is recon-
structed. The reconstructed video sequence contains errors introduced both by the
removed information in the compression and by the distortion in the channel.
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Figure 1.2: 3D video transmission system

1.2 Three-dimensional video

A 3D experience can be provided in a variety of ways, such as multi-view, hologra-
phy and volumetric methods. The 3D data can be stored and transmitted in formats
that range from a set of 2D video sequences of a scene (multi-view), captured at dif-
ferent camera positions, to a graphical description of the scene. In this thesis the
focus is on 3D video of a real scene. The properties of such a scene can be described
by multiple views of the scene of a sufficiently high number. The captured views in a
multi-view contain the high level of details found in a natural scene that are difficult
to represent using geometric models.

The additional dimension that the 3D video provides increases the complexity of
the whole chain from the 3D content creation to displaying the 3D video (See figure
1.2.), where the choice in all parts has an influence on the others.

• The 3D content is either created by capturing the scene with a set of cameras,
or converting existing 2D video into 3D video. The choice of the type, number
and position of cameras is connected to the other parts of the system.

• Several representations of multi-view video exists and an overview can be
found in section 2.2.1. The transmission of all views requires a high bit-rate
in general and is not necessary. Fewer views can be transmitted if depth data
is included for each view (multi-view plus depth (MVD)) or by using several
layers of data to describe what is occluded (layered depth video (LDV) and
depth enhanced stereo (DES)).

• The encoding and decoding of multi-view sequences is based on the coding of
2D video, the difference being that redundant information between the camera
views can be used to further compress the data. Depth data of an MVD se-
quence can be encoded as multi-view, but could be encoded more efficiently if
its characteristics are fully considered. The specific characteristics of the occlu-
sion layers in LDV and DES makes efficient coding using the current standards
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difficult. More details can be found in section 2.2.2.

• The MVD, LDV and DES representations may not contain the exact views that
are needed to display 3D. The missing views are then synthesized based on
the available data. An overview of view synthesis algorithms for MVD can be
found in section 2.3.

• There are several techniques used to display 3D video. These techniques depict
stereo or multi-view video that requires additional hardware and functionali-
ties in the form of glasses and head tracking or have built in optics that create
the illusion of 3D [1]. The transmitted data should also be able to be displayed
directly on to a 2D screen, when the receiver does not have a 3D display or a
limited bit-rate.

1.3 Perceptual quality

Video source coding in general aims to preserve quality, while reducing the bit rate.
In most cases the quality is defined by the extent of the error introduced by the
compression independent of the error’s position in the video sequence. This is a
simplification, which disregards the complexity of the human visual system (HVS).
The perceptual quality is highly dependent on the information being transmitted at
the location of the error. In regions containing details and particularly important
semantic content, such as the face in video conferencing, the impact of an error is
much greater than in the less important background. In 3D video the position in
depth and the error’s influence on the depth cues might also play an important role.

The perceived quality of 3D video depends on several factors, including the rep-
resentation format, the compression, and the synthesis of views that are not trans-
mitted directly. Another factor is the visualization system used to display the 3D
video to the viewer. Hence, measuring the perceived quality in a separate part of the
system, such as the compression, is a challenge.

The most reliable metric for perceived quality is an extensive subjective test, how-
ever such a test is time-consuming with high requirements on the setup. Hence, a
smaller subjective test, visual evaluation by a few specialists or objective metrics that
give information of quality in parts of the 2D or 3D video sequence can provide an
indication of the perceived quality. More about methods for detecting quality in both
2D and 3D are presented in section 2.4.
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1.4 Region-of-interest video coding

Video coding is preformed to optimize the average quality under the constraints of
a limited bit-rate. The result of the compression is reduced quality in regions of the
sequence containing high detail and motion content, such as a talking head. An ex-
ample is depicted in fig 1.3.a), containing an image from a video sequence. The face
is moving compared to the background and contains details. Hence, the perceived
quality of this video sequence will be reduced, since the errors are concentrated to
the facial region.

If an interesting region can be detected, ROI video coding can be applied. ROI
coding increases the quality in the interesting region at the expense of the quality in
the background as in fig 1.3.b. The result is an increase in perceived quality without
increasing the bit rate.

The ROI video coding consists of two main steps. The ROI must firstly be de-
tected, which requires previous knowledge of what a human would find interesting
in the sequence; the perceived quality may even be reduced if the correct ROI is
not detected. Secondly, the regions of the video that are not classified as ROI (back-
ground) are compressed more strongly than the ROI. This is achieved by bit allo-
cation, which controls how many bits will be allocated to the different parts of the
video sequence. More details concerning ROI video coding are presented in chap-
ter 3.

1.5 Scalable video coding

Scalable video coding (SVC) makes it possible to use one video sequence for the
entire heterogenous network and to extract the necessary information from this se-
quence depending on the characteristics of a specific receiver. This partitioning of
the data in layers is based on how important that data is for the perceived quality of
the video sequence. The first layer, the base layer, must then contain the necessary
data to play out the video sequence in the least acceptable quality. The rest of the
data is partitioned into enhancement layers that can be added one by one to increase
the quality of the video sequence. If all layers are used the quality is approximately
the same as when traditional video coding is applied to that particular sequence with
the same level of compression.

In most cases the resulting bit stream is reordered to facilitate an easy extraction
of the parts that can be transmitted in that part of the network or that a receiver re-
quires. An example is shown in figure 1.4. The bit stream of encoded video sequence
is in general transmitted frame by frame as in the top of the figure. Scalability can
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Compression

Compression

ROI

ROI detection

(a) Video Coding

(b) ROI Video Coding

Figure 1.3: ROI video coding. a) All parts of the frame are compressed equally, when or-
dinary video coding is applied. b) The perceived quality can be improved by applying more
compression to the background than the ROI.
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frame 0 frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 frame 7 frame 8 frame 9 frame 10
…

frame 0 frame 4 frame 2 frame 6 frame 1 frame 3 frame 5 frame 7 frame 8 frame 12 frame 10

…

Base layer

Enhancement layer 1

Enhancement layer 2

Enhancement layer 3
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Figure 1.4: Examples of a bit stream. The bit stream produced by traditional encoding (top),
temporal SVC (middle), and spatial/quality SVC (bottom). The decoder can then extract just
the base layer or the number of enhancement layers that it can afford to increase the quality
of the video sequence.

be achieved in various ways and one of them, temporal scalability, is depicted in the
middle of figure 1.4. Temporal scalability provides the means to extract frames at the
desired frame rate. SVC can also be used to provide frames at various resolutions
(spatial scalability) or with various amounts of details (quality scalability). An exam-
ple of how the bit stream can be organized for spatial or quality scalability is found
at the bottom of figure 1.4. In addition to reordering the data, the encoding of the
data must be adapted to the characteristics of the data in the layers. If the encoding
of the data of a layer depends on data from higher layers, then errors occur if the
higher layers are not available. These types of errors might cause errors in several
frames in a row. More details on SVC can be found in chapter 4.

1.6 2D and 3D Video coding standards

The Moving Pictures Reference Group MPEG [2], which is a working group of ISO/IEC
and the International Telecommunications Union ITU [3] are responsible for produc-
ing the main standards available for video compression standards. These include
MPEG-2 [4], H.261 [5] and H.263 [6], which are intended for different applications
with block-based hybrid coding as the common factor. (See section 2.1.1). The stan-
dard MPEG-4 [7] includes additional features such as object-based coding. (See sec-
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tion 3.5). The most recent standard is H.264 [8][9], also called MPEG-4 AVC, which
has a higher compression efficiency than previous standards.

Two extensions in H.264 are of interest in this thesis. The MPEG-C part 3 (ISO/IEC
23002-3) [10] supports coding of the multi-view and 2D plus depth representations.
Scalability approaches such as temporal, spatial and quality scalability are supported
by the SVC extension of H.264 [11].

These standards describe the features supported by the encoder, define the syntax
and semantics of the bit stream and the manner in which the transmitted bit stream
should be parsed and decoded [12]. This enables some freedom when implementing
the various codecs.

1.7 Overall aim

The primary goal of this thesis is to analyze how source coding can be used to in-
crease the perceived quality of all end-users in a heterogeneous network. The net-
work is heterogeneous in the sense that the limitations on bit rate may vary locally
and over time. The display systems used by the end-users may also vary. The knowl-
edge that regions with certain characteristics are more important to perceived quality
than others is considered in this thesis.

1.8 Scope

This thesis will address source coding of 2D and 3D video sequences captured from
real scenes. View synthesis is included in the thesis as a tool to provide the necessary
views to display 3D from a coded 3D video sequence. The operations performed on
the encoded data and its transmission are not considered in this thesis, except that
parts of the network are assumed to be subjected to a limited bit-rate. No transmis-
sion errors are taken into account.

Perceived quality is difficult to measure without resorting to an extensive sub-
jective analysis that requires both time and careful planning of the execution of the
tests. Due to the limitations of time and other resources objective quality metrics
based on the peak-signal-to-noise-ratio (PSNR) were used in the quality evaluation,
since the PSNR metric is still used extensively in the field of video coding. Extra
information about the perceived quality was provided by PSNR metrics for content
at either specific regions (ROI and background) or in the 3D case for each rendered
view and in relation to the depth of the scene. The results was either verified using a
minor subjective test or by visual examination of parts of the data by experts. (More
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about quality metrics is found in section 2.4.)

1.8.1 ROI video coding

The first part of the thesis deals with how to use ROI video coding to improve per-
ceived quality at a limited bit rate. It is assumed that the ROI has already been
successfully detected. Only pre-processing methods are addressed, since methods
associated with altering the encoder means that the implementation must be remade
each time the encoder is changed. Pre-processing methods in both the spatial and
temporal domain are investigated.

In the tests of the spatio-temporal filter only 2D and 2D plus depth video se-
quences involving communicating humans are considered in order to limit the im-
pact of false detections of the ROI. Thus only sequences were applied, where the face
detection algorithm was successful. However, it can be assumed that the methods
could be applied to any type of ROI as long as the ROI detection is successful.

