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Abstract

Observation and understanding of the world through digital sensors is an ever-
increasing part of modern life. Systems of multiple sensors acting together have far-
reaching applications in automation, entertainment, surveillance, remote machine
control, and robotic self-navigation. Recent developments in digital camera, range
sensor and immersive display technologies enable the combination of augmented
reality and telepresence into Augmented Telepresence, which promises to enable more
effective and immersive forms of interaction with remote environments.

The purpose of this work is to gain a more comprehensive understanding of how
multi-sensor systems lead to Augmented Telepresence, and how Augmented Tele-
presence can be utilized for industry-related applications. On the one hand, the con-
ducted research is focused on the technological aspects of multi-camera capture, ren-
dering, and end-to-end systems that enable Augmented Telepresence. On the other
hand, the research also considers the user experience aspects of Augmented Telepre-
sence, to obtain a more comprehensive perspective on the application and design of
Augmented Telepresence solutions.

This work addresses multi-sensor system design for Augmented Telepresence re-
garding four specific aspects ranging from sensor setup for effective capture to the
rendering of outputs for Augmented Telepresence. More specifically, the following
problems are investigated: 1) whether multi-camera calibration methods can reliably
estimate the true camera parameters; 2) what the consequences are of synchronizati-
on errors in a multi-camera system; 3) how to design a scalable multi-camera system
for low-latency, real-time applications; and 4) how to enable Augmented Telepre-
sence from multi-sensor systems for mining, without prior data capture or conditio-
ning.

The first problem was solved by conducting a comparative assessment of widely
available multi-camera calibration methods. A special dataset was recorded, enfor-
cing known constraints on camera ground-truth parameters to use as a reference for
calibration estimates. The second problem was addressed by introducing a depth
uncertainty model that links the pinhole camera model and synchronization error to
the geometric error in the 3D projections of recorded data. The third problem was ad-
dressed empirically —by constructing a multi-camera system based on off-the-shelf
hardware and a modular software framework. The fourth problem was addressed
by proposing a processing pipeline of an augmented remote operation system for
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augmented and novel view rendering.

The calibration assessment revealed that target-based and certain target-less cali-
bration methods are relatively similar in their estimations of the true camera parame-
ters, with one specific exception. For high-accuracy scenarios, even commonly used
target-based calibration approaches are not sufficiently accurate with respect to the
ground truth. The proposed depth uncertainty model was used to show that conver-
ged multi-camera arrays are less sensitive to synchronization errors. The mean depth
uncertainty of a camera system correlates to the rendered result in depth-based re-
projection as long as the camera calibration matrices are accurate. The presented
multi-camera system demonstrates a flexible, de-centralized framework where data
processing is possible in the camera, in the cloud, and on the data consumer’s side.
The multi-camera system is able to act as a capture testbed and as a component in
end-to-end communication systems, because of the general-purpose computing and
network connectivity support coupled with a segmented software framework. This
system forms the foundation for the augmented remote operation system, which de-
monstrates the feasibility of real-time view generation by employing on-the-fly lidar
de-noising and sparse depth upscaling for novel and augmented view synthesis.

In addition to the aforementioned technical investigations, this work also addres-
ses the user experience impacts of Augmented Telepresence. The following two que-
stions were investigated: 1) What is the impact of camera-based viewing position in
Augmented Telepresence? 2) What is the impact of depth-aiding augmentations in
Augmented Telepresence? Both are addressed through a quality of experience study
with non-expert participants, using a custom Augmented Telepresence test system
for a task-based experiment. The experiment design combines in-view augmenta-
tion, camera view selection, and stereoscopic augmented scene presentation via a
head-mounted display to investigate both the independent factors and their joint in-
teraction. The results indicate that between the two factors, view position has a stron-
ger influence on user experience. Task performance and quality of experience were
significantly decreased by viewing positions that force users to rely on stereosco-
pic depth perception. However, position-assisting view augmentations can mitigate
the negative effect of sub-optimal viewing positions; the extent of such mitigation is
subject to the augmentation design and appearance.

In aggregate, the works presented in this dissertation cover a broad view of Aug-
mented Telepresence. The individual solutions contribute general insights into Aug-
mented Telepresence system design, complement gaps in the current discourse of
specific areas, and provide tools for solving challenges found in enabling the cap-
ture, processing, and rendering in real-time-oriented end-to-end systems.
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Chapter 1

Introduction

This thesis is a comprehensive summary and analysis of the research process behind
the works shown in the List of Papers. As such, the following six chapters have a
larger emphasis on research questions and methodology than is commonly seen in
the listed papers; these chapters are not written to replicate the content of the papers
but rather to supplement them.

This chapter defines the overall context and aim of the presented research in light
of the importance and timeliness of augmented applications in remote operation
that depend on multi-camera systems. The research purpose is defined in two parts,
which are supported by a total of six research questions. The scope of this work is
described, and a brief summary of the contributions in the form of scientific publica-
tions is presented.

1.1 Overall Aim

The overall aim of the research in this thesis is to contribute to a more comprehensive
understanding of how multi-camera and multi-sensor systems lead to industrially
viable Augmented Telepresence (AT). This aim is investigated by focusing on how
cameras and other environment-sensing devices should integrate into capture sys-
tems to produce consistent datasets, how those capture systems should be integrated
into AT systems within domain-specific constraints, and how such AT systems affect
the end-user experience in an industrial context.

1.2 Problem Area

Telepresence and remote working are fast becoming the norm across the world, by
choice or necessity. Telepresence for conferences and desk work can be handled suf-
ficiently with no more than a regular Two-Dimensional (2D) camera and display.

1



2 Introduction

However, effective and safe remote working and automation in industrial and out-
door contexts (e.g. logging, mining, construction) requires a more thorough record-
ing, understanding, and representation of the on-site environment. This can be
achieved by involving systems of multiple 2D cameras and range sensors such as
Light Detection and Ranging (lidar) in the capture process.

Multi-camera and multi-sensor systems already are important tools for a wide
range of research and engineering applications, including but not limited to surveil-
lance [OLS+15, DBV16], entertainment [LMJH+11, ZEM+15], autonomous opera-
tion [HLP15, LFP13], and telepresence [AKB18]. Recently, immersive Virtual Re-
ality (VR) and Augmented Reality (AR) have gained significant industry traction
[KH18] due to advances in Graphics Processing Unit (GPU), Head-Mounted Dis-
play (HMD) and network-related (5G) technologies. For industries where human
operators directly control industrial machinery on site, there is significant poten-
tial in remote, multi-camera based applications that merge immersive telepresence
[TRG+17, BDA+19] with augmented view rendering [LYC+18a, VPR+18] in the form
of AT.

1.3 Problem Formulation

Augmented Telepresence has the potential to improve user experience and task-
based effectiveness, especially when incorporated for industrial applications. In or-
der to achieve immersive AT with seamless augmentation, the geometry and Three-
Dimensional (3D) structure of the remote environment needs to be known. Extrac-
tion of this geometry is affected by the accuracy of calibration and synchronization of
the various cameras and other sensors used for recording the remote locations; a suf-
ficiently large loss of accuracy leads to inconsistencies between the data recorded by
different sensors, which propagate throughout the AT rendering chain. Furthermore,
multi-sensor systems and the subsequent rendering methods have to be designed
for AT within constraints set by the sensors (e.g., inbound data rate, resolution) and
the application domains (e.g., no pre-scanned environments in safety-critical areas).
Beyond these accuracy and application feasibility problems affecting the system de-
sign, the utility of AT depends on how it improves user experience. Guidance via
AR has been beneficial in non-telepresence applications, however AT leads to new,
open questions about how the separate effects of AR, immersive rendering, and tele-
presence combine and change the overall user experience.

1.4 Purpose and Research Questions

The purpose driving the research presented in this work is twofold. On the one hand,
the focus is on aspects of capture and system design for multi-sensor systems related
to AT, and on the other hand the focus is on the resulting user experience formed by
applying AT in an industrial context. The purpose of the research is defined by the
following points:
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P1 To investigate how multi-camera and multi-sensor systems should be designed for the
capture of consistent datasets and use in AT applications.

P2 To investigate how user experience is affected by applying multi-sensor based AT in
industrial, task-based contexts.

This twofold research purpose is supported by exploring the following two sets
of research questions (RQs):

RQ 1.1 How accurate are the commonly used multi-camera calibration methods,
both target-based and targetless, in recovering the true camera parameters rep-
resented by the pinhole camera model?

RQ 1.2 What is the relationship between camera synchronization error and esti-
mated scene depth error, and how does camera arrangement in multi-camera
systems affect this depth error?

RQ 1.3 What is an appropriate, scalable multi-camera system design for enabling
low-latency video processing and real-time streaming?

RQ 1.4 What rendering performance can be achieved by camera-and-lidar-based AT
for remote operation in an underground mining context, without data precon-
ditioning?

and

RQ 2.1 What impact does the camera-based viewing position have on user Quality
of Experience in an AT system for remote operation?

RQ 2.2 What impact do depth-aiding view augmentations have on user Quality of
Experience in an AT system for remote operation?

1.5 Scope

For experimental implementations of multi-camera and AT systems, the implemented
systems are built for lab experiments and not for in-field use. The multi-camera
video data transfer from capture to presentation devices does not consider state-of-
the-art video compression methods, as the focus of the presented research is not data
compression. The research includes augmented and multiple-view rendering, but
the contributions do not use the 4D Light Field as the transport format or rendering
platform for the multi-camera content.

1.6 Contributions

The thesis is based on the results of the contributions listed in the list of papers that
are included in full at the end of this summary. As the main author of Papers I, II,
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III, IV, V, and VI, I am responsible for the ideas, methods, test setup, implementation,
analysis, writing, and presentation of the research work and results. For Paper III, M.
Kjellqvist and I worked together on the software implementation, and Z. Zhang and
L. Litwic developed the cloud system and contributed to the communication inter-
face definitions for the testbed. The remaining co-authors contributed with research
advice and editing in their respective papers.

The general contents of the individual contributions are as follows:

Paper I addresses RQ 1.1 by comparing calibration accuracy of multiple widely-
used calibration methods with respect to ground truth camera parameters.

Paper II addresses RQ 1.2 by deriving a theoretical model to express the conse-
quences of camera synchronization errors as depth uncertainty, and using the model
to show the impact of camera positioning in unsynchronized multi-camera systems.

Paper III addresses RQ 1.3 by introducing the high-level framework for a flexible
end-to-end Light Field testbed and assessing the performance (latency) in the key
components used in the framework’s implementation.

Paper IV addresses RQ 2.1 through an experiment design and analysis of the
results of using different viewing positions (and therefore camera placement) in an
AT remote operation scenario.

Paper V addresses RQ 2.1 and RQ 2.2 by analyzing the individual and joint
effects of varying viewing positions and augmentation designs on user Quality of
Experience in an AT scenario. It also implicitly touches on P1 by describing the
integration of AR elements and the virtual projection approach for AT based on a
multi-camera system.

Paper VI addresses RQ 1.4 by presenting a novel multi-camera and lidar real-
time rendering pipeline for multi-sensor based AT for an underground mining con-
text and by analyzing the proposed pipeline’s performance under real-time con-
straints.

1.7 Outline

This thesis is structured as follows. Chapter 2 presents the background of the thesis,
covering the major domains of multi-camera capture, view rendering, AT, and Qual-
ity of Experience. The specific prior studies that illustrate the state-of-the-art in these
domains are presented in Chapter 3. Chapter 4 covers the underlying methodology
of the research, and Chapter 5 presents a summary of the results. Chapter 6 presents
a discussion of and reflection on the research, including the overall outcomes, im-
pact, and future avenues of the presented work. After the comprehensive summary
(Chapters 1 through 6), the bibliography and specific individual contributions (Pa-
pers I through VI) are given.



Chapter 2

Background

This chapter covers the four main knowledge domains underpinning the contribu-
tions that this thesis is based on. The chapter starts by discussing relevant aspects of
multi-camera capture, followed by an overview of view rendering in a multi-view
context. After this, the key concepts of AT and Quality of Experience (QoE) are pre-
sented.

