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Abstract—Light field (LF) acquisition devices capture spatial
and angular information of the scene. In contrast with tradi-
tional cameras, the additional angular information enables novel
post-processing applications such as 3D scene reconstruction,
refocusing at different depth planes, and synthetic aperture.
In this paper, we present a novel compression scheme for LF
data captured using multiple traditional cameras. The input
LF views are divided into two groups, i.e. key views and
decimated views. The key views are compressed using multi-
view extension of High Efficiency Video Coding (MV-HEVC)
scheme and decimated views are predicted using the shearlet
transform based prediction (STBP) scheme. Additionally, the
residual information of predicted views is also encoded and sent
along with the coded stream of key views. The proposed scheme is
evaluated over benchmark multi-camera based LF dataset and
it is demonstrated that incorporating the residual information
into compression scheme increases the overall PSNR by 2 dB.
The proposed compression scheme performs significantly better
in low bit-rates compared to anchor schemes whose compression
efficiency is better in high bit-rate scenarios. The sensitivity of the
human vision system towards compression artifacts specifically
in low bit-rates favors the proposed compression scheme over the
anchor schemes.

Index Terms—Light field, Plenoptic, Compression, Multi-
camera, MV-HEVC, Shearlet transform

I. INTRODUCTION

The spatial and angular information of the scene has at-
tracted significant attention in various 3D capturing [1], [2],
processing [3] and rendering applications [4]–[7]. The idea
to capture angular information along with spatial information
was initially proposed by G. Lippmann in 1908 [8]. With the
advancement in computing technology, LF was captured using
multiple traditional cameras [9]. Each camera captures a single
perspective of the scene and thus the capturing system records
a sparsely sampled LF. Moreover, advancements in optical
technology and the pursuit of dense sampling led to capturing
LF using a single plenoptic camera. Initially, the plenoptic
camera was introduced for the consumer market [10], and
later commercial applications were also targeted [11]. In a
plenoptic camera, a lenslet array is placed between main
lens and image sensor to multiplex the spatial and angular
information of the scene. Recording the spatial information of
the scene from different perspectives provides opportunity to
perform various post-processing applications, however, it also
increases the amount of captured data. Standard image and
video encoders can be used to compress the LF data. However,
such encoders do not take into account the correlation present
in LF data and hence they provide low compression efficiency.
A recent call for proposal from JPEG-Pleno [12], reflects the

importance of novel compression solutions for LF data. Re-
cently, various compression schemes have been proposed with
the aim to efficiently compress the LF data. These proposals
for LF compression can be divided into two major groups
based on acquisition technology: the plenoptic camera and the
multi-camera system. However, few compression schemes are
applicable on both types of captured data [13], [14].

In 2016, a handful of compression schemes were presented
as a response to the grand challenge on plenoptic image
compression [15]–[19]. Majority of the presented schemes
introduced novel tools in standard HEVC image encoder to
compress a plenoptic image. Li et al. [16], [20] proposed a bi-
prediction mode capability within HEVC image compression
framework for compression of plenoptic images. In addition to
33 intra prediction modes in HEVC, each block was allowed
to take prediction from already encoded blocks. A similar
approach was proposed by Monteiro et al. in which two novel
tools were added into the HEVC image compression scheme.
Each block can take prediction from other blocks by using
the self-similarity (SS) and local linear embedding (LLE)
operators [18]. A SS-only prediction scheme was incorporated
in HEVC by Conti et al. [19]. Following the idea of pseudo-
video sequence (PVS) as initially proposed by Olsson et al.
[21], an alternative approach was proposed by Liu et al.
in which a plenoptic image was converted into sub-aperture
images and treated as frames of a PVS [17]. The HEVC video
encoder was used to encode the PVS, and the scheme was
selected as the best proposal in the ICME grand challenge.
The representation of an input plenoptic image suitable for the
HEVC video encoder has shown a high compression efficiency
compared to introducing additional tools in the HEVC image
compression standard.