The depth data was used in the ROI detection, when the ROI coding approach
was extended to 2D plus depth video sequences.

The performance of the spatio-temporal filter was evaluated by a qualitative anal-
ysis of the effect the spatial and temporal parts of the filter have on the encoding and
on computational complexity. In addition, quantitative tests are performed using
objective quality metrics that analyse the ROI region and the background separately.
A minor subjective test is used to verify the results.

1.8.2 Scalable video coding

In the second part of the thesis, methods to provide scalable video coding for multi-
view data are analyzed. The multi-view plus depth representation was chosen due
to its ability to provide quality for data at higher disparity than 2D plus depth at
the same time as the cost in bit rate is lower than transmitting all views. Layered
depth video (LDV) could decrease the bit rate further, but is not chosen due to the
increased coding complexity, higher sensitivity to errors in the depth data and risk
of artifacts in synthesized views. The details concerning 2D plus depth and LDV are
found in section 2.2.1.

In this thesis the focus is on scalability schemes that utilize the 3D characteristics
of the sequence, such as the additional views and the depth information. Therefore,
temporal, spatial and quality scalability and other 2D video based scalability meth-
ods fall outside of the scope of this thesis.

The focus of the thesis is on the compression and therefore a basic rendering
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algorithm will be chosen to make performance tests possible. The rendered sequence
is analysed is evaluated using a objective metric to measure the effect the addition of
each layer has on the overall quality, as well as on the bit rate.

Subjective tests of 3D video are considered to fall outside of the scope of this
thesis, due to lack of time and resources. An indication of the perceived quality of the
rendered 3D video sequence is provided by quantitative evaluation. The evaluation
uses objective metrics that provide information of the quality at different depths or
per view. This is combined with a visual evaluation of selected views.

1.9 Concrete and Verifiable Goals

1. Propose a codec independent region-of-interest approach that is applied in
both the temporal and spatial domain to increase the perceived quality in a
2D video sequence at a fixed bit rate.

2. Provide a scheme that extracts regions-of-interest in 2D plus depth video se-
quences.

3. Propose a scalable coding algorithm of multi-view plus depth data that ad-
dresses the depth domain using the concept that some regions in the video
sequence are more important than others.

1.10 Outline

The thesis is organized as follows: In chapter 2 an overview of the related works in
video coding, multi-view 3D video, rendering and quality measures are presented.
A more detailed description of the fields ROI video coding and scalable video coding are
found in Chapters 3 and 4. Each of the chapters contains a presentation of the related
works of that specific field and at the end of each chapter the author’s contributions
to that field are summarized. A summary of the conclusions and future works are
given in chapter 5. The eight papers that contain the original contributions can be
found in the appendix.

1.11 Contributions

The author’s contributions are presented in the seven papers included in this thesis.
The author is responsible for the concept and ideas, evaluation criteria, tests, analysis
and presentation in all papers. The co-authors have contributed to the formulation
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of evaluation criteria and the analysis of the results in all papers. In paper VI the
co-author (first author) is also responsible for the main part of the presentation. The
main contributions in the thesis are:

1. a codec-independent spatio-temporal filter with a gradual transition from back-
ground to ROI to avoid artifacts at the ROI border is proposed in paper II. The
filter increases the coding efficiency in both the spatial and temporal domain
and has a lower complexity than when only applying the spatial filter proposed
in paper I.

2. a theoretical analysis of the effects of the spatial and temporal parts of the
spatio-temporal filter concerning coding efficiency, ability to reallocate bits from
background and computational complexity (paper II and III). The impact of the
choice of filter parameters of the spatial filter on rate-distortion is also analyzed
in paper III.

3. an analysis of the objective performance (paper II and paper III) and the spatio-
temporal filter’s effect on subjective quality (paper III).

4. an approach to detect ROI in a 2D plus depth video sequence using the depth
data and additional ROI characteristics and apply the spatio-temporal filter.
(Paper IV.)

5. a scalable coding algorithm of the color part of multi-view plus depth data
that allows parts of a view to be extracted depending on the depth values in
the depth data is proposed in paper V. This is combined with view scalability
to ensure the presence of color and depth data at all depths and to increase the
quality of the center views.

6. three different algorithms regarding how to extract the layers based on depth
data are proposed in paper VI and to use the same scalability approach to the
depth data is proposed in paper VII.

7. strategies regarding how to prioritize between the data of the views in the en-
hancement layers if the multi-view plus depth sequence contains more than
three views (paper VII).

8. an analysis of the effect of the layer assignment schemes on rate-distortion (pa-
per VI and VII) and how the quality is affected per view and in relation to
depth (paper VII).





Chapter 2

2D and 3D video coding

The vast field of video coding has been thoroughly researched, but the changing
methods of communication, new applications and the increased interest in 3D video
has raised new research issues. In this thesis the problem of providing high quality
2D and 3D video over heterogeneous networks is addressed, where the bit-rate re-
quirements as well as the types of end devices are variable. The aim of this chapter
is to provide the basic knowledge of video coding, 3D in the form of multi-view and
the rendering of virtual views from a multi-view plus depth video sequence, neces-
sary to understand the rest of the thesis. The chapter is concluded by an overview of
quality measurements.

2.1 Video source coding

A digital 2D video sequence consists of a sequence of frames, in which each frame
contains a large number of pixels. The video sequence is perceived as continuous
when the pixels are sufficiently small and the frames are densely spaced in time.
The perceived quality of the video sequence depends on the number of pixels (reso-
lution) and the number of frames per second (frame rate). At the same time, a video
sequence has a predictable appearance, with large areas containing data that are sim-
ilar both within that frame and compared to the previous frames. This redundancy
in the data is the key to compressing the video sequence with as little impact on
quality as possible.
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Figure 2.1: The division of a video frame into macro-blocks (MB), blocks (B) and pixels.

2.1.1 Block-based hybrid coding

Most video coding standards are based on block-based hybrid coding. The basic
scheme partitions each frame into 16x16 pixel macro-blocks (MB) and these MBs are
further partitioned into blocks (B) of 8x8 pixels (See figure 2.1). Each frame is either
intra-coded using only information within the frame, or inter-coded, which indicates
that information from other frames is also used. These two methods provide the
scheme’s hybrid character.

In an intra-coded frame each B is subject to transform coding using the Discrete
Cosine Transform (DCT) (See fig 2.2). The DCT represents the information in each
block using a mean value of the block and the deviation from this mean value using
combinations of 63 different patterns. Video usually contains several one colored ar-
eas, which in this case would be represented as one value instead of 64 values. In the
case of deviations from this mean value, only a few of the 63 patterns are generally
necessary to express this deviation. Therefore much less information is required to
be transmitted with this representation than if the pixel values were transmitted di-
rectly. The DCT components are firstly quantized and then encoded using a variable
length code (VLC), before they are transmitted.

In the inter-coded frames, the fact that only minor changes occur between two
frames is used in the encoding. This change can be represented by motion vectors that
represent the translation of a macro-block compared to its best match in the previous
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Figure 2.2: Discrete Cosine Transform (DCT) of a block within a frame followed by quantization
of the resulting components.

frame. (See fig 2.3). The error between the MB and its best match in the previous
frame, the prediction error, is transformed using the DCT and thereafter quantized.
The motion vectors and the quantized prediction error are encoded using VLC. The
result is transmitted in a bit stream. The bit stream is decoded at the receiver by
performing the reverse operations associated with the encoding of both the intra-
and inter-coded frames in order to reconstruct the sequence at the receiver side.

The video sequence is divided into group of pictures (GOP) that provide both
a point of access and errors in the prediction do not propagate outside of the GOP.
(See fig. 2.4.) Three types of frames are in general used in the encoding. I-frames
are encoded using strictly intra-coding. Hence, an I-frame provides a point of access
and prevents propagation of errors. A P-frame, on the other hand, is encoded using
inter-coding with prediction from previous frames and can therefore be compressed
more efficiently than an I-frame. The third type of frames, B-frames use both the
previous and the next frame in the inter-coding. A combination of these types of
frames is in general used to provide the least bit rate with an as little effect on the
quality.
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Figure 2.4: A video sequence consists of several group of pictures (GOP) that begin with an
I-frame and contains several B- and/or P-frames.
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2.2 Multi-view video

The recent interest in 3D technology has spawned a number of different applica-
tions including the 3D cinema [13], 3DTV [14], mobile phones [15] and visualization
of data in medicine and the industry among others. Techniques exist for viewing
movies and games using stereo technology on a PC. In general, additional glasses
are required to enable the 3D experience [16]. Several companies have indicated that
they will provide solutions for stereo 3D TV concerning both content and equipment
in 2010 [17].

Stereo video gives a 3D experience through anaglyphic, polarized or shutter
glasses. A problem associated with stereo is that it only provides 3D from one direc-
tion, whereas our visual system expects to see different parts of objects if the head is
moved. Multi-view can provide all the necessary depth cues [1] and is therefore con-
sidered one of the most promising techniques to provide a 3D experience for mul-
tiple viewers without the discomforting glasses and with less restrictions on head
movement. Several full resolution video sequences are required to depict multi-
view. One per view is necessary if the desired views are far apart. Hence, a huge
amount of data must be transmitted. Real-time transmission of multi-view in het-
erogeneous networks is possible if the redundancy between the views is exploited
using video coding.

