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ABSTRACT Accurate and real-time perception of the operating status of rolling bearings, which constitute
a key component of rotating machinery, is of vital significance. However, most existing solutions not
only require substantial expertise to conduct feature engineering, but also seldom consider the temporal
correlation of sensor sequences, ultimately leading to complex modeling processes. Therefore, we present a
novel model, named Attention-based Equitable Segmentation Gated Recurrent Unit Networks (AESGRU),
to improve diagnostic accuracy and model-building efficiency. Specifically, our proposed AESGRU consists
of two modules, an equitable segmentation approach and an improved deep model. We first transform the
original dataset into time-series segments with temporal correlation, so that the model enables end-to-end
learning from the strongly correlated data. Then, we deploy a single-layer bidirectional GRU network, which
is enhanced by attention mechanism, to capture the long-term dependency of sensor segments and focus
limited attention resources on those informative sampling points. Finally, our experimental results show that
the proposed approach outperforms previous approaches in terms of the accuracy.

INDEX TERMS Health perception, temporal correlation, gated recurrent unit networks, long-term
dependency, attention mechanism.

I. INTRODUCTION
Recently, the prognostics and health management (PHM)
system has become a reliable solution formanaging the health
status of industrial machinery (e.g., predictive maintenance,
PdM) [1]. For rotating machinery, accurate and real-time per-
ception of operating status of rolling bearing is of vital signif-
icance [2], which can effectively avoid catastrophic failures
and minimize maintenance costs of industrial manufacturing.
Therefore, it is necessary to accurately identify faults and
perform maintenance in the most effective manner [3]. With
the rapid development of smart sensors [4], signal process-
ing and artificial intelligence (AI), data-driven methods have
gradually become the mainstream solution for the PdM [5],
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and is widely applied to perform fault diagnosis of industrial
equipment.

During the past decades, traditionalmachine learning (ML)
models has received great success in various applica-
tions, including the health perception [6]. Some algorithms,
such as support vector machine (SVM) [7], [8], random
forests (RF) [9], and regression model [10], have achieved
remarkably results. But notably, as shown in Figure 1,
ML algorithms generally require feature engineering to
extract important features, which may result in additional
human labor and substantial expertise to complete efficiently.

As the increasing number of deployed sensors, the volume
of industrial data is growing dramatically [11]. But with the
increase in computational power, and continuous innovation
in algorithms, deep learning (DL) [12] has demonstrated
tremendous potential [13]. It can learn more complex patterns
using deep hidden layers between the input and output, at the
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FIGURE 1. Data-driven method for health perception of industrial
equipment.

same time reduces the algorithm’s dependence on feature
engineering, as stated in [14]–[16].

As is known, there are two main-stream structures of neu-
ral networks, namely convolutional and recurrent structure.
In particular, the recurrent based models are especially good
at representing the temporal characteristic of sequential data.
In practice, the sensor signals record the equipment status in
the form of time-series, and its internal dependence is of great
importance to the diagnostic effect.

Many recent works have demonstrated that RNN models,
can effectively deal with time-series signals. Remarkably,
the LSTM is the most widely used variant of RNN. For
instance, Zhao et al. [17] focused on predicting actual tool
wear conditions using long-short term memory (LSTM).
Similarly, an LSTM-based method [18] was utilized to carry
out a RUL prediction of an aero-engine. In [19], a convolu-
tional bidirectional LSTM network was proposed to predict
the actual wear of a high-speed CNC machine. Notably,
this paper integrated two mainstream structures of neural
network (i.e., convolutional and recurrent). In addition, an
LSTM-based encoder-decoder framework was deployed to
obtain an unsupervised health indicator from multi-sensor
time-series data [20]. Although the LSTM has made a lot
of exploration in the area of PdM, it also needs more
efforts in the aspect of computational efficiency. Thus,
the GRU network came into being and obtained the pre-
liminary application. For instance, a hybrid approach called
LFGRU, which combines automatic feature learning with
handcrafted features, was proposed to perform machine
health monitoring [21]. This work has greatly improved the
prediction metrics of GRU network. But totally, although it
has achieved remarkable results in the fault diagnostic, there
are still considerable works with regard to optimizing model
complexity and prediction accuracy of algorithm.