In the grand challenge organized by ICIP 2017 [12],
plenoptic images were provided in the form of sub-aperture
images, and all submitted compression schemes used the sub-
aperture representation of plenoptic images for compression.
Ahmad et al. proposed to interpret sub-aperture images as a
frame of multi-view sequences and performed compression
using MV-HEVC [13]. A two-dimensional prediction and rate
allocation schemes were proposed to improve the compression
efficiency. Tabus et al. [22] exploited the disparity information
of input plenoptic image to increase compression efficiency.
The disparity map was quantized into several regions and
displacement of each region of side view relative to central
view was estimated. A set of sparse views, disparity map
corresponding to central view and region displacements of side
views were encoded. A pixel-level correlator was developed
to further refine the side views from corresponding neighbor
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Fig. 1. Block diagram of proposed compression scheme. At encoder side, the proposed scheme categorizes the input LF views into key views and decimated
views. Key views are compressed and their corresponding decoded views are used to predict the decimated views by applying the shearlet transform based
prediction scheme. Residual information is calculated between decimated views and predicted views and compressed separately along with key views. At
decoder side, similar procedure is applied to predict the decimated views by using key views. The residual bitstream is decoded and added with predicted
views to improve the visual quality.

views. The compression scheme proposed by Zhao et al.
[23] categorizes the sub-aperture images into two groups, i.e.
selected views and dropped views. The selected views were
treated as PVS and coded using a video encoder. The dropped
views were approximated as a weighted sum of the decoded
version of selected views. Jia et al. proposed a specific ordering
of sub-aperture images and compressed them as a PVS [24].
The decoded version of PVS was again converted into a
plenoptic image and the residual information was estimated
and transmitted in order to enhance the visual quality.

Beside compression proposals for plenoptic images in the
grand challenges, Li et al. proposed a memory-optimized
2D hierarchical coding structure for plenoptic image com-
pression [25]. The sub-aperture images were divided into
four quadrants, and predictions among images were contained
within each quadrant in order to optimize the reference picture
buffer. Li et al. [26] proposed a scalable coding scheme for
compression of plenoptic images captured with plenoptic 2.0
camera. A sub-sampled set of microlens images and disparity
information of missing microlens images were compressed
and used to predict the input plenoptic image. Later on, the
predicted plenoptic image was used to compress the original
plenoptic image using HEVC inter-prediction scheme. Bakir
et al. [27] presented plenoptic image compression scheme in
which the input sub-aperture images were divided into two
groups. First group was encoded using HEVC encoder and
second group was estimated using linear approximation of
already encoded sub-aperture images. At the decoder side,
additional deep Learning based scheme was used to im-
prove the reconstruction quality of sub-aperture images. Few
researchers have proposed compression solutions for multi-
camera based LF data. Hawary et al. proposed a scalable
compression scheme that mainly relies on the sparsity in the
angular Fourier domain of the captured LF [28]. A sparse set
of views were compressed as a PVS and were used to predict
the remaining views. Xian et al. [14] proposed a compression

solution based on the homography information between side
views and the central view. A joint optimization problem
was set up in which those homographies were estimated
that minimized the low-rank approximation error. Ahmad et
al. proposed to interpret LF captured with the multi-camera
system as frames of multiple PVS and compressed using MV-
HEVC [29]. In this way, the 2D correlation present among
the views of LF data was exploited by using temporal and
inter-view prediction tools available in MV-HEVC. Komatsu
et al. [30] proposed a simple computational efficient scalable
coding scheme for multi-camera based LF data. A a set of
binary images were chosen to record the common structure
among all views, and the difference among the views were
represented with additional weight images. The number of
binary images was provided as a free parameter in scalable
coding framework that controls the trade-off between quality
and computational complexity. Alves et al. [31] analyzed the
redundancy in plenoptic images and multi-camera based LF
data using 4D DCT transform.

The grand challenges for plenoptic image compression and
the availability of plenoptic image datasets resulted in numer-
ous compression solutions. However, LF captured with multi-
camera systems have received less attention from the research
community. The results in ICME grand challenge [32] reflect
that it is important for a LF compression scheme to perform
better in low bit-rates. It can be observed that most of the
previously mentioned compression schemes [22], [23], [28],
[33] used a sub-set of views to generate the remaining views.
In this way, the reconstruction algorithms were integrated into
the compression framework.

