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Sammanfattning

De senaste aren har kameraprototyper som kan fanga tredimensionella (3D) bilder
presenterats, baserade pa 3D-tekniken Integral Imaging (I1). Nar dessa ll-bilder be-
traktas pa en 3D-skarm, delger de bade ett djup och ett innehall som pa ett realistiskt
satt andrar perspektiv nar tittaren andrar sin betraktningsposition.

Avhandlingen koncentrerar sig pa tre hammande faktorer géllande I1-bilder. For
det forsta finns det en mycket begransad allmén tillgang till 11-bilder for jamforande
forskning och utveckling av kodningsmetoder. Det finns heller inga objektiva kvali-
tetsmatt som uttryckligen mater distorsion med avseende pa Il-bildens egenskaper:
djup och betraktningsvinkelberoende. Slutligen uppnar nuvarande standarder for
bildkodning lag kodningseffektivitet nar de appliceras pa Il-bilder.

En metod baserad pa datorrendrering har utvecklats som tillater produktion av
olika typer av ll-bilder. En IlI-kameramodell ingar som bas, kombinerad med ett scen-
beskrivningssprak som mojligor att godtydligt komplexa virtuella scener definieras.
Ljustransporten inom scenen och fram till 1l-kameran simuleras med stralféljning
och geometrisk optik. Den presenterade metoden anvands for att skapa ett antal 11-
kameramodeller, scendefinitioner och Il-bilder.

Tva kvalitetmatt har tagits fram for att objektivt kvantifiera distorsion som kan
upptrada i en ll-bild med avseende pa dess specifika egenskaper. Det forsta mat-
tet modellerar hur distortionen uppfattas av en tittare som betraktar en 3D-skarm
ur olika betraktningsvinklar. Det andra mattet beraknar distorsionens djupdistribu-
tion inom 1I-bilden. Nya aspekter av kodningsinducerade artefakter pavisas med de
foreslagna kvalitetsmatten.

Slutligen har en kodningsmetod for Il-bilder utarbetats som bland annat utnytt-
jar videokodningsstandarden H.264/AVC genom att forst transformera I1-bilden till
en pseudovideosekvens (PVS). Kodningsmetodens egenskaper har studerats i detalj
och jamférts med andra kodningsmetoder, bland annat med hjalp av de foreslag-
na kvalitetsmatten. Den foreslagna kodningsmetoden astadkommer samma kvalitet
som JPEG2000 till ungefarligen 1/60-del av kraven pa lagring och distribution.
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Abstract

In recent years camera prototypes based on Integral Imaging (1) have emerged that
are capable of capturing three-dimensional (3D) images. When being viewed on
a 3D display, these Il-pictures convey depth and content that realistically change
perspective as the viewer changes the viewing position.

The dissertation concentrates on three restraining factors concerning ll-picture
progress. Firstly, there is a lack of digital II-pictures available for inter alia compara-
tive research and coding scheme development. Secondly, there is an absence of ob-
jective quality metrics that explicitly measure distortion with respect to the Il-picture
properties: depth and view-angle dependency. Thirdly, low coding efficiencies are
achieved when present image coding standards are applied to ll-pictures.

A computer synthesis method has been developed, which enables the produc-
tion of different Il-picture types. An Il-camera model forms a basis and is combined
with a scene description language that allows for the describing of arbitrary com-
plex virtual scenes. The light transport within the scene and into the Il-camera is
simulated using ray-tracing and geometrical optics. A number of lIl1-camera models,
scene descriptions, and Il-pictures are produced using the presented method.

Two quality evaluation metrics have been constructed to objectively quantify the
distortion contained in an ll-picture with respect to its specific properties. The first
metric models how the distortion is perceived by a viewer watching an ll-display
from different viewing-angles. The second metric estimates the depth-distribution
of the distortion. New aspects of coding-induced artifacts within the ll-picture are
revealed using the proposed metrics.

Finally, a coding scheme for Il-pictures has been developed that inter alia utilizes
the video coding standard H.264/AVC by firstly transforming the Il-picture into a
pseudo video sequence. The properties of the coding scheme have been studied
in detail and compared with other coding schemes using the proposed evaluation
metrics. The proposed coding scheme achieves the same quality as JPEG2000 at
approximately 1/60th of the storage- or distribution requirements.

vii



viii



Acknowledgements

I would like to thank my main supervisor Professor Youzhi Xu for his confidence in
providing me with the opportunity to become a PhD-student at Mid Sweden Uni-
versity. Thanks also to my supervisor Docent Tingting Zhang who, together with
Youzhi, allowed me to independently explore and define the topic of this work. In
addition I would like to specially acknowledge the help provided by my supervisor
Docent Marten Sjostrom. His guidance and helpful comments on scientific character
and writing has helped me transform my text into a form that is far more under-
standable than it was initially. Thanks also to Professor Theo Kanter for his sug-
gestions on how to improve the main theme of the dissertation, and Fiona Wait for
proofreading the text.

My colleagues at the Division of Information and Communication Systems are
worthy of great appreciation. The interesting discussions at coffee breaks have pro-
vided rewarding pauses from struggling with subordinate clauses or something sim-
ilarly intriguing. Better still have been the (more or less speculative) lunch debates
on various topics well outside the realm of 3D images that | have had the opportu-
nity of participating in together with Magnus Eriksson, Stefan Pettersson, Marten,
and others. Thanks also to all other PhD-students on the Department of Informa-
tion Technology and Media and the Swedish Graduate School of Telecommunication
(GST) with whom | have crossed paths during these years and learned a lot. As a
GST-student | also greatly appreciate the financial support provided by GST as well
as project funding from the EU Objective 1-programme Sédra Skogsléan region.

Finally, I want to give special thanks to my family who have cheered me through
both floods and droughts in motivation and creativity. To my wife Sara | want to
express my love; this thesis would not have been written without your love, support
and encouragement.

) | (
(

b

Roggr- Olsson
Sundsvall, May 2008






Conte

Sammanfattnin

Abstract

nts

g

Acknowledgements

List of selected

Terminology

papers

1 Introduction

1.1 Motivation . . . . . . . . . e

1.2 Owverall

1.3 Solutionapproach . . . . . ... . .. .. ..

1.4 Outline . . . . . . . e

1.5 Contributions . . . .. .. . ...

1.5.1 Condensed abstracts from the selected papers . . . . ... ...

2 Background

2.1 Three-dimensionalimages . . . . . . . . . . . . ...

2.1.1
2.1.2
2.1.3
2.14

History . . . . . .
Human visual system requirements . . . . . ... ... .....
3D-techniques . . . . . .. .. ...
Applications . . . . ... ..

Xi

Vii

XV

XVii



xii CONTENTS
2.2 Integrallmaging (1) . . . . .. ... ... . . .. .. 24
221 History . . . . 24

2.22 Thedimensiontaxonomy . . . . ... ... .. .......... 26

2.2.3 Il -away to sample the light field . . ... ... ......... 28

224 1l-properties . . . . . ... 30

2.25 Constraints in property trade-off . . . . .. ... ... ... ... 37

2.2.6 The Component Images of the Il-picture . . . . ... ... ... 38

2.2.7 Multi-view - another way to sample the lightfield . . . . . . .. 43

23 Relatedworks . . . . ... 44
231 Synthesis. . . .. ... ... .. 44

232 Evaluation . . .. ... ... ... 46

233 Coding . . . . . . 47

24 Concludingremarks . . .. .. ... ... .. 48
241 Problemdefinitions. . . . ... ... .. .. o L 48

3 Synthesis 51
3.1 Chapteroutline . ... ... ... .. . . . . ... 52
3.2 Methodology . . ... ... . . . . ... 52
33 ll-cameramodel . . . ... ... . 53
3.3.1 ll-camera model representation . . . .. ... ... ........ 57

3.4 ll-picturesynthesis . . . .. ... ... .. . ... ... 58
3.4.1 Ray-tracingusing MegaPOV . ... ................ 58
3.4.2 Integrating ll-camera model and MegaPOV . . . . ... ... .. 60

3.5 Example of Il-camera model parametrization . . . . ... .. ... ... 61
36 Results .. ... . 64
3.6.1 ll-cameramodels . . . . ... .. ... ... ... 64

3.6.2 Virtualscenes . . . .. . ... .. 66

3.6.3 Synthesized Il-pictures . . . . . . ... ... .. ... 66
3.6.4 Comparison between synthesis approaches . . . . ... ... .. 67

3.7 Concludingremarks . .. ... ... . ... . ... 68



CONTENTS Xiii

3.7.1 Authors contributions . . . .. ... L 69

3.7.2 Problem definitions-PlaandP1lb . . .. .. ... ... .. ... 69

4 Evaluation 71
4.1 Chapteroutline . ... ... .. ... . . ... 71
4.2 Methodology . ... ... . . . ... 71
4.3 Metrics for ll-picture evaluation. . . . ... ... ... .......... 73
4.3.1 Sparseangle dependentquality . . . .. ... ... ........ 74

4.3.2 Sparse pseudo-depth dependentquality . . . . .. ... ... .. 78

44 Results . . ... .. . . 86
4.4.1 Sparse angle-dependentMSSIM . . . .. .. ... ... ... .. 86

4.4.2 Sparse pseudo-depth-dependentPSNR . . . .. ... ... ... 87

45 Concludingremarks . ... ... ... ... ... . . ... 88
451 Authorscontributions . . . ... ... o 89

452 Problem definition-P2b. . . . ... ... ... ... L. 89

5 Coding 91
5.1 Chapteroutline . . . ... ... ... . . ... 92
52 Methodology . .. .. .. . . . . ... 92
5.3 ll-picture characteristics . . . . . ... . ... ... ... . ... 92
5.4 The proposed coding scheme -anoverview . . . . . ... ........ 94
5.5 Pseudo Video Sequence (PVS) and Pseudo Volumetric Image (PVI) . . 95
5,5.1 Choosing type of Componentimage . . . .. ........... 96

5.5.2 Component Image Selection Order (CISO) . . . ... ... ... 97

5.5.3 Bitrate penalties from coding structure . . . .. ... ... ... 100

5.5.4 Working range for the Sl-basedPVS . . . ... ... ... .... 101

56 Codingthe PVSorPVI . . .. ... . . .. 104
56.1 H.264/MPEG-4AVC . . . . . . . . 104

5.6.2 JPEG2000Part10 (JP3D) . . . . . . oo 106

56.3 Codingcost . . ... ... . . . ... 107



Xiv CONTENTS
57 Experimentalsetup . . . . ... .. . ... 107
57.1 Il-cameramodel . ... ... .. ... ... . ... ... . ... 108

572 ll-pictures . . . . . . . .. 109

573 Codingparameters . . . . . . . ... 109

58 Results . . ... .. .. 112
58.1 PVSvs2Dimagescoding ... ... ........ .. .. .... 112

5.8.2 Sl-based PVSselectionorders . . . . .. ... ... ........ 115

5.8.3 Working range for the Sl-based PVS . . . . . ... ... ..... 115

5.84 Coding parameters . . . . . . . . ... 118

585 Codingartifacts . . . . . ... ... 121

58.6 Codingcost . .. . ... . ... .. 131

59 Concludingremarks . . .. .. ... ... . . ... ... 133
59.1 Author contributions . . . . ... ... o o 134

5.9.2 Problem definitions—-P2aandP2b . . . ... ... ... ..... 134

6 Conclusions and future work 137
6.1 OVErVIeW . . . . . . . 137
6.2 Goaloutcome . . . ... .. ... 138
6.2.1 Goal G1 - Easily produce ll-based 3D images . . . ... ... .. 139

6.2.2 Goal G2 - A coding efficient coding scheme for Il-pictures . . . 139

6.3 Futurework . .. ... ... ... 139
6.3.1 Synthesis. . ... ... .. ... ... ... 140

6.32 Evaluation . .. ... ... ... ... ... .. 141

6.33 Coding . . . . ... 141
Bibliography 143

Biography 151



List of selected papers

This dissertation is mainly based on the following papers:

I Roger Olsson and Youzhi Xu. A ray-tracing based simulation environment for generating
integral imaging source material. In Proceedings of RadioVetenskap och Kommunikation, pp.
663 — 666, Linkdping, Sweden, June, 2005.

I Roger Olsson and Youzhi Xu. An interactive ray-tracing based simulation environment
for generating integral imaging video sequences. In Proceedings of Optics East, SPIE, Vol.
6016, pp. 150 — 157, Boston (MA), USA, October, 2005.

Roger Olsson, Marten Sjostrom, and Youzhi Xu. A combined pre-processing and H.264-
compression scheme for 3D integral images. In Proceedings of International Conference on
Image Processing, IEEE, pp. 513 — 516, Atlanta (GA), USA, October, 2006.

IV Roger Olsson, Marten Sjostrom, and Youzhi Xu. Evaluation of combined pre-processing

and H.264-compression schemes for 3D integral images. In Proceedings of Visual Commu-
nications and Image Processing, SPIE, Vol. 6508, pp. 65082C-1 — 65082C-12, San Jose (CA),
USA, January, 2007.

V Roger Olsson and Marten Sjostrom. A Depth Dependent Quality Metric for Evalua-

\%

VI

VII

tion of Coded Integral Imaging based 3D-images. In Proceedings of 3DTV-Conference,
IEEE/EURASIP/MPEG-IF, Kos, Greece, May, 2007.

Roger Olsson and Marten Sjostrom. A novel quality metric for evaluating depth dis-
tribution of artifacts in coded still 3D images. In Proceedings of Stereoscopic Display and
Application XCIX, SPIE, Vol. 6803, San Jose (CA), USA, January, 2008.

I Roger Olsson. Empirical rate-distortion analysis of JPEG 2000 3D and H.264/AVC coded
integral imaging based 3D-images. Accepted for 3DTV-Conference, IEEE/EURASIP/MPEG-
IF, Istanbul, Turkey, May, 2008.

I Roger Olsson, Marten Sjostrom, and Youzhi Xu. A Coding Scheme for Integral-Imaging-
Based 3D Images Using H.264/AVC and JPEG2000 3D. Submitted to IEEE Transactions on
Multimedia, May, 2008.

Hereafter these papers are referred to by their Roman numerals.

XV



XVi



3DAV
3DTV
BMP

bpc
B-picture
bpp

bps
CAD/CAE
CBR
CCD

Cl

CISO

cQ

CT

CRT
DCT
DPCM

El

EPI

FOV
GRIN
H.264/AvVC
HDTV
HPO
HVS

IBR

I
Il-picture
IoR

IP
I-picture
JPEG

Terminology

Abbreviations and Acronyms

3D Audio and Video
Three-dimensional TV

Bitmap Image

bits per color channel
Bi-directional prediction coded picture
bits per pixel

bits per second

Computer Aided Design / Computer Aided Engineering
Constant bitrate

Charge-Coupled Device
Component Image

Component Image Selection Order
Constant quantizer

Computer Tomography

Cathode Ray Tube

Discrete Cosine Transform
Differential Pulse Code Modulation
Elementary Image

Epipolar Plane Image

Field of view

GRadient INdex of refraction
H.264/MPEG-4 AVC

High Definition TV

Horizontal Parallax Only

Human Visual System

Image Based Rendering

Integral Imaging

Integral Imaging picture
Index-of-Refraction

Integral Photography

Intra coded picture

Joint Photographic Experts Group

xvii



xviil

Terminology

JPEG2000
JP3D
VT

LCD
LUT
MCP
MPEG
Mpixels
MRI
MSSIM
PNG
P-picture
PSNR
PVI
PVI-slice
PVS
PVS-frame
RI

SDL
SDTV

Sl

VBR
VCEG

VI

\4

JPEG2000 Part 1

JPEG2000 Part 10

Joint Video Team

Liquid Crystal Display
Look-Up Table
Motion-Compensated Prediction
Moving Picture Experts Group
Mega pixels (10° pixels)
Magnetic Resonance Imaging
Mean Structural SIMilarity index
Portable Network Graphics
Prediction coded picture

Peak Signal to Noise Ratio
Pseudo Volumetric Image
Slice in the PVI

Pseudo Video Sequence
Picture in the PVS

Ray-space Image

Scene Description Language
Standard Definition TV

Sub Image

Variable bitrate

Video Coding Experts Group
View Image

Viewing Zone

Mathematical Notation

Notation related to Integral Imaging

P Plenoptic function

A Wavelength of light

t Time

P RGB-triplet from vector-form of P

I.p 2D image sampled from P

Isp 3D image sampled from P

@ Viewing angle of lenslet and thereby Il-system
A Distance between pixel- and lens array in Il-system
oF Pitch of symmetric lenslet (5 = 6,/

A Lenslet magnification factor

f Lenslet focal length

§Fr Horizontal pixel pitch at image plane

551 Vertical pixel pitch at image plane

R! Spatial resolution at image plane

R Resolution of pixel array



Terminology XiX

I1 Integral Imaging picture

II(m,n) RGB-pixel at row m and column n in ll-picture

M,N Number of pixels in pixel array horizontally and vertically

uv Number of pixels in Elementary Image horizontally and vertically
K, L Number of Elementary Images horizontally and vertically

=9 Number of Component Images horizontally and vertically

CI Component Image

EI Elementary Image

SI Sub Image

RI Ray-space Image

Notation related to Synthesis

7z Set of pixel arrays in a generic ideal Il-camera

@) Set of optical elements in a generic ideal Il1-camera
C I1-camera model

LOk Set of L describing the Il-camera C

DCk Set of D describing the Il-camera C

L1 Set of L corresponding to pixels of pixel array &
DIx Set of D corresponding to pixels of pixel array k
GF Generating matrix defining location point of pixel (m,n)
Gt Generating matrix defining location point of lenslet (k, 1)
AP Horizontal size of pixel array

AP Vertical size of pixel array

55 Horizontal pixel pitch of pixel array

oF Vertical pixel pitch of pixel array

5% Horizontal lenslet pitch

oy Vertical lenslet pitch

M Horizontal resolution of each pixel array

N Vertical resolution of each pixel array

K Number of pixel arrays used in the Il-camera

P Plenoptic function

P RGB-triplet from vector-form of P

PC Plenoptic function sampled by the ll-camera C

D Direction vector

0 Latitudinal rotation angle

10) Longitudinal rotation angle

L Location point

70 Location point translation function

g() Direction vector rotation function

BE Bounding box encompassing the space of £E*
BP Bounding box encompassing the space of D

[X,Y,Z]T 3D coordinate in the Il-camera coordinate system
[z,y,2]T 3D coordinate in the pixel format’s color coordinate system
A Distance between pixel- and lens array in 1l-system



XX Terminology

If £ = 1, index k is omitted from the notation.

Notation related to Evaluation

PSNR Peak Signal to Noise Ratio in dB
Qgiobar  Global quality metric
Qungle  Angle-dependent quality metric

STy S| corresponding to row « and column v

Vig The View Image seen from viewpoint E

Auy Horizontal pixel offset from El-center

Av Vertical pixel offset from El-center

A Distance between pixel- and lens array in ll-camera

Quicw  View image quality metric
A% Location of virtual camera

D Depth map constructed using virtual camera

d Depth layer of depth map D

T Binary mask-image selecting which pixels belong to objects at d
B? Base image constructed from densely located Els

R¢ Reference image constructed from dispersedly located Els
Qaeptn Depth-dependent quality metric

E; View point location where i = front, up, down, left, right

I Image synthesized using virtual camera

The ~ -operator denotes an image with coding-induced distortion.

Notation related to Coding

PVS Pseudo Video Sequence

PVS PVS-frame within the PVS

S, T Number of pixels in PVS-frame horizontally and vertically
J Number of PVS-frames

J Index of PVS-framewithin the PVS

r Permutation function defining a CISO

Cross-correlation coefficient between PVS-frame jand j — 1
Average c; from all J PVS-frames

Standard deviation of ¢;

Difference residual

Size of Il-picture in bits

Bitrate of Il-picture in bits per pixel

Average size of PVS-frame in bits

Frame rate of PVS

Portion of average size b corresponding to headers

Portion of b;, corresponding to slice headers

o Sl S o ol o
I & S I,

T
s
3
o



Terminology

XXi

bh,macroblock
MB

ba

H

T

Te

Ty

QC
Anglobal
Cr

Portion of b;, corresponding to macroblock headers
Macroblock size

Portion of average size b corresponding to data
Header portion metric

Coding time

Encoding time

Decoding time

Quiality cost

Difference in Qgi00a: between two coding schemes
Encoding time quotient between two coding schemes



XXii



Chapter 1

Introduction

An approach towards real life quality has been the aim for many telecommunication
applications where image, video, or audio presentation form a part. In an ideal
communication system, the participants could be separated by a large distance yet
still perceive each other as if they were in the same room. Different applications
have over the years evolved from being simple and rudimentary to providing almost
lifelike presentations. Today we enjoy high definition color imaging contrary to the
early days of video where quality was restricted to grainy black-and-white images.
Despite the ongoing engineering efforts to enhance the quality of video, depth is a
scene property that has been difficult to incorporate and reproduce in a satisfactory
manner. Three-dimensional (3D) video has been pursued for decades as being the
future of video communication.

Many 3D techniques have attempted to become a general 2D replacement but
have failed. The main reasons for their lack of success have included the following:

¢ Not all of the requirements for natural depth perception have been fulfilled,
causing eyestrain after extended periods of viewing.

e The introduced depth has negatively affected the quality of other properties
such as image resolution and viewing angle.

As acompromise, different applications have used different 3D techniques for which
the accompanying limitations have been acceptable within that particular context.

However, there are techniques that aspire to be the next 3D technique and thus
are to be able to provide both an eyestrain-free lifelike depth-sensation while still
retaining the qualities present in 2D techniques. Integral Imaging (l1) is such a 3D
technique, which is an extension of the photographic invention integral photography,
made by Lippmann [1] in 1908. The idea was to place an array of tiny lenses — much
like those in a fly’s eye — on top of a photographic plate. Different perspectives
of the scene are thereby decomposed and captured within the same photo. When
this photo is later viewed through a similar lens array the different perspectives are
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combined into a single 3D image that unfolds the depth of the depicted scene. It is
mainly research and development on image capturing sensors and display panels
throughout the past few decades that has made integral photography evolve from a
photographic technique of the early 20th century into a potential solution for digital
3D images and -video applications of today. The photographic plate could now be
replaced by an image capturing sensor containing a high resolution pixel array, e.g.
a Charge-Coupled Device (CCD). The captured image could then be transmitted or
stored for later presentation on a high resolution display, e.g. an Liquid Crystal
Display (LCD)-panel.

Integral Imaging fulfills one of the major requirements placed on a future 3D
technique: it is autostereoscopic. That is, the viewer is not required to wear any
type of glasses in order to perceive the depth in the 3D image. The 3D effect is
instead provided by the display itself. In addition, Il also provides motion parallax,
which means that the perspective of the depicted scene changes correctly according
to the position of the viewer. Standing up while watching a scene with a coffee mug
would actually allow the viewer to see if it is empty or not. Another consequence
of the large set of perspectives of the depicted scene is that multiple users can share
the viewing experience with the same ease as when viewing 2D video. These two
properties differ considerably from the stereoscopic 3D techniques that require each
user to wear special glasses that provides a single fixed viewing position, established
at the time of capture. That is, regardless of how the viewer moves relative to the
display, the same perspective of the depicted scene is perceived. This unnatural
property of viewing is believed to be one of the reasons behind the induced eyestrain
that may appear after long term use of stereoscopic techniques [2].

A number of modified Il-techniques have emerged that enhance one or several of
the ll-properties, e.g., maximum viewing angle, depth fidelity, and spatial resolution
of the 3D image. These techniques are relatively different from each other yet share
the same fundamentals. However, comparing them against each other has proved to
be somewhat difficult. Implementing an additional Il-technique that is merely used
for comparison purposes has not been practically feasible, due to the large amount
of time and resources required in developing ll-camera and -display prototypes. In-
stead, new ll-techniques are often compared to an original form of Il instead of to
other similar Ill-techniques. This approach is not valid since the properties of new II-
technique are dependent on each other, i.e. improving one degrades others. Hence,
the only way to investigate such property-dependencies — and thereby the necessary
trade-offs — is to compare similar Il-techniques to each other.

1.1 Motivation

When studying the development of the Il-research field from a signal and system
perspective, an observation can be made. Despite its favorable properties, 1l does
not come without a cost. Compared to present 2D images and 2D video, Il requires
an increased number of pixels, in both the image capturing sensor and the display
panel, to retain the same spatial resolution in the reproduced 3D image. These ad-
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ditional pixels are required to store the scene depth that is implicitly produced by
the camera’s lens array. Certainly this is a fact for all 3D techniques, to varying ex-
tents. However, to achieve good 3D fidelity — i.e. high resolution and precision and
lack of eye fatigue — an increase in the number of pixels by a factor of 50 or more
is suggested for Il [2, 3]. Considering this in the light of the presently used video
distribution channels for 2D, efficient coding and compression of both Il-based 3D
images and 3D video becomes important. Fiber optic networks with 40 Gbps links
may even require coding, despite being considered bandwidth-abundant for today’s
multimedia applications. For example, the raw bitrate of a single Il-based 3D video
sequence with HD-resolution 1920 x 1080 for sharp images, 50 views for good 3D
fidelity, and 25 frames per second for smooth playback would require ~ 62 Gbps.
Coding may also be viable for applications with less requirements in 3D fidelity. In
order to provide a smooth transition from 2D to 3D, legacy equipment must also be
able to extract suitable subsets of the 3D data. For example, set-top boxes that are
only capable of decoding standard definition 2D video, would access and decode the
base set of the 3D video. Fully 3D-enabled set-top boxes, would decode the complete
sequence enabling the 3D video to be displayed on a 3D-enabled display. Moreover,
the images captured by 3D camera systems might in some cases only be viewed on
2D presentation devices or on paper. Instead of storing one 2D version and a full 3D
image, coding can efficiently combine the two and thereby more efficiently use the
available storage. Hence, introducing coding for Il-based 3D images enables a trade-
off between storage requirements and computational complexity. This trade-off will
be differently balanced depending on the application it applies to.

However, before any 3D images coding scheme can be developed either

¢ all relevant 3D images properties must not be subject to change or

e the coding scheme must be adaptable to a wide range of available 3D images
produced by different 3D techniques.

Unfortunately, neither of these demands is fulfilled in the case of 1l. New and en-
hanced Il-techniques continue to emerge and no standardized image format exists at
present. It is also uncommon for proposed Il-techniques to be accompanied by nu-
merous 3D images, which are available for general widespread use. Nevertheless,
easy access to different 3D images is vital to make research in Il-based 3D images
processing feasible.

1.2 Overall aim and problem definitions

The work presented in this dissertation is based on two defined goals, each further
divided into two verifiable problem statements:

G1 Provide means for simple production of Il-signals, depicting strictly defined
scenes that can be easily adapted to different IlI-techniques.



4 Introduction

Pla How can the scene, the Il-system, and the ll-signal be decoupled to aid
the comparison of ll-signals produced by different Il-techniques?

P1b Can such a decoupling be used to provide a supply of Il-signals, which
for example would facilitate research on coding methods for Il-signals?

G2 Propose a coding scheme for Il-signals that allows for a variable trade-off be-
tween coding efficiency and coding introduced distortion.

P2a How can the Il-signal be coded such that a more compression efficient
representation is achieved than that possible with existing coding meth-
ods?

P2b What consequences will a proposed coding method have on objective
quality?

The questions posed in Pla — P2b are somewhat generally formulated. The fol-
lowing clarifications make them more specific.

e The ll-signal will, for this study, refer to a static Integral Imaging picture, and
not an ll-based 3D video sequence. 3D video is — analog to its 2D counterpart
— merely a set of consecutive pictures shown one after another at a sufficiently
high pace. The knowledge about static Integral Imaging pictures is therefore a
vital prerequisite that can be extended at a later stage to Il-based 3D video by
also considering time.

e The term coding efficient refers to the quantity of data required to represent the
coded Integral Imaging picture relative to the coding-induced distortion. A
coding scheme that produces a coded Integral Imaging picture that requires
small amounts of data, while still inducing only minor distortion, has a high
coding efficiency. Compression efficient is a synonymous term.

1.3 Solution approach

At a first glance it might appear that one way to fulfill Goal G1 would be to for-
malize a test procedure. This is only true if either each new ll-camera prototype is
transported to a set of commonly decided and defined scenes; or that all properties
of these scenes are strictly defined such that they can be rebuilt at the location of
the ll-camera prototype. Unfortunately, both alternatives require too large an invest-
ment in both time and physical resources to be feasible in real-life. However, this
would not prove to be infeasible if the transport of an Il-camera was to be free of
cost or if defining all aspects of a scene was possible. Computer simulation makes
these somewhat utopian ideas possible, as the physical objects become virtual and
the transfer of atoms is changed into setting electrons in motion. All aspects could be
explicitly and exactly defined and research on each subsystem could be performed
simultaneously by separately modeling the Il-based 3D image, the Il-system, and
the scene to be depicted. For example, new 3D images depicting a given scene could
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Figure 1.1: A graphical representation of the dissertation’s outline and its constituting parts

be rendered by merely interchanging the IlI-system model while retaining the scene
model. Or, ll-based 3D images could be produced with the characteristics of any
II-technique as soon as an ll-system model is defined, which facilitates comparative
research where similar Il-techniques are evaluated on pre-defined scene models.

The manner in which to approach problems P2a — P2b, is to a large extent, uni-
versal with reference to the coding of signals with the intent to compress:

e identify the signal characteristics
e find a form in which the identified signal redundancy is efficiently revealed

e reduce this redundancy while limiting the introduced perceived distortion.

I will attack both problem pairs (Pla — P1b and P2a — P2b) using the same ap-
proach: to an as large extent as possible leverage on achievements in open-source
software projects and state-of-the-art multimedia coding standards.

In the chapters of this dissertation | will answer the above stated questions and
present solutions that achieve the two goals.

1.4 Outline

The dissertation is divided according to the two goals in Section 1.2. Figure 1.1
shows a graphical illustration of the content and the constituent chapters’ inter-
relationships. Following this introduction, Chapter 2 provides a more detailed theo-
retical background, which fulfills three purposes. Firstly, a basis regarding the con-
cepts and properties of 3D images is provided, coupled with an outline of different
3D techniques and their pros and cons. Secondly, the specific 3D technique Integral
Imaging is studied in detail. Thirdly, related works are presented with respect to the
three areas of the thesis, namely synthesis, evaluation, and coding.

After the background in Chapter 2, the specific problem statements are addressed
in detail. Problem statement P1 is discussed in Chapter 3. Section 3.3 addresses Pla
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by proposing a ll-camera model as a means of separating scene, Il1-based 3D images,
and ll-camera. Within the context of the problem statement P1b, Section 3.4 presents
a ray-tracing based software application that uses the Il-camera model for synthe-
sizing ll-based 3D images. Chapter 4 bridges the two problem areas synthesis and
coding together with a discussion concerning the evaluation of ll-based 3D images.
Chapter 5 addresses problem statements P2a and P2b. A coding scheme for Il-based
3D images is proposed that utilizes 2D video coding algorithms to uncover and re-
duce the redundancy of the 3D image. The Il-coding scheme is parameterized, which
results in different variants that are evaluated and compared against existing coding
methods. Finally, Chapter 6, concludes the work presented and discusses areas of
future study.