2.2.1 Multi-view representations

The decision with regards how to represent a 3D scene has a high influence on all
other parts of the 3D video system. This decision sets the requirements on the captur-
ing process and the encoding in addition to the rendering algorithms. These depend
on the data characteristics and what information is available to render the final 3D
video sequence for a particular display. The best choice considering complexity, ad-
ditional processing, bit rate and quality also depends on the content of the scene and
the requirements on the number and position of the views that are displayed. The
high level of details in the video sequences of a natural scene and the lack of previ-
ous knowledge of the scene geometry makes image-based approaches appropriate
for natural scenes. [18]

The currently available representations for multi-view video of natural scenes
[19] range from transmitting all the data that a display requires (multi-view) to only
transmitting the color and depth data of one view (2D-plus-depth). (See top of figure
2.5.a-b.) The latter contains only one view and depth information. Each depth map
provides the depth value per pixel of one view represented by the corresponding 2D
video sequence. The depth values range between minimum Znear = 255 and the
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maximum Zfar = 0, representing the distance to the camera.

Transmitting all views requires a high bit rate, since the bit-rate increases lin-
early with the number of views. Therefore high quality can be maintained per view
independently of the disparity between the views. In the case of a small dispar-
ity between the views, the necessary views could be synthesized from the 2D plus
depth representation. Transmitting one view and depth information instead of all
the views reduces the bit rate substantially. However, a large disparity between the
existing data and the views to be synthesized increases the number of artifacts due
to disoccluded parts of the scene. Disocclusion occurs when data, occluded in the
transmitted view, are supposed to appear in the view to be rendered.

A solution to the problem associated with high bit-rates when transmitting all
views and the occlusion problem of 2D plus depth is to either include depth data
or occlusion layers to the sequence. Multi-view plus depth (MVD) contains multi-
ple views with depth information for each view (see figure 2.5.c)), whereas layered
depth video (LDV) contains the data of one view and the data of occluded parts of
that view. Hence, the extra information enables a correct rendering of disoccluded
objects. The new approach depth enhanced stereo (DES) complies with the trend in
industry to provide stereo video. It enhances the stereo pair by providing additional
depth and occlusion layers to extend the adaptability of the representation.

The addition of depth data in the representation increases the ability to create
new views from the transmitted data. However, the creation of depth data is still a
problem due to the lack of automatic capturing systems that provide accurate and
reliable depth maps.

2.2.2 Multi-view coding

The multi-view video sequence is a set of 2D video sequences, one per camera.
Therefore, the basics of the 2D video coding can be applied to multi-view sequences
using for example the H.264 or MPEG-2 standards. According to Merkle at al in [20],
H.264/AVC and hierarchical B-frames have shown to provide the highest coding ef-
ficiency. An example of hierarchical B-frames can be found in figure 2.6. The set
of 2D video sequences that constitutes a multi-view video sequence contains redun-
dancy with respect to each other. Interview redundancy can be exploited in a similar
manner as redundancy between frames using motion compensation [21]. (Motion
compensation between frames is described in section 2.1.1.) This is achieved by cre-
ating what is called a group of GOP (GGOP) [22] or matrix of pictures (MOP) [23],
which describes set of views that are grouped together in a similar manner as the pre-
viously described GOP. (Section 2.1.1.) The coding efficiency can then be improved
by allowing interview prediction as well as interframe prediction (See figure 2.7).
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Figure 2.5: Examples of multi-view representations include a) transmitting all views, b) 2D
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Figure 2.6: An example of hierarchical B-frames.
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Figure 2.7: A four view multi-view sequence encoded using hierarchical B-frames and inter-
view prediction.

One problem associated with the interview prediction in figure 2.7 is the in-
creased complexity. One option is to only allow interview prediction at key frames.
Interview prediction at key frames reduces the coding efficiency slightly compared
to its use for all frames. However, the results in [20] indicate that the reduction in
complexity of the encoder is substantial. In addition, the interview prediction might
not have any effect on the coding efficiency in the case of sparsely positioned cam-
eras in the capturing process. Disparity compensation techniques that are based on
the characteristics of interview redundancy can be used to further improve the cod-
ing efficiency. [24] Another problem is the lighting in the scene and the calibration of
the cameras at the moment of capture. The lighting and color of objects in the scene
vary depending on the relation of the photographed surfaces to the light sources in
the scene and shadowing. This can be partially solved by using illumination com-
pensation techniques [25, 26, 27].

2.2.3 Multi-view plus depth coding

An MVD video sequence can be encoded using methods for multi-view video coding
where the color sequences and the depth sequences are encoded as separate multi-
view sequences. The depth data differs statistically from the color 2D video sequence
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due to its slow changing surfaces and discontinuities at object borders[28]. In [29]
Fehn et al showed that the depth data can be compressed so that it contains only
10-20 % of the data in the color data, due to slow changing surfaces. However, it
was also shown in [30] that the low quality of the discontinuities in the depth map
has a high impact on the quality of synthesized views. Hence, the strength of the
compression should be limited to avoid severe artifacts at the discontinuities when
the standard H.264 and its extension MPEG-C part 3 are applied

It is possible to compress the depth maps more efficiently with sufficient quality if
these statistical differences are considered in the encoding. One method is to include
both depth and color data in the estimation of the motion vectors [31]. Then one
set of motion vectors can be used to encode both depth and color data in a 2D plus
depth sequence. In [32] Pourazad et al use the depth data characteristics to adapt
the mode selection of the motion vectors in H.264. Approaches that encode edges
in the depth data separately have been proposed in [33, 34, 35]. Krishnamurthy et
al in [33] applies JPEG2000 based ROI image coding where depth discontinuities are
detected as ROI. A scheme that segments and encodes the edges and main objects in
images was proposed in [34]. A video based approach for segmenting and encoding
of edges is found in [35].

Compression of MVD has been improved by using platelet-based depth coding
[36]. The result is a higher rendering quality for this scheme than for H.264 intra cod-
ing of depth images. The interview redundancy of depth data has been addressed by
Ekmekcioglu et al in [37]. They propose a temporal sub-sampling scheme to remove
frames that can be successfully reconstructed using data from neighboring views.
The previously mentioned approaches aim to adapt the encoding. A scheme that
applies pre-processing in the form of adaptive smoothing of the depth data [38] has
also been suggested.

2.3 Rendering

A representation that includes depth data and/or data of occluded objects can be
chosen to reduce the number of views to transmit and therefore reduce the total bit
rate. The views that are not transmitted can then be rendered from the provided
data. Another advantage is that one transmitted 3D video sequence can be used for
different types of 3D displays and is not limited to the camera positions of the cap-
turing process. In this thesis the focus is on multi-view plus depth video sequences.
Hence, only view synthesis based on multiple views and depth is addressed in this
section.

Three problems have to be addressed in the synthesis process assuming that the
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camera parameters of the available views are known and the camera position of the
new virtual view has already been chosen. Firstly, the data from the available views
must be transformed to the 2D plane of the view to be synthesized. This can be
achieved using 3D warping. (See section 2.3.1.) In most cases several of the views
of the multi-view plus depth sequence are used in the synthesis process to reduce
disocclusion artifacts. Hence, the next step is to merge the views. (See section 2.3.2.)
The last problem is to address holes in the final view due to round off errors in
the 3D warping, disocclusion and other artifacts, for example due to variations in
illumination between the views. (See section 2.3.3.)

2.3.1 3D warping

The depth map and the camera parameters of the available view are all that is re-
quired to project the color data from this view to a new virtual view. The camera
parameters are divided into two groups; the extrinsic and the intrinsic parameters
as described in [29, 39]. The extrinsic parameters describe the translation and ro-
tation required to transform a 3D point M = (x, y, z, 1)T of the scene into a pixel
m = (u/z, v/z, 1)T in the image plan of that camera, using homogenous coordinates.
The extrinsic parameters are represented by the transformation vector t and the 3×3

rotational matrix R. The intrinsic parameters describe the characteristics of the cam-
era that influences how each pixel in the camera coordinate system is mapped to the
image plane. They are represented by the calibration matrix K and contain informa-
tion about focal distance, image centre coordinates and pixel sizes of the camera.

In order to create a virtual view from one or more available views, the relation
that two points that portray the same 3D point M in the scene would have the same
color value can be used. This idea is used in the process of warping one pixel mL =

(uL/zL, vL/zL, 1)
T from the left view to a pixel mv = (u/z, v/z, 1)T in the desired

virtual view, as can be seen in figure 2.8, where the coordinate system of the left
view in homogenous coordinates is (uL/zL, vL/zL, 1). The same can be applied to
generate a pixel based on the right view in figure 2.8. This process is called forward
warping. The projections of a point M in 3D space to a point in the image plane of a
camera m is defined by

zm = PM (2.1)

where z corresponds to the depth value of the view described by the projection ma-
trix P of that camera [39]. In the case as in [29] the projection matrix is further defined
as P = KI3×4D where the 4 × 4 matrix D contains the rotational matrix R and the
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Figure 2.8: 3D warping of one pixel from either the left or the right view to the center view.

translation vector t.
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Hence, the end points of the image warping are defined by

zLmL = PL(M) (2.2)

zvmv = Pv(M). (2.3)

The point in space can then be expressed using eq. 2.2 as

M = zlP
−1
L (mL) (2.4)

Then the relation between the two points mL and mv is given by substituting equa-
tion 2.4 into equation 2.3 which gives

zvmv = PvP
−1
L (mL) (2.5)
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The answer to equation 2.5 rounded off to the nearest integer gives the coordinates
(u, v) in the virtual view that corresponds to the coordinates (uL, vL) of the left view
in figure 2.8. Hence, the color of the pixel at (u/z, v/z, 1) is equal to the color of the
pixel at (uL/zL, vL/zL, 1). The exception is when more than one of the points from
the original view is warped to the same point in the virtual view. This occurs when
one of the corresponding 3D points occludes the other or when the space between
two points is smaller than the size of a pixel. The visibility problem in the first case
can be solved by calculating the depth values of the virtual scene or by applying the
more effective occlusion-compatible warp order, which only depends on the position
of the two cameras [29]. An alternative to only warping points is to warp point
splats, where each new point in the virtual view is represented by a sphere. Thus,
each point can influence a small part of its neighborhood depending on the distance
to that point. The advantage is that small holes due to round off errors and small
disocclusions do not appear; only larger disocclusions remain a problem. However,
this approach increases the complexity of the warping and applies the same method
when solving two types of errors that have different characteristics.