We propose a compression scheme for LF data captured
with a multi-camera system that addresses the compression
efficiency at low bit rates. The proposed scheme uses epipolar
plane image (EPI) representation of a subset of input LF
views and predicts the remaining views by applying shearlet
transform in frequency domain. This paper explains in more
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detail the initial work in [33] and improves the compression
efficiency by incorporating the residual information. In Section
II, main elements of the proposed compression scheme are
discussed. The sub-sections explain the selection and encoding
of key views, shearlet transform based prediction scheme and
residual coding scheme. Section III explains the test conditions
and the experimental setup. In Section IV, experiment results
are reported and discussed, i.e. encoding of selected key
views, effects of compression artifacts on shearlet transform,
prediction of decimated views, residual coding and complexity
analysis of proposed compression scheme. Finally, Section V
presents the major conclusions.

II. PROPOSED COMPRESSION SCHEME

The block diagram of the proposed compression scheme
is presented in Fig. 1. The LF with MxN views is given
as an input to the compression scheme. The input views are
divided into two categories, i.e. keys views and decimated
views. The Shearlet transform based prediction is applied to
the decoded version of keys views in order to predict the
decimated views. Moreover, the quality of predicted views
is enhanced by incorporating the residual information of the
decimated views. The details of each block of Fig. 1 is as
follows:

1. Selection of key views: A set of sparse views is selected
from input LF by following the procedure explained in Section
II-A. From hereafter, we called selected sparse views as key
views. The remaining views are marked as decimated views
and they are used to compute the residual information.

2. Key views encoding: The MV-HEVC based compression
scheme is used to compress the key views [34]. The compres-
sion scheme takes the multi-view pseudo video sequences and
use tools available in MV-HEVC to exploits the 2D correlation
present in LF data.

3. Decoding of key views: The MV-HEVC based encoder
in block 2, maintains the decoded frames in order to perform
inter and bi-predictive coding. This block uses the existing,
built-in decoding of the MV-HEVC encoder.

4. Shearlet transform based prediction scheme: The
decimated views are recreated by predicting them from the
decoded key views using the STBP. Detailed description of
the STBP is explained in Section II-B.

5. Residual encoding: The residual information is com-
puted by taking the difference between decimated views and
predicted views. In the proposed method, residual information
of LF is converted into a single PVS and compressed along
with key views. The residual compression scheme is explained
in Section IV-D.

6. Residual decoding: The bitstream corresponding to
residual information of decimated views is decoded using base
layer of MV-HEVC.

A. Key views selection and Encoding

The captured LF with MxN views is uniformly decimated
by factor s in both horizontal and vertical directions, resulting
into a sparse set of MsxNs views also referred to as key views.
In the next stage, the encoding of key views is performed and

in our proposed method, the key views are interpreted as a set
of Ms pseudo videos with each having Ns frames as shown
in Fig. 2.

ms
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Fig. 2. The input LF with MXN views is uniformly sub-sampled with factor
s in both directions to get MsXNs key views.

The key views are compressed using state-of-the-art MV-
HEVC by following the method proposed in [34]. Exploiting
the tools available in MV-HEVC, a two-dimensional prediction
scheme, shown in Fig. 3, is used to classify the views as
frames. The compression scheme makes use of four parameters
of MV-HEVC in order to assign specific prediction level
and rate-allocation to each frame. The parameters Picture
Order Count (POC) and View ID (VID) uniquely identify the
position of each frame in the MV-HEVC framework. Similarly,
Decoding Order (DO) and View Order Index (VOI) represents
the decoding order of each frame in the horizontal and vertical
axis. The POC and VID axis are assigned with different
predictor levels. Fig. 3 shows an example of 5x5 key views,
the central frame with POC=2 and VID=2 is taken as a base
frame and assigned with prediction level 0. The remaining
frames are assigned with either prediction level 1 or 2. In the
rate allocation process, the frames with low prediction level are
assigned with high quality and the quality is decreased at each
successive prediction level. In this way, better quality frames
are used for prediction of other frames in order to improve the
overall compression efficiency.