1.5 Contributions

The content of this dissertation is based mainly on the previously listed papers | to
VIl - in which | have performed the greater part of the development, simulation,
evaluation, analysis and presentation. The contributions can be divided into three
main parts:

1. A synthesis tool that can generate Il-based 3D images and 3D video using an
Il-camera model capable of describing different Il-techniques.

2. Two quality evaluation metrics that are capable of quantifying coding-induced
distortion present in an ll-based 3D image.

3. A coding scheme for ll-based 3D images that provides a coding efficiency
vastly exceeding previous works.

The first part, addressed in Paper | and Paper Il, describes an Il-camera descrip-
tion model and a ray-tracing based synthesis tool. Taken together they enable the
easy generation of ll-based 3D images and 3D video, which assists in the develop-
ment, evaluation and quick adoption of the new emerging Il-techniques.

The second part describes two novel quality evaluation metrics and has in part
been presented in Papers IV — VI. The first metric models the view perceived by a
viewer watching an ll-based 3D display from different angles. The second metric
quantifies the 3D image’s quality at different depths. The metrics are evaluated on a
set of coded 3D images and the results are compared both with previously proposed
quality metrics and with a visual inspection of the introduced coding artifacts.

The third part discusses a coding scheme that was first presented in paper Il and
further expanded in Paper IV. An ll-based 3D images is transformed into a form that
essentially resembles a 2D video sequence. This sequence is then coded using the
2D video coding standard H.264/MPEG-4 AVC. Different parameterizations of the
scheme are studied in addition to its effect on the quality of the decoded Il-picture.
The scheme’s relation to current state-of-the-art 2D images coding approaches and
similar Integral Imaging picture coding schemes are studied, which has been pre-
sented in Papers VII - VIII.
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1.5.1 Condensed abstracts from the selected papers
1.5.1.1 Paper |

The next evolutionary step in enhancing video communication fidelity over wired and wire-
less networks is taken by adding scene depth. Three-dimensional video using integral imag-
ing based capture and display subsystems have shown promising results and are now in the
early prototype stage. To assist in the development, evaluation and adoption of these new
emerging techniques an effort to create a ray-tracing based interactive simulation environ-
ment to generate integral imaging source material has been initiated and is described in this
paper. As a base for the simulation environment a generic integral imaging description model
is presented. This model is designed to facilitate optically accurate rendering using the open-
source ray tracing package MegaPOV, which fully incorporates the POV-Ray scene description
language to exactly define all scene properties compared to experimental research. The sim-
ulation environment’s potential for easy deployment of three-dimensional source material,
adhering to a few different integral imaging variants, is demonstrated.

1.5.1.2 Paperli

Three-dimensional video using integral imaging (I1) based capture and display subsystems
are now in the early prototype stage. We have created a ray-tracing based simulation tool to
generate Il-based 3D video sequences. Such a tool would assist in the development, evalu-
ation and quick adoption of these new emerging techniques into the whole communication
chain. A generic 3D camera description model, which is the base for the Il-synthesis tool,
is also described. This description model allows for optically accurate synthesis of Il-signals
using MegaPOV, which is a customized version of the open-source ray tracing package POV-
Ray. The scene description language of POV-Ray can then be used to exactly define a virtual
scene. The initial development of the II-synthesis tool is focused on producing and visualizing
lI-signals, which adheres to the optical properties of different Il-techniques published in the
literature. Both temporally static as well as dynamic systems are considered.

1.5.1.3 Paperlll

The next evolutionary step in enhancing video communication fidelity is taken by adding
scene depth. 3D video using integral imaging (I1) is widely considered as the technique able to
take this step. However, an increase in spatial resolution of several orders of magnitude from
today’s 2D video is required to provide a sufficient depth fidelity, which includes motion
parallax. In this paper we propose a pre-processing and compression scheme that aims to
enhance the compression efficiency of integral images. We first transform a still integral image
into a pseudo video sequence consisting of sub-images, which is then compressed using an
H.264 video encoder. The improvement in compression efficiency of using this scheme is
evaluated and presented. An average PSNR increase of 5.7 dB or more, compared to JPEG
2000, is observed on a set of reference images.
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1.5.1.4 Paper IV

To provide sufficient 3D depth fidelity, integral imaging (Il) requires an increase in spatial
resolution of several orders of magnitude from today’s 2D images. We have recently pro-
posed a pre-processing and compression scheme for still 11-frames based on forming a pseudo
video sequence (PVS) from sub images (Sl), which is later coded using the H.264/MPEG-4
AVC video coding standard. The scheme has shown good performance on a set of reference
images. In this paper we first investigate and present how five different ways to select the
Sls when forming the PVS affect the schemes compression efficiency. We also study how the
lI-frame structure relates to the performance of a PVS coding scheme. Finally we examine
the nature of the coding artifacts which are specific to the evaluated PVS-schemes. We can
conclude that for all except the most complex reference image, all evaluated Sl selection or-
ders significantly outperforms JPEG 2000 where compression ratios of up to 342:1, while still
keeping PSNR > 30 dB, is achieved. We can also confirm that when selecting PVS-scheme,
the scheme which results in a higher PVS-picture resolution should be preferred to maximize
compression efficiency. Our study of the coded II-frames also indicates that the SI-based PVS,
contrary to other PVS schemes, tends to distribute its coding artifacts more homogenously
over all 3D scene depths.

1.5.1.5 PaperV

The two-dimensional quality metric Peak-Signal-To-Noise-Ratio (PSNR) is often used to eval-
uate the quality of coding schemes for 3D images based on integral imaging (I1). The PSNR
may be applied to the full Il resulting in single accumulate quality metric covering all possible
views. Alternatively, it may be applied to each view results in a metric depending on viewing
angle. However, both of these approaches fail to capture a coding scheme’s distribution of
artifacts at different depths within the 3D image. In this paper we propose a metric that deter-
mines the 3D images quality at different depths. First we introduce this 1D measure, and the
operations that it is based on, followed by the experimental setup used to evaluate it. Finally,
the metric is evaluated on a set of 3D images; each coded using four different coding schemes
and compared with visual inspection of the introduced coding distortion. The results indicate
a good correlation with the coding artifacts and their distribution over different depths.

1.5.1.6 Paper VI

The two-dimensional quality metric Peak-Signal-To-Noise-Ratio (PSNR) is often used to eval-
uate the quality of coding schemes for different types of light field based 3D images, e.g.
integral imaging or multi-view. The metric results in a single accumulated quality-value for
the whole 3D image. Evaluating single views — seen from specific viewing angles — gives a
quality matrix that present the 3D images quality as a function of viewing angle. These two
approaches do not capture all aspects of the induced distortion in a coded 3D image. We
have previously shown coding schemes of similar kind for which coding artifacts are dis-
tributed differently with respect to the 3D image’s depth. In this paper we propose a metric
that captures the depth distribution of coding-induced distortion. Each element in the result-
ing quality vector corresponds to the quality at a specific depth. First we introduce the pro-
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posed full-reference metric and the operations on which it is based. Second, the experimental
setup is presented. Finally, the metric is evaluated on a set of differently coded 3D images
and the results are compared, both with previously proposed quality metrics and with visual
inspection.

1.5.1.7 Paper VI

Novel camera systems producing 3D images containing light direction in addition to light
intensity is emerging. Integral imaging (ll) is a technique on which many of these systems
rely. The pictures produced by these cameras (lI-pictures) are space-requiring in terms of data
storage compared to their 2D counterparts. This paper investigates how coding the I1-pictures
using H.264/AVC and JPEG 2000 Part 10 (JP3D) affect the images in terms of rate-distortion as
well as introduced coding artifacts. A set of four reference images are coded using a number
of pre-processing and encoding variants, so called coding schemes. For low bitrates (<0.5bpp)
the H.264/AVC-based coding schemes have higher coding efficiency, which asymptotically
level of at higher bitrates in favor of JP3D. The JP3D coded 3D images show less spread in
quality than H.264/AVC, when PSNR as a function of viewing angle is evaluated. However,
the distortion induced by H.264/AVC is primarily localized to object boarders within the 3D
image, which in initial tests appear less visible than the JP3D coding artifacts that spread out
evenly over the image. Extensive subjective tests will be performed in future work to further
support the presented results.

1.5.1.8 Paper VI

Revolutionary camera systems based on the 3D imaging technique Integral Imaging (II) have
been presented in recent years, which exceed the capture possibilities of conventional cam-
eras. The properties of the captured Il-pictures mean that they are restricted in their ability to
be efficiently compressed using 2D images compression methods. In this paper we propose a
pre-processing and coding scheme that compresses the ll-pictures using state-of-the-art video
or volumetric image coding standards H.264/AVC and JPEG2000 Part 10 3D (JP3D). The II-
picture is firstly transformed into a pseudo video sequence (PVS) or a pseudo volumetric
image (PVI), which is later encoded using H.264/AVC or JP3D. We compare the proposed
coding scheme with the 2D images coding standard JPEG 2000 and other coding schemes for
II-pictures. Our results show that the proposed solution vastly outperforms JPEG2000 by more
than 10 dB in Peak-Signal-to-Noise-Ratio (PSNR) when applied to a set of lI-pictures. In addi-
tion, the proposed scheme produces equal distortion levels at a 60-th of the bitrate required by
JPEG2000 at similar cost in CPU-time. The paper further elaborates on the parameterizations
of the proposed coding schemes and how it affects image quality.
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Chapter 2

Background

2.1 Three-dimensional images

2.1.1 History

Humans have always wanted to depict their surroundings as accurately as possi-
ble, ever since the first man-made image was engraved and painted on a cave wall
more than 30 000 years ago. Over time — as different theories about the world have
emerged — artists have been provided with tools to make the colored 2D surface ap-
pear more and more like a window into the depicted 3D scene. The technique behind
properly using perspective was the result of several centuries of thought, beginning
as early as the 11th century when the Arabian mathematician and philosopher Al-
hazen published his book Optics [4, 5]. However, it did not become applicable to the
world of arts until 400 years later, when the scientific knowledge concerning linear
perspective was rediscovered and formulated. The Italian architect and Renaissance
man Filippo Brunelleschi formulated a set of drawing principles, e.g. the vanish-
ing point where all parallel lines on a plane in 3D converge to a specific point when
projected to a 2D surface [6]. Before that time, different object depths were mainly
illustrated using occlusion, i.e. near objects occlude objects further away when posi-
tioned in the line of sight.

With the invention of photography at the beginning of the 19th century, a cor-
rectly depicted 3D scene now became a matter of pressing the shutter button of the
camera and developing the photo. However, even though this method allows the
viewer to see an exact snapshot of a real-life scene, one significant difference ex-
ists. Both eyes have the same perspective of the depicted scene when viewing the
photo. In real-life, the left and the right eye view the scene from a slightly different
perspective due to the distance between the pupils. This discrepancy was already
recognized by the French painter Bois-Clair in 1692 [7, 8]. His solution to the prob-
lem was to combine two paintings, interlaced in thin vertical stripes, and attach them
to a set of vertically aligned opaque rods. A particular painting could only be seen

11
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Figure 2.1: Interlaced paintings combined with a lattice of opaque rods.

from certain viewing points when the combined painting is seen through this lattice
of rods. From other view points the painting is occluded by the opaque rods. Two
different perspectives of the depicted scene could be viewed simultaneously by the
left and right eye by carefully selecting the viewing position based on the interlac-
ing and lattice characteristics. An example of a combined painting and a rod lattice
is illustrated in Figure 2.1. Sir Charles Wheatstone later formalized the knowledge
for binocular vision in 1838 [9]. At the same time he also presented the stereoscope,
the first hand-held device to direct two separate images to the left and right eye re-
spectively. This invention was followed by a number of similar devices during the
latter half of the 20th century [10]. Some of those techniques are described in Section
2.1.3.1. More advanced techniques were presented in the first half of the 20th cen-
tury, in which integral photography and holography are two prominent examples.
The latter is briefly described in Section 2.1.3.2, whereas the former is discussed in
detail in Section 2.2. Hence, several steps have been taken towards enhancing man-
made depictions of the real world. However, despite the many efforts made, work
still remains before the depiction will contain the ideal characteristics that makes it
resemble a plain glass window into the depicted 3D scene.

2.1.2 Human visual system requirements

Thus, it is evident that there are several aspects in the Human Visual System (HVS)
that must interact to provide a solid depth perception. These so-called depth cues,
can be categorized into either psychological high-level cognitive cues or physiolog-
ical low-level sensory cues depending on where their primary site of operation is
within the HVS [11]. In the following two sections, an overview is given for the
depth cues widely considered to be most important [2, 12-14].
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2.1.2.1 Psychological depth cues

A large number of depth cues can be triggered even in a 2D painting, by using higher
cognitive processes:

Occlusion From experience we know that if object B is partially covered by object
A, object A is closer to us than object B. This is one of the strongest depth cues
that, if not fulfilled, makes a correct depth perception very difficult. Occlusion
is illustrated in Figure 2.2 (a), in which the only difference between the left and
right image is which object’s circumference that is broken.

Light and shadowing The squared fall-off rate of light power might not be com-
monly dwelled upon when viewing the world. However, the properties of
light and the characteristics of the shadows cast by lit objects are two very im-
portant depth cues. In Figure 2.2 (b) the objects from Figure 2.2 (a) are lit and
shadows are cast in the left and right image respectively. As a result, the shape
and position of the scene objects appear more clearly.

Linear perspective Our intuition —relating to the knowledge about venturing points,
converging parallel lines etc. —assists us in determining scene depth. Compare
the left and right image in Figure 2.2 (c). The left looks less natural, which is
the result of it not being produced with linear perspective but is instead using
orthographic projection.

Texture gradient As the depth of a textured object is increased, the texture of its
projection becomes of increasingly high-frequency, i.e. the texture gradient in-
creases. In Figure 2.2 (c), this is evident in the floor tiling.

Retinal size Knowing an object’s size relative to other objects, coupled with linear
perspective, aids in determining the distance to the scene objects. Figure 2.2
(d) illustrates the change in the perceived distance to the scene as a result of
known objects sized.

Air perspective contrast As light travels through an environment it is not affected
in a homogeneous manner. For example, different wavelengths are attenuated
more than others. If objects are located at a long distance from the viewer, the
colors become desaturated and the contrast is reduced. An example of this is
the gray or blue tint of distant mountains, which is evident in many landscape
paintings or photos. Figure 3.7 (d) on page 66 gives an example of decaying
contrast for distant objects.

These high-level cues are also referred to as monocular depth cues [11], since they
provide partial depth perception even from viewing a 3D scene with only one eye,
or when viewing a 2D depiction with both eyes.

2.1.2.2 Physiological depth cues

The low-level cues enumerated below act on a more fundamental level of the HVS,
i.e. they are directly related to the physical aspects of the eye’s optical system. This
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Figure 2.2: Examples of high-level depth cues illustrating (a) occlusion, (b) light and shadow-
ing, (c) linear perspective and texture gradient and (d) retinal size.
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Figure 2.3: Examples of binocular parallax for (a) parallel viewing and (b) cross-eyed viewing.

makes them inaccessible when producing 2D depictions. However, they are consid-
ered vital for providing an exact depiction of a 3D scene [10].

Binocular parallax This binocular depth cue is triggered by the disparity introduced
in the two captured projections of the left and right retina respectively. The
HVS processes these two slightly different images for which a smaller dispar-
ity causes the perception of greater depth. Figure 2.3 shows two views from
slightly different perspectives. The views can be perceived without any aid by
merely fixating each view pair such that the correct view is seen by the cor-
responding eye. The left and right views in Figure 2.3 (a) allow for parallel
free-viewing whereas the right and left views of Figure 2.3 (b) are arranged to
be viewed using cross-eyed viewing.

Accommodation When focusing the eyes on different distances within a 3D scene,
accommodation is triggered. Muscles in the eye pull the lens, which causes
it to change its thickness and thereby its optical power. This is illustrated in
Figure 2.4 (a), where two objects at different distances cause the lens to change
thickness and thereby focus.

Convergence Convergence is the second binocular depth cue. Itis triggered by the
rotation of the left and right eyes when fixing upon a specific point in the 3D
scene. Distant objects introduce less convergence while close objects introduce
more. Figure 2.4 (b) shows two examples of this.

Motion parallax When changing the view point — relative to the 3D scene - the ob-
ject projections translate on the retina. For distant objects the speed of this
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Figure 2.4: Examples of low-level depth cues illustrating (a) accommodation, (b) convergence
and (c) motion parallax.
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Figure 2.5: Depth-cue sensitivity over different viewing ranges [11].

translation is slower than for objects that are close to the viewer. An example
of motion parallax is shown in Figure 2.4 (c), where the a single eye is looking
at two objects while moving to the right. Note the difference in distance that
the two objects’ projections travel on the retina as a function of their distance
to the viewer.

The individual importance of each depth cue or how strongly each cue contributes
to the total depth perception, depends on the distance at which the objects are lo-
cated. Figure 2.5, adopted from the work of Siegel and Nagata [11], illustrates this
by plotting the visual depth sensitivity for some of the described depth cues. The
visual depth sensitivity of a specific cue is defined as %, where AD is the mini-
mum change in distance that can be visually perceived for the cue at distance D. A
cue with low visual depth sensitivity contributes less to the depth perception of an
object at a specific distance than a cue with high visual sensitivity. The low-level
cues are evidently important for the majority of 3D applications since the distance
between display and viewer rarely exceeds the range of 0-10 meters in which these
cues dominate. Several of the mentioned depth cues also interact due to an inher-
ent interdependency. For example, when fixing an object in 3D space by converging
the eyes to that point, accommodation simultaneously puts the object in focus and
vice versa. The importance of providing the two binocular depth cues has also been
shown in subjective evaluations.

Motoki et al. [15] have shown that 3D presentation techniques clearly outperform
their 2D counterparts, by measuring factors such as sensation of depth, sharpness,
naturalness and total image quality. The increased power of 3D presentation tech-
nigues compared to 2D is further confirmed by objective evaluation of psychological
effects such as induced body sway [2]. Fulfilling only a subset of all depth cues
might be sufficient for certain applications. However, the main reason for the in-
duced eye fatigue caused by non-ideal 3D techniques is believed to be the inability
to fully provide all depth cues and their interrelations [2].
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Figure 2.6: A non-exhaustive taxonomy of 3D techniques, which defines integral imaging as a
multi-view, multi-user autostereoscopic 3D technique.

2.1.3 3D-techniques

Even though the problem that a successful 3D technique must address is clearly de-
fined - provide as many of the depth cues, and their interdependencies, as possible —
the methods used for solving the problem differ. However, a few specific approaches
exist into which different methods can be categorized. Figure 2.6 presents a simple
3D technique taxonomy, which will be briefly described in Section 2.1.3.1and 2.1.3.2.
For additional information on different 3D techniques the reader is referred to the
surveys presented in [16, 17, 10].

2.1.3.1 Stereoscopic

Stereoscopic 3D techniques rely on some kind of user worn equipment for providing
the perception of depth. Different means exist to relay the separate views to each eye:

e Anaglyph

e Polarization
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Figure 2.7: Sterescopic glasses for (a) anaglyph [18], (b) polarization [19], (c) time-sequential
[20] and (d) head-mounted display [21].

e Time multiplexing

e Spatial multiplexing

Anaglyph techniques use complementary colors to separate the two different views,
as illustrated in Figure 2.7 (a). Red is often used for the left view, which makes cyan
the color used for the right view. Often one of the cyan components, green or blue,
is used instead. The colors of the depiction are naturally affected by the use of color
to separate the views.

If perpendicular polarization is used to separate the views instead of color, each
view can preserve its original color. The two views are demultiplexed using low cost
passive glasses. An example of polarized glasses is shown in Figure 2.7 (b).

The anaglyph and polarization techniques provide the two views simultaneously.
Time sequential techniques, on the other hand, display the views in succession, one
after the other at a rate higher than the flicker fusion rate. This requires glasses that
actively alter the transparency of the lenses in synchronization with the display. The
left eye is occluded when the right view is presented and vice versa. Figure 2.7 (c)
shows an example of such a pair, which uses LCD lenses to occlude each eye.

Spatially separating the two views is also a possibility as shown in Figure 2.7 (d)
where the glasses or goggles contain one LCD-display a few centimeters in front of
each eye.

There are four main problems with the stereoscopic techniques, which make
them unfavorable for general 3D use:

1. The user is required to wear some kind of goggles to perceive 3D.

2. There is a discrepancy introduced between convergence and accommodation
depth cues. For example, even though the binocular parallax and convergence
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Figure 2.8: Convergence and accommodation discrepancy.

might position a depicted object in front of the display, the eyes must focus on
the display to make the object sharp. Figure 2.8 illustrates this.

3. Various degrees of cross-talk is produced. That is, parts of the left view leaks
over into the right view and vice versa. Cross talk can however be completely
removed by separating the views spatially. Still, this would require the trouble-
some setup of having to wear a head-mounted display such as that in Figure
2.7 (d).

4. The motion parallax depth cue is not provided as there are only two views
of the depicted 3D scene shown. Even if an extensive look-around capability
might only be required in specific 3D applications, the fact that the slight body
sway of the viewer is not reflected in the scene perceptive can become annoying
and tiresome.

Motion parallax can be supported in stereoscopic techniques by using active track-
ing of the eyes’ position and gaze direction. Based on this gathered information the
two views are updated accordingly. This enhancement is referred to as active stere-
oscopy and for it to be effective the views must be updated quickly. If not, the motion
parallax effect will be subjected to a delay that still could cause nausea. Hence, active
stereoscopy requires solving two relatively costly and complex problems while still
not being able to provide all the required physiological depth cues.

2.1.3.2 Autostereoscopic

Instead of requiring goggles, autostereoscopic techniques rely on added complexity
in the display to provide a 3D image.

Single user autostereoscopic techniques are very similar to the active stereoscopic
approach. The main difference is that the complexity is transferred from the glasses
to the display. Hence, the user is not required to wear any goggles. However, for
passive single user autostereoscopic techniques the user is instead restricted to a
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specific position in order to perceive the 3D effect. An active display with additional
complexity can solve this by tracking the viewer and guide the two views toward
the user’s current position. With a sufficient optical guiding system, more than one
viewer can be tracked. However, similar to active stereoscopy the cost of this solu-
tion does not scale well when the number of viewers is increased.

Multi-user autostereoscopic techniques are designed to allow for any number
of viewers to see 3D simultaneously. Holography is perhaps the most well known
technique because of its flawless reproduction of all of the four physiological depth
cues. However, due to its high demand on pixel resolution it will, for the foresee-
able future, remain a photographic technique [10]. This, together with the inherent
requirement of having the 3D scene set up in 1:1 scale in a darkened studio lit only
with one ore more monochromatic lasers — if the scene is not computer generated
— further prohibits it from being the next 3D technique [22]. Figure 2.9 (a) shows a
"camera setup” using a single laser for a monochrome capture, where the banana in
the middle is the depicted object.

Volumetric techniques construct a display volume in which the depicted scene
is shown. The level of eye fatigue for volumetric techniques is also low given that
all of the four low-level depth cues are provided. Numerous methods exist to cre-
ate this display volume [10]. One method is to stack semi-transparent 2D display
panels next to each other and displaying slices of the scene on them [23]. Another
method is to alter the rotation angle of a single display panel which has the obvious
disadvantage of high speed [24]. The inherent discrete nature of the volume slicing
can be somewhat mitigated by proper anti-aliasing of the scene space. Examples of
these two methods are shown in Figure 2.9 (b). Despite the apparently advantageous
property of providing all low-level depth cues, volumetric techniques are unable to
become a general 2D replacement in their present form. This is because the occlu-
sion depth cue can not be supported from an arbitrary view point, a consequence of
the semi-transparent sub-components of the display. That is, a scene depicted by a
volumetric autostereoscopic technique is always somewhat transparent, regardless
of the extent of transparency in the real 3D scene [12].

Multi-view techniques, like the stereographic techniques, rely on disparity be-
tween images in order to provide depth cues. However, for multi-view techniques
more than two views are combined and distributed into the viewing space using dif-
ferent types of view-forming optics attached to the display panel. Several views cor-
responding to different scene perspectives allow for varying degrees of look-around
capability, as Figure 2.9 (c) illustrates. Multi-view is considered to be the technique
with the greatest prospects [10]. In part because, given proper parametrization,
multi-view promises to provide all high- and low-level depth cues without the re-
strictions on scene setup implied by holography. It also lends itself to an easier mi-
gration path from present 2D techniques, compared to holographic and volumetric
techniques, since the capturing stage consists of a set of 2D cameras. Multi-view
techniques that provide Horizontal Parallax Only (HPO) arrange this set of cameras
in a horizontal line with parallel optical axes. The set of cameras for full parallax
form an often planar surface. A thorough presentation of the majority of aspects
regarding multi-view techniques is given by Son and Javidi [25]. Given its close re-
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lationship to Il this autostereoscopic technique will be further discussed in Section
2.2.

2.1.4 Applications

There is a broad range of data visualization fields with applications that would ben-
efit from 3D imaging and 3D images.

e Medical imaging

e Marketing

Design and construction

Entertainment

Complex visualization

Enhanced 2D images

One envisioned application in the field of medicine is a system to aid surgery
that overlays data from different sensors such as video, x-ray, Magnetic Resonance
Imaging (MRI) and ultrasound [27]. The surgical operation is greatly facilitated by
having the compounded data presented in 3D.

Digital posters, or digital signs, are becoming an important advertising chan-
nel. In marketing, every means of catching the attention of shoppers is of interest.
Adding 3D to the digital signs allows for the sign content to not only update but
literally extend out from the poster.

The gap between design/construction and manufacture/operation of a product
could be greatly reduced when the whole development process is performed in 3D.
Many mistakes or miscalculations could be avoided early in the design process if
designers could study, walk around and in detail investigate a 3D model of a future
product as if it was real using a full 3D Computer Aided Design / Computer Aided
Engineering (CAD/CAE) application.

The applications with the broadest user base are those within the consumer mar-
ket. Entertainment applications such as 3DTV and 3D computer games are all im-
portant driving forces for the development of 3D techniques. Companies such as
Philips, Sharp, LG and Samsung and more are starting to release autostereoscopic
3D displays for the whole spectrum of the consumer market [26, 28, 29].

Visualization applications that would benefit from 3D are many. Studying the
high dimensional simulation results of various complex phenomena is one. Another
might be to present meteorological or oil prospecting data as accurately as possible.
An essential overview might become lost when the data sets are projected down
to fit a 2D display. Hence, in the same way that color visualization provides more
information than monochrome, a 3D display allows a more truthful visualization
than 2D.
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Figure 2.9: Autostereoscopic techniques showing (a) a holographic capture setup, (b) rotating
and stacked volumetric displays [23, 24] and (c) viewing zones from a multi-view display [26].
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Another implicit indicator of growing number of future 3D applications is the
ongoing standardization work with the Joint Video Team (JVT)of ISO/IEC (Moving
Picture Experts Group (MPEG)) and ITU-T (Video Coding Experts Group (VCEG)).
Standards for both 3D video and free-view video are being worked on, which lays
the groundwork for enhancing today’s 2D video applications with depth and also
introducing new novel 3D applications.

The comprehensive information captured within a 3D images of the type pre-
sented in the next section may also be used for purposes other than to show the
depicted scene in 3D. Computational imaging is an emerging field where 2D images
are synthesized in digital post-processing producing 2D images that could not have
been captured by conventional 2D cameras [30]. Virtual optical systems may be sim-
ulated that allow for the altering of the view point, the focal plane, the aperture size
etc., after the image has been captured.

2.2 Integral Imaging (ll)

2.2.1 History

When Gabriel Lippmann proposed Integral Photography (IP) in 1908 it was another
step in the quest to depict a 3D scene as accurately as possible [1]. It surpassed
Frederick E. Ives’ parallax stereogram — which was presented five years earlier —
by providing depictions which captured both horizontal and vertical parallax [8].
The increased number of views also allowed for motion parallax and by adopting
lenses in the capture and display process — instead of barriers — an increased opti-
cal efficiency was achieved. Herbert E. Ives’ — who shared father with the parallax
stereogram — simplified Lippmann’s work in 1931 by replacing the lens array with
vertically aligned cylindrical lenses that sacrifice vertical parallax [31]. An approach
which could be seen as a more optically efficient extension of the parallax panoram-
agram patented in 1918 by Clarence W. Kanolt [8, 32]. Then the focus on stereoscopic
techniques postponed theoretical studies of IP until the late 1960s [33, 34, 16]. The
recent decade’s success in digitizing the photographic process led to the necessity to
generalize the concept of IP and resulted in the adoption of the term 1l [32]. The ac-
tivity rate within the field of IP and Il is shown in Figure 2.10, which extrapolates the
curve presented by Okoshi [16] in 1980. As shown, the theoretical activities are now
being coupled with practical advancements in inter alia image sensor resolution and
lens array optics, which when combined, suggest that a large scale break through for
Il is imminent. Novel Il-based camera systems have, in recent years, been presented
that enables the capture of a larger portion of scene-reflected light than that possible
using conventional cameras [35-38]. Images captured using these camera systems
are shown in Figure 2.11.

Integral Imaging allows for the capture of both light intensity and direction as
the single large aperture is replaced by a multitude of smaller apertures. The 3D
image’s extended information may be used in a wide range of post-processing op-
erations to synthetically re-locate the focal plane, re-design the aperture, re-position
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Figure 2.10: Level of activity within the field of IP and Il during the last century. The figure is
an extrapolation of a figure published in [16].

Figure 2.11: Examples of images taken by ll-based camera systems [35, 38, 36]. The two
leftmost images stem from hand-held cameras whereas the right (depicting a silkworm mouth)
originates from a microscope.
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Figure 2.12: An ll-camera capturing the scene Twins from 4 x 4 different perspectives, which
implicitly stores scene depth. The projections on the image sensor are framed using red
markings to elucidate their boarders.

the viewpoint, extract scene depth et cetera [30]. An example of an Il-based camera
is shown in Figure 2.12 where for illustration purposes an extremely small number
of apertures was used.

2.2.2 The dimension taxonomy

Before proceeding with an in-depth study regarding how Il works, and its pros and
cons, the key term dimension will be explicitly defined. A reader who is familiar with
how dimension is used in the context of autostereoscopic 3D techniques — and who
has no problem in grasping the slightly exaggerated yet completely correct descrip-
tion of Il as a 3D scene depiction technique that takes samples from a subset of the plenoptic
function and reorganizes them into a 2D image — should feel free to miss both this and
the next section.

In 1991, Adelson and Bergen [39] proposed a model that describes the entire visi-
ble space that surrounds us. Their model, the plenoptic function, is a seven-dimensional
function P(6,¢, A, t,V,,V,, V,), which describes the intensity of light with wave-
length X that intersects space in position [V, V,, V;]T at time ¢ from a directional
angle (6, ¢). The plenoptic function "serves as the sole communication link between
physical objects and their corresponding retinal images" and is the "intermediary be-
tween the [3D] world and the eye" [39]. That is, when we view the world around
us it can be argued that we do not perceive the objects as such. Instead we sam-
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Figure 2.13: Three samples of the plenoptic function P. Dark arrows correspond to directions
from which visible light is present whereas bright arrows correspond to directions from which
no light is arriving.

ple the plenoptic function that the objects collectively produce. Hence, this model is
a powerful tool in describing different image capture systems and the images they
produce. Figure 2.13 illustrates a set of samples taken from the plenoptic function P
in a scene containing a number of objects.