2.1 Multi-Camera Capture

A Multi-Camera System (MCS) is a set of cameras recording the same scene from
different viewpoints. Notable early MCSs were inward-facing systems for 3D model
scanning [KRN97] and virtual teleconferencing [FBA+94], as well as planar homo-
geneous arrays for Light Field dataset capture [WSLH01, YEBM02]. Beyond dataset
capture, end-to-end systems such as [YEBM02, MP04, BK10] combined MCS with
various 3D presentation devices to show live 3D representations of the observed 3D
scene. Since then, MCSs have integrated increasingly diverse sensors and applica-
tion platforms. Multi-camera systems have been created from surveillance cameras
[FBLF08], mobile phones [SSS06], high-end television cameras [FBK10, DDM+15],
and drone-mounted lightweight sensors [HLP15] and have included infrared-pattern
and Time-of-Flight (ToF) depth sensors [GČH12, BMNK13, MBM16]. Currently, MCS-
based processing is common in smartphones [Mö18] and forms the sensory back-
bone for self-driving vehicles [HHL+17].

Multi-camera capture is a process for recording a 3D environment that simulta-
neously uses a set of operations with multiple coordinated 2D cameras. Based on
the capture process descriptions in [HTWM04, SAB+07, NRL+13, ZMDM+16], these
operations can be grouped into three stages of the capture process - pre-recording,
recording, and post-recording. The pre-recording stage operations, such as calibra-
tion, ensure that the various cameras (and other sensors) are coordinated in a MCS to
enable the production of consistent data. The recording stage comprises the actions

5
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of recording image sequences from each camera’s sensor to the internal memory,
including sensor-to-sensor synchronization between cameras. The post-recording
stage contains operations that make the individual image sequences available and
convert them to a dataset: the set of consistent information from all cameras that can
be jointly used by down-stream applications.

2.1.1 Calibration and Camera Geometry

Camera calibration is a process that estimates camera positions, view directions, and
lens and sensor properties [KHB07] through analysis of pixel correspondences and
distortions in the recorded image. The results of calibration are camera parameters,
typically according to the Pinhole Camera Model (PCM) as defined in the multiple-
view projective geometry framework [HZ03], and a lens distortion model such as
[Bro66]. The PCM assumes that each point on the camera sensor projects in a straight
line through the camera optical center. The mapping between a 3D point at coordi-
nates X,Y, Z and a 2D point on image plane at coordinates u, v is

λ

uv
1

 = [K|03]
[
R −RC
0T
3 1

]XY
Z

 . (2.1)

The internal camera parameters are focal lengths fx, fy , positions of the image
central point x0, y0, and the skew factor s between the sensor’s horizontal and verti-
cal axes. These parameters are enclosed in the intrinsic matrix K:

K =

fx s x0

0 fy y0
0 0 1

 . (2.2)

The camera-to-camera positioning is defined by each camera’s position in 3D space
C and each camera’s rotation R, typically combined as the extrinsic matrix:

[R| −RC] . (2.3)

Eq. (2.1) forms the basis for 3D scene reconstruction and view generation from MCS
capture. Therefore, parameter estimation errors arising from inaccurate calibration
have a direct impact on how accurately the recorded 2D data can be fused [SSO14].

Camera calibration is grouped into two discrete stages, following the PCM: in-
trinsic and extrinsic calibration. Intrinsic calibration is a process of estimating the
intrinsic matrix K as well as lens distortion parameters to model the transforma-
tion from an actual camera-captured image to a PCM-compatible image. Extrinsic
calibration is the estimation of relative camera positions and orientations within a
uniform coordinate system, typically with a single camera chosen as the origin. In
aggregate, most calibration methods have the following template: 1) correspond-
ing scene points are identified and matched in camera images; 2) point coordinates
are used together with projective geometry to construct an equation system where
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camera parameters are the unknown variables; and 3) the equation system is solved
by combining an analytical solution with a max-likelihood optimization of camera
parameter estimates.

The most influential and most cited calibration method is [Zha00]. It relies on a
flat 2D target object that holds a grid of easily identifiable points at known intervals
(e.g. a non-square checkerboard). The PCM equation is reformulated to establish
a homography H that describes how a 2D calibration surface (nominally at Z = 0
plane) is projected onto the camera’s 2D image, based on the intrinsic matrix K,
camera position C, and the first two columns of the camera rotation matrix (c1, c2 ∈
R):

λ

uv
1

 = K
[
R −RC

] 
X
Y
0
1

 = H

XY
1

 , where H = K
[
c1|c2| − RC

]
(2.4)

With at least three observations of the target surface at different positions, the closed-
form solution of Eq. (2.4) has a single unique solution up to a scale factor. The
scale factor is resolved by the known spacing between points on the target sur-
face. The intrinsic and extrinsic parameter estimates are typically refined together
with lens distortion parameters by minimizing the distance between all observed
target points and their projections based on the parameter estimates. This calibra-
tion method has been incorporated in various computer vision tools and libraries
[Bou16, Mat17, Bra00, Gab17] and uses the first few radial and tangential distortion
terms according to the Brown-Conrady distortion model [Bro66]. For further details
on camera calibration, refer to [KHB07].

Camera calibration is not error-free. One source of error in the calibration pro-
cess is an incorrect detection and matching of corresponding points between camera
views, particularly for calibration methods that rely on ad-hoc scene points and im-
age feature detectors [Low99, BETVG08, RRKB11] instead of a premade calibration
target. Another source of error is optical lens system effects such as defocus, chro-
matic aberration [ESGMRA11], coma, field curvature, astigmatism, flare, glare, and
ghosting [TAHL07, RV14], which are not represented by the Brown-Conrady distor-
tion model. Furthermore, the architecture of digital sensor electronics leads to both
temporally fluctuating and fixed-pattern noise [HK94, BCFS06, SKKS14], which can
affect the recorded image and thus contribute to erroneous estimation of camera pa-
rameters.

2.1.2 Synchronization

Synchronization is the measure of simultaneity between the exposure moments of
two cameras. Synchronization is parametrized by the synchronization error ∆tn
between two cameras (A and B) capturing a frame n at time t:

∆tn = ∥tA
n − tB

n∥ (2.5)
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The multi-view geometry as described in Section 2.1.1 is applicable only if there is
no movement within the recorded scene or if all cameras record all scene points at
the same moment (∆tn = 0). Lack of synchronicity during MCS recording leads to
a temporally inconsistent sampling of dynamic scenes, thus breaking the geometry
relation. Camera synchronization is therefore a necessary prerequisite for accurate
3D reconstruction and view-to-view projection of dynamic scene content, as well as
an important component of multi-view capture [SAB+07].

Synchronous recording can be achieved via external synchronization signaling
to the camera hardware or by software instructions through the camera Application
Programming Interface (API) [LZT06]. Perfect synchronization can only be guaran-
teed if an external signal bypasses all on-camera processing and triggers the sensor
exposure on all MCS cameras. Such external synchronization is more accurate than
software solutions [LHVS14]. A hardware synchronization requirement can affect
the camera (and therefore system) cost [PM10] and prevent the use of entire sensor
categories like affordable ToF depth cameras [SLK15].

2.1.3 Transmission

The transmission of video recorded by cameras in an MCS is a necessary compo-
nent for integrating MCS in an end-to-end communication system. In the basic form,
transmission consists of video encoding and storage or streaming. Storage, compres-
sion, and streaming thus represent the post-recording stage of the capture process,
and often define the output interface for an MCS. The choice of using an MCS for
recording a 3D scene has traditionally been motivated by the increased flexibility in
bandwidth that an MCS offers in comparison to plenoptic cameras [WMJ+17].

A plenoptic camera [NLB+05] uses special optical systems to multiplex different
views of the scene onto one sensor, which forces the subsequent signal processing
chain to handle the data at the combined bandwidth of all views. Distributing a
subset of views from plenoptic capture further requires view isolation, and for video
transfer over a network, there is a need for real-time implementations of plenoptic
or Light Field video compression. Although efficient Light Field video compression
is an active research area (see [AGT+19, LPOS20, HML+19]), the foremost standard
for real-time multi-view video compression is the Multi-View High Efficiency Video
Codec (MV-HEVC) [HYHL15], which still requires decomposing a single plenoptic
image into distinct views.

In contrast, an MCS typically offers one view per camera sensor, with associated
image processing; this allows the use of ubiquitous hardware-accelerated single-
view video encoders such as HEVC [SBS14] and VP9 [MBG+13], which have been
extensively surveyed in [LAV+19, EPTP20]. The multi-camera based capture sys-
tems in [MP04, YEBM02, BK10] serve as early examples of bandwidth management
that relies on the separated view capture afforded by the MCS design.
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2.2 View Rendering

In the broadest sense, view rendering is the generation —or synthesis —of new per-
spectives of a known scene using some form of data describing the scene. View
rendering has traditionally been classified into two groups, namely Model Based
Rendering (MBR) and Image Based Rendering (IBR) [KSS05]. In this MBR + IBR
classification, MBR implies view synthesis from an arrangement of geometric mod-
els and associated textures with a scene definition of lights, objects, and virtual cam-
eras. IBR refers to the use of previously recorded 2D images and optional explicit
or implicit representations of scene geometry to warp, distort, interpolate or project
pixels from the recorded images to the synthesized view.

More recently, this classification has been supplanted by a four-group model that
distinguishes between "classical rendering," "light transport," IBR, and "neural ren-
dering" [TFT+20]. Classical rendering essentially refers to MBR from the perspective
of computer graphics. Light transport is strongly related to Light Field rendering,
which in the MBR + IBR model was classified as a geometry-less type of IBR. Neural
rendering is a new approach to view rendering based on either view completion or
de novo view synthesis through neural network architectures.

Classical a.k.a. Model-Based Rendering is the process of synthesizing an image
from a scene defined by virtual cameras, lights, object surface geometries, and associ-
ated materials. This rendering is commonly achieved via either rasterization or ray-
tracing [TFT+20]. Rasterization is the process of geometry transformation and pix-
elization onto the image plane, usually in a back-to-front compositing order known
as the painter’s algorithm. Rasterization is readily supported by contemporary GPU
devices and associated computer graphics pipelines such as DirectX and OpenGL.
Raytracing is the process of casting rays from a virtual camera’s image pixels into the
virtual scene to find ray-object intersections. From these intersections, further rays
can be recursively cast to locate light sources, reflections, and so on. Both rasteriza-
tion and raytracing essentially rely on the same projective geometry as described by
Eq. (2.1), albeit with variations in virtual space discretization and camera lens sim-
ulation [HZ03, SR11]. The render quality in MBR is dependent on the quality of the
scene component models (geometry, textures, surface properties, etc.). These models
can be created by artists or estimated from real world data through a process known
as inverse rendering [Mar98].

Light Field rendering and Light transport are view rendering approaches that
attempt to restore diminished parametrizations of the plenoptic function [AB91].
The plenoptic function Γ is a light-ray based model that describes the intensity Υ
of light rays at any 3D position [X,Y, Z], in any direction [θ, ϕ], at any time t, and at
any light wavelength ξ:

Υ = Γ(θ, ϕ, ξ, t,X, Y, Z) (2.6)
The Light Field [LH96] is a Four-Dimensional (4D) re-parametrization of the plenop-
tic function that encodes the set of light rays crossing the space between two planes
[x, y] and [u, v]. View rendering from the 4D Light Field is the integration of all
light rays intersecting a virtual camera’s image plane and optical center (assuming a
PCM). Light transport refers to a slightly different parametrization of the plenoptic
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function, which is based on the rendering equation [Kaj86], that defines light radi-
ance Υ = Γ0 from a surface as a function of position, direction, time, and wavelength
(same as the plenoptic function), but distinguishes between directly emitted light Γe
and reflected light Γr:

Υ = Γo(θ, ϕ, ξ, t,X, Y, Z) = Γe(θ, ϕ, ξ, t,X, Y, Z) + Γr(θ, ϕ, ξ, t,X, Y, Z) (2.7)

The Light transport rendering often refers to Surface Light Fields [MRP98, WAA+00],
which predictably assign an intensity Color-only (RGB) value to every ray that leaves
a point on a surface. The 4D Light Field parametrization can be easily adopted to sur-
face light fields by mapping one of the Light Field planes to represent local surface
coordinates.

