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. Biologists have identified many features of living systems, which cannot be studied by the appli-
B cation of fundamental statistical mechanics (FSM). The present work focuses on some of these
: features. By discussing all of the basic approaches of FSM, the work formulates the extension of
. the kinetic-theory paradigm (based on the reduced one-particle distribution function) that pos-
B sesses all of the considered properties of the living-systems. This extension appears to be a
S model within the generalised kinetic theory developed by N. Bellomo and his co-authors. In con-
nection with this model, the work also stresses some other features necessary for making the
. model relevant to living systems. An example is discussed, which: is a generalised kinetic equa-
tion coupled with the probability-density equation representing the varying component content of
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. INTRODUCTION

The minimal unit of life is a living cell. A system that does
not include living cells can be termed a nonliving system.

Nonliving systems are studied in most of areas of physics,

chemistry, and engineering. These fields are endowed with
a great variety of experimental methods and theoretical
treatments, including fundamental statistical mechanics
(FSM) (e.g., Résibois and De Leener, 1977; Bogolubov and

Bogolubov, 1994; Balescu, 1997; Liboff, 1998). FSM-

proved to be a powerful tool in the analysis of problems in
nonliving matter. Subsequently, there has been an imesist-
ible temptation to apply the first-principle mechanical the-
ory to virtually every new problem, in particular, to living-
system problems that appear similar to the ones successfully
resolved by the nonliving-matter sciences in the previous
decades.

However, there are some opposing opinions. One of them

thousands of different components, each with very specific in-
teractions. :

Further,

... The macroscopic signals that a cell receives from its envi-
ronment can influence which genes it expresses — and thus
which proteins it contains at any given time — or even the rate
of mutation of its DNA, which could lead to changes in the
molecular structures of the proteins. This is in contrast to phys-
ical systems where, typically, macroscopic perturbations or
higher-fevel structures do not modify the structure of the mo-
lecular components.

The present work analyses in what specific respect FSM does.
not allow for the above features and what stochastic mechan-
ics instead of FSM can enable them. The work also identifies
the most relevant version of stochastic mechanics, among the

~ available alternatives, in the study of living systems.

S comes from biology (Hartwell et al., 1999, p. C49) 2. MATERIALS AND METHODS

C e . . . The methods used in the present work are those commonly
0 Biological systems are very different from the physical or ) L. ) hast; hanics including th
n chemical systems analysed by statistical mechanics or hydro- used in statistical or stochastic rechanics e uding i_
a1 dynamics. Statistical mechanics typically deals with systems published results of various authors related to the topic o

containing many copies of a few interacting components.
whereas cells contain from million to a few copies of each of
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the work (e.g. Résibois and DeLeener. 1977: Balescu, 1997;
Arlotti er al., 2002).




3. RESULTS AND DISCUSSION

Biologists have described many features of living systems,
which cannof be studied by the application of FSM (see
Sections 1 and 3.1). The main result of the present work is
the following. By discussing all of the basic approaches of
FSM (see Sections 3.2-3.6), the work formulates (see Sec-
tion 3.6) the extension of the kinetic-theory paradigm
(based on the reduced one-particle distribution function)
that possesses all of the properties of the living systems
considered in the work. This extension appears to be a
model within the generalised kinetic theory developed by N.
Bellomo and his co-authors (e.g., Bellomo and Lo Schiavo,
2000; Arlotti er al., .2003; see also Arlotti er al., 2002;
Bellomo et al., 2003a, 2003b; Willander et al., 2004). In
connection with this model, the work also stresses (see Sec-
tion 3.7) some other features necessary in making the model
relevant to living systems. An example (see Section 3.8) is
discussed, which is a generalised kinetic equation coupled
with the probability-density equation representing the vary-
-ing component content of a living system. The work also
suggests directions for future research (in Section 3.8).