The process of sampling the plenoptic function is attributed to all image cap-
turing devices, including our eyes. What differs is the way in which the sampling
is performed. A conventional digital camera captures an image at a specific time
t and place [V,, V,, V.]7 by sampling the plenoptic function, producing the image
Iop(u,v) = P(6, ¢). The horizontal and vertical pixel positions » and v are implicitly
related to the directional angles by a polar to Cartesian transformation. Similar to the
operation performed by the color receptive cones in the retina, the visible range of
wavelengths ) is integrated in each sensor pixel and divided into the red, green and
blue components respectively. Furthermore, camera optics restrict the field of view,
or range of directional angles, and the sensor’s pixel resolution defines the sampling
rate within this range. A video camera on the other hand results in an output that
contains one more dimension, time. Hence, a 3D slice is taken, which results in the
video sequence Iop(u, v,t) = P((t), o(t), Va (), Vi (¢), V> (t)). Note that even though
this is a signal with three dimensions, it merely contains a set of 2D images sampled
at different points in time. It does not contain sufficient information in its general
form to reconstruct a 3D view of the world at any given time ¢.

For a depiction that in all essentials resembles a view into the 3D scene through
a plain glass window, an image capturing device that produces an output with a
higher dimensionality than three is required. Depth cues necessary for perceiving
the image as 3D are otherwise lost. Four of the seven variables in the plenoptic func-
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tion suffice to depict a static 3D scene. Given that the window may be modeled as
a 2D surface S, the four variables would be a pair of position coordinates (k,1) to-
gether with a pair of directional angles for each position. Using the Cartesian form
the image output then becomes Isp(u, v, k,1) = P(0,¢,V € S), where V is a set of
sampling points located on the surface S. Figure 2.14 illustrates a planar rectangular
image and its "directional” pixels, each capturing the incoming light from all direc-
tions in the positive hemisphere, i.e. into the scene. For presentation purposes only
the set of directional pixels in the nearest column is shown.

This subset of the plenoptic function was concurrently defined — albeit slightly
differently — in 1996 as the Light field and the Lumigraph [40, 41]. Hereafter the
term light field will be used to describe this subset. Thus, the light field is sufficient
to depict a 3D scene as through a plain glass window. The next section will address
how Il can be described in terms of sampling the light field.

2.2.3 1l -away to sample the light field

The surface S in Figure 2.14 bears a strong resemblance to a camera with a multi-
tude of regularly spaced apertures in front of the film or image sensor. The main
difference is that the light field definition states that the directional information
in each point (k,!) is independent from all other points. In the analogy with a
multiple-aperture-single-image-sensor-camera, the integrity of the directional infor-
mation from all points (k, [) can not be guaranteed due to the potential overlap when
each so called Elementary Image (EI) is stored onto the same image sensor. Figure
2.15 shows an ll-camera, which uses a lens array to sample the kl-plane together
with an image sensor that collectively stores the directional information from all
(k,1) samples. Only the nearest column of lenses is shown with object-indicating
arrows, to make the illustration more clear. The set of uv-planes - corresponding to
each (k, 1) sample — integrates into the same 2D plane constructing an integral image.
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Figure 2.15: The plenoptic function sampled by an II-direct pickup camera. The image sensor
stores the directional information sampled by the set of lenses in the lens array.

Hereafter, the pixels stored in the image array is referred to as an Integral Imaging
picture (l1-picture).

The micro-lenses or lenslets in the lens array can take different forms: spheri-
cal, rectangular, cylindrical etc. Their position pattern can be both rectangular and
hexagonal. Instead of lenslets the optical equivalent pinhole and point light may
also be used. For example, vertically aligned cylindrical lenses or lenticulars result
in an HPO llI-technique that sacrifices vertical parallax for a reduced requirement in
pixel resolution [31, 42]. Consequently, the lenslet size and position strongly affect
how the light field is sampled and thus the Il-properties.

Not all scenes are as well behaved as that in Figure 2.15 where there is no overlap
between neighboring lenslets’ projections. Hence, it is the ll-camera’s responsibility
to sample the light field in such a way that perfect reconstruction is possible at the
display side. There are many trade-offs to be made in order to accomplish this and
the following section will present the Il-properties that must be considered when
designing an ll-capture and display system.

In addition to the fully optical ll-capture and display systems, systems exist
where either the camera or the display is replaced by computer simulations — com-
puter generated Il and computational Il respectively [32]. In all essentials these are
also covered by the following discussions. However, computational Il particularly
allows for improved reconstruction properties due to the ideal — and even non-
physical — characteristics of the virtual display optics. Chapter 3 further discusses
computer generated Il, which is used in this work both as a substitute for IlI-camera
prototyping and as a tool to perform comparative studies. Computational Il is used
in Chapter 4 where it constitutes a part of a proposed quality metric.
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2.2.4 ll-properties

The high degree of geometrical symmetry between the Il-camera and Il-display en-
ables one of them to be studied and to transfer the conclusions drawn to the other.
This will be exploited in this section, where the perspective of the study will switch
between the camera and the display when required.

There are a number of ll-properties that are vital for the final experience of view-
ing the depicted 3D scene. The most important are:

1. Pseudoscopic image.
Real and virtual images.
Viewing angle.

Image resolution.

a > 0w P

Depth range.

The following overview will show the effect of these properties and how they inter-
act. It is based on a geometrical optic analysis due to its beneficially low complexity
while still providing sufficient accuracy from which system level conclusions can be
drawn. For exact studies of physical phenomenon such as aberrations and diffrac-
tion, wave optics are required. This topic is outside the scope of the work and the
reader is referred to [32] for a comprehensive survey and [43] for in-depth studies.

The Il-properties are an effect of the geometry of the Il-system. Therefore Figure
2.16 illustrates a geometry model that subsequent discussions will relate to. The
parameters in Figure 2.16 are §~ (lens array pitch), §° (pixel array pitch), A (gap
between pixel and lens array), « (lenslet opening angle), z (distance to image plane),
Az (depth range) and 577 (image pixel pitch). These will be further discussed in the
subsequent sections. To simplify the illustration, the Il-system is seen from the side
and is thus exposing only three lenslets from the first column.

2.2.4.1 Pseudoscopic image

In its original form the Il-display relays the captured ll-picture using a lens array
similar to that used in the Il-camera. Figure 2.17 (a) shows the sampling and Figure
2.17 (b) illustrates the reconstruction respectively. A disadvantage associated with
this approach is that a pseudoscopic image of the depicted scene is produced, i.e. all
objects are depth-inverted; convex becomes concave and vice versa.

Different methods, optical and electrical, have been proposed to reconstruct an
orthoscopic or depth-correct image. One optical method is to add another optical
subsystem that inverts the object depths prior to the capturing lens array [31, 44, 45].
Figure 2.17 (c) shows one implementation of such a subsystem. A less bulky and
more simple approach is to adopt GRadient INdex of refraction (GRIN) lenses in
the lens array, i.e. optic fibers with an index of refraction that changes as a function
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Figure 2.16: Geometry model of a ll-display, from which the various Il-properties are derived
and defined.

of radius Okano et al. [46]. Compared to the original lenslets, the GRIN counter-
parts can produce erect images, which when projected in reconstruction produce
orthoscopic images. This 180°rotation of each lenslet projection, with respect to the
lenslet’s optical axis, is shown in Figure 2.17 (d) — showing only the vertical com-
ponent of the rotation due to presentation simplifications. A drawback associated
with many of these optical solutions is the reduced reconstructed image resolution
due to inter alia diffraction effects caused by the additional optical components [47].
Performing an 180°rotation of each lenslet projection is a straightforward operation
from a digital signal processing standpoint and has also been utilized as a conversion
method [48]. However, there is still with the drawback of transforming real images
into virtual and thus restricting all depicted objects to be confined inside the display.
Martinez-Corral et al. [47] combined the method proposed by Ives [31] (which lacks
this disadvantage as Figure 2.17 (c) points out) with digital signal processing such
that a part of the ll-camera optics is replaced by simulated ideal components without
any distortion factors.

2.2.4.2 Real and virtual images

Virtual images prove to be not the only unwanted by-product of some methods
which are converting from pseudoscopic images to orthoscopic. Even though a real
image that floats in mid-air might be considered more striking it is also more affected
by window violation [49]. This involves a real object being seen without distortion in
a smaller portion of the depicted 3D space than a similarly sized virtual object. Fig-
ure 2.18 illustrates this property. Thus, using real and virtual images is advantageous
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Figure 2.17: Pseudoscopic to orthoscopic transformation methods. (a) Direct capture with
single lens array (b) Direct reconstruction rendering depth-inverted pseudoscopic objects (c)
Two-tier capture lens array with reconstructed depth-correct orthoscopic images (d) Virtual
depth correct image by rotating the Els 180 °around their individual centers.
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Figure 2.19: The ll-camera uses a depth-control lens to allow for simultaneous real and virtual
object reconstruction.

when depicting a 3D scene.

In the original direct capture version of I, all objects within the 3D scene are
real as a result of the physical boundary of the Il-camera’s lens array. Hence, all
reconstructed objects are either real or virtual depending on the pseudoscopic con-
version method. A depth controlling lens can be used to remedy this constraint,
which projects the scene such that it straddles the lens array. Some imaged objects
then remain real whereas others become virtual. Figure 2.19 shows a depth control
lens implemented using a simple convex lens. GRIN-lens arrays have also been used
as a depth control lens to reduce the different degrees of depth distortion that a con-
vex lens introduces [50]. Varying the position of the depth control lens, relative to
the lens array, allows for different parts of the depicted scene to be reconstructed at
the display plane.

2.2.4.3 Viewing angle

A weakness of Il is the relatively small viewing angle in which orthoscopic 3D is
perceived. A typical value of the viewing angle « is approximately 20°[2, 37, 51]. In
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Figure 2.20: VZs that are formed by a ll-display. A user positioned with both eyes within
a given VZ (the main VZ, the 1st side VZ, 2nd side VZ, etc.) perceives the 3D images as
orthoscopic. However, a depth-inverted pseudoscopic 3D images is perceived if the eyes are
positioned in two adjacent VZs.

Figure 2.20 the viewing space of a ll-display is shown —the leftmost part of the figure
is a zoomed in section of the lens array. A viewer located in the main Viewing Zone
(VZ) is able to see both the real and the virtual objects with the correct depth, i.e.
orthoscopic. The analogy between Il-display and -camera geometry, translates the
main VZ of the display into the subset of the depicted 3D scene in the camera that
can be captured by all lenslets. The perceived image becomes pseudoscopic when
the viewer is moving out of the main VZ and sees pixels confined to the lenslet
projections as well as pixels belonging to neighboring lenslets. Moving even fur-
ther translates the viewer into the first side VZ where again orthoscopic images can
be seen. This repetitive pattern continues throughout the 180° around the display
plane’s normal. The viewing angle of a ll-system is restricted by the lenslet viewing
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angle « in Figure 2.16, defined as:

5L
a = 2arctan (ﬂ) , (2.1)

where 6% is the pitch of the lenslets (horizontal and vertical pitch set equal) and A
is the gap between the lens array and the display panel. Thus, increasing 5 or de-
creasing A, both have a positive effect on increasing the viewing angle a. However,
increasing « has a negative effect on both the image resolution and the depth range
as the following sections will show.

A method of extending the viewing angle is to utilize temporal multiplexing at
a rate surpassing the critical flicker frequency of the HVS. Moving the lens array in
synchrony with a high speed update of the pixel array content can increase the view-
ing angle [52]. A broader viewing angle can also be accomplished by introducing a
dynamic barrier array between the pixel sensor or display panel, and the lens array
[53]. In the display, these barriers act as opaque tubes that restrict what pixel subsets
are seen through the lenslets. At one time instant the pixel subset directly under the
lenslets is directed for view using the tubes. In the next instant, the tubes have tilted
to show other pixel subsets. Alternating fast between the tube tilt angles and syn-
chronously updating the pixel content removes the side views in Figure 2.20. The
side views are instead filled with novel information extending the viewing angle.
The complexity of using techniques based on mechanical motion increases when the
operation frequency is increased. A somewhat modest frequency of 25-30 Hz is suf-
ficient to provide a still image, but for 3D video a multiple of the used frame rate is
necessary [54]. Lee et al. [55] propose a system, which does not posses this inertia
problem. Limiting the motion to be discrete, allows for the use of a liquid-crystal
shutter as an on-off-mask located behind the lens array. Covering up neighboring
lenslets in turn allows for a larger pixel subset to be associated with each lenslet and
thus increasing the viewing angle. Despite being theoretically attractive, these meth-
ods have a practical obstacle to overcome: the update frequency of the pixel arrays
must comply with the operation frequency used. This is a requirement that may
cause problems for certain display technologies which are limited in their operation
frequency as a result of physical properties [56].

More about the viewing angle of Il-systems can be found in [57] and additional
multiplexing approaches are collected in [32].

2.2.4.4 Image resolution

A reconstructed image pixel size §77 (as shown in Figure 2.16) can be defined at
depth z using the lenslet magnification factor A = £ as

L sP
P :min(ZA(S ,5L>, (2.2)
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Figure 2.21: Two II-systems, with different gap-distance between pixel- and lens array.

where 67 is the pixel size of the display panel and §” is the lenslet pitch [58]. The
location of the image plane is calculated using the simple lens law

A
=4 23)
where f is the focal length of each lenslet. Two examples of image plane location due
to different gaps A, are shown in Figure 2.21. Substituting Equation (2.3) in Equation
(2.2) results in the size of an imaged pixel at located depth z. Thus, the image plane
where the objects are reconstructed has the spatial resolution R! = 5%1 Increas-
ing the gap, or decreasing the lenslet pitch, both increase R?. However, increasing
the gap reduces the viewing angle and also translates the image plane closer to the
lenslet array. The lowest image resolution (R! = 5%), is achieved when the gap
is equal to the lenslet focal length A = f [58]. This setup places the image plane
at z = oo, so called depth-priority Il [59]. Resolution-priority Il emphasizes image
resolution before object depth by placing the image plane at a finite depth. This is
achieved by setting A > [. Depth- and resolution-priority Il is shown in the top and
bottom part of Figure 2.21 respectively.

Temporal multiplexing can also be used to provide an increased image resolu-
tion. The moving lenslet array technique described in the previous section allows for
an increased number of pixel subsets per lenslet, thus increasing the display panel
resolution in a virtual manner [52]. The image resolution is then increased accord-
ing to Equation (2.2). Other spatial- and spatiotemporal-multiplexing methods are
described by Stern and Javidi [32].

2.2.45 Depthrange

A consequence of an image plane is that objects outside the plane are out of focus or
represented by reduced image resolution. The range in which objects are accurately
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reconstructed is denoted by the Il-system’s marginal image depth Az and is shown
in Figure 2.16. The marginal image depth is in [58] defined as

ofr
for A # f, whereas for A = f
5L

Obijects are considered out of focus when the focus error becomes larger than the im-
age pixel. This occurs for objects that are located at a larger distance from z than Az.
For resolution-priority 11, Equation (2.4) indicates that the depth range is reduced if
the image resolution is increased. Moving the image plane close to the lens array
would remedy this. However, it is not possible to achieve an infinite marginal image
depth. The resolution of image planes close to the lens array would become con-
strained to the lens pitch according to Equation (2.5) [58]. Increasing gap A or lenslet
pitch 6~ and decreasing pixel size 6° will increase the depth range. Unfortunately,
the viewing angle a and image resolution R are instead reduced by increasing A or
ok,

Increasing the depth range is advantageously achieved by optical methods. In-
stead of using a homogenous set of lenses in the lens array, a repetitive pattern of
lenses with different focal lengths within the lens array allows for a set of image
planes located at different depths [60]. The resulting reduction in image resolution
— due to the introduction of lenslets with larger pitch — is remedied by temporal
multiplexing as described previously. Another approach, which does not require
temporal multiplex at all, is to stack additional display panels with different gaps to-
gether [61]. The resulting image planes are then also stacked together and combined
into a full 3D images with a broader range of depths in focus.

2.2.5 Constraints in property trade-off

As the previous sections have shown there is a strong inter-relation between the
different ll-properties, viewing angle, image resolution and depth range. Thus, to
design an optimum ll-system, trade-offs are required. To assist in this trade-off pro-
cess, Min et al. [58] have proposed a characteristic equation that combines Equation
(2.1), (2.2) and (2.4) into

RAz - tan (%) =R, (2.6)

where R is the resolution of the image sensor/display panel. The equation clearly
states that there is only one single method by which all the properties can be im-
proved, without sacrificing any other: increasing the resolution of the pixel sensor
and display panel. All other approaches will merely emphasize one property at the
expense of the others.

The characteristic equation stems from a geometrical optics analysis, which dis-
regards diffraction. However, there is a relationship proposed by Stern and Javidi
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[32], which also considers diffraction. Writing their "product of depth of focus and
resolution squared" using this dissertation’s notation gives

1

A’
where X is the wavelength of incident or transmitted light. This relationship holds
for the diffraction limited case as well, i.e. for Il-systems where A = f. For Il-systems
that have an image pixel resolution that is a function of lenslet magnification (A # f),
the viewing angle and pixel size also become factors in the relationship according to

AzRI? = 2.7

AzR12a2 =

G (2.8)

Despite geometrical optics there are other ways to analyze Il-systems, e.g. using
wave optics [43]. Moreover, optical transfer function analysis has been adopted by
approximating the Il-system as a linear time-invariant system [62]. The interested
reader is referred to these references for in-depth and extended studies.

2.2.6 The Component Images of the ll-picture

The ll-camera stores the light field samples on a 2D images sensor, which allows for
viewing the fixed-time 3D information directly as a 2D image. That is, the intensity
and directional information from the slightly different perspectives of the scene are
spatially multiplexed into a single image similar to those shown in Figure 2.11 on
page 25. Subsequent discussions will assume Il-cameras using rectangular lenslets
arranged in a rectangular pattern. This weak constraint simplifies the presentation
and can easily be met by ll-cameras with other lenslet shapes and positioning pat-
terns by applying cropping or zero-padding of the captured 3D image.

We start with defining a color Il-picture IT as

II = [II(m, n)] m=0,1,....M—1
n=0,1,...,N—1
[100,0) - II(M —1,0) 29)

II(0,N — 1) II(M —1,N —1)

where m = 0,1,....M —1and n = 0,1,..., N — 1 are the horizontal and vertical
positions of an Il-picture pixel respectively. The RGB-color pixel at ng-th column
and mg-th row is then

II(m,n) = [ IIp(m,n) Ilg(m,n) IIg(m,n) ]". (2.10)

The Il-picture can be transformed without loss between different representational
forms. These forms can be considered to be composed from different types of Com-
ponent Image (Cl). | then define a Cl as

CL= [Cley(s:t)]e=01,...

¢ ) 1, (2.11)
$=0,1,...

w—1
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Figure 2.22: Spatial multiplex structure of the Il-picture showing the number of Els (K x L)
and their resolution (U x V).

where each of the = - U Cls has a spatial resolution of S x T'. Note that the ClI set is
constructed from the Il-picture pixels exhaustively,ie. M =Z-Sand N =¥ - T.

2.2.6.1 Elementary Image (El)

The subset of pixels beneath each lenslet, in which a low resolution projection of the
depicted 3D scene is stored, is called EIl. Hence, the simplest transformation is to set
Cl equal to EI, which in practice means that the Il-picture is not transformed at all.
However, the El becomes

(2.12)

where v = 0,1,...,U —1and v = 0,1, ...,V — 1 are the horizontal and vertical pixel
positions within each EI. Thus, each of the K - L Els has a resolution of U x V pixels.
Figure 2.22 shows how the Il-picture is subdivided into Els. Note that each indi-
vidual EIl has its own u,v-coordinate system. From a light field perspective the El
can also be defined as ET;(u,v) = Isp(u,v, k,1). The number of pixels in each El
corresponds to the number of views distributed, or the angular resolution in which
the 3D scene can be represented. In Figure 2.23, pixels that are intersected by lines
crossing the center of the same lenslet belong to the same EI.

2.2.6.2 Sub Image (SI)

The complete Sub Image (SI) is the next Cl-type and is formed from Il-picture pixels
sharing the same relative horizontal and vertical offset to the El centers. The Sl is an
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Figure 2.23: ll-display with display panel and lens array. Rays passing a given lens corre-
sponds to an El. Parallel rays from different lenses correspond to an Sl.

extension of a concept used in the field of IlI-based depth estimation [63, 64]. | define
a complete sub-image Sl as

(2.13)

where k = 0,1,..., K —1and [ = 0,1, ..., L — 1 are the horizontal and vertical pixel
positions within each SI. Thus, each of the U - V Sls has a resolution of K x L. Again,
using light field terminology SI,, ,(k,!) = Isp(u,v,k,1). In Figure 2.23, pixels that
are intersected by parallel lines of the same line-style belong to the same SI. The fact
that the Sl is formed from parallel light rays results in its characteristic orthographic
projection property, i.e. contrary to the perspective projection of the El a change in
object depth does not result in a size change of the object’s projection onto the SI.

2.2.6.3 Ray-space Image (RI)

The final Cl-type is the Ray-space Image (RI), also known as Epipolar Plane Image
(EPI) [65, 66]. There are different definitions of RI for full parallax Il-pictures, as Rl
was originally defined for one-dimensional lens positioning and HPO Il-pictures. In
this work RI is defined as

RI= [RIU’L(’U,, ]f)] v=0,1,...,V —
0 (2.14)
=1k -U+u,l- V ) H V=1 -
0,1,...,L—1

This means that rows of pixels are selected from the ll-picture (top to bottom) and
folded into images with a resolution of U x K pixels. A characteristic property of
RI is that the slant angle of a line segment is proportional to the depth of the object
giving rise to the segment.
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Figure 2.24: The set of Cls in (d) and the Il-picture pixels that constructs (a) CI = EI, (b)
CI =STIand(c) CI = RI.

2.2.6.4 Comparison of Cls

The definitions in Equations (2.12) — (2.14) construct different sets with different char-
acteristics. Figure 2.24 shows graphically how the Il-picture pixels are selected for
the different types of CI. A specific Cl (identified using a certain gray scale in Figure
2.24 (d)) is composed from ll-picture pixels in (a) — (c) with the same corresponding
gray scale. Note that even though the figure implies a squared shaped Il-picture,
this is not a requirement. An example of content for the three Cls (taken from the
II-picture Twins) is shown in Figure 2.25. In this particular case a square shaped II-
picture was used (U = V = K = L = 64) to clearly illustrate the different Cls prop-
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Figure 2.25: The ll-picture Twins transformed into different Cls. (a) CI = EI, (b) CI = SI
and (c) CI = RI. (d) — (f) shows the middlemost highlighted 4 x 4.
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Figure 2.26: The plenoptic function sampled by a multi-view camera setup. Only two camera
projections are shown to make the presentation less cluttered.

erties without being constrained by unequal resolution (S x T'). The orthographic
property of the Sl are manifested by the equal size of the two women, despite them
being at different distances from the IlI-camera. The RI’s correspondence between the
slant angle and the object depth is also a prominent property. The top color patch,
corresponding to nearest woman, has a smaller slant angle as she is closer to the
camera than the other woman. Hence, a steeper slant corresponds to a more distant
object.

2.2.7 Multi-view - another way to sample the light field

There are other ways than Il to sample the light field for 3D depiction. Multi-view is
a common technique that uses a set of ordinary 2D cameras in the sampling process.
This results in a lower resolution of the kl-plane whereas the uv-plane is sampled
using a higher resolution. Figure 2.26 illustrates a sparsely populated kl-plane in
which each camera is located relatively distantly from the others. Contrary to the II-
direct pickup camera the uv-plane is more densely sampled whereas the kl-plane are
sparsely populated. Thus, each camera has a relatively high spatial resolution, but
there are a relatively small number of cameras. This relationship is often reversed
for 1l even though there are 11-systems where the set of lenses (K - L) is less than the
El resolution (U x V) [38]. The maximum base line, i.e. the distance between the
most distant (k,1) samples, is also larger for multi-view as compared to Il. Cameras
can naturally not be placed as tight as lenslets. A larger maximum base line allows
for a larger parallax.

The common notion about Il and multi-view is that the former relies on a very
high number of views - in both the horizontal and vertical directions. However,
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Figure 2.27: Difference in sampling and reconstruction for || and multi-view.

several different kinds of 1l exists (prioritizing depth over spatial resolution or vice
versa, sacrificing vertical parallax for bandwidth etc). From a signal format perspec-
tive there is a strong resemblance between the HPO Il (with 8 pixels per lenticular
lens width) studied by Forman et al. [67] and the 9-view multi-view format used in
the 3D display from Philips [26]. Thus, the main difference between Il and multi-
view is not the number of views but rather how the light field is sampled and re-
constructed. For Il, the reconstruction strives to be an exact inverse of the sampling,
which is not the case for multi-view as Figure 2.27 shows. Despite the similar recon-
struction optics, the information distributed orthographically differs between the
two techniques. Where the Il-display reconstructs an orthographic projection into a
specific direction relative to the display plane normal, the multi-view display recon-
structs a downsampled perspective projected image from one of the cameras. This
fundamental difference is independent of the resolution used to sample the kl- and
uv-plane.

2.3 Related works

This section summarizes the related works conducted within the three areas of the
dissertations: synthesis, evaluation and coding. This overview acts as the basis for
the subsequent three chapters.

2.3.1 Synthesis

There have been relatively few efforts in addressing Il-picture synthesis in the liter-
ature. However, the work that has been presented presented has shared a common
goal despite different objectives: produce Il-pictures with significantly good corre-
spondence to real-life Il-pictures. In addition, the majority of contributions in the
literature also share the common principle of concentrating on a single specific I1-
techniques.

A number of contributions in the field of basic Il-research use simple synthe-
sis methods, which may be sufficient for evaluating certain properties [68, 47]. Al-
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though being perfectly adequate for their task, none of these synthesis methods lend
themselves to a more general use. This would involve transforming these synthesis
methods to outside the scope of the work in which they have been defined and this
would prove to be rather difficult.

A somewhat more general approach was presented as a sub-system of a surgi-
cal navigation system, i.e. the synthesis was restricted to producing Il-pictures from
volumetric data [69, 70]. Volumetric data — captured from MRI or Computer Tomog-
raphy (CT) scans — was transformed into ll-pictures using geometrical optics and
ray-tracing. The synthesized Il-pictures were later displayed by an Il-display and
superimposed onto a patient as a visual aid during operation.

The contribution of Milnthorpe et al. [71] instead focused on rendering wire-
frame models into Il-pictures. This approach addressed a broader range of applica-
tions as it could be considered an update of the fixed rendering pipeline, which was
the dominating graphics card architecture at that time. The proposed software model
updated important pipeline sections such as projection, polygon culling, rasteriza-
tion, and interpolative shading. The results were also used to visualize so-called
"cyber-sculptures”, which were 3D sculptures displayed as part of an art installation
using a projector-based Il-display [72].

An even more general way to synthesize multi-view images was proposed by
Halle [12] - thereby also lending itself to Il-picture synthesis. The approach ele-
gantly focused on enhancing the rendering speed by significantly redesigning the
rendering pipeline. The proposed method rendered directly into the space of EPI in-
stead of rendering all scene objects for each and every view (El or Sl). The EPIs bear
a strong resemblance to the RIs defined in Section 2.2.6. Hence, a large (if not com-
plete) set of views of the scene was produced concurrently when rendering to this
ray-space. Although showing significant rendering speedups for multi-view images
with many views, the high complexity associated with redesigning the display chain
prevented this work from being adopted. In addition, the lack of availability of 3D
displays meant that there were few incentives to work in this area. Another major
obstacle to its adoption was the fact that the rendering speed of the approach on
single view rendering (i.e. when used on 2D displays) was of a magnitude slower
than the predominant 2D rendering approaches at that time. However, the ongo-
ing efforts in making current graphic cards programmable, coupled with the advent
of autostereoscopic displays with more and more views, might very well alter the
chances of success for this achievement.

A few contributions have focused on generic and flexible synthesis, in contrast
to the above mentioned works where simplicity or speed have been the target. Athi-
neos et al. [73] based their synthesis method on an open-source ray-tracing software
package where the ll-camera was considered being a part of the scene and thereby
modeled as any other scene object.



46 Background

2.3.2 Evaluation

A common approach to evaluating distortion in Il-pictures is to apply a metric that
aggregates the quality of the whole Il-picture into a single scalar distortion-value.
One of the most common objective quality metric that is used in 2D images and 2D
video coding is the Peak Signal to Noise Ratio (PSNR), mainly due to its computa-
tional tractability and acceptable correlation with subjective test results on image-
and video quality. In addition, its widespread use simplifies comparative studies.
The PSNR in dB for full color RGB-images is defined as

PSNR (X, X) — 20 logo ( %) , (2.15)
where
MSE = #-HX—)?HQ (2.16)
3-M-N F

where HX — )?H denotes the Frobenius norm of the difference between matrix X
F

and X, which are full color images of size M x N. The metric commonly assumes
that X has undergone some kind of distortion-inducing operation making it different
from the original X, e.g. lossy encoding and subsequent decoding. Applying (2.15)
to the ll-picture’s complete set of pixels gives a global quality metric that | in this
dissertation define as R

Qgiobal = PSNR(IT,IT), (2.17)

which produce a single scalar quality value for the whole 3D image. The advantage
of a scalar value is that a large-scale overview of the degree of distortion present in
the ll-picture is achieved, which is why it is commonly used in the literature [74-77].

However, the quality aggregation produced by (2.17) is not only an advantage.
No detailed insight into the distribution of the distortion can be inferred from a
scalar. Hence, a more informative evaluation result was achieved by extending the
PSNR to be viewing-angle-dependent [78]. Only Il-pictures generated using a lentic-
ular HPO llI-technique were considered, which gave a 1D quality metric. Extend-
ing their work to include full-parallax ll-pictures is a straightforward operation and
produces a 2D quality matrix as a result. Hence, | define the PSNR dependent on
viewing-angle for a full-parallax Il-picture as

Qangle = [Qangle(uv U)] u=0,1,...,U—1
v=0,1,...,V—1
o (2.18)
= [PSNR (STu0STu )| iz
v=0.1,...V—1

The pixel indices u and v correspond to a horizontal and vertical angle, which de-
pends on the geometry of the Il-display. Note though that an Sl is an orthographic
projection and this affects the position of the virtual viewer, which is implicitly as-
sumed by the quality metric Qqn 4. For the ll-display to be perceived as an Sl, the
virtual viewer must be located at an infinite distance from the display plane. This
constraint on viewer location has both an advantage and a disadvantage. Using Sls
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implies that no interpolation is required, which is good as this could otherwise in-
troduce additional distortion within the Il-picture at the time of measurement. The
downside is obviously that implicitly locating the viewer at infinity is a physically
flawed assumption.

2.3.3 Coding

There are a few different coding approaches that have been proposed for I1-based 3D
images in the literature. To a large extent these different coding schemes are linked
by being strongly related to the underlying Il-picture-structure.

Forman [45] addressed HPO Il-pictures, i.e. ll-picture-structures which stem
from the capture and display using vertical lenticular lens arrays. The resulting Els
cover the whole Il-picture vertically (L = 1). As a first pre-processing step, each
El was further divided into blocks of 8 x 8 pixels in the vertical direction. Two dif-
ferent approaches were then proposed to code the El subsets: a hybrid coding ap-
proach known from various MPEG-standards and a 3D DCT. In the first technique,
the residual from the difference between two horizontally adjacent El-subsets was
transformed using the Discrete Cosine Transform (DCT). The transform coefficients
were then quantized and entropy coded. The second technique replaced the de-
scribed hybrid-operation of prediction and transformation with an 8 x 8 x 8 pixel 3D
DCT, which was applied to El-subsets that were combined horizontally from eight
consecutive Els.