Except the temporal characteristic, the time-series such as
vibration signal also exist the correlation between sampling
points. In this paper, to enable RNN models better capturing
information from the entire signal sequence, we design a
novel model, called AESGRU, to represent the raw signal

via an end-to-end approach, and the attention mechanism has
been introduced to balancing the temporal correlation and
computational efficiency. Our contributions are summarized
as follows:

1) Our proposed approach does not require any feature
engineering and completely implements an end-to-end
diagnostic system. Considering the inherent proper-
ties of the sensor sequence, an equitable segmenta-
tion method of multi-sensory is proposed. In specific,
we divide the original sensor dataset into equal-length
segments, so that the temporal correlation of the com-
plete sequence can be integrally preserved. And these
newly generated samples will be fed into the model
sequentially based on their respective identifiers.

2) We deploy a single-layer bidirectional GRU, improved
with attention mechanism, to represent and learn
the strongly correlated equally-segment. Notably,
the attention mechanism is introduced to directly
extract the potential relationship of discrete sam-
pling points from the original sensor signal, which
significantly contributes to the capture of long-term
dependency for target prediction (i.e., the equipment
operation status) and focus limited attention resources
on those informative sampling points. Besides, it is also
helpful to improve model interpretability, and provides
a reliable means to improve modeling efficiency.

3) Moreover, our model is also suitable for multi-sensor
scenarios, which can capture the temporal correlation
form the two-dimensional vibration signal simultane-
ously. Ultimately, we conduct sufficient experiments on
the Case Western Reserve University (CWRU) dataset.
The validity of our model has been verified with regard
to its accuracy, time efficiency, confusion matrix and
attention weight distribution.

The remainder of this paper is organized as follows.
In Section II, several related algorithms are introduced.
In Section III, our proposed AESGRU is descri-
bed. In Section IV, the experiments on the CWRU dataset
are conducted. Finally, concluding remarks are provided in
Section V.

II. RECURRENT NEURAL NETWORKS AND
ATTENTION MECHANISM
A. RECURRENT NEURAL NETWORKS AND ITS VARIANTS
The RNN is especially utilized to process one-dimensional
sequential data. The time step index of this does not nec-
essarily literally correspond to time elapsed in the real
world. It may simply represent the position in the sequence.
As shown in Figure 2, the key aspect of RNN is that it can be
used to connect previous information to the current state [22].
The structure of its hidden units is shown in Figure 3(a) and
the hidden state is computed by Eq. (1):

ht = f (ht−1, xt) (1)

where f is a nonlinear activation function, usually the
sigmoid , tanh or ReLU unit.
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FIGURE 2. The architecture of a single-layer bidirectional RNN.

At present, there are countless learning targets that require
dealing with sequential data, especially in tasks like machine
translation and speech recognition. Progress in this area owes
to advances in model architectures, training algorithms, and
parallel computing [23]. Unfortunately, in practice, the basic
RNN model does not handle long sequences well. One of the
main reasons for this is that gradient explosion and gradi-
ent vanishing occur frequently during the training process.
This causes the training gradient to not be passed on in
long sequences, which prevents the RNN from capturing
long-distance effects.

FIGURE 3. The structure of RNN, LSTM and GRU units.

The LSTM model shown in Figure 3(b) is a type of
improved RNN, capable of learning long-term dependen-
cies [24]. It is more complex in structure and consists of
a series of gate units but is easier to train since it effec-
tively avoids gradient explosion and vanishing gradients [25].
In summary, LSTM has successfully solved the defects of the
original RNNs. It became the most popular RNN unit for a
time, and has been widely applied in various fields.

However, the complexity of the LSTM model brings with
it considerable computational cost. Of the various LSTM
variants, the GRU unit may be the most successful [26].
As shown in Figure 3(c), it significantly simplifies the LSTM
without affecting the result. Specifically, GRU makes two
major changes to the LSTM. First, it transforms the input
gate (it ), forget gate (ft ), and output gate (ot ) into an update
gate (zt ) and a reset gate (rt ). Second, it combines unit states
and outputs into one state (h̃t ), which is defined by:

zt = σ (Wz · [ht−1, xt ]+ bz)

rt = σ (Wr · [ht−1, xt ]+ br )

h̃t = tanh (Wh · [rt ∗ ht−1, xt ]+ bh)

ht = zt ∗ h̃t + (1− zt) ∗ ht−1 (2)

where ∗ denotes the element-wise product.

