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Abstract

The transition of camera technology from film-based cameras to digital cameras has
been witnessed in the past twenty years, along with impressive technological ad-
vances in processing massively digitized media content. Today, a new evolution
emerged – the migration from 2D content to immersive perception. This rising trend
has a profound and long-term impact to our society, fostering technologies such as
teleconferencing and remote surgery. The trend is also reflected in the scientific re-
search community, and more intention has been drawn to the light field and its ap-
plications.

The purpose of this dissertation is to develop a better understanding of light field
structure by analyzing its sampling behavior and to addresses three problems con-
cerning the light field processing pipeline: 1) How to address the depth estimation
problem when there is limited color and texture information. 2) How to improve the
rendered image quality by using the inherent depth information. 3) How to solve
the interdependence conflict of demosaicing and depth estimation.

The first problem is solved by a hybrid depth estimation approach that combines
advantages of correspondence matching and depth-from-focus, where occlusion is
handled by involving multiple depth maps in a voting scheme. The second problem
is divided into two specific tasks – demosaicing and super-resolution, where depth-
assisted light field analysis is employed to surpass the competence of traditional
image processing. The third problem is tackled with an inferential graph model that
encodes the connections between demosaicing and depth estimation explicitly, and
jointly performs a global optimization for both tasks.

The proposed depth estimation approach shows a noticeable improvement in
point clouds and depth maps, compared with references methods. Furthermore, the
objective metrics and visual quality are compared with classical sensor-based demo-
saicing and multi-image super-resolution to show the effectiveness of the proposed
depth-assisted light field processing methods. Finally, a multi-task graph model is
proposed to challenge the performance of the sequential light field image processing
pipeline. The proposed method is validated with various kinds of light fields, and
outperforms the state-of-the-art in both demosaicing and depth estimation tasks.

The works presented in this dissertation raise a novel view of the light field data
structure in general, and provide tools to solve image processing problems in spe-
cific. The impact of the outcome can be manifold: To support scientific research with
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light field microscopes, to stabilize the performance of range cameras for industrial
applications, as well as to provide individuals with a high-quality immersive expe-
rience.



Sammanfattning

Under de senaste tjugo åren har det skett en övergång från filmbaserad till digital ka-
merateknik, parallellt med en imponerande teknisk utveckling inom bearbetning av
omfattande digitaliserat medieinnehåll. På senare tid även en ny utvecklingslinje –
övergången från 2D-innehåll till omslutande perception. Detta är en utveckling som
har långtgående och långvarig påverkan på samhället och främjar arbetsmetoder
såsom telekonferens och fjärrstyrd kirurgi. Den här utvecklingst trenden återspeglas
också i det vetenskapliga forskningssamhället, och mer uppmärksamhet har lagts på
light field och dess olika tillämpningsområden.

Syftet med avhandlingen är att nå en bättre förståelse av strukturen i light field
genom att analysera hur light field samplas, och att lösa tre problem inom behand-
lingsprocessen av light field: 1) Hur problemet med djupestimering kan lösas med
begränsad information om färg och textur. 2) Hur renderad bildkvalitet kan förbätt-
ras genom att utnyttja den inneboende djupinformationen. 3) Hur beroendekonflik-
ten mellan demosaicing (färgfiltrering) och djupestimering kan lösas.

Det första problemet har lösts genom en hybridmetod för djupestimering, som
kombinerar styrkorna med korrespondensmatchning och djup från fokus, där ock-
lusion hanteras genom att använda flera djupkartor i ett röstningssystem. Det andra
problemet delas upp i två separata moment – demosaicing och superupplösning, där
djupassisterad analys av light field används för att överträffa kapaciteten för tradi-
tionell bildbehandling. Det tredje problemet har angripits med en inferentiell graf-
modell som explicit kopplar samman demosaicing och djupestimering, och samfällt
utför en global optimering för båda dessa processteg.

Den metod för djupestimering som föreslås producerar visuellt tilltalande punkt-
moln och djupkartor, jämfört med andra referensmetoder. Objektiva mätvärden och
visuell kvalitet jämförs vidare med klassisk sensorbaserad demosaicing och superupp-
lösning från multipla bilder, för att visa effektiviteten hos de föreslagna metoderna
för djupassisterad behandling av light field. En multitaskande grafmodell föreslås
även för att matcha och överträffa prestandan hos sekventiell light field-baserad
bildbehandling. Den metod som föreslås valideras med olika sorters light fields och
överträffar de bästa existerande metoderna inom både demosaicing och djupestime-
ring.

De arbeten som presenteras i avhandlingen utgör ett nytt sätt att betrakta den
generella datastrukturen hos light field, och tillhandahåller verktyg för att lösa spe-
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cifika bildbehandlingsproblem. Effekterna av dessa resultat kan vara många, till ex-
empel som stöd för vetenskaplig forskning om light field-baserade mikroskop, för
att förbättra prestandan hos avståndsmätande kameror i industriella tillämpningar,
såväl som för att erbjuda högkvalitativa omslutande mediaupplevelser.
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Chapter 1

Introduction

The continuous development of multimedia technology has led to increased de-
mands on the fidelity of the scene recurrence and its applications to quite a few
aspects of everyday life, such as 3D television, immersive gaming, remote surgery
and so forth. To enable these applications, stereoscopic views need to be generated
for human visual system to perceive a computer-aided reconstruction of the scene.
Such reconstruction is a challenging task that involves a variety of processing tech-
nologies, ranging from computer vision to digital photography. Both industry and
academia are pursuing research in related areas, including data acquisition, process-
ing, transmission and view rendering. This dissertation mainly addresses the image
processing aspects of the light field data, with particular focus on the vital role of
depth information in different processing steps.

1.1 Motivation

Conventional photography fails to meet the requirement of reconstructing the stereo-
scopic view since it captures only a projective transformation of the three-dimensional
world. Stemming from integral photography [Lip08], the light field [LH96], which
is able to represent both spatial and angular information of the scene, has developed
rapidly over the last decade [YGL+13, AOS17].

The light field captures rich light information compared with conventional cam-
eras, enabling processing techniques such as depth-image-based rendering [Feh04]
and 3D reconstruction [VMCS15]. These light field processings often require the
known depth. As one of the fundamental problems, the extraction of depth cues is
crucial for computer vision tasks, both the quality and usage of depth estimation has
been widely investigated [WG13, YYLG12]. In this dissertation, the processing chain
including capturing, pre-processing and post-processing stages of the light field (Fig.
1.1) is analyzed. Then using that knowledge, depth-assisted processing of light field
data are introduced for different stages of various capturing setups. Finally, the un-
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Scene Lenses CFA ADC Raw data

Devignet Demosaic Denoise RGB

Depth Refocus Compress
…

…

…

Capturing

Pre-processing

Post-processing

Applications

Figure 1.1: The sequential processing steps from 3D color content capturing to applications.

known depth is considered and a joint model is proposed to perform both depth
estimation and image quality improvements.

1.2 Purpose

The purpose of this dissertation is to develop a profound understanding of the light
field structure by analyzing its sampling behavior, and to propose independent solu-
tions to depth estimation, demosaicing and super-resolution, as well as a joint frame-
work that challenges the conventional light field processing pipeline.

1.3 Objectives

The research work presented in this dissertation aims to enhance the light field infor-
mation by taking depth information into account in light field data processing. The
approach is to understand the shortage of a sequential processing chain and benefits
of a depth-assisted processing methods. This aim is divided into the following list
of objectives:

• O1: To investigate geometrical optical models, and the sampling behavior of
different light field capturing systems.

• O2: To investigate the diversity of light field capturing systems, and their po-
tential challenges regarding the depth estimation process.
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• O3: To investigate the role of depth in the pre-processing of raw light field
data, and to propose depth-assisted demosaicing method to reduce artifacts.

• O4: To investigate the influence of depth in the post-processing of the light
field, and to propose depth-assisted super-resolution for light fields.

• O5: To propose a solution for light field quality enhancement with the un-
known depth, and to solve the interdependence between depth and light field
enhancement techniques using a graph model.

1.4 Scope

This work is conducted within the empirical, post-positivist research paradigm, and
relies on quantitative research methods. The work in this dissertation falls within
the field of light field resesarch. Specifically, this dissertation focuses on the image
processing and computational photography aspects of light field data. The work is
mainly based on geometrical optical models of the capturing devices. Wave optics
and high-order optical aberrations are beyond the scope of this work.

This work contributes knowledge to estimating and applying depth information
to boost the subjective and objective performance of the light field pre-processing
and post-processing. Demosaicing and super-resolution, which are typical steps
from the classical light field processing pipeline, are studied considering the influ-
ence of depth. The proposed methods in this dissertation allow for both small and
big baseline scenarios, in other words, multi-camera and plenoptic camera setups.
The methods in the dissertation are validated on real and synthetic datasets.

1.5 Contributions

The contributions on which this dissertation is based are the papers listed below,
included in full at the end of this work. As the first author of the listed papers, I
am actively involved in the ideas, methods, implementations, analyses, writing, and
presentation of the research work and results. The remaining co-authors contributed
with advice and guidance regarding conception of the work, interpretation of data
throughout the work, and assisted in the revision of respective papers. The contri-
butions of this dissertation are:

Paper I addresses objective O1, it presents the sampling analysis of general light
field capturing systems based on geometrical optics and ray-tracing.

Paper II addresses objective O2, it presents the intractable depth estimation un-
der the limitation of scarce color and features, and proposes an area-based depth
estimation scheme with occlusion handling for the microscope.

Paper III addresses objective O3, it proposes a demosaicing approach in the lay-
ered object space for recovering high color fidelity of raw light field data.
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Paper IV addresses objective O4, it proposes a super-resolution approach in the
layered object space that involves in-depth warping and cross-depth learning for the
light field resolution enhancement.

Paper V addresses objective O5, it proposes an Markov Random Field graph
model for solving the interdependence of depth estimation and image demosaicing
simultaneously.

The above contributions in terms of ideas, formulations, implementations and
evaluations are described in Chapter 5 and 6. The dissertation is structured as fol-
lows: Paper I to IV are presented in Chapter 5, and Paper V is presented in Chapter
6.