Sgouros et al. [74] extended the concept of coding Els using video coding tech-
niques. A full parallax ll-picture-structure was used with Els of hexagonal shape
and position pattern, as opposed to an HPO-structure. The minimum rectangular
shape encompassing the hexagonal El was selected for further processing instead
of the Els themselves, to comply with the rectangular pictures that are prevalent
in the context of image and video coding. These pictures were then coded using a
combination of JPEG-like intra-coding and MPEG-like inter-coding techniques. A
disparity estimation and compensation stage were also adopted, which allowed the
horizontal and vertical redundancy to be addressed more efficiently. Yeom et al. [75]
later proposed a similar approach for an ll-picture-structure with a low number of
high resolution rectangular Els. The MPEG2 video coding standard was used for
coding; three different ways to order the set of Els prior to coding were studied and
the coding efficiency was evaluated using objective quality measurements on each
individual EI.

Similar ideas on coding arose within the computer graphics community, in par-
allel to the work performed within the field of Il. The 3D images parameterizations
light field and lumigraph are similar in character to ll-pictures but with an increased
number of projections and an increased resolution of each projection; each projection
originally stemming from a 2D camera [40, 41]. It was identified that vector quan-
tization, Lempel-Ziv entropy coding, linear prediction, and transformation were all
useful tools to reduce the multidimensional redundancy inherent in these large data
sets. In line with the research performed within the II-community, an MPEG-like
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approach to code the light field was initially proposed [79]. This was later followed
by the use of the MPEG-1 video coding standard itself, albeit without disparity com-
pensation in order to enable low-complex random access within the light field [80].
An approach to coding the light field using wavelet transformation was proposed
by Girod et al. [81], which contrary to the previous methods used the disparity in-
formation within the light field to enhance coding efficiency. Closely related to the
light field is the ray-space representation of a 3D scene [65], which have been dis-
cussed as a format for free-viewpoint TV where the user is free to arbitrarily change
the camera’s position and aim within the scene [82]. Ray-space images coded using
H.264/MPEG-4 AVC (H.264/AVC) was proposed by Shao et al. [76].

2.4 Concluding remarks

The desire to depict the world in three-dimensions has resulted in numerous 3D
techniques. Out of the numerous attempts at finding the optimal imaging solution,
only a few 3D techniques have the potential to provide all the depth cues as required
by the HVS to perceive a 3D image. Integral Imaging is such a technique.

The plenoptic function describes the whole visible 3D space. An ll-camera can
capture a portion of this data set and is able to allow it to be completely reconstructed
using a ll-display. The recent years research progress within the field of imaging
sensors and display panels has allowed the lI-technique to be applied to a larger field
of applications. The continuing increase in resolution of image sensors and display
panels allows for enhancement of the 3D properties of l1l-cameras and displays.

Computer simulation of the capturing process of lI-cameras has in the literature
mainly been aimed at low complexity models for verification of laboratory prototype
setups. Measuring distortion in Il-pictures has traditionally been conducted using
2D images quality metrics extended for ll-picture-use by the addition of two di-
mensions, without giving due consideration to the additional 3D images properties.
More effort has been put into investigating how to reduce the inherent redundancy
of the ll-picture. The next three chapters will present methods and techniques to
synthesize, evaluate and code Il-pictures that extend and supersede the approaches
described in the related works.

2.4.1 Problem definitions

A conclusion can be made after re-examining the problem definitions of Section 1.2
in light of the related works. Neither of the synthesis methods presented in the lit-
erature solves problems Pla - P1b. No work has shown how to decouple the consti-
tuting parts of the synthesis process: the ll-camera, the scene and the Il-picture. The
previous works with regards to solving problem P2a is almost as easily dismissed.
Any novel coding scheme that is presented as coding efficient must supersede the
coding efficiency of previous methods. Thus, the presented works on coding could
be considered fulfilling problem P2a to the degree that each method supersedes the
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methods preceding it. However, Chapter 5 will present a coding scheme that im-
proves on the coding efficiency compared to what is presented in previous works
with regards to coding. The problem P2b is a consequence of evaluating a presented
coding scheme. Still, not many proposed coding schemes have evaluated the objec-
tive quality in any other way than from a global perspective. Thus, previous works
have discussed how objective quality is affected by a proposed coding scheme but
only from a very general point of view. The work presented in Chapter 4 extends
on this discussion and gives tools that can provide a more balanced view on coding
induced distortion in Il-pictures.
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Chapter 3

Synthesis

The previous chapter showed the Il-camera to be a powerful tool for sampling the
plenoptic function. It samples a sufficient portion to allow for the reconstruction of
a 3D depiction of the captured scene. Different modifications of the original form
strive to enhance different sampling aspects, which lead to trade-offs due to the res-
olution limitation given by Equation (2.6). These trade-offs are difficult to assess due
to the lack of a static frame of reference. Thus, there is at present no easy way of com-
paring newly evolving Il-techniques with each other, since there is no explicit and
well defined IlI-system or Il-picture references. In other research fields such as the
signal processing of 2D images and 2D video, reference signals have been defined
on which novel algorithms and systems are evaluated using well defined quality
metrics. These test-songs, -images and -videos are constructed to have specific and
complementary characteristics such that they represent a sufficiently large selection
of all possible signals. The metrics are then used to measure how a system affects
these characteristics under given constraints. In the field of image processing and
compression such comparison operations are facilitated by:

1. A well defined quality metric.

2. A set of widely used reference images chosen as input signals.

Transferring these requisites to the field of I would entail the definition of at least
one quality metric and a set of reference scenes. The definition of quality metrics
and evaluation methods are further discussed in Chapter 4. However at present
there have been no efforts made to define reference scenes and the most likely rea-
son involves the complexity of the task. Gathering exact knowledge of object size,
position, color and texture as well as optics, lighting and environment properties is
a very complex if not impossible procedure. Without this knowledge the depicted
scene cannot be reproduced exactly in order to test a novel lI-technique. However, it
is possible to achieve full control over the parameters mentioned by defining virtual
reference scenes. Repeatability of experiments and accessibility of results is greatly
enhanced by having an explicitly defined scene and an equally explicitly defined
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virtual camera model.

There is another objective that synthesis (computer generated I1) fulfils in addi-
tion to aiding comparative research between IlI- techniques. Once the design of an
II-technique is finalized and an Il-picture format is settled, the necessity then exist to
provide a large set of reference Il-pictures for further signal processing research, such
as source and channel coding. Real-life captured Il-pictures are vital and will dom-
inate once real-life II-cameras become available. However, synthesized ll-pictures
have a particular quality that is very valuable in aiding reproducibility: the possibil-
ity of exactly defining and reproducing scenes.

3.1 Chapter outline

In this chapter, a ray-tracing-based means of synthesizing Il-picture will be pre-
sented. The approach allows for easy definition of arbitrary complex reference scenes
and the synthesis of Il-pictures, which adheres to different ll-techniques. In Section
3.3, a basic generic Il-camera model is proposed that provides a common basis from
which different Il-techniques can be transformed. Section 3.4 presents how this I1-
camera model is used to render Il-pictures from descriptions of simple reference
scenes. Results are presented in Section 3.6, including different Il-camera models,
scene descriptions and synthesized Il-pictures. Finally, conclusions are made in Sec-
tion 3.7.

3.2 Methodology

The synthesis method presented in this chapter will be a supplement to physically
producing Ill-camera prototypes and capturing real-life 1l-pictures. The defined Il-
camera model and the properties of the synthesized Il-pictures will be qualitatively
evaluated. From an engineering point of view a quantitative evaluation of the II-
camera model would have been preferred, e.g. by comparing synthesized Il-pictures
with real-life produced Il-pictures. However, there is one major reason why this is
not performed in this work. Without exact knowledge about the depicted real-life
3D scene properties it would be impossible to conclude whether differences between
the synthesized ll-picture and its physical reference were caused by limitations in
the ll-camera model, or simply as the result of different scene properties. Hence,
objectively evaluating the Il-camera model is considered outside the scope of this
work.

A useful II-camera model must copy all the essential properties of a real world 11-
camera. If not, the value of the resulting Il-pictures could be questioned. However,
defining "essential properties" is a process that is strongly correlated to the intended
application, as shown in the previous works of Section 2.3. The essential properties
of the ll-camera model presented in this dissertation can be derived by the problem
statements Pla and P1b in Section 1.2. The properties are
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Flexible — the model must be able to describe cameras from a large set of dif-
ferent Il-technologies.

Self-contained - the camera must be decoupled from the depicted 3D scenes.

Non-complex —the II-camera model representation should be easy to use, store
and distribute.

Scalable - the Il-camera model should be possible to extend with new func-
tionality.

These properties are evaluated for the different synthesis approaches at the end of
this chapter.

3.3 ll-camera model

A generic ideal Il1-camera may be discerned when different types of Il-cameras are
studied. Based on such a study, | define an lI-camera model as consisting of two sets
of components:

1. Asetof K pixel arraysZ = {Ip,I1,...,Ix_1}.

2. A set of optical elements O.

This broad definition are narrowed down by two constraints in order to reduce com-
plexity:

1. The spatial resolutions are equal for all of the planar pixel arrays in Z and set
to M x N pixels.

2. The interaction between the set of pixel arrays Z and the optical elements O is
described using geometrical optics.

The two sets of components allow for both time-static and time-dynamic Il-techniques
to be modeled. Different subsets of the model would be active at different times for
dynamic systems. The following presentation of the Il-camera model focuses on
static ll-techniques but it is relatively straightforward to extend it to dynamic tech-
niques.

It was stated in Section 2.2.2 that any type of camera could be modeled by prop-
erly sampling the plenoptic function. Hence, this is the starting-point for deriving
the 1l-camera model. The plenoptic function is rewritten here for clarity:

PO, ¢, A t, Ve, Vy, V2). (3.1)

Equation (3.1) can without loss of generality be simplified, which is the goal of the
following derivation steps. A more compact expression can be achieved if the func-
tion arguments are vectorized.
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Firstly, the direction coordinates are rewritten using Cartesian to spherical trans-
formation. This increases the dimensionality of the function by one but facilitates
the later use of the Il-camera model. Thus, | define a direction vector

D =[D,,D,,D.]" (3.2)

that relates to the direction angles as

0 = acos [ —
9] (33)
D
= at Y
¢ = atan <D;p> ,
where ’ﬁ’ = /D2 + D2 + D2, i.e. the length of the direction vector D. Constraining

the direction vector to be of length one (’ﬁ‘ = 1) gives us § = acos(D.).

Secondly, combining the position coordinates V,, V,, and V; into a location point
gives us

L= [Vza‘/;J7‘/z]T~ (34)

Thirdly, the intensity of all visible wavelengths X is integrated into an approxi-
mate RGB-triplet P = [Py, P, Pg| according to an RGB color model of choice [83].
Using the format of Equation (3.2) and Equation (3.4) in Equation (3.1) and rearrang-
ing the arguments, allows for the plenoptic function to be expressed as a compact
vector function

P = P(L, D, t), (3.5)

where the RGB-triplet P corresponds to the RGB-color of the light ray passing through

point L from direction D at any time t. Equation (3.5) can be further condensed for
a static world, i.e. a non-moving ll-camera and stationary objects

P = P(L, D). (3.6)

This vector function is still a continuous and generic description of the visible
world and must be appropriately sampled to represent what is captured by a specific
camera type. There is an infinite number of location points £ and for each location
pointL € £ there are an infinite number of direction vectors D. Reducing these sets is
the next step in deriving the Il-camera model. Based on the second constraint above
regarding geometrical optics, the following assumption is formulated: the interior
components of the IlI-camera do not alter the captured light but merely transports it
from the exterior (the depicted scene) to the pixel arrays I, via the optical elements
O. Hence, it is sufficient to study P on the boundary between the interior of the II-
camera and the exterior scene. The location points on this boundary S are defined as
£ and are those that could be considered for sampling Equation (3.5). In addition,
only a subset of £° possess corresponding direction vectors D that lead to the light
finally being captured by the set of pixel arrays Z. A portion hit the inner casing of
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Figure 3.1: Active light rays captured by the k-th pixel array I . Location points L¢ € £¢ and
direction vector D¢ € D€ are derived from L; € £+ and D; € D' respectively

the ll-camera before reaching any pixel array and therefore do not contribute to the
captured ll-picture. Thus, for each pixel array I, a set of location points £¢ ¢ £°
exists, which has a set of direction vectors D¢ that align with the light rays that
intersect £° and later becomes captured by an image sensor. We calculate these two
sets, for each k, as

L% = f (L™, D),

'DCQ :g(ﬁlk,le), (37)
where £+ and D!+ are the location points and direction vectors for the pixel array
k. The functions f and g describe the operation of the ll-camera, i.e. they defines
the light transport within the the Il-camera’s interior. Hence, we can define what is
captured by the camera as

PY = P(£9, D) = {P(L™, D)}, . (3.8)

That is, the light being captured by the set of pixel arrays Z is fully described by
evaluating the plenoptic function at £¢ and D¢. Hence, to fully describe the im-
age P that the ll-camera captures on its image sensors does not require an explicit
knowledge of £, DI+, f() and g(). Knowing £ and DY) is sufficient. An example
of the relationship between the set of £+, Ds and £¢, D is shown in Figure 3.1.
Four light rays are traced through the optical elements from the exterior of the Il-
camera to the pixel array I;. Note that evaluating P at the surface of the pixel array
is equivalent to evaluating P at the outer boundary of the set of optical elements O.

The Il-camera model allows for an arbitrary number of pixel arrays or image
sensors to be used. However in the subsequent discussion — for clarity — only a
single pixel array will be considered, i.e. K = 1. However, the extension to K > 1 is
straightforward. The discrete nature of the pixel arrays implies that the components
in £» and D'+ also pack together into discrete clusters. Even though £+ and D*
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are often uniformly spread due to the periodic structure of the pixel array, f() and
g() will most likely cause £¢, D¢ to have non-uniform distribution characteristics.

Hence, defining the sets £¢ and D¢ of the II-camera model requires specifying
e Lx and D'*
e f()and g().

The set £+ (which correspond to the positions of the pixels on the k-th pixel array)
may simply be constructed using hexagonal or rectangular lattices depending on the
structure of the pixel positioning within the array. Moreover, super-sampling gives
a more physically accurate Il-camera model and may be achieved by considering
several location points and direction vectors per pixel (m,n) and averaging the re-
sulting colors. Calculating the two functions f() and g() might range in complexity
from piecewise linear transformations of £+ and D’* to full ray-tracing solutions de-
pending on the ll-technique being modeled. The Il-camera model does not contain
information about how the £¢, D¢ are produced by f() and g() from £* and D’=. The
end result is sufficient and therefore defines the resulting discrete ll1-camera model,
which is here described as

C={LeLDeD}, (3.9)

i.e. the sets of location points and accompanying direction vectors that when used
to evaluate the plenoptic function P, results in the captured ll-picture. If a single
pixel array is used and each pixel is considered to capture a single light ray, a one-
to-one mapping between pixel (m, n) and location point and direction vector pair is
achieved. Equation (3.9) then translates into

C= {L(m,n) € £C D(m,n) e DC} . (3.10)

A set of presumptions are made to aid in the parametrization of the Il-camera
model

e The primary pixel array in Z is presumed to be located in the xy-plane, with its
center at the origin and with the camera looking down the positive z-axis, i.e.
a left-handed coordinate system is used.

e The arbitrary position and orientation of the camera within the virtual scene is
outside the scope of the model and is instead handled by transforming L and

D into the scene’s coordinate system.

e Any additional information required, but not contained in the Il-camera model
C, is placed in accompanying metadata.

The following subsection will describe how to represent the ll-camera model in
a form which allows for its practical use. An accompanying metadata structure will
also be briefly discussed. Section 3.5 will give a simple example of how to parame-
terize the Il-camera model of Equation (3.10).
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3.3.1 ll-camera model representation

The ll-camera model C, with its finite sets £ and D, can be arranged in numer-
ous ways and be contained in various data structures. However, by arranging £¢
and D in pixel maps, the 1l-camera model becomes easily accessible using generic
imaging software. With 2 - K pixel maps, each having a spatial resolution of M x N,
the necessary location points and direction vectors are conveniently stored. The k-th
pixel map pair carries the x-, y- and z-components of L, and D, in the red, green and
blue channels of the RGB-image respectively. A new coordinate system is implicitly
used when storing C in pixel maps, which is the coordinate system that the colors of

the pixel map are defined in. A set of 2k bounding boxes BL and B are constructed
to enable this. Given that the transformation between the coordinate systems is han-
dled identically for £¢ and D¢, the following description will omit the dependence
of L, D and k. Hence, we define a bounding box as

Tmin ZTmax
B= Ymin  Ymax ) (311)

Zmin Zmax

where each row corresponds to the bounding box’ limits in each dimension, defined
in the ll-camera model’s coordinate system. Maximum precision is achieved by not
constraining the bounding box to be square, i.e. by not setting zmin = Ymin = Zmin
and Tnax = Ymax = Zmax- B scales the color-value range of the pixel map format
([, v, z]T) into the coordinate system range of the ll-camera model ([X, Y, Z]T) using

%pc (xmax - xmin) + Lmin
[X, K Z}T = #}w (ymax - ymin) ~+ Ymin 5 (312)

z
Tpc (Zmax - Zmin) + Zmin

where the normalizing constant Cy,,. corresponds to the bits per channel (bpc) used
by the image format storing the pixel maps. Thus, image formats using 8 bpc to
represent a pixel’s color results in Cy,. = 2% = 256. Choosing an image format is
based on the required accuracy for the application in which the ll-camera model is
to be used. Hence, the precision and dynamic of the format’s color representation
must be sufficient to describe all the essential variations in £¢ and D¢. Selecting an
image format is outside the scope of the lI-camera model. However, for the II-camera
model to be practically usable the synthesis application using it must be able to read
the selected image format.

The representational form of the Il-camera model contains a set of pixel maps and
accompanying bounding boxes, where the latter constitute metadata vital for the
representational form but not suitable for storing in pixel maps. The small amount
of metadata makes the storage in binary data-structures unnecessary. Plain text was
instead adopted as it provides easy access to the information using generic software.
If the selected image format supports metadata could be stored in the same file as
the either of the pixel maps. If not a plain text file could accompany the two pixel
maps.
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Figure 3.2: An overview of the recursive operation of ray-tracing.

A separate text file was adopted in this work to reduce complexity in accessing
the information. Supplementary information (in addition to the 2k bounding boxes)
could also be included in the metadata, e.g. the pixel and lenslet pitch of the II-
camera, the Index-of-Refraction (IoR) of the lenslets etc.. Such information might not
be required for synthesizing Il-pictures per se but may be useful for various signal
processing operations, for example synthesizing novel 2D views from the Il-picture.

3.4 ll-picture synthesis

After defining the ll-camera model C and representing it using a set of pixel map
pairs with accompanying metadata, a way to evaluate the plenoptic function P in
Equation (3.5) still remains to be provided. A synthesis software application is re-
quired to make use of the model. Such an application is presented in the following
two subsections. First the core of the application is described — the open source
ray-tracing software package MegaPOQV . After that the general structure of the ap-
plication itself is discussed.

3.4.1 Ray-tracing using MegaPOV

Rays are traced from the virtual eye, through the image plane, and into the scene to
be depicted when a synthetic image is rendered using ray-tracing, as illustrated by
Figure 3.2. For each pixel a set of primary rays is traced into the scene, which is in the
opposite direction with regards to how physical light is captured by an image sensor.
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Ray-tracing is a recursive process in which each primary ray that hits a virtual object
generates a set of new secondary rays, which is similarly traced within the scene.
Hence, it is of vital importance that the exponentially growing set of rays (tertiary,
quaternary etc.) is limited. Two conditions stop the recursion: (a) if a ray leaves
the scene or (b) if a pre-defined number of recursion steps have been performed.
The type of rays generated at each ray-object intersection point, differ based on the
physical property of the object and can be characterized into:

e Shadow rays - S; these are traced to the scene’s light sources to determine to
what degree they contribute to the point’s color. Occluding objects are identi-
fied using shadow rays.

e Reflection rays - R; a glossy surface gives rise to a reflection which alters the
intersection point’s color.

e Refraction rays - r; a transparent object bends light based on the relation be-
tween the refraction indices of the object and the surroundings.

These three ray types are all represented in Figure 3.2. The colors calculated at each
intersection point are traversed back and summed until the first intersection point
is reached. All color terms from all intersection points add together and result in
the color of the image pixel through which the primary ray was cast. An increased
correspondence with a real-life camera is achieved by using several rays per pixel,
as mentioned in Section 3.3. Increasing the number of rays traced per pixel increases
the resulting image quality, but at the expense of increased rendering time.

MegaPOV is "a collection of unofficial extensions of POV-Ray" [84], which is an
open-source multi-platform ray-tracing software application [85]. Three major ben-
efits are achieved as a result of basing the synthesis application on MegaPOV:

1. Optically accurate synthesis provided by POV-Ray, which includes refraction,
refraction, caustics etc.

2. Possibility to define scenes of an arbitrary choice, complexity and precision
using POV-Ray’s generic Scene Description Language.

3. Access to a user defined camera projection type, which is a feature present in
MegaPOV that allows a ray to be traced from any position in any direction
within the virtual scene.

The user defined camera projection type in MegaPOV enables the plenoptic func-
tion P to be evaluated using the Il-camera model C. Hence, this is a key feature
for which MegaPOV was selected. The large community supporting POV-Ray with
scenes, objects, enhanced functionality, etc. is other features that is an advantage for
MegaPOV.
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Figure 3.3: ll-camera properties combine with scene description to form a ll-camera model,
which is used to synthesize an II-picture and additional support images.

3.4.2 Integrating ll-camera model and MegaPQV

MegaPOV allow for rays to be shot into the scene from any position and in any
direction. The Il-camera model describes location points £¢ and direction vectors
D, which produce an Il-picture when used to evaluate the plenoptic function P
in Equation (3.5). Hence, the ray tracer could be used to evaluate P by adapting
the representation of the Il-camera model to fit MegaPOV. Changing representation
format was accomplished by a set of adaptation and extension macros, which was
developed in POV-Ray’s Scene Description Language (SDL). Despite incorporating C
into the framework of the ray-tracer, additional functions such as metadata handling,
Il-camera positioning and orientation were also developed.

Figure 3.3 shows the information flow that starts with the Il-camera properties
and scene description and ends with a synthesized Il-picture. The model with ac-
companying metadata is parameterized in the Il- camera construction and the II-
camera model is adapted to MegaPOV, which then performs the rendering of the
Il-picture. The resulting ll-picture can be viewed or saved for later use. Note the
additional information, or support images, that are able to be produced concur-
rently with the rendering of the Il-picture. One example is a perspective projection
overview of the virtual scene, which might be used to visually verify the accuracy
of the scene setup. Another example is a depth map that provides scene-depth on a
pixel per pixel basis. Having access to a so called ground truth regarding the scene’s
depth is vital when for example evaluating Il-based depth-extraction algorithms or
for post-processing of synthesized Il-pictures.

If the proposed llI-camera model is constrained to only be parameterized as a
pinhole 2D camera and the set of optical elements O are considered to be objects of
the virtual scene the proposed approach becomes similar to that presented in [73].
However, at this point there is no longer a clear separation between the camera-
and scene-model, which results in a synthesis solution that lacks the required self-
contained property of the IlI-camera model.
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Figure 3.4: Geometry of a ll-camera exemplifying how to parameterize the proposed Ill-camera
model

3.5 Example of ll-camera model parametrization

The ll-camera to be modeled has lenslets packed in a rectangular pattern directly at
a gap distance A from the pixel array. Note that the naive Il-camera to be modeled is
chosen to elucidate the Il1-camera parametrization process and not to be representa-
tive of what could be modeled using the IlI-camera model.

Initially, the two sets £/ and D! must be defined, as they provide the input to
the functions f() and g(). The location L!(m,n) of each of the M - N pixels may
be defined in many different ways. In this example we use a generating matrix G*
defined as

» 0 0 -4
xT APQ
GP=| 0 —of 0 5 | (3.13)
0 0 0 0
0 0 0 1
where A% and A? are the horizontal and vertical sizes of the pixel array respectively

»
and §f = Aﬁg and 0} = % are the horizontal and vertical pixel pitch. A location

point is then calculated according to

L!(m,n) =G - (3.14)

A few approximations are utilize in the process of defining the direction vector
ﬁf(m, n). These approximations are inferred from Figure 3.4 and enables the calcula-
tion of L(m,n) and D(m, n) without having to explicitly derive D’ (m,n) or defining
analytical expressions for the two functions f() and g().
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Note that light that enters a lenslet perpendicular to the lenslet’s surface transfers
straight through the lenslet without undergoing refraction. This implies for a spher-
ical lenslet that light rays parallel to this normal-ray will refract to a focal point lo-
cated on the normal-ray at a distance from the surface corresponding to the lenslet’s
focal length. Setting the gap A (see Figure 3.4) equal to the focal length of the lenslets
coincides the focal point with the point where the normal-ray intersects with the
pixel array plane. Hence, two simplifications can be made. Firstly, the direction

vector D(m, n) is calculated as
D(m,n) = L¥(k,1) — L' (m,n), (3.15)

where L% (k, 1) is the center point of the lenslet under which L (m, n) is located. Sec-
ondly, evaluating the plenoptic function P at L(m, n), LY (k,1) or L! (m,n) will pro-
duce the same results using the direction vector given by Equation (3.15), as Figure
3.4 also shows. For simplicity the lenslet center is therefore selected as the location
point, i.e L(m,n) = L%(k,1). This selection translates the location points from the
surface of the optical element to their interior. However, this is a feasible operation
since the translation does not affect the Il-picture produced by the Il-camera model.
Thus, what remains is to define LY (k, 1) as a function of the pixel (m,n). Again, a
generating matrix G is used according to

AL
Gl _ 8 855 (1) A,; 7 (3.16)
0 0 0 1

where 6% and 55 are the horizontal and vertical lenslet pitch respectively. Equation
3.16 now provides the means to find the center point of the (k, [)th lenslet using

k

LE(k, 1) =GE . (3.17)

— O =~

Now, what remains to determine is which lenset (k,[) corresponds to the current
pixel (m,n). Given that the pixel and lenslet arrays are located on parallel planes
differing only by a translation A along the z-axis, Equations (3.13) and (3.16) are
combined into

GP—t = (GH)~'.G". (3.18)

From Equation (3.18) the lenslet nearest to the pixel (m,n) is found using

o O

, (3.19)

Uﬁl]T:{(l) (1) 8 }-round GF—L.

—~ o3 3

where round() is the nearest integer function rounding the elements of the argument
vector into the nearest integers [86]. Substituting & and [ from Equation (3.19) into
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Figure 3.5: Example sets £ and D decomposed into x-, y- and z-coordinates.

Equation (3.17) finally gives the lenslet position L% (k, [) that is required to determine
the direction vector D(m, n) in Equation 3.15 by

D(m,n) =G" - [k,1,0,1]" =GP - (3.20)

— o3 3

The bounding boxes B! and B¢ defined by Equation (3.11) are now easily con-
structed.

The ll-camera model derived using Equations (3.17) and (3.19) is shown in Fig-
ure 3.5 where the resulting two sets £¢ and D¢ have been separated into their RGB-
components in order for the x-, y- and z-coordinates of location points L(k,!) and
direction vectors D(m,n) to be more clearly visible. Note the monotonically step-
wise increasing gray scale in the x- and y-component of £¢. This corresponds to
the uniform placement of location points and the fact that the Il-picture pixels corre-
sponding to an El all share the same location point equal to a specific lenslet center.
As a result of selecting the lenslet centers as location points, there are no variations
in the z-component. The pixels in V, all correspond to the gap distance I'. If £¢
had been located on the surface instead of in the centers of the lenslets, a variation
corresponding to the height profile of the lens array had appeared in V.
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With regards to the direction vectors of the 11-camera model, the x- and y-components
of D¢ makes the ray directions span from left to right and bottom to top within the
range of the lenslet’s viewing angle «. Similar to £, no variation occur in D, for
this Il-camera model. When defining D(m, n) as in Equation 3.15, no variations ex-
ist within either of the two terms z-components. That is, L (k,l) = I'V{k,I} and
L!(m,n) = 0¥{m,n} and thus, all z-components in D¢ correspond to the gap dis-
tance I'. Note that D¢ is sufficiently defined using only two components correspond-
ing to the latitudinal and longitudinal angles ¢ and 6 respectively. Hence, any of the
three components of D¢ may be set to a constant value as long as this normalization
is reflected in the other two components as well, keeping the direction of the vector
unchanged.

When £ and D¢ are to be stored, both integer-based formats and floating point
based formats can be used as discussed in Section 3.3.1. For this example (as for the
subsequent synthesis in Chapter 5) the Portable Network Graphics (PNG)-format
with 16 bpc (Cype = 65536 in Equation (3.12)) was used [87]. Using a floating point
based image format was not necessary for producing reference Il-pictures for the 11-
picture coding, as will be discussed in Chapter 5. However, the high-dynamic range
image format RGBE is preferably used for applications or Il-techniques requiring
large dynamics in specifying £¢ and DC. RGBE uses one byte per channel together
with a one byte shared exponent, i.e. 32 bit per pixel. MegaPOV supports RBGE and
thereby enables high dynamic IlI-camera models to be used for any application that
SO requires.

3.6 Results

3.6.1 Ill-camera models

Three different models are presented here, showing that Il-based camera systems
proposed in the literature may be described using the ll-camera model. The first is
based on the properties of an Il-based high resolution video system presented by
Okano et al. [37]. The characteristics of the second Il-camera model are set to be
similar to those for the plenoptic camera in [35]. The third model is presented show-
ing that the llI-camera model also has the ability to describe other camera systems,
including conventional 2D projection cameras.

A summary of the properties used to produce the Il-camera models is presented
in Table 3.1 and Figure 3.6 shows the accompanying Il-camera models. Note the
gradient from black to yellow (red+green) in the two top Il-camera models. This
indicates that the location points are distributed over the xy-plane. The reason for
that the end of the gradient is not white (red+green+white), is because of the lack
of variation in the models z-components. The apparent lack of information in D,
is a result of the normalization causing the angular information to be carried solely
in D, and D,,. The 2D pinhole approximation has the set of L set to a single point
(the pinhole) and thus do not contain any variation at all in either of the x-, y-, and
z-components.
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Figure 3.6: ll-camera models parameterized to describe a set of different cameras: (a) a II-
based high definition video camera [37], (b) a still plenoptic camera [35] and (c) a 2D pinhole
approximation. The two first columns from left to right show £ € and DC. Subfigure (a) and (b)
also show a zoomed in portion of the top left corner of £ and D¢ respectively.
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Table 3.1: ll-system parameters.

Parameter Il HD video Plenoptic camera Pinhole 2D
Pixel array resolution | 3840 x 2160 4096 x 4096 8192 x 4608
No. of lenslets 160 x 125 296 x 296 1x1
El resolution ~ 24 x 17 ~ 14 x 14 n/a
Lenslet positioning hexagonal rectangular n/a

(@) (b)

(©) (d)
Figure 3.7: Example scenes (a) Objects, (b) Dolphin, (c) Hairdo and (d) Mountains [88].