3.1. Implications from biology: Formulation in terms of
FSM

.. The objections of Hartwell et al. (1999) on the differences

. of biological and physical systems (see the citations in Sec-
~tion 1) can be formulated in terms of FSM. We consider a
* population of particles occupying a bounded or unbounded

'domain (i.e. open connected set) in R where R = (= o0, o),

- say, domain X(¢) C R> where ¢ € R is the time. Let the pop-
ulation comprise

M1 . - - o
components, i.e. (different if M # 1) groups of identical par-
ticles, and let &V, such that

N2l i=1..M, _ @

be the number of the particles in the i th component. Thé to-
tal number N of the particles in the population is expressed
as

N=YY N, 3)
' Obviously,'
NzM. : 4

The equality N = M corresponds to the case when every
component comprises exactly one particle or, equivalently,
all the particles are pairwise different. This can take place in
a living system. It follows from the first citation in Section
1 (Hartwell er al., 1999) that M and N; in (1) and (2) are not
limited to any specific intervals, i.e.

number M in (1) can take any value from very low,
such as a unit or a few units, to a few millions
(or greater), . &)
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ity density (e.g., Balescu, 1997, (3.7), (3.8), and p. 25)

* The phase-space models form the core of FSM. They in-

. every number N, in (2) can take any value from very low,

such as a unit or a few units, to a few thousands
(or greater). 6)

The second citation in Section 1 (Hartwell et al., 1999) im-
plies that, generally speaking, the numbers in (5) and (6) de-
pend on time ¢, i.e.

M=M@) : M
and
Ni=N{D, i=1,..M. ®

The latter implies
N= NG )

because of (3).

The four sections below analyse if the models within FSM

~allow the features (5)—(8).

3.2. Phase-space models

In FSM, each particle is described with the three-dimen-
sional position vector in domain X(¥) (see above) and the
three-dimensional momentum vector. Thus, the phase space
for one particle is R®. Subsequently, :

the phase-space models in FSM consider

the N-particle population in the phasc space R?
where d = 6N. , - (10)

The corresponding key notion is the phase-space probabil-

m(Nat,xlspl;-‘-,xN:pN) (11)
where variables x; € X(f) and p; € R? represent the position
and momentum vectors, respectively, of the j th particle.
Density (11), as a function of x; and p;, j = 1,..., N, at every
fixed N and ¢, is also the joint probability density of the po-
sitions and momenta of N particles at time ¢

clude the Liouville equation (e.g., Balescu, 1997, (3.15)),
the formal master equation (e.g., Résibois and De Leener,
1977, (VII1.2), (VIIL.21}), the molecular-dynamics equation
systems, and other formalisms.

Along with this, it is unclear how to use the phase-space
settings (10). under condition (9). Generally speaking, this
prevents application of the phase-space models to living
systems.

To resolve the problem, one chooses a phase space such that
its dimension is independent of varying number (9). The
simplest way to do that is discussed in Section 3.3.
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3.3. Omne-particle reduced distribution function: One-
component population

The simplest way to make the phase-space dimension inde-
pendent of N(?) (cf., (9)) is by using the six-dimensional
space for one particle as the phase space for the entire popu-
lation. In this respect, the 6 N(z)-dimensional space (see (9)
and (10)) is reduced to the 6-dimensional space. However,
the reduction can be done only under a special condition.
This is considered below.

The joint probability density (11) enables one to introduce
the functions p; with equalities

p] W(t)at’xj ,P‘, ) =
@RI QN @121 5Py v Xy sPy )X

QI(;)JL#, (dxidp), j=1....N@). ‘ (12)

If the density function @ at every fixed ¢ is symmetric with
respect to all pairs (x, pp) (e.g., Balescu, 1997, (4.7)) or,
because of (12),

P (N(I)’t’x’p) = p2 (N(t),t,x,p) .= pN(t) (N(t)yt:x ,P)
_ (13)

then the N(#)-particle population can be described with the
reduced one-particle distribution function (e.g., Balescu,
1997,.(4.9))

fi (t1xvp) =N[ (t)pl (jvl (t)vt?xip) » » (14)
where identity
N@=N, (@) | (15)

- holds, since it, in view of (3) and (9), is equivalent to
M=1 (16)

which in turn is equivalent to condition (13).