1.6 Outline

The following chapters in this dissertation are organized as follows: Chapter 2 pro-
vides an overview of light field theory, starting from computational photography
to capturing devices and their optical models. In Chapter 3, an overview of the
light field processing chain is provided, and a detailed theoretical basis is introduced
for demosaicing, depth estimation and super-resolution. In continuation of the the-
ory introduced in Chapter 3, Chapter 4 describes the related work in the context of
depth estimation, demosaicing and super-resolution. The proposed depth estima-
tion, demosaicing and super-resolution work are presented in Chapter 5 together
with the sampling analysis of light field representation. Based on the understand-
ings of depth-assisted light field processing, the study is extended to tackle the chal-
lenging joint problem of demosaicing and depth estimation in Chapter 6. Finally, in
Chapter 7 the dissertation is concluded and future work is discussed.



Chapter 2

Computational Photography
and Light Field

This chapter provides a general background on the research field in which this dis-
sertation is positioned. The required theory includes computational photography, as
well as light field and the relevant geometrical optical models for various capturing
systems. The strengths and shortcomings of different light field capturing systems
are introduced, which will lead to research problems discussed in the next chapters.

2.1 Computational photography

The context of this dissertation lies in computational photography [SJD12], which is
a multi-disciplinary area that integrates computer vision, digital photography, and
other related fields as shown in Fig. 2.1.

Computational photography aims to acquire rich information (beyond conven-
tional image processing) by combining the knowledge of image formation of digital
photography with development of computer vision tasks: 1) Digital photography
focuses on the data processing between scene and pixelized sensor information, in-
cluding optics, projective transformation, optical aberrations, multiple view geom-
etry (if multiple views are taken for the same scene content) [HZ03]. 2) Computer
vision covers topics related to the computational understanding of visual content,
such as optical character recognition, face detection, and robotics to help the com-
puter to perceive the world by projecting images to models [Sze10].

2.1.1 Image processing

Image processing is a prerequisite for computer vision tasks. When an image is
stored on a computer using finite pixels with limited precision, it can be regarded

5
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Figure 2.1: The relationships between computer vision, digital photography, computational
photography and image processing.

as a function I(x, y) of two discrete variables x and y. Essentially, image processing
manipulates the function I(x, y) to achieve following goals:

• Image enhancement: To improve the quality of I(x, y) based on the heuristic
approach so that image details can be perceived easily by both computer vision
and human visual system. For example, tone mapping, sharpening, and super-
resolution.

• Image restoration: To recover the original signal of I(x, y) before sampling,
quantization and image corruption based on statistical or mathematical as-
sumption. For example, demosaicing and denoising.

• Image coding: To encode the image information with reduced redundancy and
compact representation. For example, lossy/lossless image compression.

• Image analysis: To extract high-level semantic information by analyzing the
image features. For example, object recognition, face detection, stereo match-
ing.

The scope of this dissertation includes image enhancement, image restoration,
and image analysis. However, image coding is beyond the scope of our discussion.

2.1.2 Digital photography

Digital photography focuses on the image formation process of digital cameras. In
general, digital cameras use media such as charge-coupled devices (CCD) to capture
the image created by lenses. In this section, the image formation process is intro-
duced under geometrical optics, and the view geometry is classified based on the
number of captured images: single-view, epipolar, or multiple view geometry.

Single-view geometry is known as camera geometry. It describes a mapping
between the 3D world and a 2D image. A pinhole camera model is depicted in
Fig. 2.2. The optical center of a pinhole camera is C, Z is the principal axis, an
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Figure 2.2: Pinhole camera model.

object point O = (Xo, Yo, Zo)
T is mapped onto the sensor plane with its image

O′ = (Xo′ , Yo′ , Zo′)
T . By using homogeneous coordinates, such projective trans-

formation can be written as:



Xo′

Yo′

Zo′


 =



fXo

fYo
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 =



f 0

f 0
1 0
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Yo

Zo

1


 , (2.1)

where f is the focal length of the pinhole camera. The principal axis Z intersects
the sensor plane with principal point. Assuming that the principal point is not the
origin of image coordinate system, and it is shifted by a vector (∆x,∆y)T , then a
more general projective transformation can be formulated as:



Xo′
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Zo′


 =



fXo + Z∆x
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 , (2.2)

where K =



f ∆x

f ∆y
1


 is called the camera calibration matrix, and its parameters

f,∆x,∆y are internal parameters.

To further generalize the pinhole camera model, assume that camera center C is
not the origin of world coordinate system, it shifts by a translation vector t and it
rotates by a rotation matrix R, thus the generalized projective transformation matrix
is written as:

Q = K[R|t], (2.3)

where t = −RC̃, and C̃ consists of coordinates of the camera center in the world
coordinate system. Matrix [R|t] is often referred to as the extrinsic parameters of the
camera projection matrix.

Stemmed from single-view geometry, epipolar geometry accounts for studies of
two views capturing the same scene. Given a pair of views as shown in Fig. 2.3, the
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Figure 2.3: Epipolar geometry: two views capturing the scene content, left: without rectifica-
tion, right: after rectification

object point O is captured by cameras Cl and Cr at image points O′
l and O′

r respec-
tively. The epipolar plane OCrCl intersects sensors with lines in red (epipolar line).
The epipolar geometry includes three specific topics: 1) Correspondence geometry
that constrains the stereoscopic pair of image points O′

l and O′
r. 2) Camera geometry

that describes the relationships between camera matrices of Cl and Cr. 3) Structure
geometry that triangulates 3D point O of the scene.

Epipolar geometry is widely used in processing 3D information of the scene.
For example, the depth estimation task can be formed as a correspondence match-
ing problem and solved with constraints of epipolar geometry. It can be seen from
Fig. 2.3 that the correspondence pair O′

l and O′
r must lie within their corresponding

epipolar lines. Furthermore, it is feasible to determine the epipolar line by knowing
two camera centers and one image point without the exact position of object point
O [HZ03]. Then a triangulation is performed to find the 3D position of O.

The 3D reconstruction of O can be further simplified with rectification as shown
to the right in Fig 2.3. After image rectification, i.e. enforcing parallel optical axes of
the cameras and horizontal epipolar lines, the correspondence matching task can be
constrained to the same row of a pair of images, and the depth of a 3D point can be
triangulated as:

z = fB/d, (2.4)

where B is the baseline distance of two camera centers, d is the horizontal disparity.
Multiple view depth estimation can be solved in an identical manner, as multiple
pairs of stereo systems [HZ03].

2.2 Plenoptic function and light field

Generally speaking, computational photography aims to restore a subset of the 7D
plenoptic function by using computer vision so that it outperforms conventional
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digital photography. This section introduces the plenoptic function and its most
important representation - light field.

2.2.1 Definition

Plenoptic function is an ideal function which formulates light information with a set
of properties [AB91]. The full plenoptic function usually takes the form:

I = Γ(θ, ϕ, λ, t, x, y, z), (2.5)

where I is the light intensity of the light ray from direction θ, ϕ at spatial position
(x, y, z) of wavelength λ at time t. If the full plenoptic function is known, then it
is possible to recreate the whole scene content without information loss. Unfortu-
nately, it is not practical to record the full plenoptic function due to the limitations
of the digital cameras, such as color filtering, quantization, and discrete pixel loca-
tions [AT12]. The full plenpotic function is usually transformed according to specific
applications, for example, t can be ignored when sampling a static scene, conven-
tional single-view photography preserves a perspective transformation I(x, y) of a
3D scene, and λ relates to red, green and blue components when filtered by a bayer
pattern color filter array (CFA).

Light field representation is one of the most important derivations from the plenop-
tic function, using a two-plane representation [LH96]. In the 4D light field represen-
tation, only four coordinates are registered, namely L(u, v, x, y), where (x, y) are the
spatial coordinates related to viewing position (u, v). Conventionally, (x, y) relates
to the spatial resolution of the light field, and (u, v) relates to the angular resolution.

2.2.2 Light field sampling

Several capturing systems are often used to enable the acquisition of a sampled light
field. Plenoptic cameras utilize a microlens array (MLA) structure to decouple the
spatial-angular information of the 4D light field between the main lens and image
sensor. Based on different optical design, plenoptic cameras can be divided into two
categories.

Conventional plenoptic camera (also referred to as plenoptic 1.0, shown as Fig.
2.4(a)) focuses the 3D scene onto the MLA. The distance between the sensor and the
MLA is set to be the microlens focal length fMLA, and the main lens is focused at
infinity. Microlenses demultiplex the angular information of the same spatial point,
and record them into elemental images (EI) behind microlenses. The number of mi-
crolenses defines the spatial resolution (x, y), and the pixels of an EI sets the angular
resolution (u, v). Focused plenoptic camera (also referred to as plenoptic 2.0) focuses
the MLA onto either a real image (Fig. 2.4(b)) or a virtual image (Fig. 2.4(c)) that
created by the main lens, following the thin lens equation:

1

f
=

1

a
+

1

b
, (2.6)
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Figure 2.4: Different geometrical optic models of MLA-based plenoptic cameras. Left: con-
ventional plenoptic camera, middle: focused plenoptic camera with Keplerian configuration,
right: focused plenoptic camera with Galilean configuration.

where a and b are the distance from a lens to the image and the object respectively.
Keplerian configuration requires shorter microlens focal lengths, which often leads
to stronger distortions. The effective spatial resolution drops when the object is dis-
tant from the main lens. In contrast, Galilean configuration reduces distortions by
using long focal length MLA and increases the effective spatial resolution for distant
objects[PW10]. In focused plenoptic cameras, each microlens observes a fraction of
the object, and effective spatial resolution is coupled with depth, meaning that the
spatial resolution for focused plenoptic cameras depends on the proportion of over-
lapping field of view (FOV).

Both conventional and focused plenoptic cameras are able to capture a sampled
4D light field with a single exposure. However, it sacrifices the sensor resolution to
assist the trade-off between spatial and angular resolution.

In addition to plenoptic cameras, a conventional camera can also be used to sam-
ple a 4D light field if multiplexed in the spatial or temporal domain. One way is to
utilize a camera array which is equivalent to integrate a 4D light field L(u, v, x, y)
by sampling (x, y) from adjacently placed camera positions (u, v) [WJV+05]. An-
other way is to integrate a light field over time t with a moving gantry [ZohVKZ17].
Compared with a camera array, camera gantry is more affordable with adjustable
(u, v) steps, but it can only capture the plenoptic function if the scene is static. Other
methods to capture light field include integral photography which can be seen as
a plenoptic camera without the main lens [GZC+06], and computer graphics which
creates synthetic light fields with virtual cameras [HJKG16], as well as special optical
systems like light field microscopes [LNA+06].