Algorithm 1, explains the rate allocation scheme used to
encode the key views. The algorithm inputs are: number of
pseudo video sequences (Ms), number of frames in each
pseudo video sequence (Ns), base view POC (bPOC), View ID
(bVID) and quantization parameter (Qb). The rate allocation
scheme iterates over all the frames and estimates the required
quantization offset (Qo) for each frame. The frames having
POC=2 or VID=2 (lies in base column or base row) are
assigned quantization offset equivalent to their prediction level
(0, 1 or 2). The quantization offset for remaining frames is
calculated by using the frame distance and decoding distance
with respect to the base frame (calculated in the line 22). Line
10 and 11 of algorithm 1 calculates frame distance between
current frame and the base frame in POC and ViewID axis.
Similarly, from line 12-20 decoding distance between the
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TABLE I
WEIGHTS ASSIGNED TO EACH FRAME BASED ON ITS PREDICTION LEVEL

Predictor Levels (PL) Picture Order Count
View ID PL = 0 PL = 1 PL = 2

PL = 0 Qb 4 4

PL = 1 4 3 2

PL = 2 4 2 1

current and the base frame in both POC and ViewID axis
is calculated. A weight parameter W is also used to control
the limit of quantization offset. Table I shows the parameter
W assigned to each frame based on frame’s prediction level.
The frames with low prediction levels are assigned with high
weights compared to the frames assigned with high prediction
levels. Finally, the quantization parameter (Q(x,y)) for each
frame is calculated in line 24 and returned as output by the
algorithm 1.

Algorithm 1 Rate allocation for Key views
Input: Ms, Ns, bPOC, bVID, Qb

1: Read POC (nPOC) and VID (vVID) of each frame.
2: Read DO (kDO) and VOI (iVOI) of each frame.
3: Read prediction level in POC (sPOC) and VID axis (tVID).
4: for x = 1:Ms do
5: for y = 1:Ns do

. Getting the assigned weight value of current frame
6: W =Weightage(sPOC(x), tVID(y))
7: if x == bPOC && y == bVID then

. Current frame lies in base ViewID or base POC
8: Qo(x,y) = max(sPOC(x), tVID(y))
9: else

10: dPOC = b |nPOC(x)−bPOC|
W c

11: dVID = b |vVID(y)−bVID|
W c

12: if nPOC ≤ bPOC then
13: dDO = bkDO(x)

W c
14: else
15: dDO = bkDO(x)−bPOC

W c
16: end
17: if vVID ≤ bVID then
18: dVOI = b iVOI(y)

W c
19: else
20: dVOI = b iVOI(y)−bVID

W c
21: end

. Quantization offset for current frame
22: Qo(x,y) = dPOC + dVID + dDO + dVOI

23: end
. Quantization parameter for current frame

24: Q(x,y) = Qb +Qo(x,y)
25: end
26: end
27: Output: Q
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Fig. 3. The rate allocation scheme for 5x5 key views. The central view with
POC=2 and VID=2 is chosen as base frame.

B. Shearlet transform based prediction scheme

In order to significantly reduce the LF data, a good predic-
tion scheme is required. In our procedure, we consider a light
field reconstruction algorithm utilizing shearlet transform de-
veloped for reconstruction of densely sampled light filed [35].
A densely sampled light field means that disparity between
adjacent views is no more than 1 pixel apart. This property
allows for obtaining an arbitrary ray inside the viewing zone by
simple local interpolation, such as linear interpolation, without
involving computationally demanding global processing. The
capability of STBP to reconstruct the intermediate views from
a sparse set of views is exploited for LF compression.

The full parallax 4D LF is described using two plane
parameterization [9],

L(u, v, s, t), (1)

where (u, v) plane is representing image plane coordinates
for each view, and (s, t) are coordinates of capturing plane
as shown in Fig. 4(a). By fixing (u, s) and (v, t) parameters
horizontal and vertical epipolar plane images [36] are formed
as follows

EH(v, t) = L(u0, v, s0, t) (2)

EV (u, s) = L(u, v0, s, t0) (3)

In general, it is assumed to have sufficient sampling over image
plane (u, v), such that cameras provide enough resolution to
capture the finest details of the scene.

In proposed approach, as LF reconstruction tool, we con-
sider EPI reconstruction using shearlet transform presented
in [35]. Intermediate views reconstruction in 4D full parallax
case can be interpreted as multiple 3D horizontal and vertical
parallax DSLF reconstructions. Each 3D parallax DSLF can
be obtained by reconstructing each densely sample EPI from
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Fig. 4. (a) Parameterization of captured images, (b) interpretation of input images as decimation of densely sampled light field, (c) example of frequency
plane tilling using shearlet transform required for efficient densely sampled light filed reconstruction.

coarsely sampled EPIs, as illustrated in Fig. 4(b) for horizontal
parallax case.