Neural rendering is the collection of rendering techniques that use neural net-
works to generate a "neural" reconstruction of a scene, and render a novel perspec-
tive. The term "neural rendering" was first used in [ERB+18]; however, the funda-
mental spark for neural rendering was the creation of neural networks such as Gen-
erative Adversarial Networks (GANs) [GPAM+14], capable of synthesizing highly
realistic, novel images from learned priors. A typical neural rendering process is as
follows: 1) Images corresponding to specific scene conditions (lighting, layout, view-
point) are used as inputs, 2) A neural network uses inputs to "learn" the neural repre-
sentation of the scene, and 3) Novel perspectives of the scene are synthesized using
the learned neural representation and novel scene conditions. As a relatively new
field, neural rendering covers a diverse set of rendering methods of varying general-
ity, extent of scene definition, and control of the resulting rendered perspective. The
neural synthesis components can also be paired with conventional rendering com-
ponents to varying extents, spanning the range from rendered image retouching (e.g.
[MMM+20]) to complete scene and view synthesis, as seen in [FP18]. For a thorough
overview of the state-of-the-art in neural rendering, refer to [TFT+20].

Image-Based Rendering has been used as a catch-all term for any rendering
based on some form of scene recording, including Light Field rendering [ZC04].
With an intermediate step of inverse rendering, even MBR could be a subset of IBR;
likewise, neural rendering relies on images and thus could be a subset of IBR. To
draw a distinction between IBR and "all rendering", in this text IBR specifically refers
to rendering through transformation, repeated blending, and resampling of existing
images through operations such as blending, warping, and reprojection. As such,
IBR relies on implicit or explicit knowledge of the scene geometry and scene record-
ing from multiple perspectives using some form of an MCS. The majority of explicit
geometry IBR methods fall under the umbrella of Depth-Image Based Rendering
(DIBR) [Feh04]. In DIBR, a 2D image of a scene is combined with a corresponding
camera parametrization and a 2D depthmap as an explicit encoding of the scene ge-
ometry. As in MBR, projective geometry is the basis for DIBR. DIBR is fundamentally
a two-step rendering process: first, the 2D image and 2D depthmap are projected to
3D model using projective geometry and camera parameters; second, the 3D model
is projected to a new 2D perspective to render a new view. The second step of the
DIBR process is very similar to MBR, especially if the projected 3D model is con-
verted from a collection of points with a 3D position [X,Y, Z] and color [R,G,B] to
a 3D mesh with associated vertex colors. There are a number of associated issues
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stemming from the point-wise projection used in DIBR, such as ghosting, cracks,
disocclusions, and so on. A thorough exploration of DIBR artifacts can be found in
[DSF+13, ZZY13, Mud15].

2.3 Augmented Telepresence

Augmented Telepresence is the joint product of conventional telepresence and AR.
Specifically, AT denotes immersive video-based communication applications that
use view augmentation on the presented output [OKY10]. Augmented Telepresence
is a relatively recent term and it therefore lies in a relatively fuzzy area on the im-
mersive environment spectrum. Moreover, AT is defined mainly in reference to two
other terms —AR and telepresence —which themselves involve a level of definition
uncertainty. To remedy this uncertainty, the concepts of AT, AR, and telepresence
are unpacked in the following paragraphs.

Augmented Telepresence is a specific type of virtual environment on the immer-
sive environment spectrum, defined by Milgram et al. [MTUK95] as a continuous
range spanning from full reality to full virtuality. An additional dimension to this
spectrum was added by S. Mann [Man02] to further classify these environments
based on the magnitude of alteration ("mediation"), and a more recent attempt to
clarify the taxonomy was made in [MFY+18]. In most scenarios, VR is considered
as the example of full virtuality, and most of the range between VR and "full reality"
is described as Mixed Reality (MR) —the indeterminate blending of real and virtual
environments [MFY+18]. Augmented Reality is a subset of MR in which the user
generally perceives the real world, with virtual objects superimposed or composited
over the real view [Azu97]. The common factor of most MR environments —AR in-
cluded —is that the user perceives their immediate surroundings, with some degree
of apparent modification. In contrast, telepresence primarily implies a displacement
of the observed environment. Immersive telepresence systems record and transmit a
remote location, generally allowing the user to perceive that location as if they were
within it [FBA+94].

Augmented Telepresence is therefore similar to AR in that the perceived real en-
vironment is augmented or mediated to some extent. Thus AT fits under the MR
umbrella term. Augmented Telepresence differs from AR in that the user’s perceived
real environment is in a different location and seen from a different viewpoint. In or-
der to preserve the agency of the telepresence user, AT is assumed to only refer to
real-time or near real-time representations of the perceived environment, without
significant temporal delay between the environment recording and replaying.
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2.4 Quality of Experience

QoE is defined as "the degree of delight or annoyance of the user of an application or ser-
vice", and "results from the fulfillment of the user’s expectations . . . of the application or ser-
vice" (emphasis added) [MR14, IT17, BBDM+13]. Quality of Experience is an overall
measure of any system or application through the lens of user interaction. Although
there is a strong overlap between the QoE and User Experience (UX) research tra-
ditions [Bev08, HT06, Has08], QoE is typically investigated through controlled ex-
periments and quantitative analysis of collected user opinions, without delving into
formative design methods. The results for QoE assessments are reported using Mean
Opinion Score (MOS), which is the aggregate parametrization of individual user
opinions. These opinions are collected using Likert scales, requiring the user to show
their level of agreement (from "Strongly Disagree" to "Strongly Agree") on a linear
scale for specific statements [Edm05, JKCP15]. For fields such as video quality as-
sessment, there are standards for conducting such experiments, such as [IT14, IT16].

Evaluation based on MOS is an assessment approach inherently based on sub-
jective participant opinions, despite the rigor of quantitative analysis commonly ap-
plied to MOS results. The reliance on subjective metrics (MOS) alone to assess overall
QoE has been criticized as an incomplete methodology [KHL+16, HHVM16]. One
solution is to use both subjective and objective measurements that together reflect
the overall user experience. The objective measurements aimed at QoE assessment
can be grouped into two kinds of measurement. One kind of objective measurement
is participant-task interaction metrics (such as experimental task completion time,
error rates, etc.) as demonstrated in [PPLE12]. The other kind of measurement is
participant physiological measurements (such as heart rate, gaze attentiveness, etc.),
as demonstrated in [KFM+17, CFM19]. The validity of including physiological as-
sessments as part of the overall QoE is of particular interest for VR-adjacent applica-
tions that rely on rendering through HMDs, in no small part due to the phenomenon
known as "simulator sickness," as shown in [TNP+17, SRS+18, BSI+18].

It is important to note that, despite inclusion of objective metrics as part of a
QoE assessment, there is nonetheless a difference between an objective measure-
ment of an application’s performance and a QoE assessment of the same applica-
tion. More specifically, although the QoE may in part depend on application perfor-
mance, the overall QoE by definition requires an interaction between the assessed
application and a user. There is ongoing research focused on replacing test users
with AI agents trained using results from past QoE studies, though such efforts are
mainly focused on non-interactive applications such as video viewing, as seen in
[LXDW18, ZDG+20].



Chapter 3

Related Works

This chapter presents a discussion on the latest research related to multi-camera cal-
ibration and synchronization, augmented view rendering for telepresence applica-
tions, and QoE implications of view augmentation in telepresence.

3.1 Calibration and Synchronization in Multi-Camera
Systems

Camera calibration and synchronization are necessary for enabling multi-camera
capture, as mentioned in Section 2.1. Between the two topics, calibration has re-
ceived more research attention and is a more mature field. There are notable differ-
ences between the state of research on calibration and synchronization; therefore, the
following discussion separates the discourses on calibration and synchronization.

3.1.1 Calibration

Calibration between 2D RGB cameras is widely considered a "solved problem," at
least concerning parametric camera models (such as the pinhole model) that repre-
sent physical properties of cameras, sensors, and lens arrays. This consensus can
be readily seen from two aspects of the state of the art in multi-camera calibration
publications. First, there are archetype implementations of classic calibration solu-
tions [Zha00, Hei00] in widely used computer vision libraries and toolboxes such as
[?, Gab17, SMS06, Mat17, SMP05]. Second, a large amount of recent work on camera-
to-camera calibration in the computer vision community has been focused on more
efficient automation of the calibration process [HFP15, RK18, KCT+19, ZLK18], the
use of different target objects in place of the traditional checkerboard [AYL18, GLL13,
PMP19, LHKP13, LS12, GMCS12, RK12], or the use of autonomous detectors in iden-
tifying corresponding features in scenes without a pre-made target (i.e. targetless
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calibration [BEMN09, SSS06, GML+14, DEGH12, SMP05]). A parallel track of cal-
ibration research focuses on generic camera models [GN01, RS16], which map in-
dividual pixels to associated projection rays in 3D space without parametrizing the
cameras themselves. However, as pointed out in [SLPS20], adoption of generic cam-
era models outside the calibration research field is slow.

Extrinsic calibration for multi-sensor systems with RGB cameras and range sen-
sors is a slightly less saturated area compared to camera-to-camera calibration. Mixed
sensor calibration methods generally fit into three groups: calibration in the 2D do-
main, 3D domain, and mixed domain.

Calibration in the 2D domain depends on down-projecting range sensor data (e.g.
3D lidar pointclouds) to 2D depthmaps. The subsequent calibration is equivalent to
camera-to-camera calibration, as seen in [BNW+18, N+17]. As shown by Villena-
Martínez et al. in [VMFGAL+17], only marginal differences in accuracy exist be-
tween 2D domain calibration methods ([Bur11, HKH12, ?]) when used on RGB and
ToF camera data. The 3D to 2D downprojection is also used for neural network archi-
tectures to derive camera and depth sensor parameters [SPSF17, IRMK18, CVB+19,
SJTC19, SSK+19, PKS19].

Calibration in the 3D domain is commonly used to align two depth-sensing de-
vices, such as a lidar and a stereo camera pair. This problem can be cast as a camera
calibration issue using a specific target [GJVDM+17, GBMG17, DCRK17, XJZ+19,
ANP+09, NDJRD09] or as finding the rotation and translation transformations be-
tween partly overlapping point clouds [SVLK19, WMHB19, Ekl19, YCWY17, XOX18,
PMRHC17, NKB19b, NKB19a, ZZS+17, KPKC19, VŠS+19, JYL+19, JLZ+19, PH17,
KKL18]. In systems with stereo cameras, conventional 2D camera calibration ap-
proaches are used to enable depth estimation from the stereo pair, and in systems
with a single RGB camera, a Simultaneous Localization and Mapping (SLAM) pro-
cess (surveyed in [TUI17, YASZ17, SMT18]) is used to produce a 3D point cloud from
the 2D camera.

Finally, calibration in the mixed domain refers to identifying features in each sen-
sors’ native domain and finding a valid 2D-to-3D feature mapping. A large number
of methods [CXZ19, ZLK18, VBWN19, GLL13, PMP19, VŠMH14, DSRK18, DKG19,
SJL+18, TH17, HJT17] solve the registration problem by providing a calibration tar-
get with features that are identifiable in both 2D and 3D domains. Other approaches
[JXC+18, JCK19, IOI18, DS17, KCC16, FTK19, ZHLS19, RLE+18, CS19] establish 2D-
to-3D feature correspondences without a predefined calibration target, relying in-
stead on expected properties of the scene content.