Chapter 3

Light Field Depth Estimation,
Demosaicing and
Super-Resolution

An explication concerning the context of this work was provided in the previous
chapter - computational light field photography, and this chapter continues with a
brief summary of three specific light field processing steps in such context, including
light field depth estimation, demosaicing, and super-resolution. The purpose of this
dissertation is to investigate the above aspects and to propose novel solutions for the
light field. This chapter acts as a theoretical basis for the subsequent three chapters.

3.1 View-based depth estimation

Depth estimation is one of the oldest most widely studied topics in computer vision.
With the emergence of light field, new challenges and opportunities are brought into
this topic. In this section, I introduce depth estimation methods that will be further
investigated in the next chapters.

View images can be called by different names based on the capturing systems. It
can be referred to as elemental images from integral imaging [CJ09] or subaperture
images from plenoptic cameras, essentially representing the same concept: the inte-
gration Iu,v(x, y) of the light field L(u, v, x, y) from a virtual pinhole camera located
with a fixed (u, v) coordinate. View-based methods rely on the evaluation that is cal-
culated from pixel correlation or focus/defocus cues. This section focuses on local
methods such as correspondence matching, depth-from-focus/defocus (DfF/DfD).
The global method, particularly using the Markov Random Field (MRF), is explained
in Section 3.4.

11
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3.1.1 Correspondence matching

Most light field systems capture the scene with a parallel optical axis and known
relative position, such as plenoptic camera and multi-camera array, meaning that
rectification is no longer required except for lens distortion and non-square pixels.
Therefore, the light field depth estimation problem can be turned into a classic stereo
matching discussed in Section 2.1.2, and the depth can be inferred from (2.4) for a
reference view position (u, v). The only difference in the light field case is that this
process needs to be repeated for multi-view stereo.

The correspondence matching often works on the principle of local windows or
identified features in computer vision:

• Area-based: consider a local window centered at the reference pixel location
(x, y) to handle uncertainty in the matching process. It generates a dense depth
map except for image border if not padded, and various matching metrics can
be chosen from, such as the sum of absolute differences (SAD) [PU14] and nor-
malized cross-correlation (NCC) [LCDX09]. Additionally, Lambertian scene is
often assumed so that radiance emitted by the same object will be identical
regardless of viewing position to provide a better matching performance.

• Feature-based: extract features that are stable using feature detection algo-
rithms such as Sobel edge detection [GMC+16], corner detection [HS+88] and
SIFT algorithm [Low04]. This approach is more robust when occlusion occurs,
but can only result in a sparse depth map where features are detected.

In addition to the demand of correspondence matching accuracy, occlusion is also
a troublesome task for stereo matching because of its violation of photo-consistency
and it is often addressed with prior knowledge of the scene [WER15, WER16, ZWY17,
CHNC18].

3.1.2 Depth-from-focus/defocus

Depth-from-focus refers to methods that estimate the depth from a focal stack us-
ing a focus measure which describes the sharpness of the image [ST98]. The focus
measure attains the extremum when focused on the depth of an object. Thanks to
the rich angular information of light fields L(u, v, x, y) which enables after-shot refo-
cusing [NLB+05], a focal stack can be generated by integrating angular patches over
different depths z. The refocusing of angular patches can be calculated as:

1

uv

∫

u

∫

v

L(u, v, x− fBx

z
, y − fBy

z
)dvdu, (3.1)

where Bx and By indicate the baseline in x- and y-direction.

Focal stack is generated by shifting and averaging over the angular domain, the
angular patch in a focal stack is centrosymmetric with respect to the focused depth
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Figure 3.1: The bayer pattern of CFA (left), and the sensitivity of the human visual system
towards red, green and blue (right).

z. This observation is often used when insufficient depths z are available in the focal
stack: Instead of taking a focus measure, a blurring (defocus) factor is measured to
infer the approximate depth between two slices of the focal stack. This method is
referred to as depth from defocus (DfD). Though a full 4D light field enables refo-
cusing at any depth z, principles of DfD can still be effective on fast convergence in
finding local extremum for DfF.

3.1.3 Other techniques

In addition to correspondence matching on subaperture image (SAI) and DfF/DfD
on the focal stack, the dense angular sampling of plenoptic cameras also give rise to
epipolar plane image (EPI). EPI is obtained by slicing 4D light field L(u, v, x, y) in a
horizontal manner as Iv0,y0(u, x) = L(u, v = v0, x, y = y0), or in a vertical manner as
Iu0,x0

(v, y) = L(u = u0, v, x = x0, y). Thus, the 3D object is projected as a tilted line
across SAIs, whereby the slope encodes depth information [LGZD15]. More recently,
researchers have also presented techniques based on convolutional neural network
(CNN) and sparse coding.

3.2 Light field demosaicing

A conventional digital camera performs several pre-processings with built-in pro-
cessors, such as analog-to-digital converter (ADC) and CFA, in the capturing stage,
as shown in Fig. 1.1. Therefore, red, green and blue components are quantized and
filtered before it is recorded at each pixel location. One way to display a color pixel
is to use a combination of beam splitters and three sensors, each recording a full-
resolution color channel. However, this reduces light intensity in each split, requires
a precise alignment among sensors, and it is costly. A more general solution to this
problem is to apply the CFA in front of the sensor, passing only one color compo-
nent for each pixel, and demosaicing is performed afterwards to recover the other
two missing channels. Because of the mostly used bayer pattern [Bay76] (Fig. 3.1),
demosaicing is also known as debayering.

The bayer pattern uses half of the image resolution to measure the green channel,
and only a quarter of pixels stores each of red and blue. This is because that human
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visual system (HVS) is more sensitive to the medium wavelengths (green), as can be
seen in Fig. 3.1.

As a light field sampling device, plenoptic cameras [GYLG13, PW10] also employ
bayer pattern CFA like conventional digital cameras. Therefore, demosaicing is also
required. Though light field demosaicing can be achieved with simple interpolation
techniques like bilinear interpolation, the real challenge lies in finding proper image
priors so that small reconstruction errors can be achieved. Intuitively, classic demo-
saicing approaches of 2D images can be applied directly to the perspective image or
the EI. However, it is suboptimal due to the fact that rich and abundant information
that can be provided by the 4D light field is discarded. Specifically for light field de-
mosaicing, whether if the demosaicing approach is making the most of the 4D light
field and can be adapted to various capturing systems are of significant importance.

The accuracy of light field demosaicing is critical to the performance of following
processings which takes color images as the input. Therefore, a significant effort
need to be devoted to the demosaicing process before error propagation happens in
the post-processing chain. However, the demosaicing has been overlooked by most
researchers in this field, and only a few solutions are proposed [YYLG12, HC14,
DLPG17].

3.3 Light field spatial super-resolution

Plenoptic cameras sacrifice the image resolution to encounter the spatial-angular
trade-off in the exchange for one-shot light field capturing ability. For example, the
raw image captured by Lytro Illum is of size 7728 × 5368, but the rendered SAI is
shrinked down to 625×434 pixels [RE16]. To enhance the image resolution, many re-
searchers have devoted to light field super-resolution (SR) [BZF09, WG13, YJY+17].

SR is the process to obtain high-resolution images from low-resolution ones. Super-
resolution can be classified in terms of the number of low resolution images in-
volved: single-image super-resolution (SISR) and multi-image super-resolution (MISR).
Most of SISR algorithms employ some learning scheme to search relevance between
low-resolution and high-resolution image patch. Then the missing information is
hallucinated to super-resolve. MISR methods often assume a warping relationship
between low-resolution images, and that relative displacements among these images
can be found to fill the missing pixels.

Light field super-resolution can be achieved by applying SISR to each of the SAIs,
or employing MISR on a sequence of SAIs. However, these are not optimal ap-
proaches, because SISR overlooks the fact that SAIs in a 4D light field are closely
correlated, and useful information can be extracted from other SAIs. Furthermore,
SISR propagates hallucinated artifacts back to 4D light field, which makes subse-
quent processings prone to be erroneous [NM14]. MISR, on the other hand, takes
correlation of SAIs into account, but its global image warping model does not fit the
geometry of light field data because of the local disparity differences among pixels,
and it is computationally demanding.
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This dissertation focuses on the super-resolution for light field SAIs in spatial
domain and distinguish LFSR from conventional SR methods by measuring the ren-
dering performance. For super-resolution in the angular domain, I refer readers to
the field of view synthesis [KWR16]. It is also worth noting that the used princi-
ples are quite different between demosaicing and super-resolution: demosaicing is
an image restoration technique that recovers original color by modeling intra- and
inter-channel dependencies [DLPG17], whereas super-resolution belongs to image
enhancement that uses approaches such as projection and learning [FVA17], even
though the common goal of both is to upsample images,

3.4 Markov random field in computer vision

Most of computer vision problems can be posed as a labeling model using con-
straints based on prior knowledge and observations, ranging from low-level demo-
saicing [ST12] to high-level semantic segmentation [LLL+17]. Such a labeling prob-
lem can be described with a set of random variables (pixels) with sparse local inter-
actions, and solved by finding the maximum a posteriori (MAP) configuration, which
is the best estimate from observations B [Li94]. According to the Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
, (3.2)

where A is a configuration of labels for pixels (x, y), P (A) is the a priori probability
of configuration A, P (B|A) is the likelihood density of the observation B. Therefore,
the vision problem can be mathematically solved by finding a configuration Ã so that
Ã = argmaxP (A|B). However, the a priori is a difficult problem to solve, as it reflects
how individual random variables affect one another. This makes bayesian labeling
an intractable task, especially when applied to computer vision where numerous
pixels need to be considered at the same time. Fortunately, researchers in computer
vision observe that the pixels tend to be dependent on a local neighborhood rather
than irrelevant distant pixels. Based on this observation, MRF is employed to handle
the a priori probability by using a potential function.

Consider a neighborhood N for an image I :

N = {N(xi,yi)|∀(xi, yi) ∈ I}, (3.3)

where N(xi,yi) is the collection of pixels in a local window centered at (xi, yi), and
the neighborhood is subject to the condition:

(xi, yi) ∈ N(xj ,yj) ⇐⇒ (xj , yj) ∈ N(xi,yi), (3.4)

meaning that if a local window centered at (xj , yj) includes a pixel (xi, yi), then vice
versa. In other words, the dependencies between a pair of pixels are always mutual,
and its corresponding graphical model is undirected.