Another possibility would be to use the equations above to perform a backward
warping instead, where each pixel in the virtual view would be determined by find-
ing the corresponding pixel in the original view. However, this process would be
rather complex, since it is becomes necessary to search the whole view to find all
possible sources for that pixel [40].

2.3.2 Merging of the views

When multiple views and depth maps are available, the 3D warping in section 2.3.1
can be used to create candidate views. More than one candidate view can be used if
several original views are available. Two candidates are in most cases created from
the two original views at the least distance from the position of the desired virtual
view. The next step of the rendering process is then to merge these candidate views
into one single view. This process minimizes the rendering artifacts compared to
using data from one only view. The main problem to solve involves what data to use
regarding the case of the available information from both views.

The possible solution is to prioritize pixels that originate from the closer of the
two original views. Another approach presented in [41] involves a sampling density
measure (SDM), which is used to decide which view has the higher priority for each
region. The SDM indicates how dense the warped pixels from a view are positioned
in the virtual view, since a sparsely sampled virtual view has a reduced quality due
to missing pixel values. Cooke et al in [41] also proposes to blend the color values
IL(uL, vL) and IR(uR, vR) of the two views using a bilinear interpolation based on
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the distance to virtual view. The color value of the pixel at (u, v) in the merged virtual
view then becomes:

I(u, v) = αIL(uL, vL) + (1− α)IR(uR, vR)

where α is a linear weight. A similar approach has also been suggested in [42] where
the blending is used for all pixels where a value in the warped image exists for both
(uL, vL) and (uR, vR) and the corresponding depth values are close in value. The
weight α depends in this case on the distance between the original view and the
virtual view using the translation vector.

α =
|t− tR|

|t− tL|+ |t− tR|

The quality of the result from the bilinear filtering of the pixels from both original
views depends on the correspondence of the two pixels. The bilinear interpolation
may cause blurring if the two views are warped to a slightly different position in
parts of the view.

2.3.3 View synthesis artifacts

The final virtual view that has been produced by first warping several views and
then merging them together suffers from several types of rendering artifacts. The
exception is when the disparity between the views is small. One problem is that
neither the sampling density nor the position of the samples of the warped view
corresponds to the pixel grid. Hence, cracks will appear in the virtual view as can
be seen in figure 2.9. In [41, 42] the virtual view is median filtered, which does not
remove details as the blurring filter. The disadvantage of using a median filter is that
the edges in the image can become unnaturally sharp. A solution is to only apply
the median filter to the cracks as in [40].

The next problem involves holes in the image where data is missing due to disoc-
clusions. (See figure 2.10.) This problem can either be solved by estimating the miss-
ing data from the available data or by preprocessing the original color and depth data
to reduce the effects of the disocclusion. The missing data can be estimated using a
simple approach such as bilinear interpolation [41] or to extrapolate constant color
background pixels [40]. The background pixels are those that are further away from
the camera. Another common method is inpainting [43], which uses the informa-
tion of the surrounding pixels and their characteristics to provide an improvement
to interpolation-approaches. The inpainting can be further improved by using data
from multiple views [44] or to use the depth data only to include information in the
background [45].
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Figure 2.9: Cracks in the warped image occur since the sampling density or the position of
the pixels does not match the pixel grid.

The disocclusions occur close to object boundaries, which are represented in the
depth map as depth discontinuities. The smoothing of the edges with for example
Gaussian filters as proposed by Fehn in [29] removes small disocclusions at the ex-
pense of artifacts in the color map due to the distorted depth data. A solution is to
restrict the smoothing only to the edge region [46, 47] and in [48] only in the vertical
direction in order to minimize the distortion. Park et al in [38] take this a step fur-
ther and propose an adaptive filter that consists of both a discontinuity-preserving
smoothing and a gradient direction-based smoothing. Another solution for remov-
ing small disocclusions and cracks is to use the point splat method during the image
warping as mentioned in section 2.3.1.

The final problem mentioned in this section relates to the boundaries of two re-
gions containing warped data that does not originate from the same view. Depend-
ing on the disparity, the difference in illumination and errors in the warping, the so
called corona effects may occur near objects where a part of the background next to
the boundary is taken from another view as can be seen in figure 2.11. Solutions
include low pass filtering these unnatural edges [40] or to use color correction before
warping to reduce the effects from illumination [46].
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Figure 2.10: Large holes in a warped view are the result of dissocclusions.

2.3.4 Layered approaches to rendering

One of the main problems in the rendering is object boundaries where disocclusion
might appear along other artifacts due to the depth discontinuities in the depth map.
A solution is to partition the image in to a boundary layer and a layer containing the
rest of the data as in [40, 35]. The regions are warped separately for both the left and
the right original view and are thereafter merged into one view. In addition a three
layer approach has been suggested by Huang et al in [49], where the data is divided
into a main layer, a background layer and a boundary layer.

2.4 Video quality

Quality assessment of video is usually performed with fast and repeatable objec-
tive measures, which use predefined algorithms. However, the algorithms fail to
include all aspects of the human visual system (HVS) and therefore do not give a
precise measure of perceived quality. Subjective tests, using human subjects, give a
good representation of the HVS. However, they are time-consuming and have high
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Figure 2.11: The artifacts in the form of outline of objects in the background are called corona
effects.

requirements with regards to the test setup in order to ensure analyzable tests.

Assessing the quality of 3D video is more complex than for 2D video due to its
multidimensional nature. Another aspect is that the whole chain from capture/creation
of 3D video to the actual display can affect the final quality as perceived by the
viewer. There are a vast number of choices that can be made for each step making
the quality assessment of isolated steps a difficult task.

2.4.1 Perception of depth

The key to a realistic 3D experience lies in the perception of depth by the viewer. The
information necessary for depth perception is described by a set of depth cues. These
include psychological depth cues where the HSV uses information in an image such
as occlusion, lighting, shading and linear perspective to determine the depth of the
scene. These can also be included in 2D video to provide a more realistic experi-
ence. There are additional depth cues that correspond to the physiological relation
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between the depicted scene and the HVS. The binocular depth cue is used to de-
termine the depth based on the disparity between the views visible to the right eye
and the left eye. These two views are then blended by the HVS to construct one
3D image, in which the slight difference between the images provides the sensation
of depth. Another depth cue, motion parallax, relates to the movement of the head
with respect to the scene. If the head is moving, the position of the eyes changes in
relation to the scene, which implies that two new images should be presented to the
eyes to give the correct experience. Additional physiological depth cues include, ac-
commodation, where the lens of the eye is shaped to focus on an object in the scene.
The eyes are rotated so that the gaze is fixated on this object, namely convergence.
If a 3D system does not comply with the depth cues, a loss of the 3D sensation and
fatigue due to eye strain might occur. An additional effect that is typical for stereo-
scopic video and images is binocular suppression. In other words, only one of the
two views requires high quality in order to perceive high quality.

2.4.2 Objective quality measures

Video coding quality is, in the majority of cases, measured using peak-signal-to-
noise ratio (PSNR) [50], which is based on the mean square error (MSE).

PSNRdB = 10 log10
2552

MSE

MSE =
1

N

N∑
i=1

(xi − yi)2,

where N is the number of pixels within the video signal, 255 is the maximum pixel
value and xi and yi represents pixel i in the original and distorted video sequence,
respectively. This measure only considers errors at the pixel level completely disre-
garding the position of the pixel or the context of the region. ROI video coding aims
to improve perceived quality by increasing the quality in the ROI at the expense of
that in the background, and therefore the PSNR of the ROI is often analyzed sepa-
rately. This gives an indication of how much the quality increases within the ROI,
but no indication of the effect of the decreased background quality to the overall
perceived quality. Attempts have been made to include more HVS characteristics
in objective measures, which are summarized by Wang et al. in [51]. Several ap-
proaches have been considered such as applying foveation and visual attention [52],
contrast sensitivity [53], structural similarity metric (SSIM) [54], video quality metric
(VQM) [55] and others.

Quality in 3D video is still largely evaluated using 2D quality metrics despite
the fact that those metrics do not include any information about depth perception,
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Figure 2.12: PSNR metric of virtual views of a multi-view plus data sequence. The comparison
of rendered virtual views of both the original and encoded data reduces the impact of rendering
artifacts.

stereoscopic distortions, immersiveness, naturalness or comfort for example. In most
of the papers addressing compression of multi-view plus depth video, PSNR has
been used to determine 3D video quality. PSNR can be applied directly, as for the
2D case, if all views required by the application are compressed and available. How-
ever, in the case of multi-view plus depth video compression the rendering step is
included in the quality assessment. The compression of depth data and to some ex-
tent the color data may introduce rendering artifacts that should be taken into con-
sideration. In this case, an average PSNR is calculated by comparing views that are
synthesized from compressed data to views that are synthesized from the original
data as can be seen in figure 2.12. By doing so, the effect of the rendering is strongly
reduced.

In [56], Olsson et al. proposed to use the PSNR value of the color data at cer-
tain depth intervals of 3D images based on integral imaging. This takes the relation
between the position of objects in the scene and the perceived quality into considera-
tion. Other metrics that include effects of depth perception include the PSNR metric
for stereoscopic video that weights the left and right view based on binocular sup-
pression [57]. Binocular suppression is the ability of the HSV to disregard errors in
one of the views, if the other view has high quality. In addition, in [58] Benoit et
al. include disparity between two stereoscopic views to measure the effect on depth
perception.