In some cases, the output of the current moment is related
not only to the previous states but also to future states.
Thus, bidirectional RNN [27], which was designed for such
cases, accomplishes the task by simultaneously training the
model in both the forward and backward time directions.
Accordingly, this paper deploys a Bi-GRU network as the
core architecture.

B. ATTENTION MECHANISM
The encoder-decoder frameworkwas proposed in [26]. It con-
sists of twoRNNmodels that can be different units (e.g., basic
RNN, LSTM or GRU). As shown in Figure 4, the encoder
is an RNN model utilizing a certain unit that inputs each
sampling point x sequentially. As the samples are fed into
the model by time step, the hidden state of the encoder is a
summary vector ct of the entire input signal, and the hidden
state of each time step is computed by Eq. (1). The decoder
is another RNN model trained to generate the output by
predicting the next status yt ′ given the summary vector ct .
Overall, the predicting probability of the decoder is defined
through the ordered conditionals:

p (y) =
T∏

t ′=1

p
({
yt ′ | y1, y2, · · · , yt ′−1

}
, ct
)

(3)

FIGURE 4. Introducing attention mechanism to the encoder-decoder
framework.

Here, each conditioned probability is defined as:

p
({
yt ′ | y1, y2, · · · , yt ′−1

}
, ct
)
= u

(
yt ′−1, st ′ , ct

)
(4)

where u is also a nonlinear function to generate the probabil-
ity of yt , and it can be multiple forms such as a multi-layer
model. Obviously, yt ′ are determined by yt ′−1, st ′ as well
as ct . Thus, the hidden state st ′ of the decoder at time step t

′

is computed by:

st ′ = f
(
st ′−1, yt ′−1, ct

)
(5)

To explore the importance of sampling points for predict-
ing an output in each time step, an attention-basedmechanism
was proposed in [28], as shown in Figure 4. The summary
vector ct ′ is computed, after which a weighted sum of the
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hidden state ht in the encoder is obtained:

ct ′ =
Tx∑
t=1

αt ′ tht (6)

where the αt ′ t denotes the importance mentioned above,
which is the output of time step t

′

corresponding to input ht
and is abstractly computed as:

αt ′ t =
exp

(
et ′ t
)∑Tx

t=1 exp
(
et ′ t
) (7)

where

et ′ t = a
(
st ′−1, ht

)
is a scoring method that measures the degree of matching
between the inputs around time step t of the encoder and the
output at time step t

′

.
After introducing the attention mechanism, what we want

is that the context used in predicting the output at each
moment is the context that is related to the current output.
In essence, it uses the hidden state to enhance the ability to
selectively memorize the sampling values in newly generated
sequence segments.

III. ATTENTION-BASED EQUITABLE SEGENTATION
GATED RECURRENT UNIT NETWORKS
Based on the theoretical derivation in the previous section,
a novel framework termed the Multi-sensory Attention-based
Equitable Segmentation Gated Recurrent Unit Network is
proposed, whose overall architecture is shown in Figure 5.
It mainly consists of three parts: data temporal correla-
tion pre-processing (i.e., equitable segmentation) module,
a single-layer bidirectional GRU (i.e., the encoder) model,
and a sampling point-level attention layer.

FIGURE 5. The architecture of AESGRU.

A. MULTI-SENSORY EQUITABLE SEGMENTATION
In different industrial scenarios, the type of the collected
data and the number of deployed sensors may not be always
identical. Besides, the sampling rate is generally extremely
high, which may cause the entire sensor sequence to be
extended indefinitely. Assuming that the raw sensor signal
is N-dimensional, since the sampling frequency and tempo-
ral characteristics are consistent, the multi-dimensional sig-
nals can be aligned. Traditional feed-forward neural networks
treat sensor sampling points as independent values. But it
does not take into account the inherent temporal correlation of
the sensor signal. However, the unique memory capabilities
of theGRUnetworkmake themodel specialize in the learning
and representation of time-series. Therefore, we divide the
entire sensor sequence into M segments with equal length,
and each segment is a relatively short sub-time series that can
be denoted as:

x =


x11, x12, · · · , x1n
x21, x22, · · · , x2n
...,

...,
. . . ,

...

xm1, xm2, · · · , xmn


where the x denotes the actual value of the raw sensor signal
at each sampling point.