The assessment of camera-to-camera (or camera-to-range-sensor) calibration in
the aforementioned literature is typically based on point reprojection error, i.e. the
distance between a detected point and its projection from 2D (to 3D) to 2D according
to the estimated camera parameters. The reprojection error can also be cast into the
3D domain, verifying point projection in 3D space against a reference measurement
of scene geometry, as in [SVHVG+08], or by including a 3D projected position er-
ror into the loss function of a neural network for calibration [IRMK18]. In contrast,
less focus is placed on verifying the resulting calibration parameters with respect
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to the physical camera setup and placement. A notable exception to this trend is
the recent analysis by Schöps et al. [SLPS20]. In this analysis, both reprojection
error and estimated camera positioning were used to argue for the need to adopt
generic camera models, relating pixels to their 3D observation lines, as opposed to
the commonly chosen parametric models that relate pixels to physical properties of
the camera and lens setups. As [SLPS20] observed, although there is potential ben-
efit in adopting generic camera models, the common practice in calibration relies
on the standard parametric models and their respective calibration tools. Similarly,
the common practice in calibration evaluation relies on the point reprojection error,
without considering the de facto camera parametrization accuracy.

3.1.2 Synchronization

Camera-to-camera synchronization is not covered as thoroughly as calibration, in
part because one can sidestep the synchronization issue by using cameras with ex-
ternally synchronized sensor shutters, and in part because the temporal offset is
not an inherent component of the PCM (described in Section 2.1) or generic cam-
era models applied to MCS, such as [GNN15, LLZC14, SSL13, SFHT16, LSFW14,
WWDG13, Ple03]. The existing solutions to desynchronized capture commonly fit in
either sequence alignment, wherein a synchronization error is estimated after data
capture, or implicit synchronization, where downstream consumers of MCS output
expect and accommodate for desynchronized captured data. Additionally, exter-
nal synchronization is replicated with time-scheduled software triggering as seen in
[LZT06, AWGC19], with residual synchronization error dependent on sensor API.

Sequence alignment, also called "soft synchronization" [WX+18], refers to esti-
mating a synchronization error from various cues within the captured data. The es-
timation is based on best-fit alignment of, for example, global image intensity varia-
tion [DPSL11, CI02] or correspondence of local feature point trajectories [ZLJ+19,
LY06, TVG04, LM13, EB13, PM10, DZL06, PCSK10]. A handful of methods rely
instead on supplementary information such as per-camera audio tracks [SBW07],
sensor timestamps [WX+18], or bitrate variation during video encoding [SSE+13,
PSG17].

Implicit synchronization is often a side effect of incorporating error tolerance
in rendering or 3D mapping processes. In [RKLM12], depthmaps from a desyn-
chronized range sensor are used as a low-resolution guide for image-to-image cor-
respondence matching between two synchronized cameras. The synchronous cor-
respondences are thereafter used for novel view rendering. Two desynchronized
moving cameras are used for static scene reconstruction in [KSC15]. Synchroniza-
tion error is corrected during camera to camera point reprojection, by displacing the
origin of one sensor along the estimated camera path through the environment on
a least-reprojection-error basis. Similarly, the extrinsic camera calibration methods
in [AKF+17, NK07, NS09] handle synchronization error by aligning feature point
trajectories over a series of frames rather than matching discrete points per frame.

Throughout all the aforementioned studies, there is the implicit assumption that
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synchronization error is undesirable. Unsynchronized data is either used as a rough
guide (in implicit synchronization) or aligned to the nearest frame and used as is (in
soft synchronization). Yet, neither sequence alignment nor implicit synchronization
specifies the consequences of desynchronized capture or demonstrates why synchro-
nization error is undesirable.

3.2 Applications of Augmented Telepresence

Augmented Telepresence applications are fundamentally linked to AR, as defined in
Section 2.3. The use of VR, AR and AT in non-entertainment contexts is steadily in-
creasing in education [AA17], healthcare [PM19], manufacturing [MMB20] and con-
struction [NHBH20], and both AR and remote-operation (i.e. telepresence) centers
are expected to be key parts of future industry [KH18]. However, AT applications as
such are not yet as widespread as VR or telepresence on their own.

The worker safety angle has been a key motivator for AR and particularly VR up-
take in industries such as construction and mining. The majority of safety-focused
applications have been VR simulations of workspaces designed for worker training,
as shown in surveys by Li et al. [LYC+18b] and Noghabei et al. [NHBH20]. Pilot
studies such as [GJ15, PPPF17, Zha17, AGSH20, ID19] have demonstrated the effec-
tiveness of such virtual environments for training purposes. However, VR training
does not directly address safety during the actual work tasks; telepresence does.

Applied telepresence is best exemplified by the two systems shown in [TRG+17]
and [BBV+20]. Tripicchio et al. presented an immersive interface for a remotely
controlled crane vehicle in [TRG+17], and Bejczy et al. showed a semi-immersive
interface and system for remote control of robotic arm manipulators in [BBV+20].
The vehicle control interface is a fully immersive replication of an in-vehicle point
of view, with tactile replicas of control joysticks. The robot manipulator interface in-
stead presents multiple disjointed views of the manipulator and the respective envi-
ronment. The commonality between the two systems is the underlying presentation
method: in both examples, directly recorded camera views from a MCS are passed to
virtual view panels in a VR environment, presented through a VR headset. Similar
interfaces for robot arm control from an ego-centric (a.k.a. "embodied") viewpoint
can be seen in [LFS19, BPG+17], while telepresence through robotic embodiment is
extensively surveyed in [TKKVE20].

The combination of view augmentation and the aforementioned applied telepre-
sence model forms the archetype for most AT applications. Augmented Telepre-
sence with partial view augmentation is demonstrated in [BLB+18, VPR+18], and
AT with complete view replacement can be seen in [ODA+20, LP18]. Bruno et al.
in [BLB+18] presented a control interface for a robotic arm intended for remotely
operated underwater vehicles. View augmentation is introduced by overlaying the
direct camera feed with a 3D reconstruction of the observed scene geometry as a
false-color depthmap overlay, in addition to showing the non-augmented views and
the reconstructed geometry in separate views, similar to the semi-immersive direct
views in [BBV+20, YLK20]. Vagvolgyi et al. [VPR+18] also showed a depth-overlaid
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camera view interface for a robotic arm mounted to a vehicle intended for in-orbit
satellite repairs; however, the overlaid 3D depth is taken from a reference 3D model
of the target object and registered to the observed object’s placement in the scene.
Omarali et al. [ODA+20] completely replaced the observed camera views with a col-
ored 3D pointcloud composite of the scene recorded from multiple views, and Lee
et al. [LP18] likewise presented a composite 3D pointcloud with additional virtual
tracking markers inserted into the virtual 3D space. Telepresence and AT can mani-
fest through various kinds of view augmentation and rendering, as demonstrated by
[BLB+18, VPR+18, BBV+20, YLK20, ODA+20, LP18]. Most activity in telepresence
(and, by extension, AT) is related to control interfaces for robotic manipulators; how-
ever, as demonstrated by [TRG+17] and [KH18], there is both interest and potential
for a broader use of telepresence and AT in industrial applications.

3.3 View Rendering for Augmented Telepresence

View rendering specifically for AT is the process of converting conventional multi-
ple viewpoint capture from an MCS into an immersive presentation of augmented
views. Rendering for AT tends to blend image-based and model-based rendering
approaches (see Section 2.2) to achieve two separate purposes: an immersive view
presentation, and some form of view augmentation.

3.3.1 Immersive View Rendering

Immersive presentation for telepresence is commonly achieved by using an HMD
as the output interface and thus has a strong relationship to immersive multimedia
presentation, such as 360-degree video rendering. A common presentation method
is "surround projection," where camera views are wholly or partly mapped onto a
curved surface approximately centered on the virtual position of the HMD, corre-
sponding to the HMD viewport [FLPH19]. To allow for a greater degree of viewer
movement freedom, the projection geometry is often modified. In [BTH15], stereo
360-degree panorama views are reprojected onto views corresponding to a narrower
baseline, using associated scene depthmaps. In [SKC+19], a spherical captured im-
age is split into three layers (foreground, intermediate background and background)
to approximate scene geometry and allow for a wider range of viewpoint transla-
tion. In [LKK+16], the projection surface sphere is deformed according to estimated
depth from overlap regions of input views to allow for a more accurate parallax for
single-surface projection.

Alternative approaches to "surround projection" that appear in the AT context
are "direct" and "skeumorphic" projections. "Direct" projection is a straightforward
passing of stereo camera views to an HMD’s left and right eye images. This projec-
tion allows for stereoscopic depth perception, but lacks any degree of freedom for
viewer movement, and has mainly been used in see-through AR HMDs [CFF18]
or combined with pan-tilt motors on stereo cameras that replicate the VR HMD
movement [KF16]. "Skeumorphic" projection is the replication of flat-display in-
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terfaces and viewports in a virtual environment with full movement freedom, as
seen in [TRG+17, BBV+20], thereby replicating or approximating real-world, non-
immersive control interfaces in an immersive environment.

More broadly, any virtual view rendering approach can be adapted as an immer-
sive presentation by rendering novel views of a 3D scene for the left and right eye
part of an HMD panel. Starting from free-viewpoint video (surveyed in [LTT15])
rendering, rendering pipelines with live sensor input have recently been presented
in [RSA20, MNS19]. In [RSA20], a mesh of a central object was created and itera-
tively refined from the convex hull obtained from object silhouette projection using
multiple recording cameras. Render quality was improved by refinement of mesh
normals, temporal consistency, and a surface-normal dependent blending of input
view pixels for mesh texturing. In [MNS19], a dense 3D mesh was triangulated from
point clouds captured by RGB-D sensors, using a moving least-squares method for
joint denoising and rectification of clouds. The subsequent mesh was textured by
projecting the mesh vertices onto the camera image plane as texture coordinates.

3.3.2 View Augmentation

View augmentation can be achieved by overlaying an additional, virtual object over
the recorded scene view, as seen in [BLB+18, VPR+18, OKY15, RHF+18], or by re-
moving some scene content, as in [WP19, LZS18, OMS17]. In [BLB+18], the aug-
mented overlay (depth colorization) was projected pixel by pixel onto a 2D dis-
parity map coincident with a direct camera view. In [OKY15] and [VPR+18] (with
additional details in [PVG+19]), camera views were projected onto a reconstructed
([OKY15]) or prebuilt ([PVG+19]) 3D model of the scene, and virtual fixtures were
added to the 3D virtual scene, with optional anchoring to the scene geometry. In
[RHF+18], the virtual fixture was projected to 2D and partly overlaid on the cam-
era view, using the camera view’s depthmap to block parts of the virtual fixture.
When camera views are projected onto a curved surrounding surface for immersive
rendering, virtual fixtures are interposed between the curved surface and the vir-
tual HMD render cameras, as seen in [RPAC17]. Content removal from scenes is
less common in immersive rendering, but it is typically achieved by replacing the
removed scene section from another camera view, which has been displaced either
spatially ([LZS18, OMS17]) or temporally ([WP19]).

Both layered surrounding projections and most types of view augmentation de-
pend on access to detailed scene geometry in the form of depth maps. Due to low
depth sensor resolution, and errors in image based depth estimation, depth map
improvement is an important component of immersive and augmented view ren-
dering. Depth upscaling based on features in corresponding high-resolution RGB
images is a prevalent solution. For instance, [FRR+13] and [SSO13] used edge fea-
tures to limit a global diffusion of sparse projected depth, [ZSK20] added stereo-
scopic projection consistency to the optimization cost, and [PHHD16] used edges as
boundaries for patch-based interpolation between depth points. Neural networks
have also been used to refine the upscaling process with high-resolution RGB as a
guide. In [NLC+17], a depthmap was upscaled through bicubic upsampling and
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refined through a dual stream convolutional neural network sharing weights be-
tween the depthmap and edge image refinement streams. In [CG20], the RGB im-
age was downscaled and re-upscaled in one network stream, with image upscaling
weights used in a parallel stream for depth upscaling. In [WDG+18], the RGB im-
age was used to directly synthesize a corresponding depthmap with one network,
which was then used as an upscaling guide for a depth upscaling network, similar
to the upscaling layers in [NLC+17] and [CG20]. For complete surveys of neural-
and image-guided depth upscaling, refer to [ECJ17, LJBB20].