‘In kinetic theory, the distribution functionfl in (14) is re-

garded as a solution of a kinetic equation (e.g., Balescu,
1997, p. 55). In this way, the terms on the right-hand side of
(14) are determined by means of this function as follows

VAR WS Y NP
oLV, O0.1,%.0) = £, ¢, x,P) I N, (). an

The condition that all the particles are identical (see (15) or
(16)) disagrees with feature (5) of living systems and is
eliminated in Section 3.5. The next section discusses why
the most important extension of the above paradigm is also
irrelevant to modelling of living systems.

3.4. Two- and multi-particle reduced distribution func-
tions: One-component population

This section considers the one-component particle popula-
tion, i.e. when (15) or (16) holds. The one-component set-
tings in the previous section can be regarded as a quite par-
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ticular case of a more refined treatment, the Bogoliubov—
Born-Green-Kirkwood-Yvon (BBGKY) equation chain
(e.g., Balescu, 1997, p. 45), which is based on the reduced
[-particle distribution functions, [ = 1. The case in Section
3.3 corresponds to [ = 1. The case when /> 1 is discussed in
the present section.

The well-known normalisation condition for the reduced
[-particle distribution function at / > 1 (e.g., Balescu, 1997,
(4.14) and (4.18)) is equivalent to relation (e.g., Balescu,
1997, p. 41)

NONGO-1...INO-I+]=[NO) , NO21>1 (18)

One can show that the relative error ¢ of this approximation
is inversely proportional to N(),

e~NOI™. (19)

Since the BBGKY description is traditionally regarded as
the first-principle model, approximate equality (18) should
hold with a very low relative error ¢, say, on the order of
tenths or hundredths of one percent, ie. €= 10" - 107
A%plication of these values to (19) requires N(#) ~ 10° -

This limitation sharply disagrees with feature (6) of living
systems (see also (15)). Subsequently, the reduced I-particle
distribution functions at / > 1 and any model which employs
at least one of them (e.g., the BBGKY equation chain or the
so-called correlation functions (e.g., Balescu, 1997, Section
3.4)) are in general not suitable to describe living systems.
One has to come back to the reduced one-particle distribu-
tion function in Section 3.3.

3.5. One-particle reduced distribution function: Multi-
component population’

The common extension of the identical-particle treatment in
Section 3.3 to the case when the particles do not need to be
identical involves the notion of a multicomponent popula-
tion. Indeed, no matter if M = 1.or M > 1, one can without a
loss of generality assume that the first M particles in the
N()-particle population (cf., (4)) are pairwise different and
any other particle is identical to one of the mentioned M
particles. In so doing, number N{®) in (2) and (8), turns out
to be the total number of the particles identical to the above
i th particle where { = 1,..., M. The corresponding generali-
sation of (14) is

Fx,p)= 20 fi(.x.p) 20)
where
f,-(t,x,p)=Ni(t)p,-(N‘.(t),t,x,p), i=1,..,M. 2n

and f; are the reduced one-particle distribution functions for
the components.

In kinetic theory, the distribution functions e Sy in (21)
are obtained as a solution of a system of M kinetic equations
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(e.g., Liboff, 1998, Section 3.2.2). (Note, however, that the
derivation of this system from representation (20) is not al-
ways included in the corresponding textbooks.) Solutions of
the system have values in set [0, w)M. Applying (7) to this
set, one encounters the difficulties analogous to those de-
scribed in Section 3.2 in connection with substitution of (9)
into the expression for & in (10). Thus, the above multi-
component treatment underlying (20) is generally irrelevant
to modelling of living systems. ’

The problem can be overcome if one leaves the scope of
FSM. This is the topic of the next section.

3.6. One-particle reduced distribution function: Time-
dependent number of components. Generalized distribu-
tion function

As stressed above, the notion of a multicomponent popula-
tion is inherently associated with the features of the parti-

cles that are either identical or different. The latter is re- -

solved by comparing the component-specific values of the

related parameters of the particles, for example, the particle -

mass, size, shape, electric charge, or other physical quanti-
ties. They can be regarded as the entries of a vector vari-
able, say, u € R™ (where m 2 1) such that

+ the i th component, i = 1,..., M, corresponds to value «; of

« ‘and all the values u;,..., iy, € R™ are pairwise different,
2 ie.