Each sub-segment consists of a certain number of sensor
values, which has preserved the temporal correlation of the
complete sequence. Besides, these newly generated samples
are provided with the characteristic of independent and iden-
tical distribution. One sub-segment will be taken as one train-
ing sample for our deep model, and it fits well with the input
requirements of the GRU network. The total number of train-
ing samples is equal to the number of sub-segments (i.e., M).
Notably, each sub-segment is of fixed-length L (e.g., L= 64,
128 or 256, etc.), which is a hyper-parameter corresponding
to the time step of GRU network. That is, the input time step
of the GRU model should be set to L. If the sensor sequence
is segmented from the sampling starting point, the number
of data points at the final segment may be less than L (in
most cases). At this point, the segment data may be skipped
or spliced with the subsequent sequence if it is compatible.
Finally, these preprocessed raw signals are fed directly into
the model. In addition, our proposed model not only supports
multi-sensory input, but also eliminates complicated feature
engineering and completely implements an end-to-end health
perceiving system.

B. BIDIRECTIONAL GRU WITH ATTENTION MECHANISM
As depicted in Figure 5, assuming that the length of each
segment is set to T (e.g., T = 256) and the sampling point
in each segment can be expressed as xt , t ∈ [1,T ], the RNN
tends to better represent recent inputs, with the hidden state
ht focusing on sampling points around xt . Moreover, the per-
formance of industrial equipment will gradually degrade after
it a stable stage, and the transformation of sensor values is of
short-term relevance. Thus, we design a bidirectional GRU to

141490 VOLUME 7, 2019



W. Zhang et al.: AESGRU: Attention-Based Temporal Correlation Approach

obtain annotations of sampling points by summarizing infor-
mation from both directions, which consists of the forward
GRU Eht and the backward GRU

←

h t . The former learns the
raw sub-sequence from x1 to xT and computes the forward
hidden states (Eh1, Eh2, · · · , Eht ). The latter learns in the reverse
order (i.e., from xT to x1) and generates the backward hidden
states (

←

h1,
←

h2, · · · ,
←

h t ). These are denoted as follows:

Eht =
−−→
GRU (xt) , t ∈ [1,T ] ,

←

h t =
←−−
GRU (xt) , t ∈ [T , 1] . (8)

Notably, the T indicates the length of time step of GRU
network, at the same time refers to the length of each sub-
segment, thus it has the same meaning with variable L
mentioned in the Section III-A.

We concatenate the forward hidden state Eht and the back-
ward hidden state

←

h t to obtain an annotation of the health con-
dition ht , i.e., ht = [Eht ,

←

h t ]. In this way, the comprehensive
hidden state ht contains both the preceding sampling points
and the subsequent sampling points around xt .
Because there are only one target need to generate, there-

fore in our model architecture, we define the conditional
probability in Eq. (3) as:

p (y | x) = f (v) (9)

Here, we use the f function, a softmax classifier, to obtain the
final predicting result. The v denotes the summary vector that
is learned by the Bi-GRU, which depends on a sequence of
hidden state (h1, h2, · · · , hT ) represented by raw input x.
Obviously, we have treated these segmented sensor

sequences as time-series data, and have learned the repre-
sentation of equipment status in both the forward and back-
ward directions. Despite all that, it is noteworthy that not all
sampling point values contribute equally to the representation
of the health status. To select and reward those sampling
points that correctly diagnose faults, we introduce an atten-
tion mechanism [29] to extract raw sampling points that
indeed have a significant impact on the health of industrial
equipment, and combine the representation of those data
points to form the final health perception vector v. First,
we feed the hidden states ht into a one-layer fully connected
neural network to acquire a hidden representation dt . Second,
we introduce a context vector ds and measure the significance
of the sampling points via the vector. The vector is computed
as follows:

dt = tanh (Wsht + bs) (10)

αt =
exp

(
dTt ds

)∑T
t=1 exp

(
dTt ds

) (11)

The context vector v is computed as a weighted sum of
these hidden states ht :

v =
T∑
i=1

αtht (12)

The vector v, finally, can be used as the feature vector for
fault diagnosis by means of a softmax classifier.

hθ (xt) = softmax (v) (13)

Here, we deploy a ‘‘many to one’’ model architecture that
corresponds to the encoder-decoder framework mentioned in
Section II-B. The encoder refers to the Bi-GRU network, and
the decoder refers to the softmax classifier in our model.
Therefore, the dimension of the vector v is just 1×1, and the
context vector ds can be considered an abstract representa-
tion for selecting the informative sampling points, which are
randomly initialized and learned during the training process.