3.4 Quality of Experience for Augmented Telepresence

Quality of Experience assessments for AT are closely related to QoE assessment for
AR and VR, in large part because of the overlap in chosen display technologies (i.e.
VR headsets). A QoE assessment ideally has to involve both subjective and objec-
tive metrics, as noted in Section 2.4. The need for subjective participant reporting on
experiences has led to the majority of QoE assessments being conducted on test im-
plementations of AT systems, such as [CFM19, BPG+17, PBRA15, PTCR+18, LW15,
CFF18], or corresponding VR simulators replicating the live scenarios, as in [BSI+18].
The need for objective metrics has resulted in two intertwined research tracks: the
collection of psycho-physiological measurements, and the collection of task comple-
tion metrics.

Psycho-Physiological Assessment (PPA) relies on measurements of human phys-
iology through Electro-Encephalography (EEG), Electro-Cardiography (ECG), eye
movement registration and gaze tracking, all in an effort to better measure test par-
ticipants’ psychological state during QoE testing. Psycho-Physiological Assessment
was proposed as a necessary extension to subjective measurements in [KHL+16,
CFM19]. As Kroupi et al. [KHL+16] showed, there tends to be a connection between
self-reported QoE and physiological measurements. Psycho-Physiological Assess-
ment has been used to directly probe users’ level of immersion and sense of realism
in immersive video viewing in [BÁAGPB19], and to gauge the effect of transmission
delays in remote immersive operation [CFM19]. However, the broad consensus is
that PPA is a supplement to —not a replacement for —QoE assessment of immersive
multimedia technologies and that PPA should be used to infer the higher cognitive
processes of test participants. The PPA methodology and progress towards stan-
dardization was extensively surveyed in [EDM+16] and [BÁRTPB18].

Task completion assessment is a QoE measurement specific to interactive appli-
cations, the use of which was suggested by Puig et al. in [PPLE12] and supported
by Keighrey et al. in [KFM+17]. The task-related metrics (a.k.a. "implicit metrics")
in [PPLE12] were task completion time, error rates and task accuracy; in that pilot
study, correlations were found between user reported QoE and the gradual improve-
ment of implicit metrics. In [KFM+17], implicit measurements and PPA measure-
ments were compared in a simultaneous QoE experiment with an interactive system.
Correlation between some task completion and PPA measurements was found, with
both PPA and implicit metrics hinting at a higher perceived task complexity in VR
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compared to the equivalent task in AR. In [RBW+14], implicit metrics together with
explicit subjective scores were used to explore the discrepancy between user per-
ception and task performance, finding that test participants subjectively preferred
a non-stereoscopic telepresence system, but performed better at depth-reliant tasks
in the stereoscopic system equivalent. In summary, [RBW+14, KFM+17, PPLE12]
suggest that implicit metrics complete the subjective QoE assessment instead of sup-
planting it. Implicit, task based metrics have been extensively used to demonstrate
the benefits of augmented task guidance as in [ACCM15, BSEN18, VPR+18, WHS19,
BPG+17, PBRA15] and to a lesser extent (not via telepresence or immersive envi-
ronments), to show significance in view position and camera Field of View (FoV)
[TSS18, SLZ+18, LTM19].

QoE assessment in immersive environments is affected in particular ways by
the use of HMDs as a consequence of HMD technology. The simple choice of using
an immersive VR headset instead of conventional displays leads to higher cognitive
load for test participants [BSE+17], and a reduction in HMD FoV further increases
cognitive load. Latency induced VR sickness is also an important aspect of QoE in
setups reliant on VR headsets, as shown in [BDA+19, SRS+18, TNP+17]. A less obvi-
ous consequence of VR headsets was shown in [PTCR+18, LW15, CFF18], who found
that depth perception can be significantly impaired through HMDs and that people
generally tend to underestimate stereoscopic depth in VR and AR environments. As
Alnizami et al. pointed out in [ASOC17], measuring even passive VR experiences has
to go beyond just video quality, and must include consideration of elements such as
VR headset ergonomics. The aforementioned studies show that comprehensive QoE
assessment becomes even more important for interactive HMD-based experiences,
such as task-specific AR and AT applications.



Chapter 4

Methodology

This chapter presents the methodology employed to address the RQs defined in Sec-
tion 1.4 within the context of the background and related works discussed in Chap-
ters 2 and 3. More specifically, this chapter covers the identification of knowledge
gaps, and how the relevant theory, solution synthesis, and assessment approaches
were employed to address each research question. Details of the proposed solutions
are given in Chapter 5.

4.1 Knowledge Gaps

The RQs in Section 1.4 were formulated as a consequence of the state of the art can-
vassing and knowledge gap identification, while attempting to address the two-fold
research purposes of multi-camera and multi-sensor system design (P1) and user
experience of multi-sensor based AT (P2). This section outlines the identified knowl-
edge gaps associated with the research purpose, and connects to the respective RQs.

4.1.1 Multi-Camera Systems for Augmented Telepresence

Augmented Telepresence based on MCSs invariably requires camera calibration and
synchronization to fuse multi-sensor data and render novel or augmented views.
The common practice for MCS applications is to pick from a range of standard cal-
ibration methods for parametric camera models, as discussed in Section 3.1. How-
ever, validation and comparison of such methods relies on pixel reprojection error,
and is thus dependent on the quality of the input data and correspondence match-
ing. As [SSO14] highlighted, reprojection (and therefore any image-based rendering)
is highly sensitive to errors in camera parametrization. Yet, there is a lack of compar-
ative analysis of calibration methods with respect to camera parameter estimation
accuracy, leading to RQ 1.1.

There is a distinction between strict (external triggering) and soft (nearest-frame
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alignment) synchronization in MCSs (Section 3.1). In the context of designing new
MCSs, it is not readily known whether strict synchronization is necessary for a spe-
cific application and to what level of accuracy. A parametric model that relates syn-
chronization accuracy to scene depth could be beneficial for determining the thresh-
olds of sufficient synchronization and for constructing MCSs, since many AT- and
MCS-based rendering applications rely on scene depth in some form (see Sections
3.3, 3.2); this leads to RQ 1.2.

Telepresence applications tend to rely on MCSs that bundle encoding and decod-
ing at central nodes even when view capture is separated [MP04, YEBM02, BK10],
leading to potential bandwidth or latency bottlenecks with additional sensors. Hard-
ware accelerated single-view video encoders are readily available and optimized for
low latency [LAV+19, SBS15]. Such encoders, together with multimedia transmis-
sion frameworks like [tea12], may enable scalable MCS designs for telepresence; this
leads to RQ 1.3.

Multi-Camera Systems with cameras and lidars are already employed in control,
mapping and vehicle automation in various industries [CAB+18, TRG+17, MSV18,
ClHClJy19], and there is interest in applying AT for industrial applications [KH18,
TRG+17]. Most view augmentation in AT is additive (Section 3.3), but view aug-
mentation through content removal (as seen in [OMS17, LZS18, WP19]) may pro-
vide AT users with better awareness of the work environment in safety-critical in-
dustries such as mining (Section 3.2). However, such contexts preclude the use of
pre-conditioned environment models or plausible-seeming environment synthesis,
and the prevalent range sensors (lidars) provide only sparse depth as a basis for
view augmentation (Section 3.3). The challenge of depth upscaling, real-time aug-
mentation, and rendering in telepresence without pre-conditioned or hallucinated
data leads to RQ 1.4.

4.1.2 User Experience of Augmented Telepresence

Augmented Telepresence applications that use immersive rendering can improve
user experience by providing augmented guidance, as seen in [ACCM15, BSEN18,
VPR+18, WHS19, BPG+18, PBRA15], and by providing stereoscopic views, as seen
in [RBW+14]. However, immersive stereoscopic telepresence requires the use of
HMDs, which tend to distort users’ depth perception [PTCR+18, LW15, CFF18]. At
the same time, in non-immersive 2D rendering, view properties such as FoV and
viewport arrangement also affect user experience. Camera placement defines view-
point in immersive and direct projections (Section 3.3); therefore, view properties
may effect user experience in AT, leading to RQ 2.1. Furthermore, the effects of
depth perception in HMDs, view properties in immersive HMD rendering, and aug-
mented guidance may all interact and lead to joint effects; this leads to RQ 2.2 and
to joint exploration of RQ 2.1 and RQ 2.2.
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4.2 Synthesis of Proposed Solutions

This section presents the methodology for addressing the RQs of Section 1.4.

4.2.1 Multi-Camera Systems for Augmented Telepresence

RQ 1.1 required a comparative assessment of existing calibration methods. Both
target-based and target-less calibration methods were chosen because target-less cal-
ibration has been shown as easier to perform in MCS applications and thus is more
appealing under equal calibration accuracy. The ground truth of internal camera
parameters of the pinhole-with-distortion model (see Section 2.1.1) cannot be easily
obtained for any single camera, but it is necessary for gauging the accuracy of cali-
bration with respect to the ground truth. Hence, a column of three cameras is used
to represent a 5-by-3 grid of cameras through horizontal displacement. This adds an
identity (equality) constraint for the internal parameters of all views in a grid row
belonging to the same real camera, as well as an identity constraint between relative
rotation and position of all views in a grid column. Calibration was performed with
all test methods as if on a 15-camera dataset; the variations between estimated pa-
rameter values under identity constraints were treated as the errors in ground truth
estimation.

RQ 1.2 required the combination of synchronization Eq. (2.5) and projective ge-
ometry Eq. (2.1) to find the consequences of synchronization error. In an MCS, Eq.
(2.1) allows for the triangulation of the 3D position of every scene point at the inter-
section of rays connecting the scene point with the optical centers of the recording
cameras, subject to intrinsic camera parameters and lens distortions. Upon incorrect
synchronization, a moving object will be observed at different real positions from dif-
ferent views. In the proposed model of synchronization error consequence, "depth
uncertainty" is introduced as a range of plausible depth values along a camera ray.
This range is determined by the synchronization error, object movement speed, and
—because camera rays are defined through camera intrinsic and extrinsic parame-
ters —by the relative positioning of the unsynchronized cameras. Aggregate depth
uncertainty is calculated over all rays of an MCS for a descriptive parametrization of
particular MCS arrangements. The proposed model was used to show the resulting
depth uncertainty of sample MCS arrangements and to map the effect of varying
camera convergence, synchronization error, and object speed on the extent of depth
uncertainty. Additionally, a possible reduction in computational complexity was ex-
plored because calculating the generic case of the proposed model scales directly
with the number of rays (i.e. camera resolution) in the MCS.

RQ 1.3 was addressed by designing and implementing a scalable MCS, and as-
sessing the implementation’s performance for video processing and transmission. In
contrast to [MP04, YEBM02, BK10], where camera stream processing is centralized,
the proposed system assigns a processing device for each camera, thereby approx-
imating an MCS composed entirely of smart cameras without losing features like
hardware synchronization. This arrangement allows for parallel video processing
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and coding regardless of camera count. Transmission is enabled via [tea12], as it
is widely used for multimedia streaming, supports accelerated video encoders on
various devices, and enables more flexible data processing by transmission to and
video transcoding in cloud-based virtual servers. The implementation was tested
for processing latency on the encoding and decoding sides to validate the suitability
of [tea12].

RQ 1.4 was addressed by designing and implementing a system for augmented
remote operation (non-immersive AT). The capture side of the proposed system was
partly based on an extension of the MCS from RQ 1.3, with added lidar sensors and
optional bypass of video transmission and compression. The sensor data was used
to render a plausible remote-operator interface, containing the original camera views
as well as augmented and novel views. A non-immersive interface layout was cho-
sen to more closely approximate the existing remote operator interfaces in the given
context and to place emphasis on the proposed view generation process. Views are
generated at full resolution, and placed in an operator interface via the windowing
manager of [SML06]; this allows a separation between the proposed view genera-
tion process and the operator interface composition. View generation is based on a
combination of image-based rendering (Section 2.2), fast upscaling of sparse depth
(Section 3.3), and content replacement through depth-based reprojection. Since lidar
depth was used as the basis for projection between views, a fast temporal filtering
process was added to reduce lidar measurement oscillation and intermittent mea-
surement drop-out. The proposed view generation process was mostly implemented
in CUDA (a parallel processing framework), with parts of the process designed for
easier parallelization.