Based on the defined neighborhood, a set in which every pixel is the neighbor of
all others is called a clique. A clique can be seen as a complete graph as shown in
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Figure 3.2: Undirected Graph models (left) and example cliques shown alongside them, ran-
dom variables are shown as red dots. A clique is a complete graph, and a complete graph is
its own maximal clique.

Fig. 3.2. The interactions between pixels are restricted by the clique, meaning that
the direct mutual impact on the labeling task is no longer considered if two pixels
are not in a clique.

A set of random variables is considered as a MRF model if and only if: 1) The
positivity constraint holds, which limits the probability for all configurations to be
strictly positive for all pixels (x, y) so that it can be considered as a random field:

P (A) > 0, (3.5)

and 2) the Markovian locality constraint holds, which requires that the probability
of a pixel xi, yi conditioned on the whole graph is equivalent to the probability that
conditioned on its neighbors:

P (A(xi,yi)|A(xj ,yj), (xj , yj) ∈ I) = P (A(xi,yi)|A(xj ,yj), (xj , yj) ∈ N(xi,yi)). (3.6)

Additionally, according to the Hammersley-Clifford theorem, an MRF can be fac-
torized using cliques of its corresponding graph model, which has the form:

P (A) =
1

N
e

−U(A)
T , (3.7)

where N is the normalizing factor, T is the temperature parameter which is often
taken to be 1, U(A) is the prior energy term that needs to be minimized in order to
find the most stable state of the defined neighborhood system. The prior energy term
U(A) can be further factorized as a summation of energy with respect to the cliques
C:

U(A) =
∑

C
VC(A) =

∑

C1

V1(A(xi,yi)) + λ
∑

C2

V2(A(xi,yi), A(xj ,yj)) + . . . , (3.8)
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where C1, C2 . . . indicate cliques C with a different number of pixels, as shown in
Fig. 3.2. In computer vision, the energy minimization can be solved with various
techniques, such as graph cut [BVZ01] and min-cut/max-flow algorithms [BK04].
C1 and C2 are referred to as data term (or unary term) and smoothness term (or bi-
nary term) respectively, and higher orders of potential terms are barely used. Data
term is mostly used to penalize the inconsistency of event A with the observed data,
whereas smoothness term often penalizes the change in local neighborhood except
for boundaries (if it is defined) so that regularization is performed to prevent outliers
and remove noise.
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Chapter 4

Related Works

This chapter summarizes the related works conducted in three areas of this disser-
tation: depth estimation, demosaicing and super-resolution in the context of light
field processing. This chapter begins with positioning and description of the works
in each area, and ends with a discussion on the identified knowledge gaps.

4.1 Light field depth estimation

A number of contributions focus on the light field depth estimation because depth
is critical to a wide range of applications, e.g. light field super-resolution [BF11] and
image rendering [ZDdW10]. Typically, most light field depth estimation tasks are
managed in a two-step strategy: an initial depth is estimated from views or EPIs and
then refined with global methods [WER15, WER16, LXRC17].

4.1.1 View-based initial depth estimation

Early stereo matching algorithms are based on the feature detection and feature
matching to generate a stable yet sparse depth map [MKS89]. However, researchers
are not keen on such techniques because they fail to meet the requirements of other
processings like depth-image-based rendering (DIBR). In [EE10], a new area-based
correspondence matching was proposed using the NCC algorithm. A NCC filter is
first applied to a small window size and then aggregated to preserve both the fine
image structure and reduce the noise. Yu et al. [YGL+13] imposed 3D line geom-
etry as constraints in their framework so that line structure can be encoded into a
correspondence matching algorithm. To solve the sub-pixel disparity problem for
plenoptic cameras, Jeon et al. [JPC+15] proposed to build a cost volume based on
SAD and gradient differences for the stereo matching task. It is further refined by a
feature-guided labeling framework for low structure regions.

Several other methods are proposed to specifically handle the occlusion problem
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of correspondence matching. In [WER16], an occlusion-aware depth estimation al-
gorithm is proposed based on the principle that approximately half the viewpoints
still conform to photo-consistency criterion when occlusion exists. Zhu et al. extend
the depth estimation framework in [WER16] to address multiple occlusions based
on the partial photometric consistency of occluders in spatial and angular patches
[ZWY17]. Instead of improving correspondence matching measures, [CHNC18] fo-
cused on solving depth uncertainty in partially occluded border regions with super-
pixel regularization.

Based on the computational refocusing of the light field [NLB+05], Tao et al.
[THMR13] combined depth cues from the focal stack and correspondence cues from
stereo images to improve the depth map quality. A novel cue which compares the
difference between synthesized focal stack and ground truth focal stack is proposed
in [LCBKY15]. The depth is estimated by matching and merging both the focus cue
and the proposed cue with iterative refinements. Moreover, neural networks are also
introduced to learn depth cues from a focal stack. Zhou et al. formulated a pixel-
wise classification problem and generated discrete depth labels from a CNN that is
pre-trained on local structure information and high-level semantic feature[ZZY+19].

4.1.2 Markov random field depth refinement

The initial depth estimation have outliers because of noise from insufficient light-
ing, depth discontinuity at object border, inherent uncertainty of matching, and oc-
clusions. Therefore, global optimization such as a MRF architecture is usually ap-
plied to refine the depth maps [YGL+13, THMR13, JPC+15, WER16, MYXA19]. In
[YGL+13], the endpoints of line segments are assigned with high-consistency dispar-
ity. The smooth transition of disparity on such line segments is explicitly encoded
as a part of the energy function and the multi-view graph cut is employed to find
the global minimum energy. Tao et al. propagated both defocus and correspondence
cues to the MRF framework and stop the optimization when the error between two
iterations is below a threshold [THMR13]. Jeon et al. [JPC+15] set the reliable match-
ing correspondence as the additional constraints of the energy function to propagate
confident disparity estimates while preventing oversmoothing across borders. In
[WER16], the occlusion constraints are encoded in the smoothness term so that the
graph cut algorithm does not oversmooth the depth map when possible occlusion
occurs. Mo et al. [MYXA19] divided the initially estimated depths into to classes:
valid and invalid. The valid estimations are depths which are not occluded or in
homogeneous intensity patches. Then the unary term is applied only to the valid es-
timations, while the binary term constrain the smoothness on both valid and invalid
depths.

4.1.3 Concluding remarks

Depth estimation is a very active research field with numerous proposed methods.
Local depth estimation includes correspondence matching and DfF/DfD methods.
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Correspondence matching is sensitive to vignetting problem of the plenoptic camera.
NCC outperforms SAD and SSD because it compensates for the lighting difference
mathematically. Compared with correspondence matching, DfF/DfD is robust to
noise, and can handle sparse feature space, but it requires additional computational
power to perform necessary refocusing step of the focal stack generation. In gen-
eral, local depth estimation suffers from occlusion, noise and light field sparsity. In
contrast, the global optimization use explicit priors instead of local aggregation. The
priors can exclusively handle smoothness, occlusion and other intractable problems
of local estimation. Thus, global method is often used as a refinement process to the
initial depth.

4.2 Light field demosaicing

There have been relatively few efforts in addressing the light field demosaicing in
the literature. These works can be divided into two categories based on whether
they explicitly consider the sampling model of the light field.

4.2.1 Sampling-based approaches

Georgiev et al. [GCL11] analyzed the sampling model of plenoptic cameras and
proposed to combine super-resolution with demosaicing. The method interleave
raw images on a rendering plane, so that information from other EIs can be used
directly. Based on this work, Yu et al. [YYLG12] proposed a similar approach to
postpone the demosaicing process after a 2D integral projection which resamples
the light field. Then the demosaicing was performed before rendering according
to the chosen depth in order to preserve more high frequency information. Seifi
et al. reported a method that first estimated disparity from raw images, and then
the missing color components were propagated to other EIs based on a confidence
measure[SSDP14].

4.2.2 Other approaches

Most of the post-processing schemes are developed on top of a common light field
toolbox [DPW13], which employs bilinear interpolation to raw lenslet images. A
learning-based approach was proposed by Huang et al. that uses K-SVD algorithm
to train a dictionary on spatial and angular correlations from a set of reordered sam-
ple vectors of the light field. Then the demosaicing is done by solving the sparse
reconstruction [HC14]. Lian et al. assumed sparse gradients and low illumination,
then formulated the demosaicing problem as an optimization process for the simu-
lated light field data [LC16]. In order to solve the vignetting problem, David et al.
used a pre-captured white image to weigh the reliability of each pixel, and demo-
saicing is performed within the EI to avoid crosstalk effects [DLPG17].
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4.2.3 Concluding remarks

Classic demosaicing methods interpolate missing colors based on neighboring pix-
els on the sensor. However, this yields artifacts for MLA-based plenoptic cameras
[GCL11] and will propagate erroneous information into the processing pipeline. Fur-
thermore, the important role of depth is barely discussed and a general solution is
still lacking for various light field systems.

4.3 Light field spatial super-resolution

The light field capturing systems, especially plenoptic cameras, suffer from the spatial-
angular trade-off. This makes the rendered quality of views uncomparable to con-
ventional digital cameras which dedicate the whole sensor for spatial resolution.
Existing spatial super-resolution methods for the light field can be divided into three
groups: projection-based, optimization-based and learning-based approaches [CXCL19].

4.3.1 Projection-based approaches

The spatial resolution of an SAI is not limited by a single SAI, but the projection from
all other SAIs [LOP+09, GCL11, DOS+13]. By taking advantage of disparity or depth
information, the other views can propagate pixels into a reference view. If sub-pixel
disparity exists, the reference view is super-resolved. Liang et al. [LR15] reported
the same conclusion that lenslet plenoptic cameras can surpass the Nyquist limit
when making use of cross-view information. The conclusion is derived based on
geometrical optical analysis of a prefiltering optics model that considers full spatial
and angular sensitivity of the sensor. Another simple projection-based approach is
proposed by [WHS+16] which requires no prior information based on projection re-
definition. Alain et al. proposed to apply a high-dimension form of block-matching
and 3D filtering and back-projection iteratively to achieve spatial super-resolution
[AS18].