C. SOFTMAX CLASSIFIER AND COST FUNCTION
Suppose we have a sample set {x(i), y(i)}

M
i=1, which con-

sists of multiple inputs and their labels, where x(i)εRN and
y(i)ε {1, 2, · · · ,K}. For each input sample, the softmax clas-
sifier will calculate the probability of the sample for each
label. Consequently, it will output a vector that contains K
elements, in which each value indicates the probability of the
sample belonging to a specific label. In our study, we perform
a four-class diagnostic task whose expression is as follows:

hθ (xt)=


p (yt = 0|xt ; θ)
p (yt = 1|xt ; θ)
p (yt = 2|xt ; θ)
p (yt = 3|xt ; θ)

= 1∑3
j=0 e

θTj xt


eθ

T
0 xt

eθ
T
1 xt

eθ
T
2 xt

eθ
T
3 xt

 (14)

Subsequently, our model is trained by minimizing the cost
function, which is defined as follows:

J (θ) = −
1
m

 m∑
i=1

3∑
j=0

1
{
y(i) = j

}
log

eθ
T
j xt∑3

j=0 e
θTj xt


+
λ

2

m∑
i=1

L∑
l=1

θ2il (15)

Obviously, our model can handle m samples at a time
and consists of two parts. The left part represents the model
prediction loss, which is used to measure the degree of fitting
between the model and sample, where 1 {·} is an indicative
function that returns 1 if the value in the parentheses is true
and 0 otherwise. The right part is a regularization term used to
modify the cost function. This decay term will punish exces-
sively large parameters by tuning the hyper-parameter λ,
whose value is greater than 0. L denotes the length of
each segment (e.g., 256), corresponding to the time step of
Bi-GRU network.

IV. EXPERIMENTS
This section will detail the modeling process. Besides,
we will evaluate our proposed model on the CWRU dataset.

A. DESCRIPTIONS OF DATASET
The experimental data used herewere provided by the bearing
data center at CWRU [30]. The vibration signal was collected
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FIGURE 6. Raw vibration signal sequence of Reliance Electric Motor.

from a motor test rig that contained single-point defects at
the drive end and fan end, as well as from normal operating
conditions. Figure 6 shows the signal sequence at the drive
end and fan end under four different conditions. The sampling
time at both ends is consistent and the sampling frequency is
identical. Therefore, this paper uses the 0.007’’ fault diameter
data with 12 kHz sampling.

These vibration signals constitute the motor bearing
dataset, and the collected data at 1797 rpm (0 hp) is uti-
lized for our study. In this experiment, we require complete
a four-class diagnostic task. Unlike [14]–[16], considering
that the vibration sensor signal is typical time-series data
with temporal characteristics, we adopt RNN models and its
variants, including LSTM and GRU units, which are good at
handling such data. Therefore, different from [21], our work
utilizes the vibration signal acquired at both the drive end and
fan end. The data are extended to 2-D matrix and is directly
fed into our model to learn the fault representation.

B. EXPERIMENTAL SETUP
In this section, we will evaluate the effectiveness of the λ pro-
posed method through experiments. The core task is to verify
whether better results can be obtained in the fault diagnosis of
industrial equipment when the attention mechanism is inte-
grated into the Bi-GRU model to handle multi-dimensional
sensor sequences. We have designed three experiments to
verify this hypothesis.