4.2.2 User Experience of Augmented Telepresence

RQ 2.1 and RQ 2.2 are QoE evaluations. As such, a subjective and objective (task-
performance based) assessment was conducted with test participants and a purpose-
built prototype AT system. The test system was partly based on the framework of
the MCS developed for RQ 1.3 and has added stereoscopic rendering in a VR HMD.
A VR HMD was chosen instead of a see-through AR HMD because of a generally
wider FoV, which leads to less cognitive load [BSE+17] and less discrepancy be-
tween the visible real world and the rendered AR. Two camera pairs were used to
provide two different viewing positions to the system users. Both viewing positions
are from the third-person perspective since first-person (ego-centric) teleoperation
has been covered by [BPG+18, PBRA15]. During rendering, the selected camera pair
is projected to curved sections of a projection sphere (see immersive presentation,
Section 3.3) to decouple HMD movement from camera movement. Such decoupling
is required to support a low-latency response to HMD movement [BSI+18] while
having a regular frame rate for cameras recording the remote scene. Each eye’s im-
age of the HMD uses its own projection sphere, and the camera baseline within a pair
is matched to the average HMD eye baseline to support stereoscopic viewing. The
rendered view augmentations are tracked to the content of displayed camera images
and rendered separately for each HMD eye at corresponding positions, to enable
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stereoscopic augmentation rendering. As [SSR18] found, non-stereoscopic AR over
stereoscopic content may damage user QoE. To test the effects of view position and
augmentation, the AT system supports depth-aiding view augmentations, and cam-
era pairs are placed at positions that emphasize stereoscopic depth perception of the
observed scene to different extents.

4.3 Verification

This section summarizes the verification methods used to address the RQs via the
proposed solutions.

RQ 1.1: A dataset of calibration images with 15 view positions was captured
with a vertical three-camera stack on a programmable dolly; this forced the cali-
bration methods to estimate the same cameras’ parameters five times per calibra-
tion attempt. Multiple calibration runs were performed for each calibration method.
Target-based calibration ([Zha00] implemented in AMCC [WMU13]) was compared
with targetless (Bundler, VisualSFM, BlueCCal [SSS06, Wu13, SMP05]) calibration.
These calibration methods were chosen due to their prevalence in related works and
the availability of implementations.

The comparison is based on variance of estimated lens distortion coefficients,
camera-to-camera distances, and camera-to-camera rotation. For parameters with-
out explicit known ground truth, calibration accuracy was judged by the standard
deviation and measurement distribution of repeated parameter estimates for the
same physical cameras (or camera pair) at different view positions in the dataset.
For camera-to-camera distance, the standard deviation, distribution of repeated pa-
rameter estimates, and mean-square-error relative to ground truth was checked. For
further details, see Section 4 of Paper I.

RQ 1.2: The derivation of the proposed depth uncertainty model is detailed in
Section 3 of Paper II. Three experiments were carried out using a fixed set of camera
parameters (sensor size, camera placement, view convergence, synchronization er-
ror) to represent a realistic two-camera system for depth uncertainty estimation. In
the first experiment, the synchronization error parameter varied from 0 ms (no syn-
chronization error) to 25 ms (half-frame desynchronization at 20 Frames per Second
(FPS)), and in-scene movement speed parameter varied from 0.7 to 2.8 m/s, equiv-
alent to half and double average walking speed. In the second experiment, camera
convergence angle parameter was varied between 0 and 40 degrees.

Overall depth uncertainty in these experiments was calculated as the mean of
the depth uncertainties of all possible intersections of rays from both cameras. The
third experiment compared the overall depth uncertainty estimation for all ray in-
tersections and for reduced ray intersections, narrowing to the principal ray of one
camera. The resulting overall depth uncertainty and distributions of per-ray uncer-
tainty were used as the basis for comparison. For further details, see Section 4 of
Paper II.

RQ 1.3: The system design is detailed in Section 3 of Paper III, and implementa-
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tion details for the tested MCS system are given in Section 4 of Paper III. The test sys-
tem consisted of 11 camera-and-computer pairs, with 10 RGB cameras and one range
camera. In each camera pair, image stream was encoded to h.264 video and sent via
[tea12] to virtual instances in a private cloud. The video streams were transcoded to
a different compression ratio and sent back to a receiving computer, terminating the
stream with a video sink element of [tea12]. Communication to and from the cloud
took place through the public Internet to represent realistic conditions for the trans-
mission chain components. The cumulative and component-wise latency of frame
processing from camera to the Ethernet interface, measured over multiple attempts,
was used as basis for validating [tea12] for real-time MCS capture.

RQ 1.4: The technical details and constraints of the test system are detailed in Sec-
tion 3 of Paper VI. Test recordings were performed in a mine-like lab environment,
with cameras and lidars placed at proportional distances and positions as possible
on a mining machine. Performance of the view generation process was tested by
measuring the execution time for all main components and the mean render time
per frame with three sequences of varying amount of in-scene motion. Performance
of lidar filtering was measured by the mean and median per-ray variance of lidar
depth. The outputs of depth upscaling and view projection were also presented and
contrasted with alternate approaches. Section 7 of Paper VI has further details.

RQ 2.1 and RQ 2.2: A user test protocol was defined to gather test subject judge-
ment of the AT system, for which the implementation details are given in Section 3.1
in Paper V. The system was tested by 27 non-expert participants, with participants
asked to use the AT system to remotely pilot a toy vehicle to reach and accurately
touch a number of targets in a random sequence. Each test participant was afforded
a training phase to become accustomed to the AT system and given a series of test
attempts to complete a navigation task requiring depth judgement. Each attempt
presented a different configuration of the test parameters (camera view position, and
view augmentation type). The order of parameter permutations for each participant
was randomized. The total test duration per participant was kept short to avoid
overall fatigue, as suggested in [Cur17]. Participants were also asked to remove the
HMD after each test attempt to reduce visual fatigue [GWZ+19].

In line with the QoE methodology discussed in Section 3.4, implicit (task com-
pletion) metrics were tracked by the AT system in addition to gathering the explicit,
user-reported subjective experience for each test attempt. Simulator sickness ques-
tionnaires were also used to assess the changes in participant state caused by the ex-
periment. The implicit system-tracked metrics were the number of targets reached,
time to reach target, time spent near target, and accuracy of target touch. The ex-
plicit metrics posed questions about task accomplishment, task difficulty, viewpoint
helpfulness and augmentation helpfulness on 5-point interval scales. The explicit
measurements were aggregated into mean opinion scores for each scale, and implicit
measurements were aggregated to mean measurements. The measurement distribu-
tions were tested for normality. Paired-sample T-tests were used to determine the
significance of differences per each measurement type, and repeated-measures anal-
ysis of variance tests were used to investigate the interactions between the different
test factors. For further details, see Sec. 3 in Paper IV and Sec. 3.2 to 3.4 in Paper V.



Chapter 5

Results

This chapter covers the main results of addressing the research questions from Sec-
tion 1.4 via the solutions described in Sections 4.2 and 4.3. One model and three
systems were developed over the course of addressing RQ 1.2, RQ 1.3, RQ 1.4, RQ
2.1 and RQ 2.2, and these are summarized in Section 5.1. The main outcomes of the
proposed solutions are presented in Section 5.2.

5.1 Proposed Models and Systems

5.1.1 A Model of Depth Uncertainty from Synchronization Error

Depth uncertainty is the range between nearest and farthest possible distances that
a moving object can be located in, when observed by an MCS with de-synchronized
cameras. Given rays −→r A,

−→r B of cameras ’A’ and ’B’ with synchronization error ∆t,
the depth uncertainty ∆d of observing an object E⃗ moving at speed vE⃗ is

∆d =
2

√(
vE⃗∆t

)2 − ∥m⃗∥2

sin(θ)
, θ = arccos

( r⃗A · r⃗B

∥r⃗A∥ ∥r⃗B∥

)
(5.1)

where ∥m⃗∥ is the nearest distance between −→r A and −→r B, and the vectors r⃗A, r⃗B denote
the directions of rays −→r A,

−→r B. The general depth uncertainty ∆dA,B of an MCS with
cameras ’A’,’B’ is

∆dA,B =
1

n

n∑
k=1

∆dk , where ∆dk ∈ {∆d | ∀ (−→r A,
−→r B =⇒ ∆d ∈ R+) } . (5.2)

A ray −→r n can be expressed by intrinsic and extrinsic parameters of camera ’n’ (see
Section 2.1.1) via

−→r n = Cn + λR−1
n K−1

n c⃗n , (5.3)
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Figure 5.1: Left: High-level view of the scalable end-to-end framework and its components.
Right: A multi-camera system implementation of the framework’s near-camera domain.

where −→r n intersects the camera image plane at pixel coordinate c⃗n = [u; v; 1]. Deriva-
tion and further details are presented in Section 3 of Paper II.

5.1.2 A Framework for Scalable End-to-End Systems

An end-to-end system framework ("LIFE System framework," Fig. 5.1) was designed
by distributing the capture, presentation, processing and transmission across three
domains encompassing hardware and software. The capture component encapsu-
lates system cameras and camera control devices. The processing component cov-
ers modification of recorded data and generation of supplementary information.
The transmission component contains mechanisms such as networking, data stream
forming, compression, and decompression. The presentation component encapsu-
lates the rendering process and display hardware and control devices. Dividing the
processes among these components enables a degree of independence from techni-
cal details such as camera APIs towards the overall end-to-end system, and supports
an easier upgrade and extension path for subsequent implementations. Further de-
scription and implementation details are in Sections 3 and 4 of Paper III.

5.1.3 A System for Real-Time Augmented Remote Operation

An augmented remote view system was proposed and implemented for rendering
augmented and novel views from at least one lidar and two camera inputs. The
data transmission is based on the aforementioned framework (Section 5.1.2), and
the system as a whole comprises the near-camera and near-display domains. The
view generation relies only on inbound sensor data during the live capture, with-
out pre-built models or pre-trained statistical dictionaries. The view generation pro-
cess, situated in the near-display domain and summarized in Figure 5.2, is split into
two simultaneously occurring stages: sensor data accumulation and pre-processing,
and the view generation pipeline. As part of pre-processing, lidar data is filtered
to reduce static-point oscillation. The proposed filtering is designed to exploit un-
used time intervals during the lidar frame assembly process, thereby avoiding any
filtering-induced delay. The view generation is designed to avoid pre-conditioned
data or template dictionaries, and operates entirely on the latest data available from
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Figure 5.2: High-level overview of view generation process for augmented remote operation.

the sensors (lidar and cameras). One augmented and two novel views of the scene
are generated using the lidar frame as the core geometry. View generation relies on
projecting sparse lidar points to a camera view, densifying the resulting depthmap,
and using that geometry for augmented and novel view creation. Due to the sparse-
ness of the lidar points and their projection to another viewpoint, additional filtering
is performed to identify and remove "pierce-through" points that belong to back-
ground elements but project inbetween points belonging to continuous foreground
elements. The augmented view specifically comprises an in-view occluder removal,
as a form of diminished-reality augmentation; the occluder is identified and masked
based on lidar point presence in a designated area in the scene’s 3D space. The gen-
erated views are presented alongside the original views in a flat operator interface
without immersive rendering, to be visually consistent with existing user interfaces
for remote operation in underground mines. Further details are given in Sections 3
to 5 in Paper VI.

5.1.4 A System for Depth-Aiding Augmented Telepresence

The AT system is based on a combination of the near-camera domain of the MCS sys-
tem in Section 5.1.2 and an immersive augmented rendering pipeline implemented
in OpenVR. Stereoscopic camera images are projected to a virtual sphere, and view
content is used to anchor virtual AR elements between the projected views and the
HMD position in the virtual render space. For augmentations that track the in-scene
objects, the in-view augmentations for each eye are positioned in the virtual space
along a line between the optical center of that eye’s virtual camera, and the corre-
sponding object pixels of the respective image projections (see Fig. 5.3, right); this en-
sures a stereoscopically correct AR rendering that allows for HMD movement whilst
staying consistent with the real camera stereoscopy. Three kinds of augmentations
(A1, A2 and A3 in Fig. 5.3) were used to assist with remote operation, namely a target
indicator; a relative target-position grid map; and a visual X,Y, Z distance-to-target
indicator. Further details are given in Section 3.1 of Paper V.
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Figure 5.3: Left: Depth-assisting AR designs (A1, A2, A3) used in AT. Right: Principle for
stereoscopic rendering of an AR element along view path between left/right HMD eye and
anchor object in sphere-projected left/right camera views.