Due to very strict structure of DSLF in spatial and frequency
domain, reconstruction of DSLF from available measurements
can be considered as a sparse regularization problem for
inpainting. The regularization tool in our case is the shearlet
transform, since it is a directional sensitive transform based
on the shear operator, which allows to construct desirable
frequency domain tilling Fig. 4(c). Let’s assume that mea-
surements g obtained using M measurement matrix applied
on ground truth densely sampled EPI f such that

g =M � f, (4)

where � representing element-wise multiplication. As shown
in [35] a good approximation fn of f can be obtained using
the iterative procedure

fn+1 = S∗(Tλn(S(fn + αn(g −M � f)))), (5)

where Tλ is hard thresholding operator, S and S∗ are direct
and inverse shearlet transform respectively. The algorithm 2
explains the shearlet transform based reconstruction process
for single EPI image. The inputs of the algorithm are number
of iterations, EPI image, mask (indicates key views pixels),
shearlet analysis and synthesis filters. In analysis part, the
Fourier transform of the EPI image is multiplied with each
shearlet analysis filter and corresponding coefficients are com-
puted by taking the inverse Fourier transform of the product.
The best coefficients are selected by applying a hard threshold.
In synthesis part, the Fourier transforms of each selected
coefficient is computed and multiplied with the corresponding
shearlet synthesis filter. The summation is computed for all
the responses and inverse Fourier transform is applied to
estimate the reconstructed EPI image. The difference (scaled
by parameter α) between the reconstructed and the original
EPI image is computed and added with the reconstructed
EPI image. The reconstructed image is then used for next
iteration and algorithm steps are repeated for N iterations.
More details about construction of transforms, parameters and
iterative procedure can be find in [35]. It is important to notice
that construction and computation of S and S∗ transforms are

mainly based on drange = dmax − dmin - range of disparity
values in available measurements g, thus estimation of dmin
and dmax are assumed as prior knowledge.

Algorithm 2 Shearlet transform based prediction scheme
Input: g, Given EPI image

N , number of iterations
S, Shearlet analysis filters in frequency domain
S∗, Shearlet synthesis filters in frequency domain
q, Number of shearlet filters
M , Mask of EPI image
α, Acceleration parameter for rate of convergence
λ, Set of threshold values for each iteration

1: f1 = g . Initially set f1 as the original EPI image
2: for n = 1:N do
3: Fn = F{fn} . Fourier transform of fn
4: for i = 1:q do . Perform shearlet analysis
5: C(i) = F−1(Fn × Si)

. Apply threshold to select best coefficients

6: C∗(i) =

{
C(i), if |C(i)| ≥ λn
0, if |C(i)| < λn

7: end
8: F0 = 0
9: for j = 1:q do . Perform shearlet synthesis

10: Fj = Fj−1 + F{C∗(j)} × S∗j
11: end
12: fn = F−1(Fj) . Reconstructed EPI image
13: fn+1 = fn + αn(g −Mfn)

14: end
15: Output: fn+1

C. Residual Encoding

The STBP scheme provides significant compression effi-
ciency in low bit-rates. However, in high bit-rates proposed
prediction scheme has an inherit reconstruction error and it
requires additional residual information to improve the visual
quality. In the proposed compression scheme, the residual
information is also encoded and sent along with bitstream of
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key views. The residual is computed by taking the difference
between decimated views and predicted views. Algorithm 3
explains the process of generating residual PVS. The algorithm
iterates over each view of input LF (I) and reconstructed LF
(R) and estimates the error signal (E). In line 6, the minimum
error value is added with the error signal in order to have non-
negative values in residual PVS (Presidual). Hence, for each
view, the minimum error values are also transmitted with the
bitstream. In the proposed compression scheme, the residual

Algorithm 3 Residual sequence generation
Input: I , Original LF views

R, Predicted LF views
1: f = 0
2: for m = 1:M do
3: for n = 1:N do
4: f = f + 1
5: E(m,n) = I(m,n)−R(m,n)

. Making values of residual sequence non-negative
6: Presidual(1, f) = E(m,n)−min(min(E(m,n)))

7: end
8: end
9: Output: Presidual

information of each view is interpreted as a frame of PVS and
compressed in the base layer of MV-HEVC using the intra-
prediction mode.