To evaluate the performance of our proposed AESGRU,
we perform extensive experiments on the CWRU dataset.
First, to enable the model with effectiveness, the original
dataset is divided into an 8:2 ratio of training data to test
data through a random sampling method. In specific, there
are 80% of data extracted from the entire dataset to be taken
as the training set, and the rest data will be used for test-
ing. As described in the previous sections, we concentrated
on implementing a complete end-to-end diagnostic model.
Therefore, we directly input the raw data (i.e., the accelera-
tion value of the vibration signal) into the model for learning
representation. Then, we choose accuracy, training time and
prediction time as performance indicators to measure the

TABLE 1. The hyper-parameters selection range of model training
process.

merits of the model, after which a confusion matrix is utilized
to observe the distribution of the test results. We utilized the
grid search method to find the optimal parameters during the
training process. The tuning options for hyper-parameters in
model training are listed in Table 1. Our AESGRU reached
the highest accuracy when the learning rate was 0.0025, the
regularization rate was 0.0015, and the time step size as set
to 128. Finally, we choose basic RNN, LSTM, GRU, and
Bi-GRU structures for training and fault prediction, respec-
tively, to further analyze and compare their performance
metrics.

In our work, we deal with 2-D raw sensor sequences and
directly cut the entire sequence proportionally with the time
step interval. However, the required length of each segment
to better represent the operating status as well as to obtain
a better temporal correlation with sequence segments is also
investigated. Here, the length of each segment corresponds
to the time step of our proposed model. To analyze and
verify the temporal characteristics of this end-to-end system
at the input end, we set up the second experiment to com-
pare the AESGRU model horizontally. This verification is
implemented through segmenting the entire sensor sequence
at sizes of [32, 64, 128, 256, 512] without changing other
hyper-parameter settings, and set the time step of our model
to the corresponding sizes.

The input sensor sequence consists of discrete values of
equal length which are fed into the model in chronological
order to generate an output at each time step. The proposed
model does not directly use these outputs as the final result,
but introduces an attention mechanism that adds the weights
for the output of each time step. The weighted sum is con-
sidered the final prediction result. These weights reflect the
impact of each sample value of the sensor sequence with
regard to fault diagnosis. Finally, the attention distribution is
visualized by weight values curves.

To summarize, compared to traditional learning methods,
the use of RNN with GRU cells requires little to no feature
engineering. Data can be fed directly into the model, which
acts like a black box. However, other studies on the use of
PdM with industrial equipment utilize a great deal of feature
engineering. The drawbacks of these approaches have been
described in the previous sections. As explained in [21],
an RNN takes a batch of input vectors to learn the represen-
tation and output other vectors. In our experiments, a ‘‘many
to one’’ architecture is utilized: we transform the time-series
representation of feature vectors (one vector per time step)
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FIGURE 7. The test accuracies and losses during training process for three different GRU architecture on CWRU. The green curves
indicate the accuracy of these three architectures, and the blue curves indicate the loss of these three architectures over training
iterations.

and output a probability vector for fault classification. These
feature vectors are extracted from raw vibration signals. Due
to the small sample size of the training dataset, the model is
prone to overfitting. To address this, we utilize L2 regular-
ization. All of the experimental models were trained using
the Adam [31] optimizer with a learning rate of 0.0025 and a
minibatch size of 150.

The aforementioned experiments were conducted on a
3.20 GHz Intel CPU.

C. EXPERIMENTAL RESULTS
The performance metrics are listed in Table 2, including
those for four selected algorithms and our proposedAESGRU
method. The test accuracy and loss of the GRU, Bi-GRU, and
AESGRU during the training process are shown in Figure 7.
First, we can observe that the RNN models all achieve
excellent performance on the sensor sequence when dealing
with fault diagnosis of roller bearings. Several different unit
structures and model architectures were especially helpful for
improving the overall performance. We set the time step to
128 and used a single-layer model architecture. Subsequently,
thesemodels were trained for 300 epochs and the best test loss
was used as the final result. Second, it can be observed intu-
itively that the basic RNNwith tanh activation function is less
accurate and takes longer to train. It exhibits poor stability
at the initial training stage, and the convergence rate is slow
because the basic RNN is prone to vanishing gradients. The
LSTM and GRU units greatly improve training performance,
and our proposed method is superior to other models. It can

TABLE 2. Metrics for different RNN architectures. Besides using a learning
rate of 0.0001 and an iteration number of 1500 to train the RNN model,
other parameters are identical to those of the LSTM and GRU model.

be shown that RNN models are suitable for fault diagnosis
and prediction tasks.