W Ey, D%, =l M. @

The treatment below follows the single-distribution-fun-
ction approach to multicomponent populations proposed in

Bellomo et al. (2003a) and Willander et al. (2004). Accord-

ingly, A_/{ functions fi(t, x, p) in (21) can be regarded as M
values f(z, %, p, u;) of single function f (& x p, u) where vec-
tor u varies in a bounded or unbounded, generally time-de-
pendent domain in R™, say, U(t) € R™, This transforms
(20) into A '
f(t!x!P)_:E'Flf(t’x’P’ui)- : (23)

In so doing, the functions N; and p; in (21) are also deter-
mined in terms of function f (¢ x, p, u) , namely

Ni(t) =1Tj(t1ui)’ pl(Nl (t)r[’x!P) =ﬁ(ﬁ(tsui)stvxsp9ui)a
i=1,...M, 24)

where (cf., (17))

N@w= J.X(r)xR‘ Fa.x.p ,u)dxdp, (25)

BE(tt,x, o) = Fltox,p ) IN 1. 26)

Thus, the reduced one-particle distribution function f (see
(23)) for the multicomponent population and other basic
characteristics of the components, for example, (24)-(26)
are completely described by means of the single distribution
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function f, The latter can be determined in the way dis-
cussed in the next section. The rest of the present section
analyses how the distribution function f~ can integrate the
feature (7) of living systems.

The above set {u;,..., 23} can be regarded as a sample for a
random variable defined on domain U(r) and described with
a probability density, say, A(z, ). In the simplest case, ie.
when the random variable is defined on R™ and discrete,
namely :

M= S MS@-), e U@, UO=R™,  @7)

where 8(\) is the M-dimensional Dirac delta-function, ex-
pression (23) is equivalent to

Fax.p)=M [ Ft.x.p. 0
u()

According to the approach of Bellomo et al. (2003a) and
Willander e al. (2004), one applies the latter equality even
when (7) holds and both domain U(f) and probability den-
sity A(t, -) are not necessarily of the particular form (27), ie.

Fex.p)=MOEN],,, Fex. 000 28)

In so doing, the component number M(A(, -)) specifies the
t-dependence (7). The time-dependent component number’
can be interpreted in various ways. The discussions in

- Bellomo et al. (2003a, Sections 5 and 7) and Willander ez

al. (2004, Section 4.3 and Appendix) suggest to read it as
the number of the modes of probability density A, -). These
modes may be viewed as the spread out, nonzero-widths
and finite-height peaks analogous to those in (27). Along
with this, we present a more general ‘and somewhat more
precise definition of M(A(, ).

Definition 1. Let the components of a population of parti- -
cles be described with vector parameter u € R™ Let also "
the number of these components be denoted with ML, -)).
We term any path-connected subset of set

YO, ) =ue R™AQ,0>0 . v | 29

the component-parameter subset of the population. The par-

ticles in a component of the population are the ones corre-
sponding to the values of u in a component-parameter sub-
set. Subsequently, number M(A(t, -)) is the number of the

component-parameter sets of set (29). ' '

If set (29) includes more than one component-parameter

subset, then, obviously, all these subsets are mutually non-
intersecting. This feature generalises condition (22), which
is valid in the case of (27) when the component-parameter
subsets are single-point sets {tg},e., {Upr}

Importantly, Definition 1 is more general than the mode-
based definitions developed in Bellomo ez al. (2003a) and
Willander et al. (2004). Indeed, any collection of the popu-
lation particles that is a component in the sense of the pres-
ent definition comprises at least one collection which is a
component in the sense of the previous definitions.
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Remark 1. As'it is well-known (Gove, 1993, p. 1306), life
is “the principle or force by which animals and plants are
maintained in the performance of their functions and which
distinguishes by its presence animate from inanimate mat-
ter; the state of a material complex or individual character-
ised by the capacity to perform certain functional activities
including metabolism, growth, reproduction, and some form
of responsiveness or adaptability”. The probability density
A in (28) and its component characteristics in Definition 1
are the very quantities that.can be the core in the represent-
ing of the above metabolism, growth, reproduction, and re-
sponsiveness or adaptability.