5.2 Verification Results of Proposed Solutions

5.2.1 Accuracy of Camera Calibration

Paper I addresses RQ 1.1 by evaluating target-based and target-less calibration meth-
ods on their accuracy of recovering MCS camera parameters. Analysis of the eval-
uation results (partly shown in Fig. 5.4 and further detailed in Section 5 of Paper I)
indicates that the SIFT [Low99] based target-less calibration methods embedded in
Structure from Motion (SfM) tools [SSS06, Wu13] are significantly more accurate than
[SMP05], especially for estimation of extrinsic parameters. The assessed target-based
calibration method ([Zha00] via [WMU13]) performed no better than [SSS06, Wu13]
for all significant camera parameters as identified by Schwartz et al. in [SSO14].

Figure 5.4: Comparison of target-based (AMCC [Zha00]) and targetless (Bundler, VisualSFM,
BlueCCal [SSS06, Wu13, SMP05]) camera calibration methods, measured on a rigid 3-
camera rig. Left: estimated distances between camera centers. Circle shows ground truth.
Right: estimated rotation difference an between rigidly mounted cameras n and n + 1. Box
plots show median, 25th and 75th percentile, whiskers show minimum and maximum.
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Figure 5.5: Left: Depth uncertainty ∆d, given varying camera desynchronization and vary-
ing maximum speed of scene elements for parallel and ϕ = 20◦ -convergent view directions.
Right: Mean ∆d along all rays of camera 1, for varying convergence ϕ of both cameras (indi-
cated rotation ϕ/2 for camera 1, with simultaneous negative rotation −ϕ/2 on camera 2).

5.2.2 Consequences of Synchronization Error

Paper II addresses RQ 1.2 by applying the model of Section 5.1.1 to a range of syn-
chronization delays and camera arrangements to quantify a loss of accuracy in depth
estimation as an increase in depth uncertainty. Simulation results (in Fig. 5.5 and
Section 5 of Paper II) show that the overall depth uncertainty of a system is directly
proportional to synchronization error. Depth uncertainty is significantly affected by
the angle of convergence between cameras; more specifically, cameras in parallel ar-
rangement have significantly larger depth uncertainty compared to toed-in cameras.

5.2.3 Latency in the Scalable End-to-End System

Paper III addresses RQ 1.3 via the proposed framework described in Section 5.1.2
and a latency analysis of the video processing components (see Fig. 5.6 and Section
5 in Paper III). Results indicate that a scalable implementation based on transmission
via [tea12] can support operation within the real-time requirement of 40 ms, set by
the 25 FPS frame rate of the cameras. Overheads for video stream formatting com-
ponents are negligible, and the majority of time to process each frame depends on
the latencies of the selected video encoder and decoder.
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Figure 5.6: Cumulative latency for video frame processing in the scalable end-to-end system.
The line shows average frame latency; dots show individual latency measurements.



32 Results

5.2.4 Performance of the Augmented Remote Operation System

Paper VI addresses RQ 1.4 via a performance assessment of the system described
in Section 5.1.3. Results show that the proposed lidar filtering halves the amplitude
of static point oscillation in both frame-to-frame measurement and overall per-point
oscillation, and reduces the amount of intermittently missing lidar points (see Table
5.1 and Tables 3, 4 and 5 in Paper VI). The view generation process itself takes an
approximate average of 50 ms per frame to create one augmented and two novel
views (see Table 5.2 and Section 7.A in Paper VI). The majority of that time (37 ms) is
used on sparse depth point filtering and upscaling, which scales with inbound im-
age and lidar resolution, but does not scale with the number of synthesized output
views. While this per-frame rendering time is not as low as [RSA20], it fits within
the constraints set by the inbound lidar data rate (10 Hz) as well as within the feasi-
ble remote operation constraint (frame rate > 15 FPS) outlined in [YLK20]. Further
results and details are found in Section 7 of Paper VI.

Table 5.1: Lidar point oscillation amplitude (meters) in the augmented remote operation sys-
tem for a motionless scene

Excluding missing points Including missing points

avg min median avg min median
Unfiltered 0.076 0.001 0.066 0.077 0.020 0.080

Filtered 0.039 0.0002 0.034 0.039 0.006 0.043

Table 5.2: Frame render time (ms) in the augmented remote operation system with varying
apparent sizes (amount of pixels) of the disoccluded scene object

Amount of disoccluded pixels 2.0% 2.9% 8.7%

Avg. total time per frame (ms) 49.6 50.1 51.7

5.2.5 Effects of View Positions and Depth-Aiding Augmentations

Papers IV and V address RQ 2.1 and RQ 2.2 by a QoE study using the test system de-
scribed in Section 5.1.4. During the test, only one participant had a strong simulator
sickness response, and there were no significant correlations between test sequence
order and participant responses. The explicit results, shown in Fig. 5.7 and in Papers
IV and V, indicate that AR design and viewing position had noticeable effects on the
experiment task. Participant QoE dropped by 1 to 2 units when using the ground
viewing position, which requires stereoscopic depth perception for task completion.
Likewise, implicit measurements of task performance showed a negative effect from
the ground viewing position.

Depth-aiding AR reduced the difference in user performance between the view-
ing positions for the explicit task accomplishment and task difficulty scores, imply-
ing that AR can reduce the negative effect of a compromised viewing position. The



5.2 Verification Results of Proposed Solutions 33

variation of depth-aiding AR presentation only affected the explicit task difficulty to
a significant degree, but participants generally rated the helpfulness of two active-
assistance AR designs as "Fair" to "Good", implying some perceived benefit towards
the overall QoE. The results described in Section 4 of Papers IV and V indicate that
a significant loss in QoE can be seen when users have to rely on stereoscopic depth
perception in HMD-based telepresence. Depth-aiding AR can be used to mitigate
this loss; however, the choice of camera placement (and therefore viewing position)
is more impactful for the overall QoE in AT.
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Figure 5.7: The MOS and 95% confidence intervals, for three depth-aiding AR designs (A1,
A2, A3) and two viewpoint positions ([o]verhead, [g]round).
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Chapter 6

Discussion

This chapter presents a retrospective on the results and outcome of addressing the
research questions (RQs), an overall reflection on the methodology used to conduct
the research, and a discussion of the context and further challenges related to the
research outcomes.

6.1 Reflections on Results

The work presented in this thesis fulfils the research purpose from Section 1.4 by
addressing six RQs. The specific results of each question are already described in
Section 5.2; this section offers a discussion of the overall outcome of addressing the
RQs. The RQs are restated here for reading convenience.

6.1.1 Accuracy of Camera Calibration

RQ 1.1: How accurate are the commonly used multi-camera calibration methods, both target-
based and targetless, in recovering the true camera parameters represented by the pinhole
camera model?

Calibration was found to be a relatively mature field with widely used methods
readily integrated into image processing tool collections, as described in Section 3.1.
A gap was identified regarding strict comparisons of target-based and target-less
calibration methods on the basis of the ground truth accuracy of camera parameters.
A ground-truth based comparison was performed and described in Paper I. The re-
sults revealed a parity between the accuracy of the tested target-based and target-less
methods. Most of the tested methods had a low degree of error, but one of the tested
methods performed significantly less well.

These results supplement the existing literature directly by the performed com-
parison, and indirectly by proposing ground-truth based assessment of camera pa-
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rameter estimation as an alternative approach to evaluating camera calibration. These
findings were also used to inform calibration choices for the systems described in
Sections 5.1.2, 5.1.3 and 5.1.4. Further development of calibration methods was not
pursued, given the maturity of the field and the abundance of existing solutions tar-
geting parametric camera models.

6.1.2 Consequences of Synchronization Error

RQ 1.2: What is the relationship between camera synchronization error and estimated scene
depth error, and how does camera arrangement in multi-camera systems affect this depth
error?

In contrast to calibration, camera synchronization is a less explored area, with a
notable gap in relating synchronization accuracy to geometric multi-camera models
(see Section 3.1). A new model for mapping synchronization error to depth estima-
tion error was proposed in Paper II to address this gap and to define the concept of
depth uncertainty. The model was subsequently used to show the impact of syn-
chronization error and of ancillary parameters such as camera convergence. The
findings from this investigation were used to motivate the hardware choices for the
system described in Section 5.1.4. The non-converged layout of cameras for stereo-
scopic pass-through viewing had the least tolerance for synchronization error and
therefore justifies a hardware synchronization solution. The proposed model can
be applied in the design process of an MCS, such as to set a desired depth estima-
tion accuracy and determine the necessary level of synchronization accuracy. The
description in Paper II uses the pinhole camera model, but any ray-based generic
multi-camera model can be substituted for depth uncertainty estimation.

6.1.3 A Framework for Scalable End-to-End Systems

RQ 1.3: What is an appropriate, scalable multi-camera system design for enabling low-
latency video processing and real-time streaming?

RQ 1.3 led to a new proposed framework for scalable end-to-end systems, de-
scribed in Section 5.1.2. The framework places emphasis on scalability and flexibility
by means of compartmentalization of processing, and the use of modular computing
platforms in the MCS implementation. This sets the framework (and implementa-
tion) apart from MCSs described in the literature [MP04, YEBM02, BK10] and places
greater emphasis on component-agnostic MCS design. The flexibility of the pro-
posed framework can be seen in the following properties. (1) Devices and processes
of the proposed system are separated into framework domains and components
based on their purpose and role in the end-to-end processing chain; this allows the
changing of system capabilities at the hardware and software level on a component
by component basis. (2) The use of per-camera, fully connected computers allows
for any distribution of processing operations on the available platforms ("domains").
(3) The implemented MCS uses off-the-shelf cameras and computers, and manages
transmission via an open-source media streaming framework; this increases com-



6.1 Reflections on Results 37

patibility between the MCS and third-party processing or rendering applications.

RQ 1.3 is, admittedly, an open-ended research question that does not permit an
all-encompassing, single answer. Rather, the proposed framework and correspond-
ing implementation serve as one specific, viable solution for real-time capture. The
suitability of the proposed system design and the selected transmission platform was
verified via streaming latency tests, detailed in Paper III. The MCS implemented for
the latency tests was subsequently used as the basis for capture, processing (specif-
ically image rectification and image stream compression), and transmission in the
systems built to investigate RQ 1.4, RQ 2.1, and RQ 2.2. Those systems, as described
in Sections 5.1.3 and 5.1.4, further reinforce the suitability of the proposed frame-
work.

6.1.4 Augmented Remote Operation

RQ 1.4: What rendering performance can be achieved by camera-and-lidar-based AT for
remote operation in an underground mining context, without data preconditioning?

The results of RQ 1.4 demonstrated that camera-and-lidar-based AT for remote
operation is feasible within the specified context without relying on pre-conditioned
data. The feasibility condition was set by the inbound data rate of the slowest sensor
and the minimum frame rate that allows remote operation, as identified in [YLK20].
The proposed rendering pipeline integrated concepts from related literature for e.g.
fast depth upscaling [PHHD16] and introduced new solutions to resolve issues (such
as lidar point oscillation, irregularity and sparseness of projected lidar points) related
to the specific application.

The view composition shown in Paper VI corresponds to "skeumorphic" rather
than "immersive" view presentation (for clarification of view presentation types, see
Section 3.3.1). This choice was made to better relate the results to current remote
operation solutions in the mining industry, which set the context and constraints for
RQ 1.4. The proposed solution in Paper VI describes the generation of independent
views, which can be composed at will independent of any specific display technolo-
gies. The proposed solution can therefore be readily generalized to other types of
view presentations for AT.

6.1.5 Quality of Experience in Augmented Telepresence

RQ 2.1: What impact does the camera-based viewing position have on user Quality of Expe-
rience in an AT system for remote operation?