III. TEST ARRANGEMENT AND EVALUATION CRITERIA

The experimentation was performed on the light field dataset
provided by Stanford University [37]. Table II shows the
selected LF images from the Stanford dataset. Each LF image
contains 17x17 views in RGB format and its equivalent
YUV444 format was used as a reference input signal. The
reference input signal was further converted into the YUV420
format and given as an input to the proposed and anchor
compression schemes. The shearlet transform has filtering
artifacts on image border as described in [35]. Instead of extra
padding, the comparison was made with the anchor schemes
by excluding 21 pixels from each side of the image. The mean
PSNR (PSNRmean) in Y component of all the views was
used as a quality metric to evaluate the compression efficiency
of the proposed scheme as explained in (6).

PSNRmean =
1

MN

M∑
m=1

N∑
n=1

PSNR(m,n) (6)

The PSNR of a specific view (at view position m and n) is
estimated by:

PSNR(m,n) = 10log10
2552

MSE(m,n)
(7)

where the mean square error between the views is estimated
by:

MSE(m,n) =
1

T

W−b∑
x=b+1

H−b∑
y=b+1

[I(x, y)− I ′(x, y)]2 (8)

where b represents the border pixels excluded from each side
of image, W and H indicate the width and height of each view
respectively. T represents the number of pixels of each view
considered for comparison (T = (W−2∗b)(H−2∗b)). I(x, y)
and I ′(x, y) represent the value of pixel in original view and
reconstructed view. The BD-PSNR [38] metric is also used to
compare the compression results. The compression efficiency
of proposed scheme was evaluated against the state-of-art
compression scheme [29] and two benchmark HEVC [39] and
X265 [40] anchor schemes. The LF views were converted into
a single PVS and given as input to the benchmark anchor
schemes. The first frame was encoded as intra-frame, second
as P-frame and all the remaining frames were encoded as B-
frames.

TABLE II
SELECTED LF IMAGES FROM STANFORD DATASET

S/N Image Name Resolution (WxH)
1 Chess 1400x800

2 Lego Buildozer 1536x1152

3 Eucalyptus Flowers 1280x1536

4 Amethyst 768x1024

5 Bunny 1024x1024

6 Jelly Beans 1024x512

IV. RESULTS AND ANALYSIS
A. Encoding of key views

The initial step of the proposed compression scheme is to
compress the key views by using MV-HEVC as explained in
Section II-A. Alternatively, the key views were also converted
into a single PVS and compressed using HEVC encoding
scheme. Two LF images from Standford dataset, namely Chess
and Eucalyptus Flowers were compressed on four different
bit-rates in order to test varying bit-rate scenarios. The RD
comparison between the proposed scheme and HEVC scheme
is presented in Fig. 5. It can be seen that the proposed scheme
provides better compression efficiency compared to bench-
mark HEVC scheme with an average BD-PSNR gain of 0.4
DB. The proposed scheme enables each frame to exploit two-
dimensional inter-view correlation from neighbouring views.
Moreover, by allocating better quality to frames that were
used for prediction of other frames improves compression
efficiency. The compression efficiency of the proposed scheme
will improve with the increase in the number of key views
since more frames will take prediction from better quality
frames.

B. Compression artifacts on Shearlet transform

The shearlet transform was applied to EPI images that
exhibit a special line structure. The line in the EPI image
corresponds to points/regions visible in the perspective views
captured by each camera. The variation of quality among
images as a consequence of compression process can affect the
reconstruction process employing EPI images. An experiment
was performed in order to study the effect of variable rate allo-
cation on the STBP process. The truck image from Standford
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Fig. 5. Rate-distortion analysis between proposed compression scheme and
HEVC scheme for 5x5 key views.
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Fig. 6. Rate-distortion analysis of variable and fixed quality rate allocation
schemes. a) the input 5x5 key views are compressed using fixed and variable
rate allocation schemes. b) Corresponding shearlet reconstruction of 17x17
views for fixed and variable rate allocation schemes.

dataset was used and a subset of 5x5 key views was extracted
from 17x17 input views by following the procedure explained
in Section II-A. The encoding of key views was performed
using HEVC with two different rate allocation schemes. In
the first encoding scheme, a fix quantization parameter was
used to have the same quality among images. In the second
encoding scheme, variable quantization parameters were used
for all 25 views to have variable quality. The compression
was performed on three different bit-rates for both fix and
variable rate allocation schemes. Fig. 6 (a) and (b) show the
RD curves for 5x5 key views and reconstruction results of the
STBP respectively. The combined compression efficiency of
the variable rate allocation scheme on 5x5 key views and then
shearlet reconstruction outperforms the fixed rate allocation
scheme. Hence, the key views compressed with variable rate-
allocation scheme can be used as input of STBP.
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Fig. 7. Rate-distortion analysis between shearlet transform based prediction
scheme and anchor schemes.

