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Abstract—Recent deep learning-based light field disparity esti-
mation algorithms require millions of parameters, which demand
high computational cost and limit the model deployment. In this
paper, an investigation is carried out to analyze the effect of
depthwise separable convolution and ghost modules on state-
of-the-art EPINET architecture for disparity estimation. Based
on this investigation, four convolutional blocks are proposed to
make the EPINET architecture a fast and light-weight network
for disparity estimation. The experimental results exhibit that
the proposed convolutional blocks have significantly reduced the
computational cost of EPINET architecture by up to a factor
of 3.89, while achieving comparable disparity maps on HCI
Benchmark dataset.

Index Terms—Light Field, Deep Learning, Disparity Estima-
tion, Compression, Depthwise Separable Convolution

I. INTRODUCTION

Recent advancement in image acquisition devices has en-
abled users to capture the spatial and angular information
of the scene, known as Light Field (LF) [I]-[3]. The LF
data enables the freedom of viewpoint selection, focal plane
changing, and object refocusing in the entire captured scene.
Hence, the light field can provide an immersive experience in
multimedia applications such as 3D modeling [5]], medical
imaging [6]], telemedicine [[7] and movies [8].

With the rise of consumer-level LF cameras [2]], [3], dispar-
ity estimation from LF has become a promising way to find
the pixels in the multiple views that correspond to the same 3D
point in the scene. Numerous post-processing applications [4]],
utilizing LF data rely on disparity information of the
scene, e.g. view synthesis and super-resolution [12]]. In
recent studies, many deep learning (DL) based algorithms are
proposed and have achieved significant improvement in the
estimation of disparity information [I3]—{15]. Convolutional
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Fig. 1. Comparison of number of parameters in recent deep learning

architectures for light field disparity estimation along with their average mean
square error (MSE) [9]

layers in DL architectures plays a vital role in feature extrac-
tions from input data, using 2D and 3D convolution operations.

3D convolutions have shown promising performance in the
disparity estimation task. Alperovich et al. propose a fully
convolutional autoencoder using 3D convolutions for disparity
estimation of light fields. Similarly, Tsai et al. and Chen
et al. utilize a mixture of 3D and 2D convolutional layers
in learning-based disparity estimation networks. Although the
3D convolution extracts spatio-temporal information and is
beneficial for volumetric data, it is computationally expensive
and leads to significant memory consumption [[16]. Therefore,
to avoid memory burden, recent DL architectures instead
employed 2D convolutions.

2D convolutional layers are computationally less costly than
3D convolutional layers. Shi et al. proposed a disparity
estimation algorithm that uses 2D convolution operations to
extract features information. Li et al. [20] proposed an end-to-
end fully convolutional network to estimate the depth value of
the intersection point on the horizontal and vertical Epipolar
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Fig. 2. Tllustration of convolutional blocks for EPINET architecture. (a) The state-of-the-art convolutional block of EPINET architecture, which extract the
features information using ordinary convolution operation [10] (b) The proposed Ghost Module based Convolutional Block, in which the half feature maps are
extracted using ordinary convolution operation and remaining feature maps are generated using linear operation [17] (c) The proposed Depthwise Separable
Convolution based Convolutional Block, which is composed of depthwise convolution operation, followed by pointwise convolution operation [18§].

Plane Images (EPIs). Leistner et al. [21]] proposed encoder-
decoder based U-shaped network architectures to extract ge-
ometric and disparity information from LF images. Although
these architectures use the less costly 2D convolutional layers
for feature extraction, standard convolutional operations are
still computationally expensive [[17], [18]].

The majority of recent successful DL-based disparity es-
timation architectures require millions of parameters, as il-
lustrated in Figure [T} This makes them energy, computation,
and memory intensive. As a result, such architectures require
long inference time and power-consuming computational re-
sources (e.g., GPU). Typically, the file size of DNN models
are enormous (e.g., more than 200 Megabytes [22]), which
limit their deployment. For these reasons, compression of DL
architecture is essential for training and deployment of such
models in practice.

Several strategies have been proposed to reduce the com-
plexity of spatial convolutions [23]]. Howard et al. [18]] adopted
group convolutions and depthwise separable convolutions as
alternatives to standard spatial convolutions, which require less
computational cost for image classification problems. Simi-
larly, Han et al. [|17]] proposed the Ghost module to generate
more features map by applying linear operations on previ-
ously extracted feature information. As a result, the required
number of parameters and the computational complexity are
decreased without changing the size of the output feature
map. Although these compression techniques can significantly
reduce the complexity of DL networks designed for tasks
such as classification, detection, and segmentation [17], [[18]],
[24], their impact on LF rendering and disparity estimation
algorithms has not been evaluated.