RQ 2.2: What impact do depth-aiding view augmentations have on user Quality of Experi-
ence in an AT system for remote operation?

The results of RQ 2.1 and RQ 2.2 show that the choice of viewing position sig-
nificantly affects QoE in immersive AT to a greater extent than the tested in-view
augmentations. The importance of viewing positions for non-immersive, non-tele-
presence user interfaces was discussed in [TSS18, SLZ+18, LTM19]; the results in
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Papers IV and V show the impact in AT. The augmentation-free control case in the
tests also demonstrated that viewing position has a significant impact on QoE for
HMD-based telepresence in general.

Depth-aiding augmentations were found to have a significant, but less pronoun-
ced effect on QoE. This outcome, together with the findings in [BKRB14, DWSS17],
indicates that in-view augmentation does not take precedence over monoscopic and
stereoscopic depth cues. Notably, the tested augmentations did not remove other
depth cues, nor entirely replace the target objects. Pervasive view augmentation
across the majority of the presented view may still have a dominant impact on user
QoE in AT in proportion with the diminished presentation of other depth cues. The
results in Papers IV and V are relevant to AT applications where depth perception
plays a role, such as navigation, positioning, interaction with a 3D environment and
so forth, and are likely less applicable to passive immersive experiences.

6.2 Reflections on Methodology

6.2.1 Connection between Research Questions and Purpose

This work and its contributions are aimed at a broad section of the video-based com-
munication process, starting from aspects of capture systems and ending at the user
experience of communication applications. The approach was limited from the out-
set to systems with multiple cameras and telepresence applications to make the work
more focused and manageable. However, that still covers the entire range from cap-
ture technology to user experience of whole systems. The research purpose was
stated in two parts as a way of separating the investigations of technology from the
investigations of user experience.

The first part, P1: To investigate how multi-camera and multi-sensor systems should
be designed for the capture of consistent datasets and use in AT applications, encompassed
the goal of investigating the technical aspects of AT systems and the components
thereof, from capture to rendering. The second part, P2: To investigate how user ex-
perience is affected by applying multi-sensor based AT in industrial, task-based contexts,
completes the remainder of the purpose and corresponds to the goal of investigating
how such systems (as covered through P1) can benefit an end-user. The two-fold
research purpose was supported by the two sets of RQs, defined in Section 1.4, with
the first set of RQs corresponding to P1 and the second set to P2.

RQ 1.1 and RQ 1.2 were formulated to isolate a specific aspect of MCS as an entry
point into the broader problem of MCS design and use. Calibration and synchroniza-
tion were specifically selected as entry points because both are necessary to have a
functioning MCS. RQ 1.3 was formulated to investigate the transmission component
of end-to-end systems and to determine a suitable transmission approach for real
time MCS applications. At the same time, RQ 1.3 aimed to address P1 in a wider
sense, via a focus on the design of MCS for low-latency processing and streaming
—both important prerequisites for enabling AT. Finally, RQ 1.4 completed the scope
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of P1 by focusing on the entire rendering chain of an end-to-end telepresence system.
These four RQs cover the technology-focused part of the research purpose by inves-
tigating the end-to-end process of MCS-based telepresence through its key compo-
nents, namely —capture, transmission, and rendering.

RQ 2.1 and RQ 2.2 complement the technology-focused investigations by focus-
ing on user interaction with AT applications. RQ 2.1 also supports the purpose of
investigating multi-camera and multi-sensor system design by focusing on the user
experience impact of an MCS design aspect (camera positioning).

6.2.2 Adequacy of Methodology

Research Question 1.1

RQ 1.1 was addressed by a comparative assessment of a select few calibration meth-
ods. The methods were selected based on both prevalence in literature, and availabil-
ity of functioning reference implementations, to reduce the chance of errors caused
by faulty re-implementations. The selected methods are representative of commonly
used calibration solutions, but they do not comprise the full set of existing calibration
methods. In retrospect, having more calibration solutions would provide better sup-
port for the generalization of the conclusions, especially regarding the target-based
calibration group which was represented by a single (though widely used) method.
A new test dataset was captured for the assessments, because existing calibration
datasets do not normally provide constraints on the parameter ground truth. The
conducted assessment was based on parameter identity constraints in order to ex-
clude any dependence on tertiary parameter measurement, which would be a source
of unknown error in the ground truth.

Research Question 1.2

RQ 1.2 was addressed by deriving a theoretical model, and using that model to
demonstrate the effects of synchronization error through simulations. The simu-
lation parameters were chosen to represent conventional stereo-camera setups. The
proposed model relies on two assumptions: 1) movement of scene elements can be
sufficiently approximated by constant speed in a straight line at the small timescales
between successive frames; and 2) scene element depth is determined from two cam-
eras, without adding constraints from additional cameras. These assumptions do
affect the generalizability of the model as presented in Paper II. The model was not
verified through experimental setup of de-synchronized cameras and predictably
moving scene objects. Such experimental verification would lend support to the so-
lution of RQ 1.2, but sources of error in such an experimental setup would have to
be addressed. Furthermore, the derived depth uncertainty model is based on ex-
actly those multi-view geometry equations that would have been used to calculate
the scene element depth; therefore the main contribution from an experimental ver-
ification setup would be the sources of parameter and measurement error.
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Research Question 1.3

RQ 1.3 was addressed by proposing a framework for and end-of-end system, and
evaluating the processing latency of camera data. This verification method was used
to validate the implementation choices (i.e. the solutions for transmission and pro-
cessing) in the specific context of low-latency video processing and streaming. The
latency measurements were obtained using the debugging tools of the transmission
solution [tea12]. The scalability of the framework was not experimentally verified,
since the framework was defined at a high level of abstraction and the scalability
property is directly evident (as explained in Section 6.1.3). Such verification would
have been necessary if a reference implementation of the proposed framework had
been published, which was not deemed necessary at the time.

Research Question 1.4

RQ 1.4 was addressed by proposing and implementing an augmented remote op-
eration system, as described in Paper VI. The rendering performance was primarily
defined as the time necessary to process one frame of input data and create all out-
put content. This time was measured across multiple repetitions of test recordings
to account for the natural variance of software execution timing in a non-real-time
operating system. The alternatives for end-to-end augmented remote operation in
the related literature were either unavailable for re-use, or did not correspond to the
constraints of the problem setting that Paper VI addressed, thereby preventing off-
the-shelf whole-system comparisons. In an effort to compensate for this, detailed
process descriptions, step by step measurements and comparisons for key stages
of the rendering process were used in Paper VI. In general, time-based performance
assessments of computational tasks such as rendering depend not only on the imple-
mentation and algorithm design choices, but also on the underlying tools and tech-
nologies. This dependence inevitably causes complications for direct comparisons
between solutions, especially for complete end-to-end systems. From a methodol-
ogy standpoint, such complications can serve as an argument for a more compart-
mentalized approach involving independent investigations and solutions to specific
subsets of the overall problem.

Research Questions 2.1 and 2.2

RQ 2.1 and RQ 2.2 were addressed through a single experiment using a custom
AT solution developed for the research purpose. The investigation of two factors
(viewing positions and augmentations) was combined to more effectively use a lim-
ited number of test participants, and to explore the joint interaction of the two fac-
tors. The experiment design was based on the QoE and general user-based testing
methodology from the related literature, but no PPA was conducted because access
to suitable equipment, lab space and willing test participants was limited. Instead,
task-completion related metrics were used to supplement the participant opinion
scores. The data analysis was performed in accordance with the methodology of
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related works. In retrospect, the visual design of AR information probably had a no-
table effect on user experience; in the test system, the augmentations were designed
for functionality rather than aesthetic appearance. In similar future investigations,
involving iterative UX design methods for augmentation design would be beneficial.

6.3 Impact and Significance

Multi-camera systems are prevalent in modern day-to-day life, with applications in
surveillance, entertainment production, vehicle autonomy, and much more. The re-
cent advances in consumer-grade VR and AR headsets, the ubiquity of multi-camera
and multi-sensor platforms, and the increasing need for remote-work solutions place
telepresence and AT at the forefront of relevant topics for numerous industries. As
such, there is a need for corresponding investigations in how to enable AT, and how
to effectively apply AT in the aforementioned industries.

The research described in this thesis contributes to the knowledge base on both
the technical feasibility and user experience of AT and scales to the broader context
of MCS applications. Paper I provides an additional perspective for the calibration
research community regarding the choice of evaluation metrics for assessing cali-
bration accuracy. Paper II introduces a new model for consequences of camera syn-
chronization that can serve as an additional method for assessing synchronization, a
way of categorizing MCS solutions, and a tool for MCS design. Paper III presents a
framework (and an implementation example) for an end-to-end multi-camera based
system that can be applied for AT and general multi-view video communication
solutions. Paper VI demonstrates the feasibility of AT in an industrial application
within the constraints imposed by the application setting. Papers IV and V show
the user experience effect of AT and highlight the interaction between stereoscopic
perception, AR, viewing position, and immersive rendering through an HMD. In
aggregate, these papers contribute to the future of better AT by introducing new
models, frameworks, and assessments to the research community, and by providing
the basis of new MCS design tools and AT systems for industries interested in AT for
practical applications.

6.4 Risks and Ethical aspects

The work presented in this thesis is primarily a study of technological artifacts,
namely MCSs and AT systems or components thereof. The outcomes of this work
will, at best, contribute to better MCSs and to a larger adoption of AT for non-
entertainment applications. There is a distant risk that this work could indirectly
contribute to potentially problematic or harmful applications of multi-camera based
sensing technology, but the presented research does not directly enable such appli-
cations nor defines any clear paths to the misuse of the research results.

Augmented Telepresence was investigated in the context of operator safety, as
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part of the background and motivation of this work. To manage the risks derived
from AT applications based on the work in this thesis, on-site safety and integrity
testing should precede actual deployment. In the course of user QoE assessment,
human participants were recruited to assist in testing an AT system. Participant
involvement was voluntary, and all participants were informed about the test pro-
cedure and the use of the results, as well as given a choice to interrupt the test at
any moment for any reason, without needing to provide any justification. The test
duration per participant was kept short (within 30 minutes) to avoid fatigue. Par-
ticipant responses and AT system usage metrics were anonymized, and informed
consent was obtained from all participants. All user tests related to the research
presented took place well before the outbreak of COVID-19; any subsequent or fu-
ture tests would likely have to follow a strict system of precautions, as suggested in
[BSDH20].

6.5 Future Work

Given the broad scope of the research purpose driving this study, and the broad
range of the investigated problems regarding capture, transmission, rendering, sys-
tem design, and user experience of AT, the scope for future work is vast. One path is
to expand and build upon the proposed synchronization model, such as by adding
parametrization of rolling sensor shutter, shutter speed, and motion blur, or by us-
ing said model in a cost function for multi-camera layout optimization. Another path
is to further develop the telepresence systems described in Sections 5.1.3 and 5.1.4.
Rendering methods can be improved by including virtual surface illumination, scat-
tering, and environment lighting techniques used by the computer graphics com-
munity. Designs for depth-aiding augmentations can be explored more thoroughly
through UX-design methodology, with greater focus on user needs analysis and for-
mative evaluation as inputs to the design process. Similarly, QoE assessments of re-
mote augmented operation for mining are still needed; as [SPG+19] indicates, there
are open questions about whether augmentation design should prioritize visual ap-
pearance (thus improving user aesthetic experience) or task performance (improving
user control). The proposed systems, and the scalable end-to-end framework can act
as a technical base for such studies, and similarly support investigations of other
applications of MCS and AT.

From a computer vision research perspective, the single most notable gap in the
work presented in this thesis is the absence of neural rendering in the proposed sys-
tems. The direct path would be to apply neural rendering to increase the render
fidelity (both resolution and frame rate) and to improve the camera-to-camera (and
lidar-to-camera) correspondences. Use of neural rendering would also allow to de-
couple the capture and render resolutions in end-to-end real-time systems, for AT
or otherwise. Furthermore, predictive models can be applied to selectively improve
the presentation quality at the point of the user’s attention; combining such models
with adaptive in-view augmentations for improved AT is an open research area.
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