2.4.3 Subjective quality measures

Subjective tests on humans can be used to measure the actual perceived quality. Suc-
cessful extraction of analyzable results from subjective tests depends on several fac-
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Vote Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

Table 2.1: The ITU-R Quality Scale used to evaluate the subjective quality of one video se-
quence.

tors including the test time, test order and the instructions received. In addition,
even if one test person experiences good quality, this is not necessarily the case for
the next test person. The standard ITU-R BT.500-10 [59] presents several different
test methodologies concerning quality assessment of single video sequences and pair
wise comparison of 2D video sequences among others. The definitions include setup
parameters and a description of tests and scales that can be used for a quantitative
evaluation of the perceived quality. The ITU-R quality scale in table 2.1 is used for
evaluating single sequences, while the scale in table 2.2 can be applied to the com-
parison of two video sequences. Subjective tests with a few subjects and/or few test
sequences can be used to verify the results of objective measures.

The complexity of the subjective test increases further when 3D video is consid-
ered. The evaluation of 3D video depends highly on the technology used to present
the data to the viewer. The large variety of display techniques and the various ar-
tifacts that the screens generate increases the problem of interpreting the results of
the tests. In particular, if a compression or rendering technique is evaluated that is
not specific for one display. Subjective tests of 3D video can also be evaluated us-
ing parts of the standard ITU-R BT.500-10 [59] and in particular the quality scales.
This can be combined with the recommendation ITU-R BT.1438[60] that for example
defines some additional assessment factors, viewing and how to check if the test sub-
ject has the ability to perceive binocular disparity. Currently there is no standard or
recommendation that directly addresses subjective assessment of multi-view video.

Applying the standard enables comparison with other research results.



Vote Quality

-3 Much worse

-2 Worse

-1 Slightly worse

0 The same

1 Slightly better

2 Better

3 Much better

Table 2.2: The ITU-R Comparison scale used to evaluate the quality of one video sequence
compared to another.



Chapter 3

Region-of-interest coding

One of the problems addressed in this thesis involves how to transmit video at low
bit rates with as small an impairment as possible on the perceived quality. Region-of-
interest (ROI) video coding can be applied to achieve a higher quality within the ROI
at the expense of the quality in the background, if the correct ROI can be detected.
The ROI coding is performed in two separate steps. Firstly the ROI is detected by
predicting the type of content in a region that attracts the viewer’s gaze and com-
municates the greatest amount of information. Based on these characteristics the
position of the ROI is extracted (See section 3.1). In the second step, the bit allocation
is controlled in order to ensure that more bits are allocated to the ROI to increase the
visual experience (See section 3.2).

ROI coding can be used with a user-defined ROI or automatically detected if the
important parts can be successfully predicted. For example, the information com-
municated by the movement of the lips and facial expressions in a video conference
is lost if the artifacts are sufficiently large. In addition, reduced quality in the facial
area can appear more disturbing for the viewer than reduced quality in the back-
ground. It was shown in [61] that high quality of the face is particularly important
for people with hearing impairments. Several approaches were shown to improve
the quality of video containing talking humans by applying more compression to
the background than in the facial region, including approaches by Eleftheriadis et al.
[62] and Chen et al. [63].

In surveillance applications the regions of interest are often well defined, for ex-
ample people or vehicles. Examples include detecting camouflaged enemies in the
shape of people or military vehicles [64], traffic surveillance [65] and security appli-
cations [66].

In [67], McCarthy et al. observed that the quality of the player and ball in a soccer
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game proved to be the most important factor for the viewer. Detection of ROIs in
soccer sequences has also been addressed by Kang et al. in [68].

3.1 ROI detection

The key to a successful ROI video coding is to correctly predict and detect the ROI,
since a falsely detected ROI gives a lower perceptual quality than for ordinary video
coding. The ROI is detected using either a generalized or an application-based ap-
proach. The generalized approach is based on visual attention models presented
in section 3.1.1. In the application-based approaches the type of content present
in an interesting region is predicted a priori for a particular application. These in-
clude video conferencing and videophone applications (where faces are of interest),
surveillance of people and vehicles as well as sports applications.

3.1.1 Visual attention

A visual attention model determines the likelihood that a human viewer fixes his/her
gaze on a particular position within a video sequence. This is generally based on
models of the HVS. In [69] and [70] metrics of color, orientation, direction of move-
ment and disparity are combined into a saliency map indicating the probability of
this pixel drawing attention. Bollman et al. in [71] and Ho et al. in [72] extended
these approaches by including motion detection. In additon, Ho et al. in [72] also
includes face detection. These approaches assume that the visual attention models
can be generally applied. However, Ninassi et al. in [73] showed that the positions
at which people are gazing are affected by the given task. This implies that the de-
tection would be more accurate when the task is considered in detection, which is
often the case in application-based approaches.

Face detection

In video communications, human faces communicate a substantial part of the un-
spoken information using facial expressions and lip movements. The interpreta-
tion of the information becomes more reliable when the quality of the face is im-
proved by the ROI coding. Another effect is an experience of increased quality of
the viewer. Face detection is a popular area. It includes research on face recog-
nition for surveillance and biometric authentication, coding using 3D-models, and
applications, where facial expressions are extracted and analyzed. In [74], Yang et
al. present an overview of methods used for face detection including feature-based
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methods, template matching, eigenfaces, neural networks, support vector machines,
and more.

Skin-color detection methods are often used in ROI video coding, where the face
is considered interesting to the viewer. Skin-color detection is a fast method, which
is invariant to pose, orientation, difference in skin-color and occlusion. An overview
of pixel based skin detection techniques can be found in [75]. A wide variety of
color spaces have been applied including RGB, normalized RGB,TSL, YCbCr and
others, where different color maps are suitable for different purposes. YCbCr is a
common choice, since it is used in most video compression standards and separates
luminance from chrominance. YCbCr can be calculated from RGB using the simple
transformation

Y = 0.299R+ 0.587G+ 0.114B

Cr = R− Y (3.1)

Cb = B − Y

Several methods can be used to classify skin color based on a particular color
space. These include the parametrical models such as skin cluster boundaries [63,
76, 77], elliptic models [78], single Gaussians models [79, 80] and Gaussian mixture
models [81].The non-parametric approaches such as Bayes classifiers [82, 83] gives
a better performance at the cost of increased storage space and higher requirements
on the training set.

The detection of skin-color can be combined with other feature detection methods
to ensure robustness with respect to illumination changes and increased selectivity.
These features include eyes and face boundary in [84] and [77], mouth in [84], size of
ROI and number of holes in the region in [80], and a homogeneity metric in [83, 85].

Other face detection techniques for ROI video coding include extracting facial
contours from edges in [86] and using a unsupervised neural network described as
a self-organizing map (SOM) as in [87].

3.2 Bit allocation

Reallocation of bits from the background to the ROI can be achieved either by a
pre-processing stage before the encoding, or by controlling the parameters in the en-
coder. The video coding standards allow alterations of the encoder as long as the
required features are included and the syntax of the bit stream is unaltered. Modifi-
cations of all encoders when the ROI algorithm is changed can be avoided by using
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pre-processing. The adaptability of the background quality to variable bit rates of
the channel is then reduced.

3.2.1 Spatial bit allocation

The majority of the research on bit allocation for ROI video coding applies spatial
methods and in particular those controlling parameters within the codec. The quan-
tization step sizes control the quantization accuracy concerning DCT components
and the prediction error. In [88] and [63] two step sizes are used for each frame. A
small step size is used for the ROI and a larger step size is used for the background.
This results in a more finely tuned quantization and therefore improved quality of
the ROI. However, the difference between the background and ROI quality appears
abrupt if there is a large difference in quantization.

Solutions include adaptation of the quantization step sizes of the background to
the distance of the ROI border [89, 90], applying three quantization levels in [86]
or naking decision relating to the step size based on a sensitivity function [91]. Ap-
proaches involving other types of encoder parameters are addressed in [92] and [93],
where the number of non-zero DCT components is used to control bit allocation.
YLiu et al. in [94] controls the bit allocation by adapting several types of encoder
parameters. These include quantization parameters, mode decisions, number of ref-
erence frames and search area for motion vectors. Sivanantharasa et al proposes in
[95] the use of a tool for error resilience coding in H.264, namely flexible macro-block
ordering, for ROI video coding.

Controlling quantization parameters allows direct integration with the rate-dist-
ortion function within the codec, but can introduce ”blockiness” due to coarse quan-
tization. Pre-processing, whose resulting error is generally less disturbing, avoids
codec dependencies. Methods based on low-pass filtering (blurring) of non-ROI are
addressed in [63] and [96]. Low pass filtering reduces the amount of information
which gives less non-zero DCT components and a reduction in the prediction error
due to the absence of high frequencies. The rate-distortion optimization of the en-
coder then re-allocates bits to the ROI, which still contains high frequencies. In [63]
Chen et al. applies low pass filtering of the background regions, where one filter is
used for the complete frame. This gives a distinct boundary separating the ROI and
background which leads to disturbing artifacts. The foveation coding approach in
[96] uses a fixation point at which the human is predicted to gaze. A gradual tran-
sition of quality from the fixation point to the background is then achieved using a
Gaussian Pyramid. Foveated Coding is addressed in section 3.4.
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3.2.2 Temporal bit allocation

The number of bits necessary to encode the background is reduced if a lower frame
rate (fps) is used, which causes a decrease in the background quality. The related
object-based video coding addressed in section 3.5 extracts and encodes objects and
background in separate layers. These layers are synthesized into one video sequence
at the decoder. Reduced frame rates for the background as in [97]can be achieved by
encoding the layers using different frame rates. Object-based coding is supported
by the MPEG-4 standard [7]. A similar approach is suggested in [65] by Meessen
et al where the ROI and background are encoded and transmitted as two separate
sequences. Such a technique requires adaptation at the receiver side.

Compatibility with the standard is preserved when the syntax of the bit stream
remains unaltered. Temporal bit allocation schemes that are compatible with stan-
dards are proposed in [86, 98, 99]. In [98], all blocks not used in the encoding of the
ROI are skipped in the P-frames. The DCT coefficients of these blocks are deleted in
the I-frames. Lee et al. in [86] reduces the transmitted information by skipping back-
ground macro blocks in every second frame unless the global motion in the frame
exceeds a threshold. A similar approach is presented by Wang et al. in [99], where
the background blocks are skipped based on the content in the ROI and background.