4.3.2 Optimization-based approaches

Optimization-based methods solve the super-resolution problem with different mod-
els and priors. [BF11] introduced a variational Bayesian framework to super-resolve
the light field by merging multi-view information. The Lambertian reflectance and
texture-preserving priors are employed to avoid aliasing. Mitra et al. [MV12] pro-
posed a patch-based approach using a Gaussian mixture model (GMM) such that
each patch is considered as a Gaussian random variable conditioned on its dispar-
ity. The GMM patch prior is then used to perform multiple tasks, including super-
resolution. Wanner et al. [WG13] employed a total variation prior not only to obtain
a favorable inpainting result, but also to minimize computational effort in the vari-
ational framework. The framework can achieve both spatial super-resolution and
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angular view synthesis. An undirected weighted graph model was constructed in
[RF17] with three terms: the first term constrains correlation between HR and LR
views; the second term collects information from other views; the third term regu-
larized the HR views by geometric structure. The work is further extended to replace
the quadratic regularizer (which tend to be low-pass) with a non-smooth regularizer
in order to preserve high frequency information [REGF18].

4.3.3 Learning-based approaches

Recently, vast data-driven learning-based approaches are applied to most fields in
computer vision due to their outstanding performance. CNN was introduced to
light field in[YJY+15], where two networks are trained for spatial super-resolution
and angular view synthesis independently. Gul et al. proposed to collect four neigh-
boring pixels from an SAI and use a shallow CNN to predict three in-between super-
resolved pixels to achieve a higher spatial resolution [GG18].

4.3.4 Concluding remarks

Optimization-based and learning-based super-resolution methods are limited by the
required computational power and datasets. Projection-based light field super-resolution
relies on simple inherent light field image formation models and disparity with sub-
pixel accuracy. As concluded, the light field depth estimation is still an active field
with unsolved problems. Therefore, how to make use of uncertain depth and adapt
SISR/MISR techniques are the keys to the light field spatial super-resolution prob-
lem.
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Chapter 5

Depth-Assisted Light Field
Processing

The previous chapter presented related works with overlooked and unsolved light
field processing problems stated in their respective concluding remarks. This chap-
ter discusses the critical role of depth, and a study of depth-assisted light field pro-
cessing pipeline. Firstly, a microscopic example is raised in Section 5.1 to show the
how problematic the depth estimation can be. This is then followed by Section 5.2
and 5.3, which present depth-assisted methods designed to address the light field
demosaicing and superresolution respectively.

5.1 Light field microscopic depth estimation

5.1.1 Introduction

Section 2.2.2 discussed about various optical arrangements in capturing light field,
and they pose various challenges to depth estimation. For example, light field mi-
croscope poses unique depth estimation challenges: 1) microscope captures ortho-
graphic views due to its telecentric optical design [LNA+06, SSPL+18]; 2) specimen
images are sparse in feature and color compared with macroscopic scenes; 3) micro-
scopes have a shallow depth of field [SSPL+18], this optical sectioning phenomenon
breaks down stereo matching accuracy.

5.1.2 Proposed solution

The proposed solution is based on a hybrid strategy of DfF and correspondence
matching, because either one alone cannot manage the posed challenges. On one
hand, DfF is limited by the sharpness cue but benefits from the orthographic pro-
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(a) (b)

Figure 5.1: Light field captured by FiMic microscope: (a)raw sensor image labeled with (u, v)

coordinates; (b)refocused images by shift-and-sum, focusing at different depths in µm.

jection. On the other hand, correspondence matching suffers from sparse-featured
monochromatic scene content but it provides specimen details considering all-in-
focus optical sectioning.

The microscopes are inherently orthographic, and this introduces a linear depen-
dence between depth and disparity. One of the most important induced features is
the simple shift-and-sum implementation of the light field refocusing algorithm (see
Fig5.1(b)). The shift amount (∆x′,∆y′) of orthographic view I(u′, v′) is calculated
with respect to its relative position from reference view I(u, v):

(∆x′,∆y′) =
(
d× (u′ − u)× cos

π

6
, d× (v′ − v)× sin

π

6

)
, (5.1)

where d is the disparity, and an example of (u, v) naming convention is shown in Fig.
5.1(a). The average intensity of shifted views is calculated to generate a refocused
image as shown in Fig. 5.1(b).

Unlike other heuristic depth cues used in DfF, the advantage of the extended
depth of field of FiMic is considered to develop a matching approach. Assuming
the reference view I(u, v) is sharp, NCC measure is calculated at (x, y) between a
refocused image I(u, v) and the reference image I(u, v) as:

ϵ(I, I) = 1

N

∑

i,j

(I(x+ i, y + j)− µI)(I(x+ i, y + j)− µI)
σI(x,y) · σI(x,y)

(5.2)

where σ and µ indicate the standard deviation and average of the considered win-
dow, and N is the number of pixels in the window. The maximum of NCC value
between reference image I and refocused image I is attained when pixel (x, y) is in
focus. A voting scheme is proposed to handle the occlusion based on partial occlu-
sion theory presented in paper [WER16]. The partial occlusion refers to the assump-
tion that the occluder blocks a few of the views, and the non-occluded views can
still converge to a spatial point. The depth of a spatial point is registered by setting a
threshold of minimum number of views that shows photo-consistency. Note that the
threshold is determined empirically by the number of views and the scene content.
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(a) (b) (c)

Figure 5.2: Depth estimation results of (a) the proposed method; (b) [NN94] and (c) [PPG13].
Top row shows the 3D point cloud, and the bottom is depth map of the center view.

5.1.3 Methodology

The performance of depth estimation is generally evaluated with both objective met-
rics and visual comparisons. However, objective metrics are limited to datasets gen-
erated with computer graphics and do not reflect all aspects of real scenes and the
perception of human visual systems. Furthermore, to the best of my knowledge
there is no existing microscopic light field with ground truth depth, and the depth es-
timation performance are evaluated on visual performance in light field microscopy
[LNA+06, LWZD15]. The data used in the validation is captured by a state-of-the-art
Fourier integral light field microscope (FiMic)[SSPL+18] that has an extended depth
of field, and single-shot light field capture capability. The specimen is the tainted
fluorescent cotton fiber which has a complex occlusion, distinct line structure and
certain sparsity in features. The pitch of each view is 683 pixels, and the central view
is chosen as the reference view to perform depth estimation and occlusion handling,
as shown in Fig. 5.1. Finally, both the 3D point cloud and the depth map of the
proposed solution are compared against classic shape-from-focus (SfF)[NN94] and
state-of-the-art robust sfF (R-SfF) [PPG13].

5.1.4 Results and analysis

The visual comparison in Fig. 5.2 shows that the proposed method outperforms
the depth estimation quality achieved by others for monochromatic sparse features
captured by microscope. Noticeable artifacts and shadowing can be seen in the point
clouds (top) generated by [NN94] and [PPG13], meaning that the occlusion is not
properly handled and the occluded scene cannot be reconstructed. In addition, the
fine fiber structure is lost on the depth map (bottom) generated by [NN94, PPG13],
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showing that the correspondences are mistakenly matched. In contrast, our method
keeps reasonable details of the fiber structure and handles the occlusion.

5.2 Depth-assisted demosaicing

5.2.1 Introduction

In a conventional plenoptic camera, it is often assumed that each microlens captures
one single spatial point of the scene and distribute its angular information over pixels
of the EI (Fig. 2.4). However, this assumption no longer holds if depth is taken
into account, implying the existence of disparity and inconsistent sampling order
between sensor pixels and the scene content. In this section, an object space light
field demosaicing method is proposed with the aid of roughly estimated depths.

5.2.2 Proposed solution

Conventional demosaicing algorithms are based on the regular pixel grid of the sen-
sor because the sampling frequency of the scene is essentially defined by adjacent
pixels. However, such theoretical basis is violated in MLA-based plenoptic cameras.
Considering a conventional plenoptic camera model as presented in Section 2.2.2,
a natural way of finding minimal sampling interval is to back-project all pixels to
a point cloud in the object space by ray transfer matrix (RTM). Therefore, the near-
est samples captured by plenoptic cameras is determined by correspondences rather
than the pixel neighbors (Fig. 2.4). In other words, once the depth for each pixel is
known, it is possible to make full use of potential of light field samples to recover
the missing color information.

In general, demosaicing among scattered monochromatic points in the 3D ob-
ject space requires more computational power and sophisticated interpolation algo-
rithms such as trilinear interpolation. Fortunately, there are cases that are simple to
cope with: a planar scene that lies on a constant depth. In this case, the 3D object
space collapsed back to a 2D demosaicing problem. However, it should be noted
that the mosaiced back-projected pixels on such a depth do not necessarily follow
the bayer pattern and the pixel grid can be irregular, as shown in Fig. 5.3. There-
fore, an inverse distance weighting function was adopted as the color interpolation
method for each channel at pixel (x, y):

I(x, y) =

N∑

i=1

ωiI(xi, yi)

/
N∑

i=1

ωi , (5.3)

where (xi, yi) is the coordinate of N nearest neighbors of the same color (R or G or B)
on a certain depth plane. If pixel (x, y) and (xi, yi) does not converge to an identical
spatial position, The inverse weighting factor ωi has the form:

ωi =
1

∥(xi − x, yi − y)∥k2
, (5.4)
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(a) (b)

Figure 5.3: An example of pinhole plenoptic sampling: (a) pixel samples back-projected onto
the conjugate planes of the object space; (b) from left to right: simulated back-projection of
pixels based on depth Z1, Z2 and Z3 respectively, color blocks at the bottom show different
simulated CFAs. Note the simulated CFA fashion is not necessarily the same with the bayer
pattern.

where ∥ · ∥2 indicates L2 norm, and k is a positive real number called the power
parameter, taken as k = 2.

When the scene content lies on the focal plane of the main lens, no demosaicing
is required because the focal plane will be focused directly on the MLA, distributing
the color information of a single spatial point to different RGB-sensitive pixels of the
EI behind a lenslet. Therefore, if ∥(xi−x, yi−y)∥ = 0, the missing color components
can be extracted directly by averaging neighboring pixels of the specific color under
the same microlens:

I(x, y) =
1

N

N∑

i

I(xi, yi). (5.5)

Note that projecting pixels onto several layers (Fig. 5.4) not only reduces the com-
putational complexity by avoiding interpolation in high dimensional space, but also
endows the demosaicing method with the capability of handling uncertain depths
by keeping proximity of pixels through projection process. Additionally, the layered
object space can handle the depth ambiguity of homogeneous regions and repeti-
tive patterns quite well. This is due to the fact that the depth errors of such regions
are generally consistent and smooth, so that it will be mapped onto the same layer,
preserving sampling adjacency in the object space.