3.6.2 Virtual scenes

A set of virtual scenes is presented, using 2D projection, in Figure 3.7. An additional
set of scenes, used as reference input in the subsequent coding chapter, is shown
as perspective projections in Figure 5.9 on page 110. Note that the complexity of the
scenes described by the SDL can range from a simple geometrical primitive (Objects)
to fully textured meshes with a large number of vertices (Hairdo).

3.6.3 Synthesized ll-pictures

Finally, Figure 3.8 shows a few example Il-pictures that illustrate the possibility in
interchangeably altering the Il-camera and the scene to be depicted. The Il-pictures
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Figure 3.8: Il-pictures synthesized with different Il-cameras and virtual scene definitions.

in the first column are synthesized using an HPO ll-camera. The second column’s 1l-
pictures are from a GRIN-based Il-camera. From top to bottom, the two rows depict
the scenes Objects and Hairdo respectively. An observed Il-property is that a larger
object-camera distance leads to an object being projected into a larger set of Els. This
becomes clear when comparing the red cube with the blue cone in Figure 3.8 (b).
In Figure 3.8 (a) the HPO Il-technique’s ability to only provide horizontal parallax
can also be observed as the lack of vertical spreading caused by any of the objects.
It is still the case that the horizontal spreading increases with increasing distance
between the object and the Il-camera.

3.6.4 Comparison between synthesis approaches

The presented results show that the proposed Il-camera model is capable of produc-
ing ll-pictures from different Il-techniques. In the following table a comparison is
made between the proposed synthesis approach and previous work with respect to
the four properties defined in Section 3.2. Previous sections have shown that the pro-
posed generic IlI-camera model can be used as a flexible tool to describe ll-cameras,
adhering to various ll-techniques. ll-pictures from different Il-techniques can easily
be obtained by parameterizing the ll-camera model. Combined with the metadata,
it is self-contained as a result of being separated from the scene and can hence be
interchanged in a non-complex way. Arbitrary complex scenes can be designed for
stressing different ll-properties due to the use of an open SDL. The framework of a
pixel map based Il-camera model with metadata allows for additional pixel maps to
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Table 3.2: ll-picture synthesis comparison chart

Flexible | Self-contained | Non-complex | Scalable
Basic synthesis [47, 68] Low Low Low Low
Volumetric synthesis [69, 70] Low Medium Low Medium
Wireframe synthesis [71] Medium High Medium Medium
EPI synthesis [12] High High Low Medium
Raytrace camera+scene [73] High Low Low High
Proposed ll-camera model High High High High

be added in the future including new aspects of the Il-camera processes, e.g. mod-
eling point spread functions and color aberrations. The level of the other methods
fulfillment of these properties was set based on their characteristics as presented in
Section 2.3.1 on page 44.

3.7 Concluding remarks

A flexible, self-contained, low-complex and scalable approach for synthesizing Il-
pictures is a valuable complement to experimental research with the Il-field.

In this chapter | presented a novel general lI-camera model that can be parameter-
ized to represent various different ll-technologies. Conventional 2D cameras, camera
array systems and other constructs with planar pixel arrays may also be modeled.
The important contribution of this model is that it encompasses a multitude of cam-
erasystem (2D cameraarrays and Il-based 3D cameras) in the well defined and easily
manageable form of a pair of 2D pixel maps. By combining the II-camera model with
MegaPOV and its SDL and ray-tracing functionality, gives us a flexible and scalable
synthesizing method capable of producing Il-pictures of arbitrary size, complexity,
and other properties.

Virtual scenes have been defined using the open SDL of MegaPOV, which allows
for the design of arbitrary complex reference Il-pictures. Combining the Il-camera
model with the open SDL allows for the defining of reference Il-pictures, which is an
essential part of inter alia research in coding schemes for Il-pictures.

Thus, synthesizing Il-pictures allows for the generation of Il-pictures in a simple
and cost effective way compared to experimental research. Comparing the described
synthesis method with the most closely related work, presented by Athineos et al.
[73], reveals an important conceptual difference. When they model the Il-camera as
a part of the virtual scene, two major disadvantages are introduced:

1. The time for synthesizing is made unnecessary long.

2. There is no flexibility in changing Il-camera model or 3D scene.

The light rays going through the interior of the Il-camera must be re-traced for ev-
ery ll-picture, even when their paths never change as is the case for a time-static
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Il-camera. In the synthesizing method | have described, the light transport with
regards to the ll-camera is only calculated once, when the Il-camera model is ini-
tially constructed. Athineos et al. [73] introduce a dependency that may prove very
difficult to break when combining the Il-camera model and the scene model into a
global world model. Separating the two models is a prerequisite for providing the
flexibility and scalability of a synthesis method that the research presented in this
dissertation set out to achieve.

The presented approach with a independently modeled Il-camera and a virtual
scene, offer the most flexible solution to Il-picture synthesis from the compared ap-
proaches. Thus, the described synthesis method is extensively used in Chapter 5 to
synthesize reference Il-pictures used for evaluating coding schemes.

3.7.1 Authors contributions
With regards to this chapter my main contributions are:

e A practically useable IlI-camera model with accompanying meta data, designed
to be capable of describing cameras adhering to various different ll-techniques.

e A mathematical description of the IlI-camera model, using the framework of
the plenoptic function as a basis.

e A modular synthesis method that utilizes the defined Il1-camera model in com-
bination with ray-tracing and a Scene Description Language capable of synthe-
sizing ll-pictures of arbitrary type and complexity.

e An example set of II-camera models, virtual scenes and Il-pictures.

| have presented large parts of this work in Papers | and II.

3.7.2 Problem definitions — Pla and P1b

How can the scene, the 1l-system, and the Il-based 3D image be decoupled to aid the com-
parison of 3D images produced by different Il-techniques? The chapter has presented a
modular synthesis approach where the virtual scene is explicitly decoupled from a
proposed ll-camera model. This division allows for the production of different II-
pictures depicting a given scene, yet adhering to numerous different Il-techniques.
In addition, scenes may easily be designed to explicitly stress specific Il-properties.

Can such a decoupling be used to provide a supply of I1-based 3D images, which for exam-
ple would facilitate research on coding methods? Given the modularity of the presented
synthesis method, it may be easily used to produce Il-pictures as the input in de-
veloping coding schemes for Il-pictures. Chapter 5 uses the work presented in this
chapter extensively, both for producing ll-pictures of a specific ll-technique as well as
for providing a basis for comparative studies of similar Il-techniques. Complemen-
tary information about the Il-picture can be produced, e.g. ground-truth pixel-wise
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depth information that may be used to validate the results from subsequent image
processing algorithms.



Chapter 4

Evaluation

Having the means to evaluate a coded Il-pictureis as important as having Il-pictures
to code. Without proper evaluation metrics, the performance of any constructed
coding scheme is undefined.

4.1 Chapter outline

This chapter discusses the means to objectively evaluate distorted Il-pictures caused
by for example lossy coding. Firstly an overview of presently used metrics is given
in Section 2.3.2. This is then followed by Section 4.3, which presents two novel ob-
jective quality metrics constructed to reveal distortion effects not possible with the
metrics proposed in the literature. A qualitative discussion of the metrics character-
istics is given in 4.4. Finally, concluding remarks are given in Section 4.5, which also
summarizes the authors contributions.

4.2 Methodology

Evaluating the quality of a 3D image, which has been subjected to any type of lossy
coding, may be performed principally in two different ways:

1. Using a strictly defined algorithm to calculate the extent of the difference be-
tween the original and coded image.

2. Allowing a group of people, specifically chosen to be typical users of the in-
tended application, to asses the quality of the coded image.

The first approach is also known as objective testing and generates strictly repro-

ducible results, which is essential in experimental and comparative research. The
purpose of the objective test metric may be to extract the distortion with regards to
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specific properties of the image and thereby provide a deeper insight into the distor-
tion inducing process. The purpose might also be to predict user tests with regards
to subjective quality. However, finding an algorithm that captures all the essential
properties of the complex processes taking place in the HVS is a yet unresolved re-
search problem [89]. If a sufficiently good model can ever be found is open to debate.

Regardless of which aim the objective tests have, the second approach of con-
ducting subjective tests is an important complementary quality evaluation method.
More so if the goal of the objective test metric is to predict a viewer’s conception of
quality. By definition, the subjective method will produce quality results adhering
strongly to what an average viewer perceives in terms of 3D image quality; as long
as there are sufficiently high numbers of viewers, the 3D images to be viewed are
appropriately designed, the environment where the tests are conducted are explic-
itly controlled, etc.. Thus, conducting a trustworthy subjective test requires that a
multitude of aspects with respect to designing the test is properly considered. If any
of these factors are not met, the subjective test results are invalid.

The two novel quality metrics that will be presented in this chapter will adhere
to the described objective approach. Contrary to the metrics in the related work they
will strive to explicitly measure the distortion with respect to the Il-picture proper-
ties. As a result, they are also likely to better correspond to subjective test results as
they indicate differences in quality with regards to explicit I1-picture properties such
as depth; properties that a viewer may prove to consider important as they convey
the special character of the 3D image and thereby strongly contributing to the sub-
jective quality. However, no formal and extensive subjective test will be conducted
to verify the correctness of this hypothesis.

The two quality metrics will instead be evaluated using a qualitative discussion
about their properties compared to present metrics. In addition, a quantitative em-
pirical analysis will be performed in the next chapter on coding, where the metrics
are utilized in evaluating coded Il-pictures. The main reasons for excluding the cer-
tainly valid subjective evaluation method are time and resources. If proper subjec-
tive tests are to be conducted, an experiment must be designed such that sufficient
information can be inferred and well-founded conclusions can be made about the
evaluated quality. A vital part of this design is to have access to a physical I1-display
with the necessary properties such that it corresponds to the ll-technology evalu-
ated. No such ll-display was available at the time when the work presented in this
dissertation was conducted. Emulating the lI-display using stereoscopic display was
considered but the idea was postponed. The quality of the evaluation would be af-
fected by the limited properties of the stereoscopic technique, e.g. the cross-talk
introduced by imperfect time synchronization of shutter glasses. Furthermore, the
extent of this contamination with regards to measured quality would be unknown.
However, small scale qualitative studies were performed by visually inspecting syn-
thesized stereoscopic views of coded ll-pictures using cross-eyed viewing. These
studies were mainly conducted as a form of validity check in the design of coding
schemes for Il-pictures.
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Figure 4.1: ll-display with pixel and lens array. Rays entering a viewpoint E, after intersecting
all lens centers, construct a VI.

4.3 Metrics for ll-picture evaluation

Note that neither Qgiopar NOr Qqngie are applied to images that are directly viewed
when watching a ll-display. The main property of a Il-display is to present only a
subset of the Il-picture for the viewer using the demultiplexing lens array. Hence, a
viewer merely sees a subset of all ll-picture pixels at any given viewing position.
Moreover, a physical viewer is never positioned at an infinite distance to the II-
display.

The concept of View Image (VI) is defined based on these observations. Within
the viewing space are an indefinite number of VIs; each derived based on the viewer’s
position relative to the display. Figure 4.1 shows how a viewpoint E determines a VI
and how it is constructed from a subset of Il-picture pixels. Note that two different
VIs perceived by a viewer at a specific location are constructed from different subsets
of the Il-picture pixels. The disparity between the two causes the perceived depth of
the 3D image.

The set of VIs are explicitly defined in this work as

VI = [VIg(k, 1)k
l

:H<k‘U+§+AU(/€J)J~V+%+AUU<,Z)>7 (41)

where E = [E,, E,, Ez]T is the 3D coordinate of any given viewpoint [90]. This defi-
nition implies that the pixel panel of the Il-display is positioned to coincide with the
xy-plane (see Figure 4.2) and a single El-pixel is seen through each EI concurrently,
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as shown in Figure 4.1. We calculate the pixel-offsets relative to each El-center using

Auk,1) = A - (fzwgllzg - ?)
(. ) 4.2)
Av(k,l) = A - (i]él]zg - ?:)

where A is the gap distance between the pixel and lens array and
LY (k, 1) = [Lo(k, 1), Ly (k, 1), Lo (k, D)

is the position of the (k,)-th lens center. Linear interpolation is adopted to handle
non-integer pixel offsets from Equation (4.2). Two examples of how different lenslets
produce different Av are shown in Figure 4.1.

4.3.1 Sparse angle dependent gquality

The first proposed quality metric is directly based on the definition of VIs and aims
to evaluate the coding induced distortion as seen by a viewer located within the
II-display’s viewing space.

4.3.1.1 Constructing a representative VI set

The indefinite number of VIs makes it necessary to limit the set in order for the qual-
ity metric to be computationally tractable. A sparse set of five VIs is used when
forming a quality metric that provides a sampled yet informative view of the per-
ceived quality. The view points selected in order to produce the VI sets are: E f,.or¢,
E.p, Edown, Eicre, Erigne. All views are equidistant to, and aimed at, the Il-display
at a distance r giving rise to similarly sized VIs. Ey,,,; corresponds to a view point
located on the normal to the center of the ll-display whereas E;. s, E,g; are view-
points rotated a longitudinal angle +¢ with respect to the normal. Analogously,
up and down are defined with a latitudinal rotation angle of +6. The distance (r)
and angles (¢ and 6) are parameters of the metric and should be set such that the
resulting view points are evenly distributed within the viewing space and the II-
techniques designed viewing distance. Hence, the three parameters will differ for
different ll-techniques. See Figure 4.2 for a geometrical overview regarding how the
five Vs are positioned relative to each other. Figure 4.3 shows the corresponding
VIs for the example. Note the horizontal and vertical motion parallax inherent in the
five VIs, where the two women'’s position relative to each other changes from left to
right; their position relative to the horizon also changes from top to bottom.

4.3.1.2 Assessing the quality of a VI

The selected VIs correspond much more to what is physically seen when watching an
II-display than an ll-picture or any SI. This warrant the use of a distortion assessment
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Figure 4.2: Schematic representation of the five VIs used to evaluate the coding artifacts.
Right view point E ;41 is explicitly marked.

scheme that offers high correlation with subjective user-tests. Due to the prevalence
of PSNR in coding research, it has a distinct place as a reference metric. However,
there are other metrics that provides a stronger correlation with subjective tests than
PSNR[91-93]. The gray scale Mean Structural SIMilarity index (MSSIM) proposed by
Wang et al. [94] has shown good correspondence with subjective tests on 2D images
coding quality [95]. As a result, it is selected to be applied to the set of VIs defined
in the previous section.

In the following a brief description of MSSIM is presented. Figure 4.4 illustrates
the main steps in calculating MSSIM. Signal = correspond to the original image and
Z the distorted counterpart. Three properties of the two images are compared for
similarity:

e Luminance

e Contrast

e Structure

A set of operations is performed on each image hierarchically such that the proper-
ties are extracted and made available for the three comparisons. The luminance of
an image is estimated using the mean intensity of the image. Contrast is estimated
by calculating the standard deviation of the image after its luminance from the pre-
vious step has been removed. Both the luminance- and the contrast estimation are
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(@)

(b) © (d)

©

Figure 4.3: Reference Il-picture Twins decoded from view point (a) E v, (0) Ejef:, (C) Etront,
(d) Erigne and () Eqouwn. The coarseness of the VIs (64 x 64 pixels) are due to the used
lI-picture structure (K x L = 64 x 64).
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Figure 4.4: The operations used to evaluating MSSIM on a distorted 2D images % and its
original x [94]

performed using a sliding-window operation to capture their local variations. Re-
moving the contrast from the luminance-normalized image gives a residual image
in which the structure is now uncovered. Hence, the two images = and & each give
rise to three images that isolates the luminance, contrast and structure part of the
image respectively. The three image pairs are mutually compared using three com-
parison functions and the results are weighted and combined into a pixel map with
an SSIM index value for each pixel. A single quality-value MSSIM is achieved by
computing the average value of all the SSIM index values. The fact that MSSIM is
based on a sliding-window principle allows it to capture inter-pixel effects that the
pixel-to-pixel difference approach of PSNR is unable to do. In this work the default
parameters of MSSIM were adopted using the MATLAB-function provided by Wang
et al. [94], on the web page accompanying the paper. The interested reader is referred
to the paper for more explicit details regarding MSSIM.

4.3.1.3 Combining operations

The original and distorted Il-pictures give rise to five Vls each, according to Section
4.3.1.1. Evaluating the MSSIM on this set gives rise to a quality vector that | define
as

Qview = [Qview (E)}E:{EtopyEf'r‘ont7Ebotto7n7Eleft7Eright}

- [MSSIM(VIE, \71})} (43)

)
E:{Eto}’)v"'7ET‘ight}

where Vig, and ‘//\IEn are the VIs constructed from the original and distorted II-
picture respectively. In this form Equation (4.3) resembles Qqnqi in Equation (2.18)
but with a more physically founded location of the metrics implied virtual viewer.
In addition the VI is a perspective projections, which the Sl used in Equation (2.18)
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is not. If a scalar quality-value is required, for example in rate-distortion analy-
sis, the arithmetic mean Q,,.,, may be employed. Using Q,,..,, contrary to Qgiopai,
would produce a result that considers the spatial demultiplexing performed by the
lI-display. However it should be noted that the quality assessment provided by
Equation (4.3) passes a verdict on a subset of all pixels from the Il-picture, contrary
t0 Qgiobar aNd Qqngie that include all pixels in the I1-picture in their calculations. Sec-
tion 4.4 will qualitatively evaluate this sparse angle-dependent MSSIM-based quality
metric, which will be used at a later stage to evaluate the coding-induced distortion
in Chapter 5.

4.3.2 Sparse pseudo-depth dependent quality

The previously described metric addresses the motion parallax of the Il-picture with
its angle-dependent characteristic, while this second proposed metric focuses on the
inherent depth of the Il-picture. Neither a global nor a viewing-angle-dependent
metric can explicitly reveal how distortion is distributed within the 3D image. This
lack of explainability of the two previously presented approaches is exemplified
by applying Qgiobar and Qangie to an Il-picture coded using two different coding
schemes. Figure 4.5 shows three VIs produced from the two coded Il-pictures, cor-
responding to what is perceived by a user viewing these coded 3D images on an
Il-display. The images have been positioned for cross-eyed free viewing, i.e., the VI
seen by the right eye is positioned to the left and vice versa as described in Section
2.1.2.2 on page 13. Note that although the coded lI-pictures have the same Q gopal
(28 dB), they show very different depth-distributions of coding-induced distortion.
Furthermore, Figure 4.5 (a) shows less distortion for nearby objects whereas Figure
4.5 (b) presents a more uniform distribution with respect to the depth of the 3D im-
age. It is also not possible for these properties to be explicitly revealed by an angle-
dependent metric; although depth is a property that may be inferred from motion
parallax. This can be shown by applying Qun4i. to the same lI-pictures and pre-
senting the resulting graphs as in Figure 4.6. Only the horizontal component of the
angle-dependent quality metric is shown to simplify the figures. That is, only the
middlemost row of the 2D quality metric is presented (Qgngie (u, %)) Note that the
variations in Q4 OVer the viewing range are significant as compared to the Q giobal,
which is represented by the dotted lines. Hence, there is a potential of greater un-
derstanding when using a viewing-angle-dependent quality metric. In addition, by
comparing the sub-figures a lack of tendency over the evaluated viewing angles is
revealed, which again is due to the different properties of the two coding schemes.
It still remains impossible to discern the apparent difference in depth-distribution of
coding artifacts in the images in Figure 4.6

Thus, the above quality metrics evaluate the quality of an ll-picture from a global,
angle and viewpoint aspect. The important 3D property depth is, however, not ad-
dressed. Hence, coding schemes that distribute equal amounts of distortion, only
differing in depth distribution, may not be easily distinguished by using Qgiobai,
Qangle OF Quicw. Therefore, the second quality metric that is proposed aims to ex-
plicitly reveal the distortion’s distribution with respect to the depth of the Il-picture.
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(a) 0.08 bpp

(b) 0.14 bpp

(c) 0.35 bpp

Figure 4.5: Il-picture Apples coded to Q 4i0a: (28 dB) using (a) El-based PVS, (b) a Sl-based
PVS, and (c) a JPEG2000. The bitrate r required for each coding scheme is presented be-
neath each subfigure.
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Figure 4.6: Q.ngqi. evaluated on ll-picture Apples coded using (a) El-based PVS, (b) El-based

PVS, and (c) JPEG2000 coded IlI-picture.
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Figure 4.7: The operations constituting the sparse pseudo-depth dependent quality metric.

The metric is composed of three sequential steps:
e aVI-pairis synthesized originating from the original and the distorted Il-picture
respectively;

e pixels within the VIs, which belongs to objects at a specific depth are identified
and

e a 2D quality metric is applied to all pixel subsets sharing the same depth layer.
These steps result in a quality metric taking the form of a 1D vector, with elements
representing the distortion at each evaluated depth layer. Figure 4.7 illustrates the
operations constituting the metric. The operations are:

1. Synthesis using image based rendering



82 Evaluation

2. Depth layer identification using depth estimation

3. Quality assessment using a 2D quality metric

The modularity of the metric allows it to be parameterized in many ways. The fol-
lowing description of the metric is based on a single parametrization but alternative
methods for performing each operation will be discussed when appropriate.

4.3.2.1 Synthesis

The location of the virtual camera V, from where the views are rendered, could be
placed arbitrarily. However, two favorable properties are achieved by constraining
the position to

V= {0,0, 5—5] : (4.4)
where f and §” are the focal length and pitch of each lens in the ll-camera lens
array respectively. Firstly, any angle-dependency is eliminated from the metric; it
is primarily a depth-dependent metric. Secondly, the specific distance to the image
plane of the IlI-camera (g—[) ensures that the virtual camera’s field-of-view 3 equals
the Il-camera’s viewing angle a. This results in an efficient use of the 3D images
data as all Els contribute to the synthesized views. Figure 4.8 gives a geometrical
overview of the model used to synthesize each VI.

When synthesizing the image pair, it is vital not to destroy any coding artifacts
present as they will be used as inputs for the 2D quality metric. All interpolation
must thus be avoided as it would have a low-pass filtering affect on the distortion,
i.e. it would smear away any coding artifacts and consequently influence the mea-
surements. Therefore, only one El-pixel contributes to the color when calculating
the pixel color values for the image pairs I and I, originating from the original and
compressed ll-picture respectively. Furthermore, nearest neighbor interpolation is
used when evaluating Equation (4.1) for the same reason. This implies that in Figure
4.8, the color of a image pixel marked red is only taken to be the color of the pixel in
the El beneath lenslet L (1,0).

4.3.2.2 Depth layer identification

Only a subset of the VI-pixels will represent projections of objects located at a spe-
cific depth layer. Hence, identification must be made as to which pixels correspond
to which depth layers prior to applying the 2D quality metric. Different methods
exist to estimate depth within a 3D image. We derive a depth map from the uncoded
original Il-picture using the depth-from-focus technique focus measure [96] due to
it being a favorable combination of low complexity and high quality. The follow-
ing discussion assumes that the virtual camera used to construct the depth map is
located at position V.
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Figure 4.8: Geometry of the virtual camera placement relative to the Il-camera’s lenslets. Only
the xz-plane with the first row of lenslets (L “ (k, 0)) is shown.
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A set of Els is used when synthesizing an image pixel, instead of only one as was
the case for synthesizing the VI-pair. A large set of Els corresponds to a large aper-
ture of the virtual camera which thereby gives a shallow depth of field. The focus
measure utilizes different patterns of Els in order to synthesize an image at a spe-
cific focus plane or depth layer. Image pixels that correspond to a diffuse reflecting
object located at the depth layer (e.g. the red pixel in Figure 4.8) will have similar
pixel color values from contributing Els. Other image pixels (e.g. the blue pixel in
Figure 4.8) will be an average of objects outside the depth layer and the colors will
therefore vary. By combining a base image B? with a reference image R? — each
with pixels synthesized using different relative sets of Els — allows for the calculat-
ing of a measure of how likely it is for an image pixel to belong to depth layer d. A
pixel-resolution depth map is constructed by:

_ : d_pd
D—argmdm(|B R |>«<h), (4.5)

where h is a filter kernel that is used in a convolution step (operator x) to enhance
the result. The interested reader is referred to [96] for more details.

Contrary to the rendering stage, this layer selection process benefits from includ-
ing a larger set of Els when rendering the base and reference images. Averaging over
a larger set increases the reliability of the focus measure as the depth of field is re-
duced, which consequently enhances the accuracy of the depth map. The number
of Els contributing to each image pixel is in this work increased from 2 to 25 com-
pared to the original focus measure definition. Increasing the set of Els has the cost
of increasing the synthesis time and hence also the time to calculate the proposed
quality metric, which is the reason for not including all Els in the calculation. Figure
4.9 shows the El-patterns used to select which neighboring Els that contribute to the
pixel color values of the base and reference image. Based on the depth map D, a
mask-image T¢ is derived according to

a1 if Dv(m,n) =d
Ty = { 0 otherwise ’ (4.6)

which is used to extract pixels and produce the set of masked depth layer images
X =1y - TY 4.7

and L
X =1y -T¢, (4.8)

which correspond to the original and coded Il-picture respectively. The multiplica-
tion in Equation (4.7) and Equation (4.8) is performed pixel-by-pixel.

4.3.2.3 Quality assessment

The set of masked depth layer images X and X are (contrary to the VIs) in a form
that will not be viewed per se; the viewer will see the combined set of all depth layer
images when watching the lI-display. Therefore, applying a 2D quality metric con-
sistent with a subjective test of 2D image quality is unnecessary. PSNR is instead
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Figure 4.9: Relative lenslet positions that are used to derive a specific image pixel for the
base- and reference virtual image respectively.

used and Equation (2.15) is applied to the two masked depth layer images defined
in Equation (4.7) and Equation (4.8). The average operation performed when cal-
culating Equation (2.16) presumes that all pixels in the two images contain valid
color values. However, this is not true for the masked depth layer images. Only
K9. L4 =Y TY(k,I) of the pixels belong to depth layer d. Normalizing using K - L
vkl

gives equal weight to each layer, regardless of how many pixels that correspond to
the depth layer. That is, a layer with a small number of severely distorted pixels may
give rise to a PSNR-value equal to a layer with a large number of pixels showing
minor coding artifacts. Normalizing using K - L, instead gives equal importance to
each depth layer, regardless of size. The latter normalization results in an increased
ability to discern the distortion and is therefore used.

4.3.2.4 Combined operations

The proposed quality metric Qqep¢r is the combination of the described operations,
which I here define as

Quepth = [Qaeptn(d)]yy

- {PSNR (I~Td,i-Td)} (4.9)

vd

The selection with regards to which depth layer is to be evaluated is outside the
scope of the metric design. A linear or a logarithmic distribution of d can be adopted
if no a priori knowledge is available about the 3D image’s depth content. An ap-

proximate depth distribution gained from a pre-processing depth estimation step is
another option.



86 Evaluation

With the full metric defined it time to provide an explanation with regards to the
prefix pseudo that is a part of the proposed metric’s name. The metric produces a
vector explicitly defining the ll-picture’s quality as a function of its depth seen from
a specifically defined viewpoint according to Equation (4.4). However, viewpoints
differing only in lateral position (the xy-coordinates of Equation (4.4)) might give
rise to different amounts of distortion at the same depth layer. This can not be solely
explained by the fact that the respective depth layers are also translated relative to
each other. Instead, it is a consequence of basing the metric on a subset of Il-picture
pixels. For example, from one viewpoint an object might be more distorted than
from another even though its distance from the two originating viewpoints is the
same. This might occur when distortion is induced by a coding scheme that does
not explicitly operate based on the depth of a ll-picture. Therefore, the prefix pseudo
is used to indicate that the distortion measured does not correspond to an absolute
depth within the 3D image, albeit it being correct with respect to the depth perceived
from the viewpoint defined in Equation (4.4).

4.4 Results

The qualitative evaluation of the proposed metrics aims to describe their advantages
in a more explicit manner. The two quality metrics will be evaluated empirically
in the next chapter where they will be used to indicate coding-induced distortion
properties, which is not possible to discern using present metrics.

4.4.1 Sparse angle-dependent MSSIM

Using Q, .., significantly differs from using Qglobar €VEN though both calculations

results in a single scalar value. This is because Q,,;.,, iS based on

e the use of VIs, which models the spatial demultiplexing performed by the II-
displays lens array and

e the use of MSSIM that warrants a stronger agreement with subjective testing
results.

Qgi0ba ON the other hand is only based on the difference between pixels in the Il-
picture and does not in any way consider the process of viewing an ll-display.

Furthermore, Q.;.., With its angle-dependency might also at a quick glance seem
similar to a Qg g evaluated at a subset of the U x V. However, the difference is
significant and is mainly based on three properties of Qe :

e it presumes a physically founded location of the viewer,

e the evaluated VIs are perspective projections close to what is perceived on a
ll-display, and
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¢ the evaluation method (MSSIM) have a higher correlation with subjective tests
than PSNR.

Neither of these properties can be attributed to Q,,4... Note though that the quality
assessment provided by Equation 4.3 passes verdict on a subset of all pixels from the
I-picture. Q giobar aNd Qangie iNclude all 1l-picture pixels in their calculations.

A quantitative analysis of Q,,.,, is implicitly performed in Section 5.8.5 of the
subsequent chapter on coding Il-pictures, where it is utilized to estimate how coding-
induced distortion is perceived.

4.4.2 Sparse pseudo-depth-dependent PSNR

With its different approach, Qe is not directly comparable to Q giobal, Qangie OF
Q.icw- Being able to discern how distortion is distributed with respect to depth is
a property that is not present in any of these metrics. Hence, directly comparing
them with Qqc,¢, is NOt appropriate. An evaluation of the constituting operations is
instead performed, studying how different parameterizations affect the end result.

The modular construction of the metric allows for different parameterizations
than those presented. For example, the metric may easily be extended to more
densely sample the quality within the viewing space by adding more viewpoints.
However, it may not be feasible to extend the metric such that it would be compara-
ble to Qgiobar aNd Qangie, Which exhaustively incorporates all pixels in the Il-picture.
The computational requirements would then prohibit the use of the metric in other
than extreme measurement scenarios. Even more so if the resulting 1D quality met-
ric was condensed into a few scalars for each measurement instance, e.g., mean,
minimum, maximum, standard deviation etc..

The serial structure of the metric, with output from one operator being the input
of another, renders the quality of the end result no better than its constituent parts.
A simple sensitivity analysis shows that in order for the metric to provide reliable
results about the depth distribution of distortion, the depth estimation operation
must perform with equal reliability. Estimating depth from a set of two images or
more is an active research field that as yet has no final and absolute solution. Highly
complex off-line solutions compete with resource efficient real-time algorithms. The
depth-from-focus techniques (which the focus measure adheres to) constitute one
approach, but a number of others exist for estimating depth from two or more im-
ages [97]. However, not much has been discussed about depth estimation within
the II-community, which is partly explained by the course depth maps that are pro-
duced if the Il-picture is merely considered to be a large set of low resolution images.
The works on depth estimation that have been presented in the literature have for
this particular reason all been based on other Cls rather than EI [63, 98, 64]. The
interested reader is referred to the Middlebury Stereo Vision Page, which holds an
updated top-list containing the present state-of-the-art algorithms for stereo-based
depth estimation [99]. Future work within ll-based depth estimation might very
well contain elements from these algorithms but adopted for Sls for example. Any
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such technique can be directly incorporated into the proposed sparse pseudo-depth
dependent quality metric.