Adiono et al. presents a pre-processing approach in [92] that applies a temporal
average filter in order to average out the differences between the background of two
frames.

3.2.3 Combinations of spatial and temporal bit allocation

The spatial methods reduce the background information transmitted in DCT compo-
nents or the motion prediction error. The temporal filters, on the other hand, reduce
the bits assigned to the background motion vector. (The exception is the average
filter in [92], which affects the prediction error instead.) Hence, combinations of spa-
tial and temporal approaches increase the reallocation of bits from the background
to the ROI. Lee et al. in [86] combine the control of quantization step sizes, with the
skipping of background blocks for every second frame. The background blocks are
only skipped during limited global frame motion. A similar approach as in [86] is
proposed by [99], with the difference being that the skipping of background blocks
is adapted to ROI and background content. Adonio et al. uses a temporal average
filter in combination with controlling the quantization step sizes.
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3.3 3D ROI video coding

ROI video coding can be extended to 3D video, in which the depth is a factor con-
sidered in the detection of the ROI [100, 101]. It is assumed that objects close to the
viewer are of importance. The knowledge of the geometry available in synthetic
scenes can be used to calculate the ROI. In [100] Cheung et al proposes a scheme that
detects the distance to the camera and the position of the edges of objects. This is
achieved using values in the Z-buffer during the mapping of 3D objects on to the
2D plane. The extracted information is used in order to weights in the assignment
of bits to each MB in H.263+. Masala et al in [101] apply a similar scheme using an
MPEG-2 codec in a system that keeps track of user interaction and thus the position
of the viewer.

ROI image based coding has been applied to stereo images. A region-based
scheme was proposed by Ayudinoglu in [102] using three types of regions; occlu-
sions, edges and smooth regions. Margues et al in [103] showed that the visual
attention methods for 2D ROI image coding are improved by incorporating depth
information in ROI stereo image coding. ROI coding has also been applied to im-
prove the JPG2000 compression of the depth map of a 2D plus depth video/image
in [33]. The choice of ROI is based on the rendering process. The compression of
the edges may cause artifacts at the discontinuities. Hence, the edges are included
within the ROI.

3.4 Foveated coding

A related research area to ROI video coding is to use fovea instead of ROIs. In bi-
ology, the fovea is the part of the retina in the human eye that contains the greatest
number of photoreceptors. Details in images can only be perceived if that part of
the image is processed by the fovea. Thus, only the point upon which the human
gaze is currently fixed must be presented with good quality, which enables quality
reduction based on the distance to this point. The foveas are placed with their cen-
ters at the pixels where the human is predicted to gaze in each frame as in [96]. This
approach demands that the exact location of a person’s gaze is known, whereas in
ROI coding, it is only necessary to detect the region of the gaze.

3.5 Object-based coding

In the standard MPEG-4 [7], objects and background can be divided into a set of lay-
ers. The layers are compressed separately and then synthesized into one sequences
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Figure 3.1: Object-based coding. The different objects in a frame and the background are
encoded in separate layers. The reconstructed layers are synthesized into one frame after the
decoding of the layers.

at the receiver. The partition into background and object layers is described in figure
3.1. ROI coding differs from object-based coding in that regions of different char-
acteristics are extracted instead of specific objects. In addition, most ROI coding
approaches do not use layers. The sequence is transmitted as an ordinary video
sequence.

3.6 Contributions

The author has published four papers in the field of ROI video coding, where papers
I-III address pre-processing of 2D video in the form of filters in both the spatial and
temporal domain. A codec independent spatio-temporal filter is proposed in paper
II, which combines the spatial filter in paper I with a temporal filter. A theoretical
analysis and quantitative tests using objective quality metrics in papers II and III was
used to analyse the coding efficiency, the reallocation of bits from the background to
the ROI and the complexity of the filter. The effect of the choice of filter parameters
on rate-distortion was analysed in paper III. A minor subjective test was applied to
verify the analysis of the SPTP filter. The spatio-temporal filter is then extended in
paper IV to provide ROI coding of 3D video in the 2D plus depth format using the
depth data in the detection of the ROI. Each of the four papers is described in more
detail in the rest of this section.
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3.6.1 Paper I

A spatial (SP) filter is proposed in paper I that improves the ROI approach in [63] by
allowing a gradual degradation in quality from ROI to the background. The grad-
ual transition in quality reduces the border effects. These appear when the SP filter
causes large differences between neighboring ROIs and background pixels at the ROI
borders. This is achieved by extending the idea of using different Gaussian filters de-
pending on the distance to the border of a region instead of the distance to a point
of fixation, as in the foveated coding approach presented by Itti in [96]. ROI video
coding does not detect the exact position of the human gaze and therefore equal
quality within the ROI is necessary. The position of the ROI is detected using a sim-
ple skin-color detection algorithm; the parametric model in [78] with experimentally
determined thresholds.

The next step is to match each pixel in the background to the appropriate Gaus-
sian filter. This is achieved by using quality maps, which are created by low pass
filtering the result of the ROI detection. The position of the ROI and the distance
from the border are then extracted from this map in the SP filtering. Tests using
PSNR were performed on the carphone sequence. The gradual quality reduction in
the background was shown not to reduce the quality in the ROI compared to ROI
with only one filter as in [63].

The issue of computational complexity of the SP filter was also addressed. An
alternative approach that combines the ROI detection with a variance metric was
proposed and tested. The tests showed that more than a quarter of the background
pixels could be omitted in the filtering without a noticeable quality reduction within
the ROI for the tested sequence. This result can be extended to most video sequences,
since areas with only low frequency components are in general found in frames of a
natural video sequence.

3.6.2 Paper II

ROI video coding approaches that operate within the codec to reallocate bits from
both the spatial and temporal domain to the ROI are proposed by [86, 99]. In ad-
dition, Adiono et al in [92] proposes to combine a pre-processing in the form of a
temporal average filter with a method that controls the number of DCT components
within the codec. The utilization of both the temporal and spatial domains can in-
crease the coding efficiency substantially. In paper II a codec-independent spatio-
temporal solution is proposed. The proposed filter is a combination of the SP filter
of paper I and a TP filter. The TP filter extends the codec-dependent approach in
[86], which can transmit the background at a lower frame-rate than the ROI. A sim-
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ilar result is achieved by the TP filter that removes all changes in the background in
every second frame. Bilinear interpolation of the part of the background close to the
ROI border is used to reduce border artifacts. More details on the temporal filter can
be found in [104].

The influence of the TP filter on motion vector assignment and prediction error
was evaluated. The theoretical evaluation showed that the cost in bits of motion
vectors decrease in the background whereas the bits assigned to the prediction error
remains the same. This indicates that fewer bits are required to encode the back-
ground. However, it also implies that the non-required bits are assigned to improve
blocks with large prediction errors in both the background and the ROI.

The qualitative analysis of the assignment of bits to the background and the al-
located of any additional bits by the encoder was performed for a SP or TP filtered
video sequence. The evaluation showed that the combination of the two filters in-
creases the coding efficiency compared to using either the SP or the TP filter sepa-
rately. Any additional bits are assigned to improve blocks with large prediction error,
which exists in both the background and the ROI for the TP filter. The combination
with the SP filter solves this reallocation problem. An analysis of the computational
complexity showed that the spatio-temporal (SPTP) filter has a lower complexity
than the SP filter from paper I. This is valid unless the transition region occupies
more than 75 % of the background.

The results in the qualitative analysis are verified by tests on sequences that were
SP, TP or SPTP filtered. The filtered sequences were encoded using either both an
H.264 or MPEG-2 encoder with fixed encoder parameters or a target bit rate. The
test also showed that the difference in coding efficiency of the SP and SPTP filter
depends on the motion content of the ROI. The SP filter was shown to provide
a minor improvement compared to the SPTP filter in those sequences where the
ROI has high motion content relative to the background. An explanation is that the
context-adaptive binary arithmetic coding (CABAC) in H.264 adapts the motion vec-
tor lengths to favor the original data in these cases.

3.6.3 Paper III

The description of the SPTP-filter in paper II and the qualitative analysis regarding
how the filtered data influences the encoding are extended into more detail in paper
III. The computational complexity of the SPTP filter is compared to the alternative
SP approach in paper I. The SP filter applies variance in the creation of the quality
map to decrease complexity. The SPTP filter is shown to have a lower computational
complexity than the SP filter if the transition region of the TP part of the filter does
not exceed the total number of filtered pixels. The impact of the variance of the SPTP
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filter was evaluated both theoretically and by rate distortion tests on the H.264 and
MPEG-2 codecs. The evaluation showed that the variance controls the number of
DCT components in the encoding. Hence, the bit rate can be adapted to the condi-
tions of the channel, provided that the information is available.

A quantitative motion vector analysis confirmed that the SPTP filter does reduce
the number of motion vectors assigned by an H.264 encoder. The lengths of the mo-
tion vectors are only slightly increased. The analysis indicated that the SPTP filtered
sequence has a slightly lower coding efficiency than the SP filtered sequence when
the ROI contains the main part of the motion vectors. This verified some conclusions
from paper II.

The PSNR quality measurement is widely used but it does not consider the type
of information within a region or in what context the video sequence is watched.
Consequently, a minor subjective test was carried out to give an indication of the
impact of the SPTP-filters on perceived quality. The stimulus comparison method
[59] with 10 test subjects was used. The result of the subjective tests implies that
the SPTP filter does in most cases improve the perceived quality of the tested video
sequences. However, it was also shown that the viewer may be distracted by the
large reduction in background quality caused by a large variance of the SPTP filter.