5.2.3 Methodology

The performance of demosaicing methods are commonly assessed with both objec-
tive metrics and visual quality [LGZ08]. Among objective metrics, peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) are widely used to evalu-
ate the difference between the demosaiced image and the ground truth [HC14, LC16,
DLPG17, KHKP16]. However, available datasets are mostly pre-processed by the
built-in processors in the digital cameras before being saved in the storage, and such
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Figure 5.4: A layered object space diagram, mosaiced sensor pixels are back-projected onto
several layers according to their depths

Table 5.1: Performance of demosaicing methods in terms of mean PSNR value and SSIM
index

Proposed method [DPW13] [DLPG17]
PSNR 36.43 24.06 31.35
SSIM 0.968 0.812 0.952

color images cannot be considered as the ground truth. Therefore, a benchmark syn-
thetic light field dataset [HJKG16] has been used to verify the proposed scheme. The
dataset includes 28 light fields of size 9× 9× 512× 512.

The proposed demosaicing scheme has been compared against two other meth-
ods, including a widely used light field decoding pipeline [DPW13] and a state-of-
the-art light field demosaicing approach [DPW13, DLPG17]. Note that the perfor-
mance of light field demosaicing methods degrade drastically at EI borders. This
is because crosstalk and noticeable aliasing artifacts occur when demosaiced across
different EIs using sensor-based demosaicing methods. Thus, peripheral views were
rendered for visual comparison instead of the center view to emphasize such signif-
icant visual artifacts and reveal the shortcomings of previous methods.

5.2.4 Results and analysis

The performance of the proposed method is evaluated on public dataset [HJKG16],
compared against a widely used light field toolbox [DPW13] and a state-of-the-art
approach [DLPG17]. The average PSNR and SSIM is shown in Table 5.1

As shown in Fig. 5.5, both reference methods degrade the image quality on
the repetitive pattern while the proposed solution preserves high-frequency com-
ponents. The black stripes on the basketball are replicated in the image demosaiced
by [DPW13] due to crosstalk, while in the image demosaiced by [DLPG17] there are
zipper artifacts. False colors are seen on the third sub-image for both of the reference
methods because they overlooked pixel correspondences and used suboptimal pix-
els (even though they are neighboring pixels on the sensor) to perform demosaicing.
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(a)

(b)

(c)

Figure 5.5: Visual comparison between the proposed demosaicing scheme and comparison
methods: (a) [DPW13], (b)[DLPG17], and (c) the proposed scheme.

The fourth image (details of a floor) shows how well the high-frequency compo-
nent is preserved by each method. Noticeable aliasing can be seen for both reference
methods whereas such aliasing did not appear in the results of the proposed solu-
tion.

5.3 Depth-assisted super-resolution

5.3.1 Introduction

A layered object space framework was introduced in the previous section to handle
the depth uncertainty. This section will address the super-resolution problem for
light field data as an extension to the same framework.

Natural images tend to contain repetitive visual content. In particular, small im-
age patches in natural images tend to recur many times inside the image, both within
the same scale and cross different scale [NM14]. Such information redundancy can
be readily found especially in the light field context where multiple views of the
scene are available. Therefore, a super-resolution method which involves in-depth
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warping and cross-depth learning is proposed in this section.

5.3.2 Proposed solution

An high-resolution image can be directly calculated with inverse distance weight-
ing function (5.3) in the layered object space by applying the demosaicing scheme
proposed in Section 5.2. However, analytic interpolations such as bilinear or bicu-
bic interpolations can only generate an image of the desired number of pixels that
lacks high-resolution details. Therefore, an light field SR framework that employs
two techniques: in-depth warping and cross-depth learning, are proposed in this
section.

The in-depth warping aims to recover the high-resolution image IHR from a set
of low-resolution images ILR. Formally, the relationship between high-resolution
image IHR and low-resolution image ILR is modeled as follows:

ILR = FIHR, (5.6)

where F denotes low-pass filtering (to avoid aliasing) and downsampling. First, the
depth for each pixel is estimated (using [LS19]) and used to project all sensor pixels
into a 3D point cloud. Then the 3D points are warped to the nearest depth layer
following their optical paths. If the depth is accurate, angular patches from different
views are projected onto the same depth layer, forming similar patches (the patch is
identical if the scene is Lambertian). On the other hand, if the similar patches are not
found from other views on the same projected depth layer, depth is erroneous and
the corresponding patches are projected onto different layers, thus stopping further
error propagation. In this case, the number of layers essentially set the trade-off be-
tween accurate patch correlation and erroneous depths. The more accurate a depth
map is, the more layers should be adopted to ensure a high patch similarity score.
This means that IHR can be recovered in a well-defined manner.

The cross-depth learning works as a supplement to in-depth warping. In the
worst-case scenario, the estimated depth map is so defective that it fails to warp
corresponding patches on the same layer. In such a case, cross-depth learning em-
ploys the approximate nearest neighbor search [ML09] to provide high-resolution
and low-resolution patch pairs that generated from the same light field and migrate
fine details directly from a high-resolution patch across layers. Note that in-depth
warping outplays cross-depth learning because learning techniques tend to halluci-
nate erroneous high-resolution details.

5.3.3 Methodology

The method presented in this chapter will be an extension of the layered object space
framework in the context of projection-based super-resolution described in Section
4.3.1. In the image super-resolution, prior knowledge of the scene is often assumed.
The fundamental assumption of MISR is that natural images contain repetitive visual
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Table 5.2: Evaluated Super-resolution Methods for Light Field Data

Method Language Category Time (s)

Bicubic interp. Matlab Single image 0.22

LFBM5D[AS18] Matlab & C++ Projection-based 601.17

GB[REGF18] Matlab Optimization-based 9× 105

LFCNN[GG18] Python Learning-based 68.93

Proposed solution Matlab Projection-based 170.19

content [LR15], and this knowledge of redundancy forms the basis of the proposed
light field super-resolution scheme.

The proposed scheme was quantitatively evaluated using standard metrics, such
as PSNR and SSIM, in the super-resolution field and the results were validated on
public benchmarks: HCI dataset [HJKG16] and Stanford dataset[Lab08]. The used
datasets have a wide range of data, covering situations of both synthetic and real
captures, small and large baselines. All the data is processed with the light field
parameterization L(u, v, x, y). The Stanford dataset was cropped from its original
17 × 17 views to the central 5 × 5 array of views in order to save computational
time. All the light fields is downsampled by a factor α = 2 and then brought back to
original resolution by different SR methods. The proposed method was compared
against three state-of-the-art reference schemes [AS18, REGF18, GG18], from projec-
tion, optimization and learning-based categories that defined in Section 4.3.

5.3.4 Results and analysis

Table 5.2 shows the summary of all SR methods that were applied in the evaluation
process. In addition to the state-of-the-art approaches, bicubic interpolation was
also calculated as a naive SISR method which cannot restore any high frequency
information even though it is the fastest upsampling method. LFBM5D [AS18] has
an iterative refining process which corrects residuals until convergence. The graph
model approach GB [REGF18] takes a huge computational effort. LFCNN is fast in
computation time compared with the others, but it requires a long training process
before parameters can be well-tuned. The proposed method has a relatively low
computational complexity, while attaining the second best objective scores among
all the methods, as shown in Table 5.3.

5.4 Concluding remarks

This chapter presented three solutions to light field processing steps. Firstly, a sim-
ple and effective depth estimation method for light field microscope was presented,
followed by visual comparison with reference methods to demonstrate that general
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Table 5.3: Mean PSNR and SSIM for the SR factor α = 2

HCI Stanford

PSNR SSIM PSNR SSIM

BIC 35.22 0.912 35.59 0.961

LFBM5D 37.73 0.972 37.93 0.966

GB 38.22 0.977 24.18 0.952

LFCNN 39.00 0.981 39.19 0.986

Proposed solution 38.59 0.973 38.81 0.970

depth estimation became suboptimal when challenged by monochromatic sparse-
feature content or unique optical designs. Nonetheless, depth information is a vital
feature and it plays a critical role in both pre- and post-processing stages as discussed
in Section 5.2 and 5.3.

Secondly, the object space sampling was studied and an inverse distance weighted
interpolation was proposed in the layered object space to solve the 3D demosaicing.
It was shown that the proposed demosaicing reduced aliasing and crosstalk artifacts
by exploring the potential high-frequency samples from the light field.

The usage of the layered object space was further extended to solve the light field
SR problem. Inspired by SISR and MISR techniques, a unified framework which con-
sists of in-depth warping and cross-depth learning was proposed. Although CNN-
based approach outperforms other methods in the objective evalution, the result is
still encouraging because the proposed method requires no training on vast data
while achieving a comparable performance. Additionally, there are common pro-
cessings between the proposed demosaicing and super-resolution method, which
can be combined to further save the computational effort.

With regards to this chapter, my main contributions are:

• A depth estimation for monochromatic microscope, designed to be capable of
estimating accurate depth from occluded sparse features.

• A demosaicing approach that utilizes a roughly estimated depths to circum-
vent the classical edge detection problem, and prevented crosstalk artifacts
with a layered object space approach to forbid cross-depth interpolation.

• A super-resolution method that involves a combination of in-depth warping
and cross-depth learning to super-resolve based on a single light field.

The work of this chapter was presented in Paper I, II, III and IV.



Chapter 6

A Joint Model of Depth
Estimation and Demosaicing

Different methods were introduced in Chapter 5 to provide solutions to light field
data processing in a classic sequential manner. However, the limitations of such a
step-by-step light field processing pipeline was not discussed. In fact, post-processings
are highly dependent on the pre-processings of the data and vice versa. For example,
in most cases the depth is estimated from color intensities, whereas demosaicing is
optimized with depth.

This chapter targets the identified flaws in the classic sequential processing pipeline,
and proposes a novel model to handle light field data. The model addresses the inter-
dependence between demosaicing and depth estimation by encoding the correlation
between color and depth explicitly in the data term and smoothness term of an MRF
framework, and it is then optimized jointly and globally.