The empirical results from applying Qgept» to coded Il-pictures are presented in
the coding chapter’s Section 5.8.5.3.

4.5 Concluding remarks

An obvious property of quality metrics designed for 2D images is that they fail to
capture all aspects of a 3D images format such as Il. This means that there is the
necessity for objective quality metrics to be explicitly designed to quantify distortion
present in Il-pictures; in addition, quantifying it in ways with specific relevance to
important ll-picture properties. This chapter presented two quality metrics, which |
constructed explicitly for Il-pictures and their specific properties.

The first metric models how distortion is perceived by a viewer watching an IlI-
display. For this a set of View Image is synthesized, which simulates how the optics
of the Il-display demultiplexes the 3D images stored in the ll-picture. A quality met-
ric with low dimensionality is achieved while still sampling the quality within the
viewing space, by sparsely selecting from which viewpoint the VIs are synthesized.
The state-of-the-art quality metric for 2D images MSSIM is applied to the VIs in or-
der for the proposed metric to have potentially high correlation with subjective test
results.

The second metric aims to discern the depth distribution of coding induced dis-
tortion, acting as a supplementary tool when evaluating distortion in addition global
and angle-dependent metrics. New aspects of coding artifacts in 3D images may be
revealed using the metric, both in the original form of the metric as well as after post-
processing of the result producing moments such as mean and standard deviation
or extrema such as min and max. Furthermore, a rate-distortion image may easily
be produced by displaying Qge,:» as a function of both depth and rate. Each pixel
in the rate-distortion image then corresponds to the quality at a given combination
of depth and rate. Such a 2D function gives a broader understanding of the effect of
coding and how it affects the perceived depth within a Il-picture.

Despite the favorable properties of objective quality metrics, there is as yet no
algorithmic method that can capture all aspects of the processes taking place in the
HVS. As a consequence, an exact knowledge about how the quality will be perceived
is unknown using only objective metrics. The only way to achieve this knowledge
is through subjective tests, which allows a set of observers to view and grade the
test material produced by the system under study. However, the logistic require-
ment required to set up such tests becomes complicated as a consequence of the
human participation. In addition external parameters such as ambient room light-
ing, viewing distance, display luminance etc. must be carefully defined and exactly
conformed to. Unfortunately, there is no such thing as an ideal test setup. Thus, the
final results from subjective tests are to some degree affected and tainted by the test
setup itself, making comparability of the achieved test results less simple than when
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using objective quality metrics. For this reason, and due to the lack of a proper Il-
based 3D display being available at the time of performing these tests, no subjective
tests where performed as a part of this work. Instead the focus of my research was
placed on extending the range of objective evaluation metrics to also include tools
specifically designed for measuring distortion with regards to Il-picture properties.

45.1 Authors contributions

My main contributions with regards to the topic of this chapter are the construction
of:

¢ An angle-dependent quality metric that aims to model how a Il-picture is per-
ceived by a viewer watching a ll-display.

e A depth-dependent quality metric, which gives a view with regards to how
distortion is distributed within a Il-pictures with respect to its depth.

Empirical studies of coding-induced distortion using the proposed metrics are con-
ducted in Chapter 5 but can also be considered as contributions to this chapter. The
novel quality metrics that this chapter has described, revealed distortion character-
istics in Chapter 5, which would have been impossible to show otherwise.

This chapter’s content has been published in parts in Papers IV — VI and VIII.

45.2 Problem definition — P2b

What consequences will a proposed coding method have on objective quality? During the
work on coding it has become evident that the traditional global objective metric are
useful for comparing overall performance but fails to provide a detailed insight into
the characteristics of Il-picture distortion. The Il-picture contains additional proper-
ties such as view-angle dependence and depth, which is not present in 2D images.
Transferring objective quality metrics from the field of 2D imaging into the realm
of Il-pictures does not imply that Il-picture properties are explicitly evaluated. As
a result this chapter has presented two metrics that model how distortion manifests
itself in properties specific to Il-pictures. Hence, developing coding methods for
ll-pictures affects objective quality to such an extent that new metrics to measure
objective quality are required.
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Chapter 5

Coding

The high pixel resolution requirement for ll-based 3D images compared to 2D im-
ages results in an increased raw data rate requirement. To reduce this data rate re-
gquirement gap relative to 2D images, some type of compressive coding must be used.
Otherwise the 3D image’s demand for storage space or transmission rate will limit
the rate at which this more lifelike presentation format is adopted. Lossless coding
— where the original image can be reconstructed without distortion - is often a re-
quirement if the decoded image is to be further processed or analyzed. Medical and
forensic applications are typical examples where any distortion introduced by the
coding scheme would be highly undesirable since it would affect the analysis and
the conclusions drawn. However, in applications where the sole purpose of the de-
coded image is for it to be looked at, the properties of the HVS could be favorably
utilized. A specifically important HVS property in this context is the tolerance for
different types of distortion in the color, spatial and spatial frequency domains. A
lossy coding scheme can achieve significantly higher coding efficiency than a loss-
less approach as it allows for a certain amount of distortion to be introduced during
coding. Various signal processing approaches such as prediction and transformation
are used to uncover the parts of the image that the HVS is less sensitive to. Variably
gquantizing these parts of the image allows for a gradual trade-off between rate and
distortion. As a result of the standardization of 2D images coding, in which the two
standards Joint Photographic Experts Group (JPEG) and JPEG2000 Part 1 (JPEG2000)
are the most prominent examples, many applications have adopted digital imagery
in different forms. Both consumer digital cameras and images on the World-Wide-
Web are a direct consequence of lossy 2D images coding. For 3D images the argu-
ments for coding are even stronger. The work presented in this dissertation focuses
on 3D images that are viewed directly on a ll-display, i.e. no subsequent analysis
will be performed after the Il-picture has been decoded. This allows for the more
coding efficient lossy approach to be used and therefore, when the term coding is
used in subsequent discussions, lossy coding is implied.
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5.1 Chapter outline

This ll-picture coding chapter is structured as follows. In the next section, the method-
ology used to assess the conducted work is presented. Section 5.3 gives a brief pre-
sentation about why applying 2D coding schemes on ll-pictures is an inefficient cod-
ing approach. The subsequent Section 5.4 and Section 5.5 then presents a coding
scheme for time static Il-pictures, which utilizes the efficiency of standards for 2D
video and volumetric image compression. How the coding standards are parame-
terized to fit the presented coding scheme is discussed in Section 5.6. The setup used
in when performing evaluation experiments is presented in Section 5.7 and the result
from the experimental studies are summarized in Section 5.8. The coding chapter is
finally concluded in Section 5.9, where also the author’s contributions are explicitly
summarized.

5.2 Methodology

This chapter will present a coding scheme that utilized 2D video coding tools to
compress 3D images in the form of ll-pictures. Different forms of the scheme wiill
be produced as a consequence of parameterizing the basic scheme. The scheme will
be studied theoretically with respect to this parametrization. To be able to test the
coding efficiency a set of reference scenes, with adherent ll-pictures, will be defined.
Using these Il-pictures, the coding efficiency of the scheme will be objectively tested
by evaluating:

e Coding efficiency
e Coding quality

e Coding cost in terms of CPU-time

The proposed Il-picture coding scheme will be compared against other coding schemes
presented in the literature. Finally, a qualitative evaluation will be performed based
on simulated visualization that investigates the nature and extent of the coding arti-
facts produced by the different coding schemes. Details concerning coding artifacts
are presented in Section 5.8.5 where the sparse angle-dependent quality metric Qe
from Section 4.3 is used. In addition, the depth distribution of the coding-induced
distortion will be studied using Qge,+, from Section 4.3 and the results are presented
in Section 5.8.5.3

5.3 ll-picture characteristics

The first step in constructing a coding scheme is to characterize the signal to be
coded. At first glance the Il-based 3D images bears a close resemblance to the im-
ages which are captured by an ordinary 2D camera. This is particularly the case
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when a subset of the Il-picture is enlarged such that the individual Els are revealed.
However, after a more careful examination there are, in the main, two properties of
the Il-picture that prohibits basing the coding scheme design directly on 2D images
coding arguments:

1. The increased spread of the spatial redundancy in the Il-picture which is im-
posed by the periodic nature of the lens array.

2. The ll-picture will be decoded by a lens array prior to viewing.

High correlation between neighboring pixels is the main advantageous 2D im-
ages property used when designing 2D images coding schemes. This characteristic
is exploited by either predicting a specific pixel-value from nearby pixels or by trans-
forming a block of pixels and giving priority to the transform coefficients with high
energy. Unfortunately, this property does not transfer in an unchanged manner to
the context of ll-pictures. On the one hand, spatial redundancy is even stronger in
II-pictures where it spans an even larger number of pixels than for the 2D images
case. This is the result of the similarities between neighboring Els. The majority
of the depicted scene is not captured in a single El, but in several. This results in
a spatial redundancy between neighboring El pixels but also between Els, which
increases the spatial redundancy spread. An object that is further away from the
ll-camera is captured by a larger number of Els and introduces a larger spatial re-
dundancy spread. However, the pixel-correlation between Els is not smooth as it is
within each El. Instead it is broken up due to the periodic Il-picture structure, which
consequently introduces a repetitive characteristic in the Il1-based 3D image.

Thus, a portion of the bitrate required for coding an Il-picture using 2D images
coding schemes will be required to retain this periodic pattern induced by the I1l-
picture structure. Figure 5.1 shows the coefficients that results from applying a 8x8
blockwise DCT and a Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet transform on
the transforming the Il-picture Twins. These two approaches are the main building
blocks used to uncover spatial redundancy in JPEG and JPEG2000 respectively. The
blockwise DCT, with its lack of handling redundancy between blocks, fails to reduce
the strong pixel-correlation between Els. In Figure 5.1 (a) this is manifested as high
energy in a significant portion of the DCT-blocks. The recursive subdivision of the
wavelet approach is particularly adapted to address widespread similarities within
the image. However, when applied to Il-pictures a significant part of the high fre-
quency coefficients receive energy from the periodic Il-picture-structure and not the
captured content. This is shown in Figure 5.1 (b) as high energy in the right part
of the image, which corresponds to high frequencies that should contain relatively
small amounts of energy. Hence, in a transform-based 2D images coding scheme
the ll-picture structure appears as a set of coefficients containing high energy based
solely on the ll-picture structure. Apart from being necessary for decoding a valid
Il-picture, the bitrate portion required for this set of coefficients does not contribute
to the quality of the actual 3D content.

The second ll-picture property that prevents the use of 2D images coding scheme
relates to the HVS shortcomings, which proved themselves able to provide useful
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Figure 5.1: Transform coefficients as a result of (a) 8x8 block-wise DCT (JPEG) and (b) 5-
stage decomposition using CDF 9/7 wavelet transform (JPEG2000).

information when developing 2D images coding schemes. However, in the context
of ll-picture coding it is important to bear in mind that the Il-picture — even though
it is stored in its original form as 2D data — will be decoded by a lens array before
viewing. Thus, the HVS information is applicable to the pixels forming the VIs but
not to the pixels in the Il-picture itself. Coding schemes for 2D images assume that
the order in which the pixels are stored in the 2D data is also the order in which
they will be viewed. To alleviate this discrepancy two options are avaiable: either
the HVS knowledge is transformed such that it is applicable to the pixels in the 1I-
picture; or the pixels in the ll-picture are transformed into a form that is more suited
for the HVS knowledge. The following sections will describe a coding method that
adopts the latter approach.

5.4 The proposed coding scheme - an overview

The coding scheme presented in this chapter is built using state-of-the-art coding
standards originally designed for video and volumetric images, more specifically
H.264/AVC and JPEG2000 Part 10 (JP3D) [100, 101]. This enables the vast knowl-
edge in coding on which these standards have been built to be utilized. Coding
an ll-picture with coding standards adopted for other signal types requires a pre-
processing step. The coding scheme first transforms the Il-picture into a form that
resembles a video sequence or a volumetric image, which is then encoded using a
H.264/AVC- or a JP3D-encoder. The scheme is generically composed of three oper-
ations:

1. transform the Il-picture into a CI set,
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ll-picture
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PVS \L \L PVI
H.264/AVC JP3D
bitstream bitstream

Figure 5.2: The constituting operations of the proposed coding scheme.

2. select from the set of Cls such that a Pseudo Video Sequence or Pseudo Volu-
metric Image is formed and

3. encode the Pseudo Video Sequence or Pseudo Volumetric Image using the cor-
responding coding standard.
Figure 5.2 shows the the coding scheme as a block-diagram.

In the following, this generic description of the scheme will be formalized by
providing greater detail with reference to the choice of the constituent parts.

5.5 Pseudo Video Sequence (PVS) and Pseudo Volu-
metric Image (PVI)

The first step in the proposed coding scheme is forming a Pseudo Video Sequence
(PVS) according to

PVS = [PVS;(s,t)];201. 71
= [CIF(j) (S’t)]j:o,L...,Jq J

where PV S; refers to the j-th picture in the PVS (PVS-frame). J is the total number
of PVS-frames constructed by exhaustively selecting all Cls (J = = - ¥). The permu-
tation function I'() controls the order in which a specific Cl index (&, v) is selected to
form the PVS-frame j according to

T:j—{&}. (52)

The ll-picture is transformed into a Pseudo Volumetric Image (PVI1) if each Cl is des-
ignated to be a slice in a volumetric stack instead of a frame in a PVS. The difference

(6.1)
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is conceptual and merely indicates that a volumetric image encoder is to be used
on the transformed ll-picture. Hence, Equation (5.1) is also applicable to define the
PVI after changing the abbreviation PVS into PVI. We use the prefix pseudo in PVS
and PVI to indicates that these forms of the Il-picture are not a video sequences or
volumetric image per se, albeit the characteristics are similar for certain Cl-types.
The PVS is a function of a spatial variable instead of time as is the case for a video
sequence. For the PVI index j does not correspond to the z-axis of a 3D volume as is
the case for volumetric data constructed using in medical examinations such as CT,
MRI or ultrasound.

5.5.1 Choosing type of Component Image

The most evident way of constructing the PVS is by setting CI = E1, i.e. defining the
Els to be the PVS-frames [45, 74, 75]. The resulting PVS is of length J = K - L where
each PVS-frame has a resolution of S x T' = U x V pixels. The El-based PVS closely
resembles a video sequence, albeit with video frames of relatively low resolution.

Constructing the PVS using RIs results in a PVS with J = V - L PVS-frames that
each have a resolution of S x T' = U x K pixels [76]. The Rl-based PVS-frames bears
little resemblance to the pictures of a 2D video sequence, as was shown in Figure
2.25 (c) and (f) on page 42. This is a disadvantage as an efficient 2D video encoder
would utilize the shortcomings of the HVS to enhance the coding efficiency. Thus,
the more the encoder input deviates from the purpose of the HVS-based encoding
algorithms, the less likely it is that the encoder will perform optimally.

Constructing the PVS out of the Sl set was first proposed by Olsson et al. [77].
This choice of PVS-frames brings favorable properties compared to using El or RI.
Greater coding efficiency is achieved for Il-picture structures with a multitude of Els
where each El has a lower spatial resolution, i.e. when K- L >> U -V. An additional
advantage is that the coding induced distortion distributes more evenly within the
depth of the coded Il-picture. These statements are dealt with in future sections of
this chapter as this particular PVS is studied in more detail. Hence, a SI- based PVS
will have J = U - V PVS-frames, each with a resolution of S x T'= K x L pixels.

Given the orthographic characteristic of the Sl it is worth noting how this implies
two properties of the Sl-based PVS:

1. The projections of distant objects will translate a larger distance between con-
secutive PVS-frames than nearby objects.

2. An object will have similar spatial frequency content within its projection re-
gardless of the object’s distance to the ll-camera.

These two properties will have a specific effect on the coded image’s quality.

On the one hand, the first property suggests that distant objects will be more
difficult to code by the following 2D video coding tool. For example, the motion
compensation step will more often fail to find matches for distant objects as their
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projection falls outside the given motion vector search area, contrary to nearby ob-
jects whose projections translate shorter distances. This will in turn result in a less
efficient intra-coding of the portion of the PVS-frame that contains these more dis-
tant objects. On the other hand, the second property suggests that the intra-coding
of these distant objects is the main cause of distortion, compared to EI where the
perspective projection also low-pass filters distant objects due to the shape of the
lenslets’ frustum. That is, the orthographic property of the SI will transform an ob-
ject’s textured face into the projection’s textured surface, approximately without in-
fluencing the spatial frequency of the texture. The EI’s linear perspective projection
averages the texture of a distant object into a smaller number of pixels than for a
nearby object. This reduces the higher spatial frequencies of a distant object’s tex-
ture projection in comparison to that of a nearby object with an identical texture.
Section 5.8.5 further discusses how these properties manifest into coding artifacts
that appear when viewing the coded Il-picture using an ll-display.

An informative overview of the PVS can be achieved by studying the Clset’s 2D
images form shown in 2.25, since the PVS is constructed by exhaustively selecting
all Cls. Naturally, all aspects of the three types of PVS cannot be covered by a sin-
gle example. Nevertheless, the example Twins is a good example on which to base
a further discussion. Two conclusions can be drawn by examining the three PVS
types. Firstly, the different transforms results in data sets that are not equally ho-
mogenous on the large scale. The El data set has a much more straight relationship
between 2D projection content and scene objects and their distance to the camera.
The orthographic property of the SI data set instead manifests itself in a much more
homogenous 2D projections since object projection size is independent of object dis-
tance. The second conclusion is that the permutation function is an important factor
to consider when forming a PVS, regardless of transform.

5.5.2 Component Image Selection Order (CISO)

Choosing the order in which the Cls are selected to form the PVS will affect how effi-
ciently the Il-picture can be compressed using H.264/AVC. This Component Image
Selection Order (CISO) is a one-to-one mapping, where the permutation function
I'(j) selects a Cl (&, ) within the CI set to become the j-th PVS-frame. Hence, dif-
ferent CISOs are implemented using different permutation functions I'(j). This is
shown in Figure 5.3 where two different I'(j) produce two different PVSs from the
same ClI set; dashed arrows correspond to one CISO whereas dotted arrows corre-
spond to another.

Each permutation function will result in a PVS with slightly different coding
characteristics. Hence, a fundamental parameter in the design of a PVS coding
scheme is how to choose the permutation function or the CISO regardless of which
Cl is used to form the PVS-frames. Five different selection orders are studied in this
work: row, column, parallel, zig-zag and spiral [90]. In Figure 5.4, four of these are
illustrated for a Cl set with = - ¥ = 8 - 8 = 256; column being excluded since it is
merely the row CISO rotated 90°.
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Figure 5.3: The CISO process used to construct a PVS.
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Figure 5.4: Selection pattern of CISO (a) row, (b) parallel, (c) zig-zag and (d) spiral.
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It is possible to assess each CISO’s potential in producing a more easily compress-
ible input for the subsequent encoder using:

e the cross-correlation coefficient ¢ and

o the difference residual energy e

of the reordered CI set. PVSs with high correlation between consecutive PVS-frames
(corresponding to Cls) are more likely to produce small residuals as a result of the fu-
ture motion compensation. Thus, the larger number of PVS-frames resulting in high
values of ¢, the more efficient the subsequent encoder should perform. In this as-
sessment, the cross-correlation coefficient ¢(j) for two consecutive PVS-frames PV S;
and PV S;_, isdefinedfor j =1,2,...,J—1as

Y3 |PVS; — PVS;||PVS;—1 — PVS; 4|
s t

(5.3)

G = y
\/Z S |PVS; - vaj\r"\/zz |PVS;_1 — PVS, 1|
s t s t

where X denotes the arithmetic mean value of all components in matrix X. The
arithmetic mean ¢ and standard deviation o, are then calculated for the complete
PVS according to

1 J—1
j=1
and
1 J—1
O = 73 2 (¢; — o). (5.5)

A high ¢, accompanied by a low ¢., would indicate that a high portion of the Cls are
similar in content.

An additional assessment on how efficiently a motion compensation operation
or wavelet transform decomposition would be able to reduce the inter-frame redun-
dancy is defined as

=,
_ 2
e = ﬁ Z ej, (56)
j=1
where
ej = ||[PVS; = PVSjillp (5.7)

and || X|| . denotes the Frobenius norm of matrix X. The difference residual energy
in (5.6) provides a restrictive assessment, which for the case of PVS estimates the
DPCM-residual without motion compensation. A low e indicates that the residual
contains less energy for the transform to compact, which increases the possibility of
an efficient compression.

In Section 5.8.2, ¢, 0. and e are calculated for the four reference Il-picture ’s PVSs,
which are described in Section 5.7.1. Since both the cross-correlation and the resid-
ual energy only gives an assessment of the selection orders characteristics, and the
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final coding quality provides the correct answer, objective evaluation of the coding
efficiency is also presented in the experimental results of Section 5.8.2.

5.5.3 Bit rate penalties from coding structure

Associated with the resulting bitstreams of the proposed coding schemes there is
also a bitrate penalty due to the header information required. The bitstream de-
scribing a coded ll-picture is composed of two parts, regardless of the used coding
scheme. Part of the bitstream syntax is directly related to the uncoded Il-picture pix-
els whereas the other part is merely required to describe the used coding structure
or the bitstream semantics. The header information present in e.g. a H.264/AVC
bitstream is vital for making the bitstream possible to decode. However, the header
information will not directly benefit the quality of the 3D image. To achieve maxi-
mum coding efficiency, a minimum of bits should be spent on conveying bitstream
semantics.

The header overhead required for a coded PVS is mainly due to the H.264/AVC
semantic constructs sequence, picture, slice, macroblock and block. Depending on
how the PVS is formed, the bits set aside for headers can have more or less influence
on the resulting 3D images quality. For Cls with a high resolution (S x T'), the header
portion of the bitrate becomes negligible. However, the negative impact on the image
quality is increased as the resolution is reduce. Thus, it is not feasible to construct an
El-based PVSfor ll-picture structures where there is a large number of relatively low
resolution Els for example. For such Il-picture structures, a Sl-based PVS is more
beneficial [77].

A formal definition of the PVS bitrate is required in order to study this intuitively
derived PVS property. Firstly, | define the size B of the Il-picture (in bits) as

B=M-N-r, (5.8)

where r is the desired number of bits per pixel (bpp) for the coded ll-picture. These
bits are distributed over the J number of PVS-frames in such a way that on average,
each PVS-frame PV S(z,y, j) will be of size

B B

gzjz_M_N:s-T-r. (5.9

ST
Thus, to achieve a specific compression ratio for the ll-picture, a bitrate R in bps
should be set for the PVS according to

R=S-T-r-f, (5.10)

where f is the PVS’s pseudo frame rate. Again, time is not an explicit variable in a
PVS. Thus, the frame rate within the context of a PVS is not the inverse of time. Note
that albeit the bitrate R in Equation (5.10) might imply that Constant bitrate (CBR)
must be used to code the PVSThis is not the case. Different types of Variable bitrate
(VBR) -schemes may be utilized as long as the resulting data size of the coded PVS
complies with Equation (5.8).
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The number of bits required for a coded PVS-frame (Equation 5.9) can be sepa-
rated into two terms: header bits b;, and data bits b,. The latter term corresponds di-
rectly to the pixels of the II-picture and the quality of the resulting 3D image. Hence,
studying the relation between b;, and b, gives some idea concerning how much of
the bitrate will explicitly contribute to the 3D images quality. For this I define the
relation of headers as

7 M-N 7

J . bh _ ST bh _ 1 ) Eh. (511)
B M-N-r S-T-r

The header bits can be further decomposed into headers relating to the different

semantic constructs according to

MBie b, MB- (5.12)
Additional header terms corresponding to the semantic constructs sequence, picture,
and block are excluded and are instead implicitly contained in the inequality. The
second header term’s factor conveys the number of macroblocks within each PVS-
frame. For H.264/AVC, MBy;,. = 16 x 16 pixels. In Figure 5.5, the relationship in
Equation (5.11) is plotted for S x T'=1and S x T'= M x N, which shows the limits
within which any PVS-scheme must operate, regardless of the chosen Cl and CISO.
As expected, the PVS-frames should be as large as possible to reduce the impact on
image quality due to header data, especially for low bitrates. Inserting Equation
(5.12) in Equation (5.11) gives the header portion H that is defined here as

Eh > 5h,slice +

H T = .
(S 7T) S-T-r bh (513)
> 1 . bh,slice + bh,macrablock '
r \ ST MB? '

The header portion h enables a comparison of different PVSs with respect to the
portion of the bitrate they require to convey header data. Hence, a more favorable
coding efficiency is achieved by selecting as large an CI resolution as possible when
constructing the PVS, as this gives a smaller header portion H.

5.5.4 Working range for the Sl-based PVS

Evaluating Equation (5.13) for all Cls and comparing the results will indicate the 11-
picture structures for which the proposed Sl-based PVS is favorable. Comparing Sl
with El gives

Hgr > Hsy
HU-V,r)>H(K-L,r)
1 1

TV KL (5.14)
M-N
TV V >U-V

vM-N>U-V.
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Figure 5.5: Maximum and minimum header portion within which any PVS-scheme’s header
portion is located.

Hence, the Sl-based PVS should be preferred over El-based PVS if the number of
El-pixels is less than the square root of the number of pixel in the Il-picture. Analo-
gously, comparing Sl with RI gives

Hgr > Hsy
H@W-Lyr)>H(K- L)
1 1

—_ >
M-
u-v
VM > U,

which indicate that an Sl-based PVS is better qualified to provide high coding effi-
ciency than a RI-based PVS if the horizontal El-resolution U < +/M. The relation
only contains horizontal resolution variables, because the PVS-frame’s vertical reso-
lution is T' = L for both Sl and RI and thus canceled out.

(5.15)

S o=

2~
<|'=

>

Adding the constraint of quadratic Els allows Equation (5.13) to produce Hgy,
Hsr and Hpp as a function of U - V' = UZ2. These three functions are shown in
Figure 5.6 and show that SI provides less header overhead than both El and RI if

U?<+/M-N.

The dividing lines between Cl-types shown in Figure 5.6 (where the benefit of one



5.5 Pseudo Video Sequence (PVS) and Pseudo Volumetric Image (PVI1) 103

Header portion metric — H

- N VMN M

Quadratic EI resolution — U?

Figure 5.6: Header portion for the El-, SI- and RI-based PVS-schemes with accompanying
dividing lines for when each ClI-type is more beneficial.
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Figure 5.7: The subsystems of a H.264/AVC-encoder.

supersedes the others) are also verified experimentally in Section 5.8.3 by comparing
coding efficiency.

5.6 Coding the PVS or PVI

Forming the PVS or PVI is only the first step in coding the Il-picture. The inter-
mediate form that the PVS or PVI constitutes, aims to be a format well suited for 2D
video and volumetric image coding tools. Thereby a large portion of the redundancy
inherent in the static I1-based 3D images can be exposed and reduced.

5.6.1 H.264/MPEG-4 AVC

The H.264/AVC is the current state-of-the-art 2D video coding standard, which is
the reason for adopting it as the video coding part of the proposed Sl-based PVS
coding scheme. It obtains its performance from a block-based hybrid coding ap-
proach, just as its precursors MPEG-2, MPEG-4 part 2, H.262 and H.263. These cod-
ing approaches reduces the inherent spatial and temporal redundancy of the video
sequence by combining both prediction and transformation tools. The main differ-
ence which sets aside H.264/AVC is the greatly increased number of ways in which
this reduction can be done, i.e. the variety of coding tools that are available for use
[102]. Figure 5.7 shows a block diagram of a typical H.264/AVC-encoder structure.
[103].
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In previous video coding standards, the spatial redundancy has been exposed
for reduction by transforming a block of pixels using DCT. This decorrelating trans-
form concentrates the pixels’ energy into a smaller number of transform coefficients
thereby facilitating a reduction in bitrate. However, H.264/AVC first predicts the
pixel block from neighboring pixels before applying its DCT-like integer transform
to the residual. The actual bitrate reduction is accomplished by scalar quantizing the
transform coefficients corresponding to the intra-prediction residual. Knowledge
about the HVS and its reduced sensitivity for distortion in high spatial frequen-
cies, is considered when the quantizer step-size is chosen for the individual trans-
form coefficients. As Figure 5.7 illustrates, this integer transform is also applied to
the residual from the temporal prediction. Temporal redundancy, i.e. similarities
between neighboring pictures, is reduced using block-based Motion-Compensated
Prediction (MCP). For each block in a picture, similar blocks are searched for in one
or several reference pictures and thus motion is estimated. The change in position
between the blocks is described using a motion vector. The residual after subtracting
the two blocks is transformed, quantized and combined with the motion vector. The
decision to use intra-prediction or motion estimation is made on a block by block
basis. A picture with only intra-predicted blocks is denoted an Intra coded picture
(I-picture)and acts as a starting point for the MCP. A Prediction coded picture (P-
picture) can on the other hand contain inter-predicted blocks, i.e. blocks predicted
from other previous I-pictures or P-pictures. Furthermore, Bi-direction coded pic-
ture (B-picture)s can be predicted from previous and subsequent I-pictures and B-
pictures. B-pictures in H.264/AVC differ in characteristics compared to previous
standards as they themselves can be used as reference pictures. Additionally, more
than two reference pictures can be used to predict a single B-picture. The abundance
of variably selected block sizes allows for a more adaptive MCP. The enhanced en-
tropy coding stage, which uses variable length coding, is also a great contributor
to the improved coding efficiency of H.264/AVC. The de-blocking post-processing
filter is also a contributor, which increases the subjective quality of the coded video
at low bitrates. Despite the spatial and temporal redundancies there is also a chro-
matic redundancy that is utilized in H.264/AVC, much the same as in other video
coding standards. Changing the color space of the sequence from RGB to YCbCr
benefits coding because of the lower correlation between components in YCbCr. In
addition, the HVS is less sensitive to the color difference components Cb and Cr,
which makes it possible to low-pass filter and sub-sample these without any signif-
icant perceivable distortion. To control the vast number of coding alternatives, rate-
distortion optimization algorithms of various complexities are almost mandatorily
used in H.264/AVC encoders. Further information about the H.264/AVC standard
can be found in numerous overviews and introductions [102-104].

There is one main aspect that affects how the coding tools of H.264/AVC is inter-
preted when they are applied to a PVS as opposed to a 2D video sequence. Pseudo
time corresponds to different spatial variables and not to time. For example in the SI-
based PVS an increased pseudo time index j refers to different viewing directions of
an orthographic camera. For the El-based PVS j is equivalent to a change in position
of perspective camera (with its center restricted to a plane and the viewing direction
normal to this plane). As a result of this change in basis, video coding terminology
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Figure 5.8: The JP3D-process: tiling, decomposing and code-block splitting. The figure ex-
tends on an image from [105].

also changes meaning. MCP for example actually refers to disparity compensation
when H.264/AVC is used for El- and SI- based PVS coding. That is, what the encoder
believes to be temporal redundancy, and addresses by P-pictures or B-pictures, are
actually different kinds of inter-view redundancies that stem from viewing the cap-
tured scene from different perspectives, angles or both. This also leads to other im-
plications concerning video sequence properties such as scene-change, fade-in/fade-
out, camera zoom and rotation etc. These properties are difficult for a video encoder
to handle efficiently, including those adhering to H.264/AVC. As far as the PVS is
concerned these properties do not exist explicitly, even though similar characteris-
tics can be seen depending on the PVS transform. For example in the Sl-based PVS
a type of scene-change can occur when a ll-picture depicts a scene with few objects
and a horizon. The orthographic nature could then result in one PVS-frame contain-
ing all sky and no ground whereas the next could contain all ground and no sky;
thereby causing a large residual after motion compensation straining the encoder.
Using the column CISO when producing a PVS from the set of Sls in Figure 2.25 (b)
would result in this scene-change property.