C. Prediction of decimated views using shearlet transform

Fig.7 shows a RD comparison between the STBP scheme
(without incorporating residual information) and anchor

schemes. The performance of anchor schemes is better in
high bit-rates compared to the proposed scheme. However, in
the low bit-rates, the compression efficiency of the proposed
scheme is higher compared to anchor schemes. The difference
in the behavior of compression schemes is a consequence
of their utilization of input information. In the high bit-
rate scenario, high quality of residual information enables
the anchor schemes to achieve efficient compression. On the
contrary, shearlet transform relies on key views to predict the
intermediate views without incorporating residual information,
hence it has an inherit reconstruction error. In the low bit-rate
scenario, the bit budget of the proposed compression scheme
allows the encoder to provide higher quality to key views.
In this way, the shearlet transform utilizes good quality key
views to predict the intermediate views. On the other hand,
anchor schemes distribute the bit budget among all the views
that result in degradation of overall visual quality.

Chess

R1 R2 
R3 

R4 

10
-2

10
-1

36

38

40

42

44

46

48

50

Fig. 8. Rate-distortion analysis between HEVC intra-prediction and inter-
prediction coding.
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Fig. 10. Rate-distortion analysis of proposed compression scheme (STBP-WR) with two benchmark anchor schemes (HEVC and X265) and a state-of-art
compression scheme (MV-HEVC).

D. Residual Encoding

The reconstruction error of the STBP scheme can be re-
duced by encoding the residual information of the predicted
views. In the proposed compression scheme, the residual
information is treated as a single PVS and given as an input
to the base layer of MV-HEVC that works similar to HEVC
for such an input. In order to exploit the correlation present
in residual information using tools available in HEVC, the
residual sequence was encoded with intra-prediction and inter-
prediction modes and the RD comparison is shown in Fig. 8.
The STBP-NR curve represents the reference STBP scheme
(without residual coding). The key views given input to the
STBP were encoded on four different bit-rates and that also
describes the rate of STBP-NR (since no residual information
is added). Hereafter, we called these four rates as R1, R2, R3,
and R4. The residual information corresponding to rates R1
and R3 was encoded using HEVC intra-prediction (STBP-R1-
Intra and STBP-R3-Intra) and HEVC inter-prediction mode
(STBP-R1-Inter and STBP-R3-Inter). In the inter-prediction
mode, the encoder was allowed to use all the available predic-
tion tools in HEVC framework (intra, inter and bi-prediction
modes). However, the encoder was forced to use only intra-
prediction modes in HEVC intra coding. The RD curves in
Fig. 8 shows a similar compression efficiency between inter-
prediction and intra-prediction schemes. The inter-prediction
makes use of motion estimation and compensation for pre-
dicting the current frame which is not beneficial for residual
PVS since it doesn’t possess properties like natural images.
The similar compression efficiency between two schemes
reflects less correlation among frames of residual PVS. Hence,
we proposed to use HEVC intra-prediction mode to encode
the residual PVS. The HEVC intra-prediction scheme has

relatively less computational cost compared to HEVC inter-
prediction coding and it can be further used to obtain random
access capability in the proposed compression scheme.