Expression (28) shows that the entire multicomponent pop-
ulation is modeled in terms of a single, generalised reduced
one-particle distribution function

S0 u) = MO, F e x, p k() (30)

that describes not only the stochastic position and momen-
tum of a particle (represented with x and p, respectively) but
also its stochastic parameter vector (represented with u €
U(r)), which determines the particle content of the popula-
tion. In the context of (28) and (30), fis the conditional dis-
tributioni function for (x, p) conditioned with value u, f (see
(28)) is the marginal distribution function for (x, p), P (see
(26)) is the conditional probability density for (x, p) condi-
tioned with values u and N(z, u) (see (25)), and A is the mar-
ginal probability density for u. The generalised distribution
function (GDF) (30) is of the type underlying the general-
ised-kinetics (GK) theory developed by N. Bellomo and his
co-authors (e.g., Bellomo and Lo Schiavo, 2000; Arlotti e
al., 2003; see also Arlotti e al., 2002; Bellomo et al,
2003a, 2003b; Willander et al., 2004).

All the aforementioned issues can be summarised in the fol-
lowing way.

Remark 2. Definition 1, the single generalised reduced
one-particle distribution function (30), and related expres-
sions (24)—(26), (28) enable one to take into account not
only (5), (6), and (8) but also (7), i.e. all the above features
(5)-(8) of living systems. Among the stochastic-mechanics
models considered in the present work, representation (30)

and the related expressions are the only treatment that can

allow for (5)~(8). Subsequently, if a population of living
particles can be modelled by a stochastic-mechanics ap-
proach, then the latter is based on (30). In other words, ap-
plication of GDF (30) is the necessary condition for model-
ling living systems by stochastic mechanics.

The next section derives one more condition that the model
in Remark 2 should meet to properly describe the mechan-
ics of the living-particle population.

3.7. Other properties of living systems formulated in
terms of the present model

Stochastic variables (x, p) and u represent the mechanics
and component content, respectively, of a population of liv-

Proc. Latvian Acad. Sci., Section B, Yol. 59 (2005), No. 6.

ing particles. The mechanical evolution described with f can
be recognised as part of a living system only if the proper-
ties of the particles (e.g., those in Definition 1) influence the
above evolution. This means that f must depend on A,

fex.py=Fa.x,p.ul). (31)

The corresponding corrections should be taken into account
in (25), (26), (28), and (30). '

Because of homeorhesis (Waddington, 1957, p. 32;
Waddington, 1968, p. 526), the time-dependent specifica-
tion of homeostasis, GDF f (see (30)) can not be stationary,
i.e. independent of ¢, in a living system. Along with this, a
living system may in principle be mechanically stationary,
i.e. the r-independence of f may be the case, at least as an
approximation. In view of this and (30), the probability den-
sity A is always nonstationary, i.e. depends on t. Haus and
Smolensky (1999) discuss the corresponding examples of
experimental results. Other details on homeorhesis in con-
nection with (30) can be found in (Willander et al., 2004,
Section 4.1).

Numerous observations of mature (non-embryonic) living
systems show that, in any sufficiently short time intervals,
living systems behave similar to nonliving bodies, namely
those with the r-independent A. For instance, if the time
needed for a driver to stop a car from avoiding collision
with an immobile obstacle is less than one second, i.c. the
typical time for the driver reaction, then the collision is in-
evitable. In a short time interval, when the mechanical-dy-
namics function f noticeably varies, the driver action associ-
ated with A remains unchanged. In specific terms, this
means that, if a mature living system is modelled with (30),
then

1<<Ty (@) /T 5 @) <o, u€ U NYQL)), (32)

where set YQ\(z,-)) is described with (29), T, (u) is the
characteristic time of changes in A(, u), 7T 7 ) =
SUP () T (e, p 1)} and T(x, p,u) is the characteristic time of
changes in 7, x, p, u, A) (see (31)). The time scales in living
systems are discussed, for example, in (Willander et al.,
2004, Section 3.4). :

The above issues can be summarised as follows.