6.1 Introduction

Depth serves as a basis for a variety of light field applications [JLPG17, SRY+18,
EJM19]. Although numerous depth estimation methods were introduced in Section
3.1 and 4.1, it is worth noting that they mostly worked on the demosaiced color
light fields, as shown in the general processing pipeline Fig. 1.1. Therefore, if the
demosaicing process is ill-posed, the error propagates to depth estimation inevitably.
Especially, such demosaicing artifacts are destructive for EPI and stereo matching
depth estimation methods which use photo-consistency as a fundamental criterion.
It is also shown in Section 5.2 that demosaicing can be improved if depth is available,
making the problems of depth estimation and demosaicing interdependent.

A straightforward approach to solve the interdependence problem is to itera-
tively alternate between a demosaicing step and a depth estimation step, improving
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either one at a time to boost the other, until the desired results are obtained. How-
ever, this approach can be extremely time-consuming, and the convergence cannot
be guaranteed as erroneous information also accumulates after each iteration. Ap-
parently, a sophisticated and organized solution is required.

Unlike local methods, the global optimization methods try to find the global min-
imum for the cost function instead of erroneous local aggregation. To address the
aforementioned problems, a MRF-based collaborative graph model is introduced
in this chapter, solving both demosaicing and depth estimation jointly in a unified
framework. The data term and the smoothness term are used to explicitly encode
the interdependence as the constraints for global optimization.

6.2 Initialization

Before MRF optimization, a preliminary guess of color and depth is required. In this
section, the initial demosaicing and depth estimation are discussed, and the interme-
diate parameters calculated in the initialization process are propagated to form the
energy terms in Section 6.3.

6.2.1 Initial color demosaicing

The two-plane parameterization light field L(u, v, x, y) is adopted for the original
light field data regardless of the capturing systems, where (u, v) and (x, y) are camera
plane and focal plane respectively. To refocus at a depth z, the shift amount of pixels
from other views can be calculated as:

(∆x(u, z),∆y(v, z)) =

(
f ·Bu · (u− u0)

z
,
f ·Bv · (v − v0)

z

)
, (6.1)

where I(u0, v0) is the reference view, and (∆x,∆y) is the disparity offset, B is the
unit baseline distance in u and v direction respectively. For each refocused depth z,
the color image is recovered by: 1) propagating color from other views according
to the correspondences indicated by disparity; 2) or interpolating from the nearest
samples using simple bilinear interpolation same as the toolbox [DPW13].

6.2.2 Initial depth estimation

A DfD approach is proposed in this section to obtain the initial depth information
based on the initial color focal stack. To make the focus metric insensitive to the
illumination noise, the median of absolute difference of each color component c is
taken, as following:

ϵ(xi, yi, z) =
∑

c

{c(x, y)− ĉz(xi, yi)}median, (6.2)
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Figure 6.1: Flow chart of CGMDD framework.

where {·}median indicates the median filter, and ĉz is the estimated color in channel
c calculated from initial demosaicing at depth z. c(x, y) is the color correspondence
c from a random view I(u, v) to the demosaiced pixel (xi, yi) of view I(u0, v0), and
x = xi + ∆x, y = yi + ∆y is a function of depth z as shown in (6.1). Essentially, ϵ
indicates how reliable the estimation is based on the photo-consistency criterion: the
greater an ϵ is, the less confidence an estimated depth has. Therefore, the depth can
be estimated as an error minimization problem:

ẑ(xi, yi) = argmin
z

ϵ(xi, yi, z), (6.3)

where ẑ(xi, yi) is the estimated depth for pixel (xi, yi).

6.3 Collaborative graph model for demosaicing and
depth estimation

It has been shown in Chapter 5 that demosaicing and depth estimation are inter-
dependent: 1) an ill-posed demosaicing breaks photo-consistency criterion for cor-
respondence matching of depth estimation, and 2) depth-assisted demosaicing out-
perform classical sensor-based methods. To solve this joint problem, a collabora-
tive graph model for demosaicing and depth estimation (CGMDD) is proposed, as
shown in figure 6.1.

The fundamentals of MRF was introduced in Section 3.4. High-order terms are
not often considered in solving computer vision problems, because the distant pixels
have significantly weak and negligible connections compared with neighbors. Thus,
in this work only data term and smoothness term are employed.

According to (3.8), the simplified energy function of the proposed MRF frame-
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work can be written as:

E =
∑

i

Edata(i) + λ
∑

i,j∈N(i,j)

Esmoothness(i, j), (6.4)

where E defines an energy function of a joint probability distribution which follows
the Gibbs distribution. The Edata(i) and Esmoothness(i, j) are the data term and the
smoothness term, representing factorized energy function of single-node clique and
pairwise clique respectively.

6.3.1 Data term

The data term models the joint relationship between color intensities and depth as:

Edata(i) = − logPi(c, z), (6.5)

where Pi(c, z) is the joint probability for a pixel i = (xi, yi) that its color component
is c and its depth is z. According to the chain rule, the joint probability Pi(c, z) can be
written as:

Pi(c, z) = P (c, z|(xi, yi)) = P (c|z, (xi, yi))P (z|(xi, yi)) (6.6)

where P (c|z, (xi, yi)) is the probability of the color intensity to be c when the depth
is taken as z, and P (z|(xi, yi)) is the probability of pixel i to be assigned with a depth
z.

To compute P (c|z, (xi, yi)), all the views are refocused at depth z, and the corre-
sponding pixels of (xi, yi) from other views are used to calculate the probability of
each specific c to be assigned:

P (c|z, (xi, yi)) =
1

N

N∑

u,v

δ(c(xj , yj), c(xi, yi)) · c(xj , yj), (6.7)

where (xj , yj) are the correspondences of the pixel i with respect to depth z, and
δ = 1 if c(xj , yj) and c(xi, yi) captures the same color component.

For the conditional P (z|(xi, yi)), the confidence measure ϵ from (6.2) are used, be-
cause it implies how probable a depth is to be assigned to the pixel. The probability
of a pixel (xi, yi) to be sampled at depth Z is defined as:

P (Z|(xi, yi)) = 1− ϵ(xi, yi, Z)w1(xi, yi, Z)∑
z ϵ(xi, yi, z)w1(xi, yi, z)

, (6.8)

where w1(xi, yi, z) is a weighting factor that evaluates the absolute difference be-
tween ground truth color c(xi, yi) in one channel of the raw sensor image and the
estimated color intensity ĉz(xi, yi) at depth Z:

w1(xi, yi, z) = |c(xi, yi)− ĉz(xi, yi)| . (6.9)

Thus, the single pixel color-depth is encoded in the data term.



6.4 Methodology 39

6.3.2 Smoothness term

In addition to the data term, the smoothness constraint for the regularization process
is modeled in the pairwise clique. The smoothness term is defined as:

Esmoothness(i, j) = w2(i, j)S(i, j), (6.10)

where w2(i, j) is the weighting factor that is calculated from refocused image I:

I(xi, yi) =
1

N

N∑

u,v

I(xi +∆x(u, ẑ(xi, yi)), yi +∆y(u, ẑ(xi, yi))), (6.11)

w2(i, j) = exp

(
−0.5 · |∇I(i, j)|

max{|∇I|}

)
, (6.12)

where∇ is the gradient operator, and w2 is the weight factor that reflects how closely
two pixels are correlated based on the intensity variation, a large gradient implies a
weak mutual impact. To enforce the neighboring pixels to have smooth color and
depth transitions, a smoothness score is calculated as follows:

S(i, j) = 1− exp {−|ci − cj ||zi − zj |
σ2
s

}, (6.13)

where σs is the normalizing constant that indicates the allowed deviation in intensity
and depth differences.

6.4 Methodology

This section presents an MRF framework that challenges the sequential light field
processing pipeline by combining pre-processing and post-processing into a unified
probabilistic model, so that implicit mutual impact across processings are explicitly
expressed with energy terms, and the potential of light field data are handled prop-
erly.

The effectiveness of the proposed framework has been evaluated on three public
datasets [Lab08, RE16, MULCS+16], covering real and synthetic scenes, large and
small baselines, camera gantry and plenoptic cameras. The performance was vali-
dated on the following aspects:

• Objective metrics: Structural similarity index (SSIM), root mean square error
(RMSE), and confidence interval (CI);

• Visual quality: Demosaiced color image, color difference map, depth map, and
depth error.

Specifically, the demosaicing performance is compared against the widely used light
field toolbox and state-of-the-art WLIG algorithm [DLPG17], and depth estimation
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result is compared against three methods, including OCC[WER15], SPO [ZSL+16]
and EPI [HAS+18]. To keep a fair comparison, the original data is reparameterized
to consistent light field representation L(u, v, x, y), and then the same initial demo-
saicing process is applied by using the light field toolbox [DPW13] to generate input
color images for depth estimation task.

6.5 Results and analysis

6.5.1 Demosaicing performance analysis

Table 2 of Paper V summarizes the SSIM and CI results for reference methods using
different light field data. The SSIM results show that the proposed method achieves a
comparable result when the baseline is small (scene Bathroom, Pillars and Bikes), and
outperforms other demosaicing methods significantly when the baseline increases
(scene Chess and Truck). This is due to the fact that the large baseline scenarios induce
an enlarged disparity range and a stronger color-depth interdependence. Thus, per-
forming demosaicing solely, irrespective of the impact of depth often result in heavy
color artifacts, as shown in the scene Bathroom (see Fig. 4 of Paper V). Furthermore,
under the assumption that SSIM values of pixels obey a normal distribution, the CI
results show that the differences between the proposed solution and investigated
demosaicing methods are statistically significant.

6.5.2 Depth estimation performance analysis

Table 3 of Paper V shows the RMSE and SSIM of the estimated depth using OCC
[WER15], EPI [HAS+18], SPO [ZSL+16] and the proposed method. The results show
that the proposed method obtains a depth with less information loss and higher
depth accuracy compared with reference depth estimation methods. The visual
comparison is shown in Fig. 6 of Paper V as supplements. Furthermore, it can be
seen that the depth estimation results of the reference methods heavily deteriorates
when provided with the same initial demosaiced light fields. This is because that
the chromatic errors propagate from demosaicing to the depth estimation through
the classical sequential processing pipeline. Such error propagation not only breaks
photo-consistency criterion for correspondence matching, but also smears out object
borders, making depth estimation a formidable problem if solved independently.