The state-of-the-art disparity estimation architecture
(EPINET), proposed by Shin et al. [10] is the focus of our
study. It is composed of four multi-stream networks, where
each stream is used to extract feature maps in a specific
angular direction of LF images using ordinary convolutional
layers. The approach achieved state-of-the-art results on the

HCI 4D Light Field Benchmark [9]. The EPINET architecture
consists of 20 convolutional blocks, where each block consists
of 2 ordinary convolutional layers as shown in Figure [Zh.
As a result, 40 ordinary convolution layers yield massive
multiplication operation and requires 5.13 million parameters
[10] to predict a disparity map. Since one convolutional
block is repeated across the entire EPINET architecture,
compressing it will result in a significant reduction in
computational cost.

In this paper, an investigation is carried out to analyze the
effect of ghost modules and depthwise separable convolution
on EPINET architecture. Based on this investigation, following
main contributions are made:

1) Four different convolutional blocks are proposed to
make EPINET a fast and lightweight architecture for
LF disparity estimation.

The proposed convolutional blocks have significantly
reduced the model parameters, computational cost, and
inference time.

The compressed architecture estimate the disparity map
with a slight improvement compared to the original
architecture on the HCI Benchmark dataset [9].

2)

3)

II. PROPOSED METHOD

Inspired by the achievement of significant complexity re-
duction of GhostNet [17] and MobileNet [18]], two convo-
lutional blocks are proposed to minimize the computational
cost of EPINET architecture for fast disparity estimation. The
proposed ghost module (GM) based convolutional blocks and
depthwise separable convolution (DWSC) based convolutional
blocks are discussed in Sections [[I-A] and [[I-B] respectively.

A. GM-based Convolutional Block

In order to reduce the complexity of EPINET architecture,
the ordinary convolution layers in the convolutional blocks are
replaced with the ghost feature map extraction module [17].
The theoretical analysis of the ghost module is available in



[17]. Since our objective is to minimize the model param-
eters, half of the convolutional features are generated using
ordinary convolution operations, and the remaining features
are produced using simple learning operations. As a result, the
incorporation of GM in EPINET convolutional block should
reduce the parameters and computational cost by up to 2 times.
In Figure 2b, the top image shows the proposed GM-based
convolutional blocks, and the bottom image shows the feature
extraction process of the GM.

B. DWSC-based Convolutional Block

DWSC is a mixture of Depthwise Convolutions and Point-
wise Convolutions [18]]. In Depthwise Convolution, a single
filter is applied to each input channel to extract features,
followed by a point convolution operation, which computes
the linear combination of these extracted features using 1x1
convolutions across the channel. In the proposed DWSC-based
Convolutional Block, the ordinary convolutional layers are
replaced with DWSC to compress the EPINET architecture.
The theoretical analysis of the DWSC is available in [18].
In Figure 2k, the block on the top of the figure shows
the proposed DWSC-based Convolutional Block, whereas the
bottom side of the figure shows the process of the Depthwise
and Pointwise convolution operation.

III. EXPERIMENTAL SETUP

Dataset: In order to train and evaluate the performance
of the proposed convolutional blocks-based EPINET archi-
tecture, HCI Benchmark dataset [9] is used with the same
configuration as in [[10]]. This dataset has a spatial resolution
of 512x512 and angular resolution of 9x9. The grayscale
LF images are fed into the proposed compressed variants of
EPINET architecture, to predict a disparity map as an output
[10].

Evaluation Metrics: For the quantitative evaluation, the
predicted disparity maps are compared with the ground truth
of the HCI test data set. The bad pixel ratio (BPR) [9] with
three thresholds (0.01, 0.03 and 0.07 pixels) and mean square
errors (MSE) [9]] are used to evaluate the performance of
the proposed EPINET variant. For computational complexity
measurement, the Tensorflow [25] profiler library is used to
measure Floating Point Operations per second (FLOPS). The
average prediction time of test sets is also reported as the
actual inference time.

Implementation Details: 1In [10], the EPINET architecture
with 7 X 7 input views and data augmentation technique
(Epinet-fcn) achieved the least MSE among the other variants
of EPINET having 3 x 3, 5 x 5 and 9 x 9 input. Therefore,
the proposed convolutional blocks are incorporated in Epinet-
fcn architecture and named Ghost Module based EPINET
(EPINET-G) and DWSC based EPINET (EPINET-D). The
number of iterations (10 Million), batch size (16), loss function
(Mean Average Error [26]), optimizer (Root Mean Squared
Propagation [27]]), and learning rate (LR) are the same as
stated in [[10]. It is not clear how and when LR is decreased
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Fig. 3. Model training performance on 10M Iterations. The y-axis uses

customized scaling for better visibility of MSE, and the x-axis reports the
number of iterations.

in [10], so we reduced the LR from 10~® to 106 at 5 million
iterations.