3.6.4 Paper V

ROI video coding has previously been extended to 3D video in [100, 101] using the
position of the viewer and scene information in a synthetic scene to control bit as-
signment within the encoder. The encoded material is then rendered from the scene.
Other approaches include the addition of disparity estimation to improve the re-
sults of ROI detection using visual attention [103] for stereo images. The idea of
using depth or disparity information in ROI detection is extended to ROI coding of
2D plus depth video sequences in this paper. Two ROI detection methods are pro-
posed. In the first approach the statistical properties of the provided depth data are
analyzed. The aim is to detect the depth values at which the front-most pixels are
located. The second approach is a combination of detecting the front most pixels and
the skin detection used in papers I-III. The result is used to create a quality map as
in the previous papers. Thereafter, the SPTP-filter in paper II is applied to the color
part of the 2D plus depth video sequence.

The two ROI detection methods increase the quality as measured by PSNR within
the selected ROIs. A visual comparison showed that the combination of the face
and depth detection offers the better quality of the two approaches. This implies
that objects close to the scene are important, but that additionally, the context may
increase the importance of a background objects.



Chapter 4

Multi-view plus depth scalable
video coding

Consider a heterogeneous network where the end-users are equipped with 2D or
3D screens of various types. The problem addressed in this section involves how to
provide a high perceived quality for all end-users in the network who are viewing
a 3D video sequence. The heterogeneous network would require the transmission
of a multitude of different versions of the same video sequence to provide the best
quality under the limitations of each separate end-user. A solution is to use scalable
video coding (SVC). SVC enables a flexible extraction of data from a video sequence
and can therefore be adapted to the available resources of an end-user. SVC can
therefore increase the overall quality in a heterogeneous network.

4.1 Scalability in 2D

Scalability can be applied in various ways and combinations. The three main types of
scalability are temporal, spatial and quality (SNR) scalability, which are all described
in the in the SVC extension of h.264 [11]. In temporal scalability (See figure 4.1), the
frames of a 2D video sequence are encoded to enable flexibility in the choice of frame
rate. In other words, it allows for subsets of the frames within a GOP to be extracted
while skipping the rest. After the encoding, the frames are reordered to make it
possible for the lower layers to be extracted first within each GOP. The prediction
structure of the GOP must be chosen such that a frame is not predicted from a higher
enhancement layer. Otherwise prediction errors may occur due to prediction from
non-existing frames. One additional advantage of hierarchical b-frames is that their
structure ensures that all prediction is from a frame of the same layer or lower.
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Figure 4.1: Temporal scalability. Each of the frames in the video sequence is assigned an
enhancement layers such that the addition of one layer increases the frame rate.

Spatial scalability enables the extraction of a 2D sequence of variable spatial res-
olution from the SVC encoded sequence. The base layer contains a low resolution
video sequence. Each of the enhancement layers contains a higher resolution version
of the video in the previous layer. Interlayer redundancy is exploited by predicting
each frame from an up-sampled version of the corresponding frame in the previous
layer. Thus, the enhancement layers contain the data of that resolution not available
in the previous layers. An example of spatial scalability can be seen in figure 4.2.

Quality scalability (or SNR scalability) addresses the quality within each frame.
This can be achieved by allowing the quality of the sequences to be varied either in
clearly defined layers CGS (coarse grain quality scalability), continuously as in FGS
(fine grain quality scalability) or a mixture of the two MGS (medium grain quality
scalability). (See figure 4.3.) In the first case, CGS, the data in each layer is treated
in a similar manner to that for spatial scalability. The base layer contains a full 2D
sequence at low quality and each of the enhancement layers contains high frequency
components not present in the previous layers. FGS, on the other hand, has one
base layer and one large enhancement layer. The data in the enhancement layer is
encoded and arranged in such a way that the amount of enhancement data can be
chosen continuously. This ensures flexibility in the adaption to the bit rate limita-
tions of the transmission at the cost of either coding efficiency or drift errors. Predic-
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Figure 4.2: Spatial scalability. A spatially scalable video sequence consists of layers of differ-
ent resolutions. In the encoding, each layer is predicted from an up-sampled version of the
previous layer.

tive coding can be successfully used in CGS including the current and lower layers.
However, in FGS it is not previously known how much of the enhancement layer
will be extracted. Hence, drift errors might occur if prediction is used based on the
enhancement layer. A compromise in the form of MGS provides an improved cod-
ing efficiency without drift errors compared to FGS and more flexibility in the choice
of bit rate than CGS.

The use of the wavelet transform instead of the DCT automatically decomposes
each frame such that spatial and quality scalability can be applied directly. The
wavelet transform is not included in the SVC extension of SVC due to its increase
in encoder complexity and reduced coding efficiency for video [11, 105].

4.2 Scalability in 3D

The scalability methods available in the SVC extension of h.264/AVC have been ap-
plied to multi-view video in [106]. The coding structure in hierarchical b-frames
used in this paper facilitates the decomposition into layers of different frame rates
(temporal scalability). The 2D scalability methods can also be applied directly to the
multi-view part of multi-view plus depth and in [107] Cho et al suggested to apply
spatial scalability to the depth data.

The multi-view and multi-view plus depth videos contain information captured
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Figure 4.3: Quality scalability. The quality of the video sequence increases by each added
layer. The layers can either be a) clearly defined, CGS, b) continuous, FGS or c) a mixture of
the two, MGS.
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Figure 4.4: View scalability is enabled by using predictive encoding structures that allow ex-
traction of a subset of the views. For example every second view could be extracted in this
case where hierarchical b-frames are applied.

from several camera positions and by using various types of 3D techniques, this data
can provide an experience of depth. The 3D characteristics of the data can also be
utilized to provide additional scalability schemes. Scalability in the view domain can
be provided using a similar approach to temporal scalability. Instead of extracting
a subset of frames [22] Lim et al. propose extracting a subset of the views. (See
figure 4.4.) The approach by Shimizu et al [108] provides a scalable solution that
uses color data, depth data and residuals. The approach includes one view in the
base layer, including the depth data corresponding to that view. The depth data
necessary to transform this view into a view at another camera position are found in
the enhancement layers. In addition, the residuals of the transformed views and the
original views are included in the enhancement layers.

The depth ranges of multiscopic 3D displays are limited. Hence, artifacts appear
when detailed information is displayed outside of the depth range of a display. The
high frequency components causing the artifacts can be removed using filters. In
[109] Ramachandra et al, suggest a depth scalability scheme that can adapt to the
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depth range of a display.

Wavelet transforms have also been suggested to enable temporal, spatial and
quality scalability [110] and in some cases even view scalability [111, 94]. However,
the wavelet transform still has some problems that reduces the coding efficiency
compared to block-based approaches [23].

4.3 Contributions

The author has published three papers (Paper V-VII) in the field of multi-view plus
depth scalable video coding. An approach that provides a depth-based scalability
of the color data is proposed in paper V. The depth scalability is combined with
view scalability. Three different approaches to extract the layers from a view are
proposed and analysed in paper VI. The results from paper VI are extended in paper
VII to address multi-view plus depth sequences of more than three views. A view
priority and a depth priority strategy to the layer assignment of adjacent views are
proposed and analysed. The assignment of the depth data to the corresponding layer
of the color data is also addressed. The analysis of the layer assignment schemes in
papers VI and VII was performed using objective metrics in relation to the rate of the
sequence and complemented with visual examination. Each of the three papers are
described in more detail in the rest of this section.

4.3.1 Paper V

The relation of the depth of a scene and the depth range of the display is used as a
basis for a scalable coding scheme in [109]. The scheme proposed in paper V aims
to divide the color part of the MVD data into enhancement layers that corresponds
to the distance to the camera. This facilitates the extraction of the front most parts
of each view. The approach is combined with view scalability [22] to ensure that the
background objects can be rendered using data from the center view if no other data
is available. This increases the quality of the center views.

The proposed depth and view scalability scheme is applied to a MVD sequence
containing three views. The central view and depth data are assigned to the base
layer. This ensures that the scheme never performs in a worse manner in the ren-
dering step than a 2D plus depth video sequence. The two views to either side of
the central view are divided into a limited number of enhancement layers in the
encoding.

The decision to which enhancement layer a macro-block (MB) is assigned is based
on two criteria. Firstly, the front most objects should be included in the first layer.
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Secondly, the remaining pixels should be equally divided over the remaining en-
hancement layers. The statistics regarding the depth data are used to partition the
depth domain into intervals that correspond to the two criteria. The first enhance-
ment layer is determined in a similar manner to that for the first ROI detection ap-
proach in paper IV. The exception is that all MBs that contain pixels within this depth
interval are included in the first layer. The remaining intervals are calculated from
the cumulative distribution function of the depth data in order to distribute the num-
ber of pixel uniformly.

Quantitative tests were performed on an MVC encoder, modified to provide the
proposed depth scalability in the two side views. The quality analysis, using PSNR
as a metric, was applied to the color data after the rendering. The two decoded views
closest to the virtual view were used in the rendering of each view. The original
color data was used as a reference. The results showed that the addition of each
enhancement layer provides an increased quality as measured both in PSNR and
judged by visual appearance.

4.3.2 Paper VI

The approach proposed in paper V in the previous section divides the color data of
an MVD video sequence into enhancement layers based on a uniform distribution of
the pixels. The problem with a uniform distribution is that artifacts may appear in
the rendering when the boundary of a layer intersects an object. Paper VI addresses
two alternative schemes to assign color data to enhancement layers.

In both the alternative schemes, Scheme B and Scheme C, the depth interval of
enhancement layer one is chosen based on the characteristics of the depth data dis-
tribution. Consequently, the position of the first layer can be adapted to the actual
position of the front most objects. The assignment of pixels to the remaining layers
differs in the two schemes. Scheme B applies the uniform distribution scheme of
paper VI to determine the position of the remaining enhancement layers. In Scheme
C the characteristics of the depth data distribution are used both to determine the
position in depth of the remaining enhancement layers and the number of layers.