6.6 Concluding remarks

This chapter presented an MRF framework called CGMDD which encoded the inter-
dependence between demosaicing and depth estimation into a global energy mini-
mization problem and solved them jointly. The results showed the superiority of the
proposed method over conventional single-task light field image processing meth-
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ods. One of the reasons for conventional methods to be suboptimal is the fact that
the researchers have overlooked the particular 4D structure of the light field and
its inherent complex correlations among processings. Furthermore, the proposed
framework can be generalized for light fields of different characteristics, regardless
of small or large baseline, synthetic or real content. Just like other MRF-based graph
models, the weights between data term and smoothness term need to be assigned
empirically to avoid over-regularization and under-regularization, because over-
regularization results in loss of high-frequency details whereas under-regularization
induces outliers.

With regards to this chapter, my main contributions are:

• An MRF-based statistical framework for light field image processing, which is
designed to jointly handle demosaicing and depth estimation problems.

• The novel data term and smoothness term that explicitly model the interde-
pendence of different light field properties.

• The flaw of classic light field image processing pipeline is analyzed by com-
paring the joint model with sequential model.

The content of this chapter was presented in Paper V.
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Chapter 7

Conclusions and Future Work

This final chapter will provide an overview of the light field processing work pre-
sented in this thesis, followed by discussions about how the presented work fulfills
the research objectives, and the impact of the work. Finally, the chapter is concluded
with ethical aspects of the work and its conceivable future extensions.

7.1 Overview

The purpose of this dissertation as stated in Chapter 1 is to provide an insight to light
field sampling, and develop solutions for various its processing problems. The scope
of this thesis is confined in Chapter 2 to be the computational photography, with its
particular focus on the image processing and the geometrical models of light field
sampling devices. To distinguish 4D light field processing from classic 2D image
processing techniques, the fundamental theory and basic knowledge of light field
demosaicing, depth estimation and super-resolution was provided in Chapter 3, fol-
lowed by the related works correspondingly in Chapter 4.

To fulfill the purpose of this dissertation, three light field image processing as-
pects were investigated and summary is reported in Chapter 5. Firstly, a novel area-
based DfF depth estimation method was proposed to demonstrate the complexity of
the depth problem with a light field microscope. The experimental results showed
that extracted depth tends to be erroneous if: 1) the scene is constrained with limited
vision cues, and 2) solved with methods that do not take the specific structure of
light field data into account. Secondly, a layered object space was introduced to cope
with such depth errors, and it was extended to be applied on both demosaicing and
super-resolution tasks. A new depth-assisted demosaicing method was proposed,
which considers the geometrical optic model and the pixel sampling correlations
was proposed. The experimental results verified the necessity of considering depth
when demosaicing 4D light field, so that pixel proximity can be defined and iden-
tified properly in the sampled object space rather than on the sensor. Finally, the
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layered object space was adopted to light field super-resolution, which enabled in-
depth warping and cross-depth learning strategies. Unlike conventional SISR and
MISR, the proposed scheme was developed on the back-projection process of lay-
ered object space, achieving both the capability of handling uncertain depth and
super-resolution of light field images with little effort.

A new joint model was proposed in Chapter 6 based on the findings of demosaic-
ing and depth estimation interdependence from Chapter 5. The model employed an
MRF framework to optimize color and depth results in a collaborative manner, so
that the conflict within the sequential processing pipeline can be avoided. More-
over, both demosaicing and depth estimation can benefit from this joint approach in
terms of quantitative metrics and visual quality compared with state-of-the-art in-
dependent methods, especially when the diversity of light field configurations was
considered.

7.2 Objective outcome

Five objectives were formulated in Section 1.3 to serve the purpose of this disser-
tation. The details concerning the fulfillment of these objectives are concluded as
follows:

O1 To investigate geometrical optical models, and the sampling behavior of different light
field capturing systems.
The geometrical optical models of light field capturing systems are first intro-
duced in Chapter 2, including image formation process of conventional cam-
eras and different plenoptic cameras. However, such simplified models are
incomplete as it only considers the sampling behavior for an ideal case - when
the scene is on the focal plane. To investigate how the sampling behavior
changes with respect to different depths, a depth-assisted sampling analysis
is performed. Rooted from the geometrical optics and ray transfer matrix, the
sampling behavior is simulated by a pixel back-projection process with respect
to the object space in Section 5.2, along with the detailed analysis on light field
demosaicing presented in Paper I.

O2 To investigate the diversity of light field capturing systems, and its potential challenges
to the depth estimation process.
Various light field acquisition setups are briefly introduced in Chapter 2, and
they pose different challenges to depth estimation methods. EPI-based ap-
proach is limited by a small baseline, view-based approach suffers severely
from noise, DfF/DfD requires elaborate focus cues, and learning-based ap-
proach requires huge data for training. The fluorescent cotton fiber specimen
captured by FiMic microscope is adopted for the case study purpose. The ex-
perimental results showed that the estimated depth tends to be defective if
other general depth estimation methods are applied, even though depth is of
critical importance to light field processings. The results are presented in Sec-
tion 5.1, with more details in Paper II.
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O3 To investigate the role of depth in the pre-processing of raw light field data, and to
propose depth-assisted demosaicing method to reduce artifacts.

Based on the findings from Objectives O1 and O2, a layered object space method
is proposed in Section 5.2 and Paper III to address the light field demosaicing
in condition of uncertain depths. The method utilizes depth information to
search for neighboring samples that distributed across different elemental im-
ages. Then spatial samples are projected onto several layers to apply an inverse
distance weighting function in order to preserve fine details as well as to cope
with depth uncertainty. In visual comparison, the proposed method manages
to reduce artifacts especially for peripheral views, and outperforms state-of-
the-art methods which overlook the significance of depth.

O4 To investigate the influence of depth in the post-processing of the light field, and to
propose depth-assisted super-resolution for light fields.

In addition to pre-processing like demosaicing, the impact of depth in the
post-processing is studied in Section 5.3 and Paper IV. A depth-assisted super-
resolution method is proposed to extend the usage of the layered object space
framework. Two specific schemes are employed based on the high redundancy
of the light field. The in-depth warping process try to find similar patches of the
same layer, using the layered structure to ensure a high-quality matching and
to avoid error propagation from erroneous depth. The cross-depth learning
migrates fine details from similar patches of a higher resolution across layers
as an enhancement to in-depth warping.

O5 To propose a solution for light field quality enhancement with the unknown depth, and
to solve the interdependence between depth and light field enhancement techniques
using a graph model.

Objectives O1, O2, and O3 can be condensed into a dilemma: Depth estima-
tion requires faithful color information, whereas color demosaicing needs to
be assisted by depth. Generally, a sequential pipeline solves the demosaic-
ing problem first, because depth is overlooked and images are demosaiced on
the sensor instead of in the object space. To solve the aforementioned prob-
lems, an MRF-based model is proposed in Chapter 6 that provides a joint so-
lution for demosaicing and depth estimation. The interdependence of color
and depth are explicitly expressed and globally optimized. The experimental
results show that the proposed method achieved remarkable results in both
tasks by quantitative metrics and visual assessment, the details of this work is
presented in Paper V.

7.3 Impact

This dissertation proposed computational light field photography techniques re-
lated to light field data processings. Firstly, the depth estimation algorithm was de-
signed to meet the characteristics of the light field microscope and the particularity of
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monochromatic feature-sparse specimens, allowing medical professionals to recon-
struct 3D models of fluorescent specimens and to view the specimens from different
angles without being concerned with relevant light field knowledge. Secondly, the
depth-assisted demosaicing and super-resolution algorithms can be integrated into
3D vision devices, such as head-mounted gears and autostereoscopic displays, to
improve the rendering quality of views. Furthermore, the proposed methods can be
considered if transmission bandwidth is limited such that downsampling is required
before light field transmission. Lastly, the proposed joint solution for demosaicing
and depth estimation yields desirable results compared with independent sequential
processings. This framework opened up new possibilities of collaborative process-
ing of the light field data, and may replace the classic light field processing pipeline.

7.4 Risks and ethical aspects

The research of this dissertation complies with the ethical guidelines provided by
the Swedish Research Council [Sta17].

The work intended to improve processing techniques of the light field data. No
risky human experiments were involved at the current stage, despite the ultimate
goal of this dissertation is to improve the user experience of 3D content. The research
activities are primarily performed on computers. During the research, there were oc-
casions when visual artifacts need to be identified from images that were displayed
on a standard 2D screen with subjective assessment. In these cases, great care was
taken to make sure that: all the participants were at least 18 years old, the test was
practised in a voluntary manner, everyone was briefed with necessary information
beforehand, and anyone was able to stop the test at any time.

The proposed solutions are implemented and tested in the research environment.
Therefore, they may not be deployed to stringent services or applications, such as
medical imaging systems, in order to avoid possible risks.

7.5 Future work

This dissertation is positioned in the context of computational light field photogra-
phy. Given the context, there are still challenges and overlooked problems that can
be focused on in the future.

The importance of depth in multiple image processing steps of the light field
data is manifested in this dissertation with the proposed demosaicing and super-
resolution methods. The results demonstrated advantages of the proposed layered
object space when handling uncertain depth. Such capability of handling depth
uncertainty may be further verified with the usage of commercial range cameras,
such as Kinect and light detection and ranging (Lidar) cameras, which provide noisy
depths. On top of that, some of the optical aberrations may also be corrected with
the layered depths information, such as axial chromatic aberration.
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Another possible track lies in the unexplored potentials of 4D structure of the
light field. The Lambertian scene is assumed in most super-resolution works. How-
ever, one can benefit from abundant angular samples of the identical spatial point
if pixels are traced back onto the object surface, making it feasible to model bidirec-
tional reflectance distribution function (BRDF). This can enable the proposed meth-
ods to cope with non-Lambertian scenes, and drastically improve its performance
against view-based super-resolution. Additionally, the spatial super-resolution method
can be extended to involve view synthesis for non-Lambertian scenes with small ef-
fort - upscaling angular samples instead of spatial samples.

Lastly, but not the least important, the proposed MRF-based model shows the
significance of combining different processings into a joint solution. So far, the
framework incorporated demosaicing and depth estimation, it is promising to see
how other correlated problems and concepts, such as super-resolution, of light field
can be solved and modeled jointly with depth estimation. One can also extend the
color-depth interdependence by adapting energy terms so that it accounts for more
sophisticated assumptions or prior knowledge of the scene.
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