Network Training: The network training and evaluation are
performed on hardware equipped with two NVIDIA GeForce
RTX 2070 graphics cards and 64GB of Random Access
Memory (RAM) with Ubuntu 18.04 operating system. Since
EPINET source code is publicly available (https://github.com|
[rgmueller/EPINET-tf2) and written using Tensorflow library
[25]], the proposed convolutional blocks are also implemented
under the same library. The training results are presented
in Figure 3] It can be seen that the EPINET-D starts with
higher MSE but converges and aligns with the other variant
of EPINET after 8 Million iterations, and becomes stable at
the end of training.

IV. RESULTS

Since the scope of this work is to investigate to what extent
the computational complexity of EPINET architecture can be
reduced while preserving its performance, the comparison of
the proposed architectures is made with the uncompressed
original architecture only. The qualitative comparisons are
presented in Figure [ It can be seen that the EPINET-D
and EPINET predict disparity map close to ground truth with
comparable MSE and BPR, whereas EPINET-G has high MSE
and BPR in the output disparity map. It is reported that
the ghost operation can reduce the computational cost with
performance degradation and affect the ranking of their archi-
tecture [28]. The redundancy in the feature maps generated
using ghost operation is limiting the representational ability
of convolutional layers [29], hence GM is not very suitable
for such application. It is clear from the analysis that there
is a trade-off between computational cost and MSE using
EPINET-G architecture. Although the ghost operation does not
perform well, the research findings are presented for readers
to understand the efficacy of these approaches for light field
disparity estimation.

Based on the comparable performance of MSE using
DWSC, two additional variants of the EPINET-D are also
considered in the analysis. The first convolution layer in the
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to ground truth disparity map.

TABLE I
QUANTITATIVE EVALUATION OF THE PROPOSED VARIANT OF EPINET ARCHITECTURE ON HCI TEST DATASET* .
Model Parameters FLOPs BPR (%) MSE Inference Time | Compression
Millions (M) Giga (G) <0.01 <0.03 <0.07 (%) Second (s) Times (X)

EPINET [10] 5.1243 2544.4052 | 62.0530 | 23.5477 7.5029 0.9249 3.2135 -
EPINET-G 2.5771 1278.3409 | 88.1097 | 59.5703 | 26.4755 | 1.4444 1.5999 1.9884
EPINET-DC 3.1289 1552.0681 | 57.0940 | 22.8431 8.6336 0.8467 1.5941 1.6377
EPINET-CD 3.0786 1529.4374 | 57.7908 | 21.7012 7.1723 0.8286 2.5471 1.6645
EPINET-D 1.3173 649.9651 61.8916 | 25.4563 8.2497 0.8777 0.8947 3.8901

*In Table [[] the bold numbers shows the best value and ifalic number shows the least value among the column.

reference EPINET convolutional block is replaced with a
DWSC to propose the EPINET-DC variant. Similarly, another
combination is created by replacing the second convolutional
layer of reference EPINET with DWSC, and it is referred to as
EPINET-CD architecture. Based on these two combinations,
the resulting EPINET variants is trained using same training
configurations and their evaluation results are presented
in Table [l It can be seen that the EPINET-CD and EPINET-
DC have similar number of parameters and FLOPs, but they
have small MSE and BPR compared to EPINET, EPINET-D
and EPINET-G variants.

The DWSC based EPINET-D architecture outperforms the
other variants in terms of parameters, FLOPS, and inference
time, and has an MSE in par with EPINET, EPINET-CD and
EPINET-DC. Since each channel of the input stack represents
one grayscale LF image, depthwise convolution can extract
useful feature maps on each channel before applying point-
wise convolution to mix information across the feature maps.

Therefore, DWSC can play a vital role in feature extraction
modules for the LF disparity estimation.

V. CONCLUSION

In this paper, four convolutional blocks were proposed to
make EPINET a fast and lightweight architecture for disparity
estimations. The evaluation results state that the depthwise
separable convolution plays a vital role in the features ex-
traction module, which leads to significant computational cost
reduction up to 3.89 times, even with slight quality improve-
ment of the disparity map. In contrast, the ghost module based
EPINET-G architecture was unable to estimate competitive
disparity map with respect to EPINET. In future work, further
compression methods are lined up for evaluation for disparity
estimation. It is also planned to further test the effectiveness
of depthwise separable convolution in other LF applications.
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