Fig. 9 shows the enhancement in visual quality obtained
due to the addition of residual information. THE STBP-
NR represents the reference STBP scheme, evaluated on
four bit-rates (R1=4265 KB, R2=2379 KB, R3=272 KB and
R4=56 KB). The scheme STBP-R1-Intra adds the residual
information with predicted views at rate R1 (4265 KB). The
residual information was coded with different quantization
values and its decoded version is added with predicted views.
Similarly, for the other three rates (R2, R3, and R4) the
residual information corresponding to each rate is encoded
with different quantization parameters and its decoded version
is added with the corresponding predicted views. The response
of residual coding is not same for all four bit-rates. Fig.
9 shows significant compression efficiency at higher rates
compared to lower rates. The performance of the STBP in low-
bit rate is much better (as shown in 7 ) and adding residual with
Intra coding method doesn’t improve visual quality relative to
the added size of coded residual. The prediction efficiency of
the STBP starts decreasing from R3 and it gets very low at
high bit-rates (R2 and R1). In other words, the input quality
of key views at high bit-rate has less influence on the STBP.
For examples, the coded size of key views at R2 is 2379 KB
and increasing the quality of key views by allocating extra
1886 KB (at R1=4265 KB) has less impact on visual quality
(around 0.1 dB increase). In comparison, adding 248 KB of
residual information at R2 has a significant impact on overall
visual quality (around 2 dB increase). It can be concluded
that adding residual information at high bit-rates improves the
compression efficiency of the proposed scheme.
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Fig. 11. Subjective analysis of the proposed compression scheme for a view from Bunny image. a) Shows the original view with highlighted subregion. b)
Shows the rendered subregion compressed with proposed scheme, MV-HEVC, HEVC and X265 compression schemes. Two low-bitrates (R3 and R4) are
considered and the PSNR of each view is also mentioned for each compression scheme.

Fig. 10 shows the comparison of the proposed compression
scheme with two benchmark schemes and a state-of-the-
art scheme [29]. It can be seen that overall the proposed
scheme performs better compared to both anchor schemes. The
compression efficiency of the proposed scheme is significantly
better in low and medium bit-rates relative to the high bit-
rates scenarios. In comparison to the state-of-the-art scheme,
the proposed scheme has better compression in low bit-rates
and the scheme presented in [29] perform better in medium
and high bit-rates. The sensitivity of the human vision system
towards compression artifacts specifically in low bit-rates [41]
favors the proposed compression scheme over other presented
compression schemes.

E. Subjective Analysis

A sub-region of Bunny image taken from view (6,9) is
shown in Fig. 11 for all the compression schemes at rate R3
and R4. The HEVC and X265 based compression schemes
show notable blurriness in the decoded view compared to MV-
HEVC based scheme. At both rates, it can be seen that the
proposed scheme retains most of the information compared to
all the other compression schemes.

F. Computational Complexity

The computational complexity of the proposed compression
scheme is dependent on usage of residual information. In the
case when residual information is not used in proposed scheme
the encoder will compress only key views using MV-HEVC.
At the decoder side, the key views will be decoded using
MV-HEVC decoder and the STBP will be used to predict the
decimated views. In such compression scheme, a significant
complexity is reduced at the encoding side because only key
views (8.5% of input LF) will be compressed. At the decoding
side, the MV-HEVC based decoding of decimated views is
replaced with the STBP process. The addition of residual
information in the proposed compression scheme requires
to use the STBP process at encoder side and the residual
information will be coded using MV-HEVC single layer intra-
prediction mode. At the decoding side, the key processes will
be decoding of key views by using MV-HEVC, STBP for
prediction of decimated views and decoding of the residual
bitstream. Hence, the enhancement in the visual quality of
predicted views is obtained at the increased computational
cost.
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V. CONCLUSION

In this paper, we present a novel compression solution for
LF data captured with the multi-camera system. The input LF
views were divided into two categories, i.e. key views and
decimated views. The key views were encoded using MV-
HEVC and decimated views were predicted using the shearlet
transform based prediction scheme. Additionally, the residual
information was also coded in order to further enhance the
visual quality of the predicted views. The proposed com-
pression scheme perform better in low bit-rates compared to
anchor schemes whose compression efficiency is better in high
bit-rate. The sensitivity of the human vision system towards
compression artifacts in low bit-rates favors the proposed
compression scheme over the anchor schemes. The proposed
compression scheme can be used without incorporating the
residual information. In such case, at the encoder side, key
views will be coded and sent to decoding side where shearlet
transform based prediction scheme will predict the remain-
ing decimated views. The proposed compression scheme can
benefit applications where fewer resources are available at the
encoding side. The proposed scheme can be further improve by
introducing coding tools that exploits the correlation present in
residual information. In future, we will investigate alternative
compression of the residual information.
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