5.6.2 JPEG2000 Part 10 (JP3D)

Having the ll-picture in the form of a PVI enables the use of JP3D, which is a 3D
extension to JPEG2000 and was recently accepted as an official ISO/ITU-standard
[101]. In a similar manner to that for JPEG2000 Part 1, JP3D tiles the image as the
first step. The volumetric image is tiled into cuboid shaped subsets of arbitrary but
equal size. A tile can be coded and decoded independently, which allows for random
access within the volume. Larger tiles improves coding efficiency as they cumulate
similar frequency content from a larger portion of the signal at the cost of requir-
ing more memory to encode and decode. Each tile is decomposed using a discrete
wavelet transform (integer or floating point) into a arbitrary number of levels per di-
mension. The transform coefficients from each level or sub-band are then combined
into code-blocks as shown in Figure 5.8. Each code-blocks is entropy coded bitplane
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by bitplane which allows for a progressive decode. Furthermore, the entropy code
uses truncation to allow for scalable coding with a finer granularity than a twofold
increase or decrease in bitrate.

The JP3D-features adopted for volumetric imaging applications (e.g., scalability,
random access, and progressive decoding) cost in terms of coding efficiency. For
Il-pictures that are intended for direct viewing on an ll-display these features are of
little use. More importantly, their cost in terms of reduced coding efficiency puts a
JP3D-coded PVI in a disadvantageous position compared to an H.264/AVC-coded
PVS as will be shown later.

5.6.3 Coding cost

The PVS coding schemes rely on the use of two complex compression standards,
which prohibits the explicit specification or measurement of the number of mathe-
matical operations involved in coding. The next best option is to implicitly measure
the computational cost by explicitly timing the CPU-time for encoding (7.) and de-
coding time (T};) of the PVS or PVI coding schemes. The coding time may be further
factorized into pre-processing/coding and post-processing/decoding according to

T.=Te+Tqg=Trur + Tenc + Tgec + TLUT—1 (516)

to determine the influence forming PVS or PVI has on coding time when a Look-
Up Table (LUT) is used. Further factorizing the time into operations such as ClI-
transformation and CISO; or coding operations such as color space conversion (RGB
to/from YCbCr), motion/disparity estimation, DCT calculations etc. is outside the
scope of this work. Moreover, forming a PVS or PVI is a one-to-one mapping that
could be performed in constant time using the LUTand is therefore also excluded
from explicit CPU-time measuring. Thus, the coding cost evaluated subsequently is
Tene and Ty only.

Note that the measured CPU-time should mainly be read as indications of rela-
tive complexity between the evaluated coding schemes. The CPU-time is very much
a consequence of the amount of optimizations each software encoder has undergone
with respect to the platform on which the software is running.

5.7 Experimental setup

The ll-pictures used in the following experiments were synthesized using the ap-
proach presented in Chapter 3. Using simulation instead of physical experimen-
tation offers two advantages: exact knowledge about 3D scene and ll-camera is
achieved and can be exploited to verify results; comparative research is easily per-
formed inexpensively and quickly, e.g. evaluating how different Il-camera proper-
ties affect the efficiency of the proposed coding scheme. All experiments were con-
ducted on a PC-system with a 3 GHz Pentium 4 and 3 GB RAM running Windows
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Table 5.1: ll-camera parameters

Parameter Value
Lenslet focal length - f [mm] 0.73
Lenslet pitch - ' [mm] 0.39
Pixel sensor resolution - M x N [pixels] | 4096 x 4096
8192 x 4096
Pixel sensor size [mm?] 25 x 25
50 x 25
Pixel pitch - 67 [um] 6.1

XP SP2. All disk 1/0 was conducted against a 256 MB ram disk to remove any de-
pendencies on hard drive architecture. The measurement of CPU-time is used for
relative comparisons between the coding schemes. By not considering absolute tim-
ing the experiments aim to eliminate the major impact on CPU-time caused by RAM
speed, CPU cache size, number of CPU cores etc..

5.7.1 Il -camera model

A pinhole model was used to simulate the II-camera’s optics; approximating lenses
with pinholes is a feasible simplification within this context since optical power ef-
ficiency is not an issue in computer simulation. The Il-camera’s pixel sensor noise
sources (amplification noise, photon noise etc.) were jointly modeled using normally
distributed additive monochromatic noise N(x = 0,0 = 1). With regard to reso-
lution the pixel sensor was set to be on par with current state-of-the-art sensors, e.g.
the 16 Mpixels and >30 Mpixels sensors used in the Canon EOS-1Ds Mark Il and the
Hasselblad H3DI respectively. Details about the IlI-camera model is summarized in
Table 5.1. Note that different experimental setups were employed when conducting
the different experiments, which is the reason for different pixel sensor resolution
and size. The main difference between the setups was the Il-picture structure used.
Table 5.2 present the three setups.

Setup 1 is used for defines an Il-picture structure that corresponds to the ratio
% which the coding schemes are designed to address. The number of Els (512 -
256) is set such that the spatial resolution of the 3D images is similar to the spatial
resolution on Standard Definition TV (704 x 576). The El-resolution (16 x 16) is set

to be on par with state-of-the-art Il-cameras [35-37].

Setup 2 varies the ll-camera characteristics enabling an evaluation of how the
different PVS schemes are affected by different Il-picture structures. Each Il-picture
structure has a constant Il-picture-resolution M x N but with different EI- and SI-
resolutions.

Setup 3sets U x V = K x L = 64 x 64, thereby achieving an Il-picture structure
that is neutral from a PVS-picture resolution standpoint. That is, the resulting PVSs
have equal resolution and length regardless of chosen Cl-type. This setting results
in a square ll-picture with ~ 16.7 Mpixels, contrary to the other setups that employ
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Table 5.2: ll-picture structures used in experimental setups

Setup 1 Setup 2 Setup 3
Il-picture resolution — M x N | 8192 x 4096 | 8192 x 4096 | 4096 x 4096
Sl resolution — K x L 512 x 256 512 x 256 64 x 64
256 x 128
128 x 64
64 x 32
32 x 16
El resolution-U x V 16 x 16 16 x 16 64 x 64
32 x 32
64 x 64
128 x 128
256 x 256

an aspect ratio of 2 and ~ 33.5 Mpixels.

For Setup 1 - 3, the H.264/AVC macro-block size of 16 x 16 pixels imposes a
principle restriction on the Il-picture structure. The resulting PVS-frame resolutions,
regardless of chosen PVS-approach, must be an integer multiple of this macro-block
size for the PVS to be possible to code without padding with zeros pixels or mirror-
ing the edge pixels.

5.7.2 ll-pictures

In order to experimentally support and evaluate the previous theoretical discussions,
four reference 3D scenes were defined as origins from which the Il-pictures used in
the experiments were synthesized. Each 3D scene was designed to differently stress
three specific scene characteristics:

e Detail — the amount of high frequency content produced by inter alia fine tex-
ture.

e Depth —the variation of the scene objects in the z-direction.

e Fill factor — the amount of the scene containing objects.

The reference 3D scenes characteristics’ are summarized in Table 5.3 and a perspec-
tive projection of each scene is shown in Figure 5.9.

5.7.3 Coding parameters

All coding schemes were evaluated in the bitrate-range » = {0.015,...,1.5} bpp.
For the PVS -schemes this is transformed into a PVS bitrate, which the H.264/AVC-
encoder must adhere to. The JPEG2000- and JP3D-encoders operate on the bitrate r
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Table 5.3: Reference 3D scene characteristics

Scene Degree of detail | Depth range | Fill factor
Apples low long low
Twins high short low
Car low short high
Cuboid high long high
(a) Apples (b) Twins
(c) Car

Figure 5.9: Two dimensional perspective projections of the four ll-picture s (a) Apples, (b)
Twins, (¢) Car and (d) Cuboid.
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directly. When using these encoders there is a vast number of parameters that influ-
ence the final quality of the coded video sequence or volumetric image. Parameter-
izing these optimally is partially the responsibility of the encoder’s rate-distortion
optimization algorithms and partially the task of the user. Selecting which parame-
ters to consider is also a consequence of the intended application.

5.7.3.1 H.264/AVC

The following H.264/AVC parameters were selected to be studied with respect to
their effect on coding efficiency: picture type distribution (GOP-structure), motion
vector search area and bitrate control technique.

The distribution of I-pictures, P-pictures and B-pictures over the set of PVS-frames
is an important parameter to consider. A larger portion of predicted pictures (B-
pictures and P-pictures) in the PVS will allow for a more efficient reduction of the
redundancy in the pseudo time domain. Setting the GOP-length to J PVS-frames
maximizes the temporal prediction length. The integer-based transform used in
H.264/ AVC makes the transform and inverse transform a lossless operation, which
removes the concern about error-drift for long prediction runs. Hence, the default
value for the image type distribution was set to /P ... and compared with IBP ...,
IBBP...,and IBBBP....

The maximum search area for motion estimation/compensation is a parameter
that is mainly restricted by coding time. A large search area will be able to reduce
larger translational motion occurring between consecutive PVS-frames. However, a
larger search area comes at the price of increased coding time. The default search
areawas setto 16 x 16 pixels and compared with 32 x 32,64 x 64 and 128 x 128.

A H.264/AVC-encoder can comply with a requested final size B (see Equation
(5.8)) in many different ways. The majority of techniques require a feedback control
system to insure that the resulting size does not deviate from the desired value. CBR
controls the quantization such that a constant bitrate is achieved at the expense of a
varying quality of the PVS-frames. VBR instead varies the bitrate while attempting
o produce constant quality. The default technique used in the experiments was CBR
and two additional VBR-techniques was also studied: Constant quantizer (CQ) and
2-pass coding. CQ keep the quantization parameter @) P fixed throughout the whole
encoding. The main disadvantage with this approach is the difficulty in complying
with a requested size B as no feedback is being used. The 2-pass encoding allows
the encoder to gather statistics about the video sequence in a first pass, which it can
later exploit in the second encoding pass.

The H.264/AVC-encoder used for the experiments was x264, a free library for
encoding H.264/AVC video streams [106].
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5.7.3.2 JPEG2000 and JP3D

The coding parameters for JPEG2000 and JP3D were set as follows. Both approaches
were set to utilize the maximum tile-size, which maximizes the coding efficiency.
However, tiling still had to be conducted for PVIs where J > 32768 as these exceeded
the maximum tile size allowed in the z-dimension of JP3D. For example, the El-
based PVI constructed using Setup 1 was divided into 81224996 — 1024 tiles in the
z-dimension. In both cases the CDF 5/3 wavelet kernel was used to decompose
each tile in 5 levels per dimension. The CDF 5/3 kernels integer coefficients makes
the transformation a lossless operation. Each tile was decomposed in 5 levels per
dimension. However, for Cl-types El and RI — where either or both of the S-and T
resolutions became 16 pixels — no decomposition (level = 0) was performed for that
dimension enabling the PVI to be at all possible to code.

The Kakadu software framework was used as a JPEG2000-encoder, whereas the
JPEG2000 Part 10 - Verification Model JP3D was used to encode JP3D [107, 108].

5.8 Results

This section will present the results from a number of empirical rate-distortion ana-
lyzes, which examine different factors influencing the coding efficiency. Firstly, the
PVS coding approach is compared with 2D images coding where the effects of CI-
transform and CISOs are studied. Secondly, the effect of bitstream headers is em-
pirically evaluated followed by a comparison of different CISOs. Thirdly, a study is
conducted aiming to show how the coding schemes operated with respect to view-
and depth quality and what visible coding artifacts they introduce. Finally the time
complexity of the coding schemes is investigated.

5.8.1 PVSvs 2D images coding

Figure 5.10 shows the Qgioba for the four Il-pictures coded using El-, SI-, and RI-
based PVS, Sl-based PVI and the JPEG2000 coded ll-picture. By using @ giopai, the
complete effect that the coding schemes have on the ll-pictures is captured. This
experiment verifies that PVS-coding provides significantly higher coding efficien-
cies than applying state-of-the-art 2D images coding to ll-pictures adhering to the
Il-camera category defined in Setup 1. The Sl-based PVS achieves an average in-
crease of 17.9, 12.6, 14.2 and 10.9 dB in @ g0; COMpared to JPEG2000, for the four
Il-pictures. Furthermore, the Sl-based PVS requires less than approximately 1/60-th
of the bitrate to produce a quality corresponding to JPEG2000 (see Figure 5.10 (b)
and (c)). For example, Twins in Figure 5.10 coded at 0.015 bpp gives a @ giobq: 25 dB
that JPEG2000 requires 1 bpp to produce. Note the significantly worse results for
the El-based PVS which is in-line with the expected penalty from a large required
header portion. The El-based PVS results in a @ 5004 that on average is 13.4, 8.2, 9.1
and 5.8 dB below the Sl-based PVS. For all but a few bitrate ranges, the proposed



5.8 Results

45 T 40 T
40+ 35¢
350 ) 30r )
=) 1 = ‘
=301 | . 25 |
3 ! g
S nos S|
- i I i
20F —«—Sl-based PVS|{ 1sf ——SlI-based PVS
i - Sl-based PVI i - Sl-based PVI
150 -6~ RI-based PVS|| 0 | -©-RI-based PVS
! —B&-El-based PVS ! —&-El-based PVS
I JPEG2000 i JPEG2000
10— =1 T 5—& = F———
10 10 10 10
Bitrate - r [bpp] Bitrate — r [bpp]
(@) (b)
40 T 30 T T Q T
1 1 1 X
350 250 ‘
| | | ot
Lo Lo i Lk
sor 200 o e
) ! ) | -4
D250 = 15 Hp ‘ B/Z/Z/
SEa R S :
15F —*—Sl-based PVSH [ —*—Sl-based PVS
i - Sl-based PVI i - Sl-based PVI
ol | -6~ RI-based PVS|| ol ! -©-RI-based PVS
! —8-El-based PVS ! —&-El-based PVS
I JPEG2000 i JPEG2000
5 S - £ -5 S - £
10° 10° 10° 10°
Bitrate - r [bpp] Bitrate — r [bpp]
(© (d)

Figure 5.10: @ g100a for Setup 1 and reference ll-picture (a) Apples, (b) Twins, (c) Car and (d)
Cuboid. The vertical lines from left to right mark the minimum achievable bitrate for the RI-
and El-based PVS respectively.
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Sl-based PVS also outperforms the corresponding Sl-based PVI, albeit not as signifi-
cantly as the El- and RI-based PVSs. An average difference of 5.1, 4.5, 4.3 and 6.0 dB
in favor of the PVS is measured. Stated differently, the PVS can produce the same
medium-level distortion (=~ 30 dB) as the PVI at approximately a fourth of the bitrate
for all evaluated Il-pictures.

The reference scenes effect on the PVS coding quality can also be studied in Fig-
ure 5.10. Cuboid has the least, but yet significant, PSNR improvement of the four
scenes when comparing the Sl-based PVS with the 2D images coding approach. For
this scene, there exists less redundancy between views that can be exposed and re-
duced; a property caused by the scene’s high detail and long depth. The low complex
Apples and and Car on the other hand have a strong inter-view redundancy that is
efficiently reduced using PVS coding.

Note that even though the average results for El are superior to JPEG2000, they
are not averaged over the same bitrate range and are therefore not directly compara-
ble. The El-based PVS is not possible to code below a certain bitrate corresponding
to the bitrate that is approximately required for carrying the header data alone. The
major part of the bitrate is required by the header portion of the bitstream for a PVS
with J = 512 - 256 = 131072 low resolution PVS-frames. A lower bound on bitrate
may be calculated by coding an all black Il-picture (with zero-valued pixels) using
the coding schemes. An all black video sequence coded using x264 with maximized
guantization parameter QP=51 results in a bitstream containing the header informa-
tion alone, approximately. No video sequence with similar properties in resolution
and length can thus be coded at a bitrate lower than the minimum bitrate required
for this header-only bitstream. The two vertical lines in Figure 5.10 correspond to
the minimum bitrates for the RI- and El-based PVS respectively. That is, an El-based
PVS may not be coded at a bitrate lower than 0.63 bpp. Hence, the El-based PVS
is only superior to JPEG2000 for high bitrates; it cannot be used at all for lower bi-
trates, as Figure 5.10 illustrates. Vertical lines corresponding to minimum bitrate of
the other coding schemes are located below the range of bitrates shown in the figure.

The incomplete curves of the SI-based PVS are contrary to the other transforms,
not a consequence of a significant header bitrate portion. Instead they are the re-
sult of scene complexity. For complex scenes with high detail, depth and fill factor,
the introduced disparity between neighboring PVS-pictures is high. This strains the
MCP such that even if the H.264/ AVC-quantization parameter is set to its maximum
value (QP = 51), there still remains significant energy in the prediction residual. In
Figure 5.10, this appears as incomplete curves for the Sl-based PVS scheme for all but
Twins caused by a lower bitrate being impossible to achieve unless a nonstandard
quantization parameter (QP > 51) is used. If it would be possible to set a value of
QP > 51, and thereby thus introduce a harder quantization of the residual from the
motion compensation stage, a lower bitrate than that shown would be achievable.
Of course this would come at the price of a lower Q gopa-

Using JP3D instead of H.264/AVC, given the same Cl-type and CISO, is only
an option for high bitrates and certain Il-pictures where Qgi0pq: levels away for the
PVS approach, e.g. Figure 5.10 (a). The reason for the asymptotic behavior of the
PVS is a combination of low complex ll-pictures and the compression methods of
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H.264/AVC. An H.264/AVC-encoder introduces a certain amount of distortion even
when its quantization parameter QP is set to a minimum (QP=1). The HVS-weighted
gquantization matrix that QP modulates, always causes measurable distortion al-
beit not necessarily perceivable. Thus, lossless coding can not be achieved using
H.264/AVC by merely reducing the parameter QP to its minimum. This is contrary
to JP3D, which allows for a gradual transition from lossy to lossless coding.

As a result of the large advantage of using PVS compared to PVI, the subsequent
evaluation will focus solely on the PVS. However, the use of PVI may still be justified
for certain combinations of bitrates, contents, and applications requirements.

5.8.2 Sl-based PVS selection orders

The previous section showed that the SI-based PVS applied to the Setup 1 Il-picture
structure, is superior in coding efficiency compared to the other Cl-types. This sec-
tion investigates the importance of choosing a specific CISO for the Sl-based PVS. Ta-
ble 5.4 presents ¢, 0. and e for all combinations of CISOs. The best results are marked
in bold font in the table. The CISO holding the majority of high ¢, low ¢, and low e is
the parallel, which suggests that forming a Sl-based PVS using parallel CISO should
provide the highest coding efficiency. To verify this, Figure 5.11 presents Q giobal
for the different CISOs. The graphs show that the parallel CISO is the most efficient,
even if the difference between row and parallel is very small. The worse performance
of the column CISO is mainly due to the view discontinuities introduced when going
from the bottom of one column, to the top of the next. This occurs with a period of
16 images, straining the motion compensation of H.264/AVC. There is a noticeable
performance increase for horizontal CISOs (row and parallel) over those containing
a stronger vertical component (column, zigzag and spiral). This is largely an effect
of the foremost horizontal object positioning in the used reference scenes. For scenes
containing an extensively random object positioning, the difference between CISOs
is anticipated to be low.

5.8.3 Working range for the Sl-based PVS

Section 5.5.4 showed that it is important to consider the bitrate portion required for
header data when selecting Cl-types for the PVS. This finding is also validated in
the following experiment where the coding efficiency of PVS-schemes based on El
and Sl is compared. Setup 2 with its variable ll-picture structures is used for this
comparative evaluation. The difference in Qgi05q: iS Used to collectively capture all
aspects that affect the coding efficiency. | calculate the difference as

AQgiobat (1) = Q5 opar (1) — Qoibpar (1), (5.17)

where a positive difference speaks in favor of using Sl- instead of El-based PVS for
the specific ll-picture structure. The result is presented in Figure 5.12 for Apples
and Car (similar results are produced for Twins and Cuboid). Using Sl instead of
El is beneficial for Il-picture structures (K x L x U x V) 512 x 256 x 16 x 16,
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Table 5.4: Mean and standard deviation (¢,o ) of cross-correlation coefficient ¢ and difference residual energy e

Apples Twins Car Cuboid
¢ Oc e ¢ Oc e c Oc e c Oc e
SI row 0.624 | 0.282 | 1.66 | 0.812 | 0.139 11 | 0.677 | 0.136 | 1.89 | -0.012 | 0.279 | 15.7
Sl parallel | 0.649 | 0.265 | 1.48 | 0.844 | 0.071 | 0.872 | 0.699 | 0.072 | 1.74 | -0.007 | 0.279 | 15.6
Sl spiral 0.632 | 0.275 | 1.46 | 0.845 | 0.115 | 0.946 | 0.607 | 0.137 | 2.28 | -0.151 | 0.163 | 17.8
Sl col 0.593 | 0.308 | 1.57 | 0.839 | 0.188 | 0.995 | 0.454 | 0.22 31 | -0.017 | 0.272 | 158
Sl zigzag | 0.552 | 0.257 | 2.1 | 0.814 | 0.107 | 1.22 | 0.592 | 0.084 | 2.34 | -0.023 | 0.257 | 15.7
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Figure 5.11: CISO evaluated using @ 4i06a: for Setup 1 where (a) Apples, (b) Twins, (c) Car
and (d) Cuboid.
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Apples and (b) Car.

Table 5.5: The effect of picture type distribution and GOP-length on Q 40541 averaged over all
r for Apples adhering to the Setup 1 ll-picture structure. Default parameters where I P ... and
GOP-length equal to J = 256.

IP... | IBP... | IBBP... | IBBBP...
256 0.00 -0.57 -0.75 -0.96
128 | -0.05 -0.67 -0.82 -1.02
32 -0.23 -0.99 -1.13 -1.35
16 -0.42 -1.25 -1.48 -1.67

256 x 128 x 32 x 32and 128 x 64 x 64 x 64. This is in line with the theoretical results that
indicate that SI should be used over El when constructing the PVS for El-resolutions
less than 76 x 76 (U2 < /8192 - 4096 ~ 762).

5.8.4 Coding parameters

Table 5.5 summarizes the effects on coding efficiency that results from changing the
picture type distribution and GOP-length when coding a Sl-based PVS from Ap-
ple adhering to Setup 1. The other reference ll-pictures give similar results and are
therefore excluded. Contrary to the previous study, the difference in Qgiopq: is here
defined according to

AQglobal () = Qgrobat (1) — QUedyi (1), (5.18)

where Q;leofbal is the reference result from evaluating the PVS with default parametriza-

tion and Q gi00q: is @ placeholder for the other parameterizations. Hence, when Equa-
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tion (5.18) is negative the default values (picture type distribution /P ... and GOP-
length J = 256) are preferred over the evaluated parametrization.

Neither reducing the GOP-length nor introducing B-pictures have a positive ef-
fect on coding efficiency. Reducing the GOP-length from the default length J allows
for random access within the PVS at the cost of reduced coding efficiency. How-
ever, such functionality is superfluous when the Il-picture’s intended use is to be
presented on a ll-display in its entirety. Splitting the PVS into 16 GOPs with 16
PVS-frames each reduces the coding efficiency with 0.42 dB for Apple. For Twins,
Car and Cuboid the corresponding reduction is 0.54, 0.51 and 0.12 dB respectively.
Decreasing the GOP-length to < J would facilitate random access within the PVS
but at the expense of a reduced coding efficiency. Incorporating B-pictures are of-
ten considered to imply an improved coding efficiency when coding 2D video. A
B-picture could utilize the information from a subsequent as well as a preceding pic-
ture, which would reduce the residual energy after motion compensation compared
to a corresponding P-picture. The total number of bits for a B-picture, including the
additional motion vector and header bits, would be lower than for a P-picture while
still giving equal or better quality. Bits spent on a B-picture have in previous stan-
dards been non-reusable since B-pictures have not been allowed to act as references
themselves. In H.264/AVC however, B-pictures are permitted to act as references for
further prediction, which should make their means to increase the coding efficiency
more clear.

Incorporating B-pictures would allow for predicting in both front- and back di-
rections of the PVS. B-pictures are considered especially advantageous when new
scene content is revealed in a manner that cannot be compensated efficiently us-
ing P-pictures. A B-picture enables prediction from subsequent frames, which is an
advantage if those have a stronger correlation with the revealed content than preced-
ing frames. Hence, the B-pictures chance to increase the coding efficiency relies on
CISOs that reveal content that cannot be efficiently predicted from previous frames.
For the selected CISO (parallel), a minimum number of extensive changes are intro-
duced for the reference ll-pictures. Thus, the advantage of B-pictures is reduced and
instead their cost in terms of reduced quality dominates. If a picture distribution
of IBBBP... is used the coding efficiency is reduced by 0.96 dB compared to the
default IP.... For Twins, Car and Cuboid the corresponding reduction is 0.78, 0.53
and 0.74 dB respectively.

Increasing the motion vector search range allows for the compensation of larger
translations between consecutive PVS-frames, which is beneficial for the coding ef-
ficiency. However, increasing the search range implies an increased number of com-
parisons and thus a longer encoding time. In Table 5.6 the coding efficiency in terms
of difference in @ gioba: is SUmmarized for Twins together with the corresponding en-
coding time T,,,.. The encoding time T,,,. has been normalized with respect to the
default parametrization, resulting in the unit-free relation

T
Cp = = 5.19
= (5.19)

enc

where T7¢f is the encoding time for the default reference parametrization that uses

enc
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Table 5.6: The effect of motion vector search area on Q 405.1 averaged over all r for Apples
and Twins adhering to Setup 1 ll-picture structure. Default parameter was 16 x 16 pixels.

Apples Twins
AQgiobal [AB] | C7r | AQgiova: [dB] | Cr
16 x 16 0 1 0 1
32 x 32 0.12 2.8 0.01 3.3
64 x 64 0.18 9.2 0.05 11
128 x 128 0.21 28 0.11 31

Table 5.7: The effect of bitrate control techniques on @ gi0q: averaged over all r for Apples
and Twins adhering to Setup 1 ll-picture structure. Default parameter was CBR.

Apples Twins
AQgiobal [AB] | Cr | AQgiobar [dB] | Cr
CBR 0 1 0 1
VBR CQUANT 0.39 0.95 0.29 0.96
VBR 2-pass 0.15 112 0.18 1.30

CBR. Twins, with its low depth range, shows no significant improvement in coding
efficiency when the motion vector search range is increased. Apples on the other
hand benefits from increasing the search range all the way up to 128 x 128, with an
improved @ g105; 0f 0.21 dB compared to the default range of 16 x 16. Both I1-pictures
show an exponential increase in encoding time, as expected. Hence, increasing the
motion vector search area only benefits the coding efficiency for 3D scenes that have
long depth ranges due to the orthographic nature of the SI. The more distant an
object is from the Il-camera, the farther the object’s projection is translated between
neighboring PVS-frames. For example, the low depth range of Twins only induces
translations between PVS-frames that can be captured within the default 16 x 16
search area. Hence, increasing the search area when coding Twins has no benefit
with respect to coding efficiency.

Finally, the three different bitrate control techniques are evaluated. The result in
AQgiobar and Cr is summarized in Table 5.7 for Apples and Twins. On average, using
VBR CQ gives the best results of the three bitrate control techniques. Moreover, the
encoding takes approximately 5 % less time than CBR as a result of not explicitly
controlling the bitrate at all. Note however that when VBR CQ is used the requested
size B is never closely matched since QP is the control parameters and not r. If a
low deviation in the resulting B is required, then VBR 2-pass is a good compromise
between CBR and VBR CQ. However, the additional first pass gathering statistics
comes at the price of an increased encoding time compared to CBR. This corresponds
to an <= 30 % increase in T, relative to CBR, when encoding to the experimental
setup’s ram disk.
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5.8.5 Coding artifacts

The results presented until this time have been based on evaluating the complete
l1-picture using Q gi0pq:- Albeit suitable for comprehensive analysis, Q giopa: Provides
no detailed information about how the coding induced distortion may be perceived.
This experiment fulfills this requirement by presenting VIs for subjective evaluation
followed by Q, .., for the PVS-approaches. Setup 3 is used to examine the coding ar-
tifacts that are introduced from the PVS schemes, despite the fact that the proposed
coding schemes are designed for Il-picture structures corresponding to Setup 1. The
amount of bitstream header penalty for El- and RI-based PVS using Setup 1 results in
such poor coding efficiency that these selections of Cl-type and CISO would produce
unusable 3D images. The El-based PVS is not even capable of producing ll-pictures
with a bitrate » < 0.63 bpp as discussed previously. Figure 5.13 shows the significant
coding artifacts introduced by some of the coding schemes when Apple using Setup
1 is coded with a requested bitrate » = 0.15 bpp. The lack of a depth-control lens
in the used Il-camera model is the reason for the blurriness of the more distant ap-
ples, even in the original VIAs discussed in Section 2.2.4, a depth-control lens would
allow for both real and virtual objects and hence approximately double the useable
depth range. The absolute difference images with respect to the original uncoded
image are also shown in Figure to more clearly uncover the distortion within the
images of Figure 5.13. Figure 5.14 (a), which represent a front view of the uncoded
ll-picture, are completely white as a natural consequence of not containing any cod-
ing artifacts, which results in an absolute difference of zero. The other images are
calculated with respect to the uncoded front view and the absolute difference have
then been inverted for presentation purposes. Thus, white pixels correspond to no
difference between the two front views of a coded Il-picture and the original un-
coded Il-picture. From studying the coding artifacts presented in Figure 5.14 (b) — ()
is is evident that the Sl-based PVS coding scheme induces the least amount of distor-
tion of the evaluated coding schemes. Comparing Figure 5.14 (b) — (c) with Figure
5.14 (d) — () reveals a difference in coding artifact character between the wavelet ap-
proach of JPEG2000 and JP3D, and the hybrid approach of H.264/AVC. The artifacts
caused by quantizing a wavelet decomposition (be it 2D or 3D) are relatively evenly
distributed within the 3D image. The distortion induced by H.264/AVC is located to
the scene objects in general and localized to the boarders of the objects in particular.