Remark 3. If a living system is adequately described with
the model in Remark 2, then:

» the conditional distribution function f depends on proba-
bility density A, i.e. (31) holds;

« the probability density A depends on #; -
« the inequality (32) is valid.

If any of the above conditions does not hold, then the sys-
tem is nonliving.

This summary lists the features to be accounted in develop- .
ment of specific models for GDF (31).
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3.8. Generalised kinetic equation and related models. Dj-
rections for future research

The conditional distribution function F(F,uA) in (30),
(31) can be obtained as a solution of the following general-
ised kinetic equation (GKE) (Willander et al., 2004, (3.15)

3F(t.x,p,ul) Eaf(t.x,p WA) P
ot ox; p(w)

of (s, A
Zﬂ%’—),awu h=

i=1 i
Jy @x,pu, fl2,x A+

MO, T xp Do Fit e ud)w,

f(t:x ,‘,W,)\.))A.(t,W)dW,

xeX®, peR, ue U(t)nr(t) . (33)

where scalar pu(u) is the mass of a particle in the population
component corresponding to u and vector F(t,x,p,u\,f) is
the nondissipative force acting on a particle. The nondissi-
pativity means that force F(¢,x,p,u,A,f) is linear in p and
matrix F(t,x,p,u,\,f)/dp is independent of p and skew-
symmetric.

If one of the entries of vector u, say, u; represents the
. charge of a particle, then an example of a nondissipative
force is the Lorentz force F@x,pu,f)=uEq, x A, H+.
Lp/ m@WIxB(t,x .\ ,f)} where vectors E(t,x ,f) and
B(t,x A, f) are the electric and magnetic fields, respectively.

They are determined from the corresponding Maxwell equa-
tions. In particular, vector E(t, XA ,f) is described with Cou-
fomb’s equation

9E(t.x A, f)
- E_x%f

=1 X

MO,

v U Fex.p uh)dplge

wheree, is the electric permittivity of a vacuum and ¢ is the
relative electric permittivity of the particle population.

" The term J; (¢, x,p; u,f‘(t,x < i,A)) in (33) is the collision in-
tegral due to the collisions of the particles of one compo-
nent, i.e. the one corresponding to u, with the surrounding.
The term J, (t,x,p A u, £ (8. - A, w, Ft.x -, w,A)) in (33)
is the collision integral due to the collisions of the particles
of two different components, i.e. the ones corresponding to
_ u and w. The three- and multi-component collisions are not
included in GKE (33). Further details regarding this equa-
tion can be found in (Willander et al., 2004, Section 3.3).

We only note that, in the case of (27), GKE (33) becomes a

~ common kinetic-equation system for a multicomponent par-
ticle population (cf., Liboff, 1998, Section 3.2.2)).

Remark 4.. GKE (33) is an example of a model that can
_provide the first feature of the living-system mechanics dis-
cussed in Remark 3. Note that, in the GK theory, the condi-
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tional distribution function f(t, U, 7&) may depend not
only on the entries of the component-content vector u but
also on otheér scalar parameters. The latter can be deter-
mined by means of the methods of the GK theory (see the
references in the text above Remark 2).

New effects can be accounted for GKE (33) if one incorpo-
rates into the right-hand side the “memory”-based collision
term, which includes an integral in ¢ in line with the ap-
proach of (Sjogren, 1978, 1980). This enables to allow for
the phenomena usually under-represented in kinetic theory
and especially difficult to model in living systems, for ex-
ample, the soft-glassy-material analogy of cellular popula-
tions observed in experiments (e.g., Fabry et al., 2003). The
distinguishing advantages of the mentioned theoretical ap-
proach is a consistent modelling paradigm and a distinct
physical meaning of every involved term.