In the second experiment, we used different step sizes to
equally divide the dataset, and set the time step of themodel to
the same length. We attempted to find the best segmentation
step size, and the performance metrics are listed in Table 3.
It can be observed that the number of samples obtained after
equal segmentation of the dataset is different. Obviously,
as the segmentation step becomes shorter, the number of
samples will increase. On the contrary, the number of samples
will be reduced (and vice versa). More specifically, when
L is set to 32, the sample scale is at a maximum, but the
accuracy is not maximized. This may be caused by sample
segmentation—that is, the model cannot learn a good repre-
sentation of themachine health from 32 consecutive sampling
points. It is worth noting that 100% accuracy is attained when
L is set to 256.

TABLE 3. The effect of different step size on the performance of AESGRU.

It can also be shown that performing an equal segmentation
with a step size of 256 significantly optimizes the perfor-
mance of the model. Although the prediction accuracy is
suboptimal when L is 128, the overall training time and the
single prediction time are minimized. Therefore, the segmen-
tation step should be set to 128 if efficiency is the priority.
Ultimately, the test results of these five segmentationmethods
in the training process are plotted in Figure 8, and the con-
fusion matrix is listed in Table 4. As we can see, the model
correctly predicted all 521 test samples when L was 256, and
the performance on the CWRU dataset was always 100%
over the course of multiple experiments. When L was 32,
64 or 128, the model output false positives (marked with red)
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TABLE 4. Test Confusion Matrix of AESGRU for different step size, including 32, 64, 128, 256, and 512. The letters ‘‘0’’, ‘‘1’’, ‘‘2’’, and ‘‘3’’ indicate four kinds
of equipment degraded conditions which contains Normal, Inner race faulty, Ball faulty, and Outer race faulty. In each sub-table, the green-filled grid
indicates that the classification is correct, and the red-filled grid indicates that the normal status have been predicted to faulty classes. The blue-filled grid
indicates the opposite situation.

FIGURE 8. The accuracy of training epochs at the different segmentation
step sizes.

in some cases. To some extent, this is acceptable, since no
irreversible damage was caused. In other words, this simply
adds a nominal amount to maintenance costs, which is min-
imal compared to expensive downtime. However, when L is
512, the model performs particularly poorly and outputs false
negatives (marked with blue). This is the most dangerous
result in a fault prediction task because it presents a security
risk to the industrial system (e.g., system paralysis). There-
fore, the prediction accuracy should be as close as possible to
100% to reflect the significance of data-driven PdM. This is
the fundamental reason why RNN models can achieve better
performance in fault diagnosis. However, eliminating the loss
caused by these false predictions will be discussed in future
work.

After equal segmentation of the raw signal, each segment
contains an identical number of sampling points. Strictly
speaking, these sampling points are essentially a time series,
and the specific values of the previous sampling points can
not only represent the equipment operation status at the
corresponding moment but also have a significance effect
on subsequent series. Accordingly, the sensor sequence is
context dependent. To verify that our model can capture
the importance of sampling points with regard to context,

FIGURE 9. The distribution of attention weight under four equipment
health conditions. The (a), (b), (c) and (d) denote the attention weight
distribution of a random sensor sample in the four machine status,
respectively.

we plot the distribution of the attention weights for four types
of equipment status, shown in Figure 9(a-d), respectively.
Certainly, this is only the α distribution from one set of
samples, but our model can build an α distribution scheme
for any sample. We can observe that all of the segments have
a corresponding attention weight distribution, which will be
assigned to each point and has a weight range from 0 to 1.
This indicates that our model can capture diverse context and
assign context-dependent weights to the sampling points.

To confirm that our model can select informative sampling
points in each segmentation, we visualize the distribution of
attention weights corresponding to the raw sensor sequence
in Figure 10. For convenience, we have normalized the data,
so each red bars in the sub-figures tend to 1. The left y-axis
represents the acceleration values from the two end bear-
ings, and the right y-axis denotes the α values. Figure 10
shows that our model can select sampling points that carry
fault information. For example, for the sample with label 3
(Fig. 10(d)), the vibration of the raw signal is particularly
severe in some places (marked yellow), and the maximum
acceleration is closer to 3 mm/s2. Our model can concentrate
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FIGURE 10. The distribution of attention weights corresponding to the
raw sensor sequence. (a), (b), (c), and (d) indicate the relationship of four
samples with the corresponding attention weight. The blue curve denotes
the sampling points at the drive end, and the red curve denotes the
sampling points at the fan end. The red bars denote the distribution of
the attention weights.

on these areas and assign a higher weight to each sampling
point, which is more informative for fault diagnosis. That
is, when the model focuses on learning how to represent
equipment fault types, it will pay more attention to this part
of the data. The same is true for label 0, label 1, and label 2.