The above figures have made clear that the Sl-based PVS is superior with regards
to coding efficiency for the Setup 1, for which it was designed. The reason for this
being mainly its low header portion H, which allows more bits to be spend on in-
creasing the 3D image quality than to maintain the necessary bitstream structure.
Hence, in order to further study the coding artifacts of the different coding schemes
a setup that does not favor a particular scheme must be used. Thus, this section thus
present the induced coding artifacts of the PVS-coding schemes when applied to a
II-picture structure that favors no particular Cl-type and thereby investigates how
the Sl-based PVS-coding scheme behaves outside its intended working range.
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(a) 24 bpp (b) 0.15 bpp
(c) 0.15 bpp (d) 0.15 bpp
(e) 0.92 bpp (f) 0.16 bpp

Figure 5.13: Coding artifacts in Apples adhering to Setup 1 at a requested » = 0.15 bpp for
(b) JPEG2000 coded ll-picture, (c) Sl-based PVI, (d) Sl-based PVS, (e) El-based PVS and (f)
Rl-based PVS. The actual bitrate produced is presented beneath each subfigure. Subfgure
(a) shows the uncoded front view for comparison.
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(a) 24 bpp (b) 0.15 bpp
(c) 0.15 bpp (d) 0.15 bpp
(e) 0.92 bpp (f) 0.16 bpp

Figure 5.14: Absolute difference images corresponding to the images shown in Figure 5.13 for
(a) Uncoded front view (b) JPEG2000 coded ll-picture, (c) Sl-based PVI, (d) Sl-based PVS,
(e) El-based PVS and (f) Rl-based PVS.
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Figure 5.15: Characteristic coding artifacts in Apples adhering to Setup 3 at » = 0.15 bpp for
(b) JPEG2000 coded ll-picture, (c) Sl-based PVI, (d) Sl-based PVS, (e) El-based PVS and (f)
RI-based PVS. Subfigure (a) shows the uncoded front view for comparison.

5.8.5.1 Subjective evaluation

In Figures 5.15 — 5.18, the specific artifact characteristics of the coding schemes are
illustrated for a bitrate » = 0.15 bpp selected to exaggerate the distortion. JPEG2000
coding of the ll-picture results in the worst quality, which could expected after ex-
amining Figure 5.10. This is due to the lack of directional prediction in JPEG2000,
which the motion compensation stage in the PVS-approaches allows for. The charac-
ter of the coding artifacts in all VIs corresponding to JPEG2000, resembles additive
Gaussian noise. The standard deviation of the noise increases slightly with increas-
ing object depth. The difficulty in coding distant objects is because these objects, due
to the lens array, spread out over a larger portion of the Il-picture than close objects.
This makes the introduced redundancy, which spans Els that are further apart, more
difficult to address for JPEG2000.

The Sl-based PVI also results in quite significant coding artifacts, albeit with a
different smearing characteristic than JPEG2000. The multidimensional wavelet de-
composition of JP3D fails to rival the MCP of H.264/AVC even when being to Il-
pictures adhering to Setup 3. Furthermore, the distortion induced in the low fre-
guency decomposition levels are spread throughout the whole PVI if a single tile
is used. As a result, the coding induces low frequency distortion in all views at all
depths of the Il-picture. Comparatively, the MCP of H.264/AVC produce more high
frequency distortion. This can be verified by the absence of distortion in the smooth
areas of the VIs corresponding to PVS coding schemes.
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(d) © ®

Figure 5.16: Characteristic coding artifacts in Twins adhering to Setup 3 at » = 0.15 bpp for
(b) JPEG2000 coded ll-picture, (c) Sl-based PVI, (d) Sl-based PVS, (e) El-based PVS and (f)
Rl-based PVS. Subfigure (a) shows the uncoded front view for comparison.

@ (b)

(d)

Figure 5.17: Characteristic coding artifacts in Car adhering to Setup 3 at » = 0.15 bpp for
(b) JPEG2000 coded ll-picture, (c) Sl-based PVI, (d) Sl-based PVS, (e) El-based PVS and (f)
RI-based PVS. Subfigure (a) shows the uncoded front view for comparison.
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Figure 5.18: Characteristic coding artifacts in Cuboid adhering to Setup 3 at » = 0.15 bpp for
(b) JPEG2000 coded llI-picture, (c) Sl-based PVI, (d) Sl-based PVS, (e) El-based PVS and (f)
RI-based PVS. Subfigure (a) shows the uncoded front view for comparison.

When studying the artifacts caused by the Sl-based PVS coding scheme in sub-
figures (d), a blurring over the whole depth range can be seen. In Twins this is
especially evident in the face of the woman closest to the Il-camera. As could be
expected, the blurring effect is less pronounced for images with less detail. Apples
and Car for example, contain objects with low frequency textures and thus show
less coding artifacts. There is also a spread in colors around object edges, much like
the mosquito noise that is well-known from many DCT-based coding schemes. The
level of this noise tends to decrease with increased depth — compare the farthest and
closest objects in Apples and Woman respectively.

In the El-based PVS scheme, the noise has slightly different characteristics as sub-
figures (e) illustrates. The coding artifacts have a significant horizontal component,
which is not the case for the mosquito-like artifacts introduced by the Sl-based PVS.
The level of the El-based PVS noise also increases in level with increasing depth,
as can be seen when comparing the edges of distant and close objects in Apples
and Twins. In the complex Cuboid, the horizontal smearing combines with the pe-
nalizing of distant objects, which results in a coded image that looks "unwashed"
compared to the Sl-based version.

In the RI-based PVS scheme an irregular smearing effect appears. This is espe-
cially evident in the middle apple in Apples and in the face and suit of the closest
woman in Twins. As a result of using Rls as PVS-pictures the introduced artifacts
have different horizontal and vertical properties. Horizontally, a slight depth related
mosquito-like noise can be noticed as in the case of Sl-based PVS. Vertically, on the
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Figure 5.19: Q,,.,, evaluation of Setup 3 using Equation (4.3). (a) Apples, (b) Twins, (c) Car

and (d) Cuboid.

other hand, there is no evident smoothing, which is especially evident in the sharp
vertical edges of the sub-cube rows in Cuboid (see Figure 5.18 (f)).

5.8.5.2 Sparse angle dependent quality

Figure 5.19 presents Q,,.,, for the four Il-pictures. The El-based PVS scheme gives
the best Q, ., for both Apples and Twins, which are two Il-pictures with low fill fac-
tors and long depth ranges. This result is partially verified by examining Figure 5.16,
where the VI from Twins show the least amount of distortion. However, the visual
inspection of Apples in Figure 5.15 does not give the same unchallenged correspon-
dence between Q,,.,, and subjective evaluation. The El-based PVS introduces more
visible distortion than the Sl-based PVS if only the apples are considered. Figure 5.15
(e) shows that the furthest apple are severely distorted by the El -based PVS whereas
the shadowed floor closer to the IlI-camera is less affected by coding artifacts. Hence,
Q,;.., assesses the quality of the whole VI and does not consider whether the aver-
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age viewer assesses the quality of a VI based on some region of interest.

The Sl-based PVS scheme performs equally well to that for the El-based PVS for
Car and Cuboid. The short depth range of Car and high fill factor of Cuboid render
similar projection sizes and translation speeds in consecutive PVS-frames for both
PVS-approaches. This makes the El- and Sl-based approaches produce similar PVSs
and hence, similar coding efficiencies. When comparing the Q,,.,, graphs with the
subjective quality of the Vs in subfigure (d) of Figure 5.15 - Figure 5.18 an agreement
between the two can be seen. The smoothing effect of the Sl-based PVS results in a
relatively low Q,,.,, for Il-pictures that have large regions of high frequency content
such as Apples (the shadows on the floor) and Twins (the two women’s features).

The Rl-based PVS gives consistently the lowest Q,,.,, out of the three PVS s.
Horizontally it shares the smoothing characteristic of the SI-based PVS. Vertically, it
distorts farther objects more severely, similar to the El-based PVSThe combination
of these two distortion characteristics is not favorable for Q or the subjective
quality of the VIs.

Both JPEG2000 and the Sl-based PVI result in the lowest Q, .., for the bitrate
under test (r = 0.15 bpp). They take turns in being the worst of the evaluated coding
schemes depending on which Il-picture is being examined. However, Cuboid is an
exception where the Sl-based PVI is on par with the PVS approaches. The SI- and
El-based PVS gather together with the Sl-based PVI ata Q,,.,, ~ 0.77 when being
coded at » = 0.15 bpp. The slight advantage in quality of the VIs from the PVS
coding schemes compared to the Sl-based PVI, is in part explained by their slightly
higher bitrate caused by a non-optimal bitrate control of the H.264/AVC-encoder.

view

5.8.5.3 Sparse pseudo-depth dependent quality

Figure 5.20 presents center views of the Il-picture Apples coded using ElI- and SI-
based PVS, El-based PVI and JPEG2000-coded ll-picture. These center views will be
used for visually validating that which can be inferred from the proposed quality
metric Qgepen. The ll-pictures have been coded using bitrates resulting in Q giobar =
28 dB for all coding schemes and thereby making them equal in distortion from a
global perspective. Qqeptr, for all coding schemes are presented in Figure 5.21. Figure
5.21 show peaks in Qg.p:, at low depth layers d for the El-based PVS and JPEG2000-
coded ll-picture but rapidly falls off as d is increased. This corresponds to the com-
mon property of the El-based PVS and the JPEG2000-coded Il-picture, i.e. to distort
distant objects more than nearby objects. A property that also is seen in Figures 5.20
(b) and (e). The Sl-based PVS results in a less steep decline in Q 4epep, fOr increasing
depth, and the fluctuation over all evaluated depths is also lower. Figure 5.20 shows
artifacts that are in line with this measurement: the distortion introduces an evenly
distributed low-pass filtering throughout the depth, contrary to the other schemes
that show a more heterogenous distribution of coding artifacts. The Qgeptr, graphs
stemming from the Sl-based PVI tend to have the least fluctuations, but at a low ab-
solute level. The patchy-like artifacts in Figure 5.20 (c) are randomly distributed at
different depths and combine into a quality level that is relatively low.
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i

(a) 24 bpp (b) 0.35 bpp (c) 0.26 bpp

(d) 0.14 bpp (e) 0.08 bpp

Figure 5.20: Center views from the Il-picture Apples coded to Q giobar = 28 dB using (b)
JPEG2000-coded ll-picture (c) Sl-based PVI, (d) Sl-based PVS and (e) El-based PVS. The
bitrate r required for each coding scheme is presented beneath each subfigure. Subfigure (a)
shows the uncoded front view for comparison.

451 —*—Sl-based PVS|
—8-El-based PVS
JPEG2000
-0 Sl-based PVI ||

a0t

0 50 100 150 200 250
Depth layer d

Figure 5.21: Sparse pseudo depth-dependent metric Q 4t applied to Apples coded using
the four coding methods shown in Figure 5.20.
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Figure 5.22: Rate-distortionimages Q 4ep:1 () applied to Apples coded with (a) Sl-based PVS
and (b) JPEG2000-coded IlI-picture.

Analyzing rate-distortion properties is a vital aspect when coding schemes are
evaluated. A good coding scheme should degrade the quality gracefully when the
rate is reduced. Qgepen, Qives rise to a graph per bitrate evaluated, similar to those
shown in Figure 5.21. If the rate is to be incorporated into the metric without re-
ducing the information contained in it, the results may be presented as an image.
Each pixel of the resulting image contains a specific Qgeptr (r), i.e. @ PSNR-value for
a particular combination of rate and depth. Figure 5.22 shows such depth quality
images for two coded versions of Apples. Presenting Qgep:x(7) as an image gives a
general view while still allowing for detailed analysis. An example is the result of
the Sl-based PVS in Figure 5.22 (a), which succeeds in producing high @, throughout
the whole depth range for high bitrates. It also shows a smooth degradation when
the rate is reduced. The JPEG2000-coded Il-picture in Figure 5.22 (b) does not share
this characteristic. Instead, objects further away are subject to coding artifacts even
at high bitrates, and even more so when the rate is reduced.

Classical one-dimensional rate-distortion graphs can be obtained by reducing the
dimensionality of Qgep:n, t0 moments such as the mean and standard deviation or
extrema such as the minimum and maximum. Sometimes a measurement result in
the form of a scalar value is more feasible for evaluation than a vector of values.
Figure 5.23 shows for each bitrate the mean, minimum and maximum value, i.e.
Qdepth, min Qgeptn, aNd max Qqeptr,. Note the difference in spread of distortion levels
that is given rise to by the coding schemes. The maximum quality level max Qgepts,
is similar for the two coding schemes. However, the Sl-based PVS shows both a
higher average quality (Qdepth) and a higher minimum quality (min Qgep:,) than the
JPEG2000-coded lIl-picture. The evident advantage of reducing Q qep¢s t0 a single
moment and two extrema is that graphs corresponding to traditional rate-distortion
graphs may be produced. However, the disadvantage is that this reduction consti-
tutes a considerable information loss with respect to what the metric produces.
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Figure 5.23: Qdemh (solid line) , min Qgeptr, (lower dashed line) and max Q geptr, (UPpPEr

dashed line) applied to Apples coded with (a) Sl-based PVS and (b) JPEG2000-coded II-
picture.

5.8.6 Coding cost

Table 5.8 summarizes the CPU-time cost for the Sl-based PVS coding scheme in com-
parison to a subset of the evaluated reference schemes. The CPU-time is averaged
over all bitrates » = {0.015,...,1.5} bpp. The proposed Sl-based PVS achieves sim-
ilar decoding times to those for the JPEG2000, despite the large difference in coding
efficiency. Using El as Cl-type is again shown to be unfavorable for the Il-picture
structure of Setup 1. The low resolution of the PVS-frames does not compensate for
the large number of frames that the H.264/AVC encoder has to inspect. As a result,
the CPU-time required for encoding an El-based PVS is approximately two orders
of magnitude larger than for encoding an Sl-based PVS. Encoding an Sl-based PVI
is also approximately 10 times slower than for the corresponding Sl-based PVS. The
variations between Il-pictures’ CPU-times are small, which is anticipated as the ac-

tual 3D images content should only weakly affect the number of coding decisions
the encoder has to make.

Depending on the regularity of the LUT used to construct the PVS different cache
hit rates may be experienced as the LUT accesses ll-picture pixels. The transfer of
pixels from a Setup 1 ll-picture to PVS took approximately 2 seconds for acompletely
random LUT on a the experimental setup’s PC-system. However, a monotonically
increasing LUT (where e.g. the pixels of the lI-pictures are merely shifted into the
PVS row-by-row) gives a transformation time of 200 ms. Hence, the combined trans-

formation and CISO operation time lies in-between these bounds excluding the time
required to construct or load the LUT.
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Table 5.8: Measured CPU-time for encoding and decoding operations of the evaluated coding schemes; II-pictures adhering to Setup 1 was

used.

Apples Twins Car Cuboid
Enc[s] | Dec[s] | Enc[s] | Dec[s] | Enc[s] | Dec[s] | Enc[s] | Dec[s]
Sl-based PVS 9.1 2.0 10.7 2.8 10.9 2.7 12.0 2.9
Sl-based PVI 53.4 16.5 67.2 15.3 74.2 15.9 93.4 145
RI-based PVS 15.9 2.2 17.8 2.6 18.9 2.6 17.0 25
El-based PVS | 1405.3 7.6 1400.3 7.8 1441.0 7.9 1421.9 9.0
JPEG2000 6.2 3.1 6.2 2.9 6.8 31 7.2 2.9
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5.9 Concluding remarks

Coding an ll-picture using 2D images coding tools fails to capture the inherent re-
dundancy sufficiently well. | have shown that a much larger portion of this redun-
dancy can be exposed if the Il-picture is first transformed into a PVS. The coding
scheme | have presented, which codes the PVS using the video coding standard
H.264/AVC, has shown to achieve a significant gain of up to 17.9 dB in coding ef-
ficiency compared to the 2D image coding standard JPEG2000. For a given quality
level, the PVS scheme requires approximately 1/60-th of the bitrate necessary for
JPEG2000. Transforming the Il-picture into a PVI and coding it using the volumetric
image coding standard JP3D was also investigated. Based on the lower coding effi-
ciency of JP3D compared to H.264/AVC | found this coding standard alternative to
be a solution feasible mainly for applications that benefits from a partial decode of
the Il-picture, e.g. to produce enhanced 2D images from a subset of the Il-picture.

Moreover, | introduced the concept of the header portion H of a PVS and showed
it to be an important factor to consider when parameterizing the PVS-scheme. That
is, how much of the allocated bitrate for a Il-picture is required for storing the essen-
tial bitstream structure or semantics is essential for how much of the bitrate that is
left for the 3D image quality. The magnitude of H is related to which Cl-transform
the PVS is constructed from. The Sl-based PVS coding scheme that | have proposed,
provides a significantly better coding efficiency for Il-picture structures with a large
number of low resolution El than other PVS schemes. An increase of 5.8-13.4 dB
in Qgiobar is measured when the Sl-based PVS is compared with the El-based PVS.
This significant improvement in coding efficiency is partially explained by the low
header portion H of the Sl-based PVS.

The second operation when constructing a PVS after choosing a Cl-transform is
to define the CISO. After evaluating a set of CISOs, | concluded that the parallel CISO
gives the highest coding efficiency for the investigated Il-picture structure of Setup 1.
Still, the difference in coding efficiency caused by different CISOs is small compared
to that caused by different Cl-transformations. The final parametrization step of the
PVS coding schemes is to set the encoder parameters. The conducted study shows
that the highest coding efficiency is achieved using a single I-picture followed by
subsequent P-pictures as the combination of picture coding types and GOP-length.
Incorporating B-pictures, shows a deterioration in the coding efficiency, despite the
fact that they are being enabled for use as references.

Measuring the coding induced distortion with respect to ll-picture properties
such as viewing angle and depth is made possible by means of the quality metrics,
which | described in Chapter 4. With these metrics | could show that the characteris-
tics of the introduced coding artifacts differ depending on the selected PVS scheme.
The SI transform introduces a smoothing effect homogenously over the Il-pictures
depth range, contrary to the other coding schemes that distribute the distortion more
unevenly. Determining to what degree depth distribution of distortion contributes
to the subjective quality of a ll-based 3D images is the aim of a future study.

Coding an ll-picture using a PVS scheme is approximately a factor of two more
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expensive, in terms of coding time, compared to coding the Il-picture using JPEG2000.
For the 33 Mpixel ll-picture in Setup 1 this corresponds to an approximate 10 second
encoding time, compared to 6 seconds for JPEG2000. However, the improvement in
objective quality is significant with a vast improvement of up to 17.9 dB in Qgoba:.
Moreover, for a given quality an Sl-based PVS scheme require less than 10% of the bi-
trate of JPEG2000. For some Il-pictures it is sufficient with as little as approximately
a 1/60-th of the bitrate of JPEG2000. The implementations of a coding scheme can to
various degrees take advantage of and optimize for a certain system setup. Hence,
the results that | have presented with regards to coding cost or CPU-time should be
read with this in mind. A different experimental setup may prove to change the rela-
tionships between the evaluated coding schemes, albeit most likely only to a smaller
degree.

5.9.1 Author contributions
In this chapter on coding my contributions lay mainly in:

e Developing an Sl-based PVS scheme adopted for Il-picture structures with a
large set of relatively low resolution Els, which when evaluated showed a vast
improvement in coding efficiency compared to existing coding schemes.

e Evaluating theoretically and experimentally the effects of parameterizing a
generic PVS scheme and the factors to consider when constructing an efficient
coding scheme.

e Performing a qualitative study of the PVS-introduced coding artifacts and how
they manifest in the viewing domain using objective quality evaluation met-
rics.

The work presented in this chapter has been published in parts in Papers I1l and IV.

5.9.2 Problem definitions — P2a and P2b

How can the l1-based 3D images be coded such that a more compression efficient represen-
tation is achieved than what is possible with existing coding methods? This chapter has
shown that it is possible to construct a coding scheme vastly more efficient than ex-
isting coding methods for Il-pictures. The Sl-based PVS significantly outperforms
both the 2D images coding standard JPEG2000 as well as other previously proposed
coding methods for ll-pictures for Il-picture structures with a multitude of low res-
olution Els. Moreover, the coding scheme presented in this chapter is capable of un-
covering a relatively larger portion if the Il-pictures inherent redundancy by means
of utilizing on state-of-the-art coding standards such as H.264/AVC and JP3DAs a
result, higher coding efficiency and better visual quality are obtained.

What consequences will a proposed coding method have on objective quality? The cod-
ing scheme presented has shown large improvements in traditional objective quality
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metrics such as globally applying PSNR to the complete data set. However, the
studies have also shown that the Il-pictures coding schemes introduce distortion
characteristics that cannot be captured using global metrics. The previous chapter
presented quality metrics that allows measuring more of Il-picture-specific charac-
teristics. Using these metrics on coded Il-pictures have shown that the evaluated
coding schemes differ in how they distribute artifacts within the depth range of the
Il-picture. The Sl-based PVS spreads the coding artifacts homogenously through-out
the depth, contrary to the majority of other coding schemes.
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Chapter 6

Conclusions and future work

This chapter will give an overview of the work presented in this thesis, discuss what
conclusions can be drawn from the presented results and give suggestions on what
conceivable future works.

6.1 Overview

Chapter 1 presented the motivation for the research presented in this dissertation,
the overall aim of the work and the concrete problems to be solved. The solution ap-
proach was also generally presented. Chapter 2 then presented a background on 3D
images and techniques in general, Integral Imaging in particular, and related work
that combined forms the basis for the rest of the thesis. First, Integral Imaging was
presented with regards to the all-embracing description of the visible world: the
plenoptic function. | then suggested a nomenclature to describe the content of an
II-based 3D image or Il-picture using the concept of Component Image(Cl). Decom-
posing the Il-picture into different CI types enables specific inherent characteristics
to be revealed. The basic properties of an Il-picture was also summarized based on
a literature survey, which showed inter alia a strong relationship existing between
the viewing angle, the image resolution, and the depth range. The only manner in
which all three properties could be improved was shown to be by increasing the
pixel resolution of the Il-picture.

Beginning with Chapter 3, the research conducted to address the identified prob-
lems with regards to synthesis, coding, and evaluation is presented. Chapter 3 first
describe an ll-camera model in Chapter 3 which | constructed to be capable of char-
acterizing numerous camera systems based on Il. The ll-camera model was com-
bined with a open-source ray-tracing application (MegaPOV), for which | devel-
oped a set of macros that allows the ll-camera model to be used for synthesizing
Il-pictures, and the Scene Description Language of MegaPOV to be used for defin-
ing virtual scenes of arbitrary complexity. The feasibility of the modular synthesiz-
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ing method was demonstrated by producing a set of Il-pictures adhering to differ-
ent 1l techniques. The synthesis method provides a decoupling between Il-camera,
scene, and ll-picture contrary to previous works. Chapter 4 focused on the lack of
objective quality metrics specifically addressing how distortion manifests itself in
properties specific to ll-picture such as 3D image depth. Within the scope of the
research conducted on ll-picture evaluation | constructed and described two qual-
ity metrics, which explicitly measures distortion with regards to the depth and the
viewing-angle dependent content of a coded ll-picture. The metrics were used in the
distortion analysis performed within the realms of ll-picture coding schemes.

Chapter 5 initially presented why coding an ll-picture with a coding standard
for conventional 2D images (JPEG2000) is not a feasible approach, even though
the Il-picture is represented as a 2D image in its basic form. As a result | devel-
oped a coding scheme that explicitly aims at compressing Il-pictures. The cod-
ing scheme is formed from two constituting parts, constructing a Pseudo Video Se-
guence or Pseudo Volumetric Image and coding these constructs using the state-
of-the-art standards for video (H.264/AVC) or volumetric images (JP3D). A reduc-
tion in required bitrate by more than 90% (compared to JPEG2000) was shown to be
achievable when applying the coding scheme to a set of Il-pictures. The increase in
encoding time for the coding scheme using H.264/AVC was measured to be approx-
imately two-fold compared to JPEG2000, whereas the decoding time was almost ex-
actly the same for the two coding approaches. When the H.264/AVC approach was
compared with using JP3Das the encoding part of the coding scheme, the former
provided the same quality as the latter at a forth of the bitrate and a tenth of the
encoding time. Thus, the ll-picture redundancies is more efficiently revealed and
reduced if attacked using the 2D video coding tools of H.264/AVC than if JP3D is
utilized. The parametrization of the coding scheme was analyzed and the conclusion
was made that any PVS construction does not suffice, but instead that it is important
to consider the Il-picture structure for the coding scheme to be efficient. Moreover,
the chapter also shows that forming the PVS-frame from different Cls has conse-
qguences for the character of the coding artifacts, which are inevitably induced by a
lossy coding scheme.

6.2 Goal outcome

The work presented in this dissertation set out to achieve two goals, which was for-
mulated in Chapter 1 and is restated here for convenient reading:

G1. Produce ll-based 3D images that could depict strictly defined scenes while still
being adaptable to new emerging Il-techniques.

G2. Propose a coding scheme for ll-based 3D images that provides a variable trade-
off between coding efficiency and coding introduced distortion

Each of the two goals was split into specific problem definitions, which the previous
chapters have addressed in their concluding remarks. Those discussions are con-
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densed into two concluding remarks about the outcome with regards to goals G1
and G2.

6.2.1 Goal G1 - Easily produce ll-based 3D images

A modular method to synthesizing ll-based 3D images has been presented as an al-
ternative to physical prototyping of ll-camera systems. An Il-camera model forms
the basis and is easily constructed, modified, and stored using any software appli-
cation that can load and save images, as it is represented in the form of common
full-color 2D images with the use of the PNG image format. The method allows for
virtual scenes of arbitrary complexity to be defined using a well defined SDL. Thus,
the synthesis method provides a flexible and low cost production of Il-pictures with
exact knowledge about the properties of the scene, the Il-camera, and the resulting
3D image. Having access to ll-pictures with exactly known properties is a valuable
tool for quick plausibility-checks of design ideas as well as thorough analysis of ac-
curacy and precision in numerous algorithms operating on ll-pictures. Hence, the
presented synthesis solution achieves Goal G1 in a more flexible and generic way
than previous works.

6.2.2 Goal G2 - A coding efficient coding scheme for ll-pictures

This thesis has investigated the feasibility of using state-of-the-art coding standards
for video and volumetric images to compress ll-based 3 images. It has been shown
that transforming the Il-picture into a PVS and coding it using the video coding
standard H.264/AVC provides a significantly higher coding efficiency compared to
applying the state-of-the-art image coding standard JPEG2000 on the Il-picture di-
rectly. Approximately 1/60-th of the bitrate required by JPEG2000 was sufficient to
provide the same objective quality when the PVS-based coding scheme was used.
The increase in cost, with regards to measured CPU-time during Il-picture encod-
ing, for the PVS scheme was modest when compared to the significant improvement
in coding efficiency. A two-fold increase in coding time was measured in compari-
son with JPEG2000, whereas the decoding times were approximately equal. Hence,
the coding scheme for Il-pictures that | have presented shows a significantly higher
coding efficiency than previous schemes at a modest increase in cost with regards to
CPU-time.

6.3 Future work

The world of imaging is on the verge of a revolutionary change. The increasing res-
olution of image sensors and display panels has enabled a photographic technology
presented a century year ago to become the next step in image and video applica-
tions. Integral Imaging enables novel camera systems to capture a larger portion of
scene-reflected light than that which is possible with conventional cameras. Spatially
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multiplexing both light intensity and light direction onto the camera’s image sensor
allows for the captured Il-picture to produce 3D images, refocusable 2D images, and
more.

Integral Imaging is merely in its infancy, despite its 100 year old history. Numer-
ous imaging application areas will benefit from capturing a larger portion of light
properties than what is possible with conventional cameras. | believe that the II-
picture may prove to become one of the pillars in a new era in image processing,
computational photography, and 3D applications. The future work discussed next
will extend on the work this dissertation has presented, despite the many other inter-
esting topics related to Il. Thus, the ideas on future projects will relate to synthesis,
evaluation, and coding of Il-pictures.

6.3.1 Synthesis

The light transport in the synthesis method is currently simulated using ray-tracing
and geometrical optics. This approach covers a large part of all relevant proper-
ties of real-life light transport, but not all. For example, when the physical dimen-
sions of scene objects or Il-camera components are reduced, diffraction might occur.
Diffraction and other properties cannot be simulated using geometrical optics di-
rectly. Wave optic methods must instead be applied. To some degree this can be
solved by additional post-processing and extensions to the Il-camera model, e.g. by
adding pixel maps that defines the point spread functionality of the model. Discern-
ing the degree of distortion that such a model would induce compared to exact wave
optics, and measure the effects such an extended Il-camera model would have on the
final 1l-picture quality remains to be answered.

Simulating image capture using ray-tracing is inherently slow. Hence, there is
a potential for speeding up the rendering-time. Adapting the presented synthesis
method to include real-time ray-tracing methods is potentially a solution. The fast
development in programmable graphic cards are beginning to form the basis for
many computational problems that may be performed in parallel using relatively
cheap and powerful computational resources. Algorithmically solving the render-
ing problem is an alternative to tackle the problem with more computational power.
A rendering pipeline especially designed for multiview rendering was briefly de-
scribed in the previous works of Chapter 1. Investigating to what extent the sim-
ulation method presented can be coupled with this rendering approach would be
interesting. Developing an efficient multiview rendering architecture is likely a very
rewarding task, with the aid of increasingly powerful graphic card that allow them-
selves to be redesigned by software alone; rewarding not only from a scientific but
also from a commercial perspective. An increasing number of 3D displays require an
equally increasing number of 3D-enabled computers, game consoles, media players
etc., all of which would benefit from an efficient rendering engine to present different
types of 3D images and 3D video
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6.3.2 Evaluation

The sparse angle dependent quality metric uses a simple approximation of an I1I-
display when performing its calculations. So do the sparse depth dependent quality
metric. For the purpose of these metrics, this elementary model is sufficient. How-
ever, for other more comprehensive studies a more detailed Il-display model would
facilitate a more versatile display simulation. Such a model could be based on the
concepts of the II-camera model, given the similarities in operation between the two.

The greater part of the evaluations performed have focused on objective quality.
However, subjective tests are important in order to relate the numerical results to
perceived quality. Hence, testing the subjective quality of various coding schemes
for ll-pictures is an interesting work that will be conducted in an imminent project
using two different types of autostereoscopic multiview displays. These tests are
likely to focus on how the Il-picture specific properties are affected by distortion.
Thus, also enabling a study of how perceived quality correlates with the quality-
estimates provided by the proposed metrics.

In addition to performing evaluation using empirical studies with objective or
subjective methods, a more theoretical approach is also possible. The work initiated
by Ramanathan and Girod [109] in formalizing a rate-distortion framework for light
field images, is of special interest. With access to real-life ll-pictures it becomes in-
creasingly compelling to study the conformity between a statistical model and the
real-life signal and with what means the two can converge.

6.3.3 Coding

A coding scheme is strengthened in its validity as an increasing number of Il-pictures
confirm its performance and properties. Evaluations of how real-life ll-pictures are
handled by the studied coding schemes is an interesting project, or more an ongoing
process. Formalizing a commonly accepted test procedure with a set of commonly
accepted reference Il-pictures would benefit the field of I1-picture coding. The work
presented in this dissertation constitutes one step in such an endeavor.

Extending the coding scheme to also include time, i.e. investigate how to effi-
ciently code ll-based 3D video, is the next evolutionary step. The work that is ac-
tively being pursued for multi-view video in various standardization efforts within
the JVT of MPEG and ITU (ISO/IEC MPEG-C Part 3[110], Multiview Video Coding —
MVC, and Multiview Video plus Depth — MVD) should form the base for such future
works combined with the research presented with regards to Il-based 3D images.

The coding scheme | have presented uses standardized coding schemes as a basis
for coding ll-pictures. Other Il-picture coding approaches that does not re-use cod-
ing tools of state-of-the-art standards to the same extent, may prove to be even more
adaptable to the characteristics of the Il-picture. If so, only the sky (or the theoretical
upper bound) is the limit with regards to how high the quality can become for any
given bitrate.
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