Another direction for future research is a detailed treatment
of many-body collisions in multicomponent populations of
living particles. This presumes a detailed reading of the
terms on the right-hand side of GKE (33) and complement-

ing them with the corresponding additional terms. A possi-

ble way in this direction is discussed in (De Angelis and

Griinfeld, 2003; Griinfeld, 2000).

The general form of the model for probability density A is
equation (Willander ez al., 2004, (3.16)).

OA@E,) [0t=AC,uf(t, s NAE,)), ue UR) (34)

Equations (33) and (34) form the equation system for
f(t,,u, 1) and A(¢,4). Solutions of this system are suppos-
edly of the second and third properties of the hvmg—systems
mechanics in Remark 3,

It follows from (5) that equation (34) can be fairly complex.
The fact that (34) must be regarded in conjunction with
GKE (33) to make the model closed, fully agrees with the
well-known issues (Hartwell ez al., 1999, p. C49): ’

... the components of physical systems are often simple enti-

- ties, whereas in biology each of the components is often a mi-
croscopic device in itself, able to transduce energy and work
far from equilibrium. As a result, the microscopic description
of the biological system is inevitably more lengthy than that of
a physical system, and must remain so, unless one moves to a
higher level of analysis.

The form of function A in (34) is still unknown. Until now,
the models used for living systems (e.g., Koptioug er al.,
2004; Mamontov et al., 2005; Psiuk-Maksymowicz and
Mamontov, 2005) do not allow (7) and employ (27), in fact
applying the nonliving-systems paradigm. More research is
needed to specify function A. One of the fields for future
study is associated with the fact that A is assigned to repre-
sent the component structure due to biochemical reactions
in the particle population. Subsequently, the results on the
complex rature of these reactions (e.g., Bernasconi, 1936)
may contribute to derivations of funcnon A
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A discussion on equation (34) is also included in Willander
et al. (2004, Section 3.4), We add only a few issues.

One of the simplest cases of equation (34) is the Kolmo-
gorov forward, or Fokker-Planck, (KFFP) equation (e.g.,
Mamontov and Willander, 2001, and the references
therein). Research on the KFFP reading of (34) can be facil-
itated by a series of the recent results. For example, the
KFFP-based nonstationary invariant probability densities

' may appropriately describe homeorhesis, the time-depend-
ent generalisation of homeostasis (cf., the text below (31)).
A fairly general treatment for these densities is reported by
Mamontov (2005b). The text by Mamontov and Willander
(2001) includes a group of analytical-numerical methods
developed for KFFPs with nonlinear coefficients in the
high-dimensional case, i.e. when dimension m of vector u in
(34) is high.

A promising and interesting topic in future development of
equations for A includes more capable models than KFFPs
(or Itd’s stochastic differential equations), for example,
those studied by Y. Tsarkov (Tsarkov, 1989; Katafygiotis
and Tsarkov, 1999; Tsarkov, 2002). These results may be
especially helpful since they are related to dissipation (inter-
preted in a wider sense than the one common in physics),
nonrecurrence, and stability, i.e. the features inherent in liv-
ing systems. Moreover, the ﬁmctzonal—dyj‘erennal nature of
the above models may help to overcome certain limitations
. of the KFFP (and hence Markov) approach in modelling the
population-component characteristics in Definition 1. This
modelling is one of the most challenging fields of research
on GK systems (33), (34).
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~ VAI STOHASTISKA MEHANIKA IR PIELIETOJAMA DZIVES SISTEMU PETISANA?

Dzives sistémam ir daZas ipatnibas, kas to p&tiSanai nelauj lietot fundamentalo statistisko mehaniku. Raksta ir formuléts kingtiskas teorijas
paradigmas paplagingjums, kas apmierina visam dzives sistémas Tpastbam. Raksta izvirziti ‘arf citi nosacijumi, kas padara modeli lietojamu
attiectbd uz dzives sistdmam. Apskatitais piemérs ir visparinats kinétiskais vienadojums kopa ar varbiitibu blivuma vienadojumu. Darba
piedavati virzieni turpmakiem pétjjumiem. ’ : : :
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