D. COMPARISON WITH OTHER WORKS
The sample capacity of the CWRU dataset is somewhat insuf-
ficient, a characteristic that is mitigated by the design method
of our AESGRU model (i.e., equitable segmentation of the
entire dataset). Furthermore, the time complexity is critical
for real-time prediction systems. The diagnostic accuracy and
prediction time consumption using different segmentation
step sizes are shown in Figure 11. Accordingly, taking into
account the number of test samples and time taken, an accu-
racy of 99.88% is considered the final result of our model
(with L set to 128).

FIGURE 11. The diagnostic accuracy and test time consumption of
AESGRU under different segmentation step size.

To demonstrate the effectiveness of our proposed approach,
the diagnostic accuracy of several related works were
compared using the same CWRU dataset. The details of
this comparison are presented in Table 5. Specifically,
Zhang et al. [32] proposed the ICDSVM model, which was
optimized by inter-cluster distance (ICD) in the feature space

TABLE 5. Comparison of test accuracy with other research works on
CWRU dataset.

and achieved 97.75% accuracy but also required manual fea-
ture extraction. Zhang et al. [33] deployed a four-layer DNN
and achieved 94.4% diagnostic accuracy. Due to unlabeled
data being easier to acquire than labeled data, Lei et al. [14]
and Li et al. [16] directly learned features from mechanical
signals via unsupervised learning, attaining accuracies of
99.66% and 97.29%, respectively. In addition, Zhao et al. [21]
combined handcrafted feature design with automatic fea-
ture learning, and achieved 99.6% accuracy. In particular,
Li et al. [34] integrated a two-layer CNNs with a Bi-LSTM
network, at the same time the attention mechanism is intro-
duced behind the LSTM units, finally achieved 99.74% accu-
racy on the CWRU dataset. Compared with these existing
works, our AESGRU method has achieved optimal results
from the perspective of fault prediction accuracy. Above
all, the new sample set is made into time-series segments
with temporal correlation through the equitable segmentation
of the original dataset. Thus, the model enables end-to-end
learning from strongly correlated data, which is integrated
with multi-dimensional sensor signal from the vibration data
of drive end and fan end. On top of that, the attention
mechanism allows our AESGRU to selectively screen out
a small number of important sampling points from long
sequence segments and focus limited attention resources on
these points, so that greatly improving the efficiency and
accuracy of health perception.

In general, we have further improved the diagnostic
accuracy of health perception by using equitable segmen-
tation of original dataset and introducing attention mecha-
nism. Although the improvement is especially tiny weak,
we believe that any effort to improve the robustness of
diagnostic system is worthwhile. It should be pointed out,
however, that a single metric alone cannot judge the absolute
performance of a model. In some cases, we should compre-
hensively consider some factors, such as model complexity,
time overhead, etc., to judge the pros and cons of a deep
model.

V. CONCLUSION
In this work, a novel diagnostic model, named AESGRU,
is proposed for the health perception of rotating machinery.
After equitable segmentation of the raw sensor sequence,
the newly generated samples with temporal correlation are
fed directly into this model, so that it enables end-to-end
learning from these strongly correlated data. In particular,
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the attention mechanism is effective in modeling the
long-term dependency of sensor sequences. Besides, it not
only eliminates the need for feature engineering, but also
is applicable to multi-sensor scenarios. The experimental
results demonstrate that when the segmentation step size is
set to 256, the accuracy of 100% can be attained.

It has been verified that the attention mechanism can make
health perception of massive sensor sequences more accurate.
In future work, wewill continue to focus on attention between
sequences. Meanwhile, our proposed method will be utilized
for actual industrial equipment, specifically to washing auto-
matic equipment, which is an automatic device used to clean
high-speed rails and subways before repairs.
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