The three layer assignment schemes were evaluated concerning their effect on
the rate and quality measured in PSNR of the sequence, PSNR per layer and visual
appearance. As in paper V, the PSNR of the rendered virtual views were used. How-
ever, the reference data was rendered as described by figure 2.12, which reduces the
effects of the rendering on the results. The complete sequence at a lower quantiza-
tion parameter provides a better performance in the terms of overall rate-distortion.
Then again, the PSNR per layer and the visual examples showed that the quality of
the front-most objects are better for a sequence containing just a few enhancement
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layers compared to the full sequence encoded at a larger quantization parameter.

The rate-distortion evaluation indicates that that a large number of enhancement
layers increases the flexibility in the choice of bit rate. However, the chance of ren-
dering artifacts due to the position of the layer border is increased and the coding
efficiency is slightly reduced. The result concerning Scheme C showed that 4-6 lay-
ers were chosen using the characteristics of the depth distribution. This implies both
that the ideal choice of layers depends on the video sequence and that the number
should be limited.

4.3.3 Paper VII

The approach proposed in paper VI in the previous section is restricted to an MVD
sequence of three views and only considers the depth scalability of the color data.
Two strategies with regards as to how to extend the three view scheme to an ar-
bitrary number of views are presented in paper VII. These strategies consider the
relation between the layers of adjacent views that contain enhancement layers. The
assumption is that the same scheme is used to assign the layers within each view.
Should the scalability between views, or in depth, be given the higher priority? In
the first proposed strategy, view priority, the view scalability is given the higher
priority by extracting all the enhancement layers of one view before the next. The
second proposed strategy, depth priority, gives a higher priority to layers containing
data close to the camera regardless of the camera position.

The two strategies were tested using MVD sequences containing five views that
were compressed using a modified MVC encoder. The layer assignment of indi-
vidual views was made using Scheme C from paper VI, which has been renamed
as depth distribution layer assignment (DLA). The quality was analyzed using the
PSNR metric, as in paper VI. The PSNR per view and PSNR per depth metrics were
also applied.

View priority gave the best result considering average PSNR, when layers are
discarded. On the other hand, the visual quality evaluation indicated that depth
priority gave a better visual quality. The difference between the measured result
and the visual evaluation depends on the fact that the average PSNR metric does
not show the improved quality of the frontal objects. In addition, the rendering in
depth priority uses data from a view farther away than view priority. Some of the
errors that are introduced by the rendering are not visible in the visual evaluation.
This explains the difference in the result in PSNR and visual evaluation. The PSNR
per view and PSNR per depth value confirm that depth priority generally performs
better when only a few enhancement layers are included. However, view priority is
the better choice if the quality of the center views is important in the application.



4.3 Contributions 51

Another issue addressed in this paper is the encoding of the depth data using
scalability. In the approach described in papers V and VI, all the depth data of a
view is assigned to the first enhancement layer of that view. The scalable coding of
the color data in this approach, can be extended to encompass the depth data. The
depth data is then assigned to the same enhancement layers as the corresponding
color data. Tests showed that the bit-rate of each added layer decreases with no
noticeable effect on the PSNR or visual quality, when the depth data is distributed
over the enhancement layers of a view compared to assigning all the depth data to
the first enhancement layer. The cost is a slight decrease in coding efficiency for the
full sequence.





Chapter 5

Conclusions

5.1 ROI video coding

Region of interest (ROI) video coding makes it possible to adapt the encoding with
regards to how a human would perceive the quality of a video sequence in a par-
ticular application at low bit rates. The quality of the ROI can be improved by re-
ducing the quality in the less noticeable background, which gives the appearance of
improved perceived quality to the viewer without having to increase the bit rate.

The first goal adressed in this thesis was to propose a codec independent region-
of-interest approach that is applied in both the temporal and spatial domain to in-
crease the perceived quality in a 2D video sequence at a fixed bit rate. A pre-processing
approach in the form of a spatio-temporal (SPTP) filter is proposed to achieve this
goal. The filter contains a spatial (SP) part that removes details in the background
and the temporal (TP) part which removes information in the background of every
second frame.

The SP part reduces the number of bits that are allocated to the DCT components,
the prediction error and the motion vectors of the background, due to the reduced
prediction error. Multiple Gaussian filters are used to enable a gradual quality transi-
tion from ROI to background. Hence, artifacts at the ROI border due to a low cut-off
frequency are avoided. The TP part, on the other hand, reduces the number of bits
used for the motion vectors by reducing the number of motion vectors of the back-
ground. Bilinear interpolation can be applied to reduce artifacts at the border due to
movement of the ROI.

In order for the pre-filtering to result in a successful ROI video coding, the bits
released by the filter must be re-allocated to the ROI by the encoder. The encoder
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assigns bits to where they have the greatest effect on the reduction of the distortion.
The distortion by the number of DCT components (intra-frames) and the prediction
error (inter-frames). Hence, the SP part is the key to a successful reallocation.

The SPTP filter combines the effect of the SP and TP parts to reduce the bits as-
signed to the background and successfully re-allocating these bits to the ROI. In ad-
dition, the SPTP filter has a lower computational complexity than the SP filter. The
subjective test confirmed the result achieved using an objective metric that the SPTP
filter improves the perceived quality at a fixed bitrate. Hence the first goal of this
thesis is fulfilled.

The choice of the variances of the low-pass filters included in the SP filter has an
impact on the coding efficiency of the SPTP filter. The larger the variance, the more of
the DCT components that will be partially or completely suppressed and the higher
the risk of the background distortion attracting attention from the ROI. The relation
between the variance and the number of DCT components can be used to adapt the
filter to any knowledge regarding the channel characteristics.

ROI video coding can also be extended to the color data of a 2D plus depth video
sequence. The second goal of the thesis is to provide a scheme that extracts ROIs
from this type of a sequence. Two detection schemes was proposed and analysed.
In the first the additional depth data in 2D plus depth video was used to detect the
ROIs with the assumption that objects close to the camera are of interest. The second
scheme addressed the context of the video sequence by combining the first scheme
with skin-color detection. It was shown in the visual examination that the content
of the in objects in the background and the context in which they are shown may
influence the perceived quality.

5.2 Multi-view plus depth scalable video coding

Consider the case of several receivers accessing the same 3D video content over a
heterogeneous network. The problem is then how to provide the highest perceived
quality for all end-users in this network. A solution is scalable video coding that
enables the extraction of a part of a 3D video sequence. Hence, the video can be
adapted to the limitations of a part of the network and/or an end-user. Scalable
coding schemes for 2D video and known view scalability schemes can be applied to
multi-view plus depth (MVD) video.

The third and last goal of this thesis was to propose a scalable coding algorithm
of MVD data that addresses the depth domain using the concept that some regions
in the video sequence are more important than others. A depth scalability scheme is
proposed that divides the data within a view depending on the location of the con-



5.3 Future works 55

tent in order to achieve the third goal. The scheme is combined with view scalability
to ensure that background content can be rendered using at least the center view
data.

The proposed depth and view scalability scheme is applied on an MVD sequence,
where the central view and corresponding depth data is assigned to the base layer.
Each of the remaining views is divided into enhancement layers. Hence, it is possible
to extract a subset of the pixels of a video sequence in the case of limited resources.
The quality analysis showed that the quality of the front-most objects is better for a
sequence containing just a few enhancement layers compared to the full sequence
encoded with a larger quantization parameter.

Three types of schemes are proposed that assign the color data to a particular en-
hancement layer. These are all based on the distribution of depth data. The schemes
either distribute the pixels uniformly over the enhancement layers, adapt the posi-
tion of the layers to the depth distribution or a combination of the two. The problem
associated with assigning layers by the uniform distribution of the depth data is
that the layer border may intersect with objects resulting in artifacts in the render-
ing. A solution to the problem is the depth distribution layer assignment (DLA)
scheme, which uses the characteristics of the depth data distribution to control both
the number and the position of the enhancement layers. The bit rate of each layer
can be reduced further if the depth data is divided into layers, in a similar manner to
that for the color data. This involves a small cost namely a reduced coding efficiency
for the whole sequence.

The layer assignment between views must be taken into account when the MVD
sequence contains more than three views. Should depth or view scalability have
the higher priority? The tests showed that the best visual quality over all views
is achieved by extracting the front-most layers in all of the view before layers that
contain data further back in the scene. The exception involves applications where
the quality of the center views is considered to be the more important.

5.3 Future works

5.3.1 ROI video coding

Future works on ROI video coding can include:

• to improve the detection of ROI in both 2D and 3D video. Even though face
detection has been extensively researched, there is still a need for faster and
more accurate methods. In addition other applications, such as surveillance



56 Conclusions

and soccer games, could be considered, where methods of detection have not
been thoroughly researched at the present time.

• to integrate the SP part of the SPTP filter into the codec and adapt the rate-
distortion optimization to the low pass filter.

• to further address the problem associated with a moving ROI for the tempo-
ral filter. Perhaps it might be possible to include an optional post-processing
step to reduce the impact of jerky movements in the background. This post-
processing would attempt to recreate the information in the background that
was removed by the temporal filter.

• to extend the codec-independent ROI coding scheme for 2D plus depth video
to multi-view plus depth video. ROI coding of MVD has been addressed by
Zhang et al [112], which uses codec-dependent ROI coding and disregarding
interview prediction by using simulcast.

5.3.2 Multi-view plus depth scalable video coding

Future works on multi-view plus depth scalable vide coding can include:

• to combine the assignment of enhancement layers in the proposed scheme with
rate distortion optimization. The bit rate reduction for each enhancement layer
that is removed can then be evenly distributed over the layers.

• to combine the proposed depth and view scalability approach with the various
scalability methods in the SVC amendment to H.264 AVC and analyze their
combined behavior. The test result could be used to make a priority between
the different types of scalability. The information could also be used to extend
the SVC approach in [113] to 3D video. The scheme proposed by Akyol et al in
[113] adapts the scalability type to the 2D video content.

• to evaluate the the proposed method and other SVC algorithms using a subjec-
tive test with a variety systems for visualizing 3D video.
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