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Abstract—Localization has gained great attention in recent
years, where different technologies have been utilized to achieve
high positioning accuracy. Fingerprinting is a common technique
for indoor positioning using short-range radio frequency (RF)
technologies such as Bluetooth Low Energy (BLE). In this paper,
we investigate the suitability of LoRa (Long Range) technology
to implement a positioning system using received signal strength
indicator (RSSI) fingerprinting. We test in real line-of-sight (LOS)
and non-LOS (NLOS) environments to determine appropriate
LoRa packet specifications for an accurate RSSI-to-distance
mapping function. To further improve the positioning accuracy,
we consider the environmental context. Extensive experiments
are conducted to examine the performance of LoRa at different
spreading factors. We analyze the path loss exponent and the
standard deviation of shadowing in each environment.

Index Terms—Curve fitting, LoRa, path loss, positioning, RSSI
fingerprinting, spreading factor

I. INTRODUCTION

The fourth industrial revolution is anticipated to depend
heavily on the Internet-of-Things (IoT) networks with billions
of interconnected devices, where the number is expected to
increase exponentially with time. With the era of smart devices
comes the need of power efficient, low-cost, long-range and
reliable communication technologies. IoT is being explored
for scalability and versatility using multi hop networks in
industrial processes control [1] [2]. Low power wide area
networks (LPWANs) provide the power efficient and long-
range solution to the question of IoT scalability. Recent
applications in location based services (LBS) have stimulated
extensive research on wireless localization [3] and have also
accelerated research in the area of activity detection [4]. LBS is
now becoming one of the standard features in mobile devices.
Among all the localization technologies, wireless received
signal strength indicator (RSSI) fingerprinting has proven as
an effective ranging technique due to its simplicity and de-
ployment practicability [5]. Fingerprinting based localization
avoids hardware deployment cost and effort by relying on
existing network infrastructure [6]. RSSI fingerprinting uses
the received signal strength to estimate the Euclidean distance
between the transmitter and itself; the receiver. This distance
can then be used in trilateration algorithms to position the
transmitter. Since global navigation satellite system (GNSS)
relies on an unobstructed connection between the receiver
and the satellite, it has proved unsuitable for indoor navi-
gation. GNSS and allied technologies are power inefficient

Fig. 1. Range and data rate of different communication technologies

and weather sensitive; hence, LPWANs present an interesting
opportunity in the field of GPS-free positioning systems featur-
ing low power and robust communication channels. LPWAN
is a type of wireless communication, which sends small data
packets over long distances operating on a battery. They have
been specifically designed for the IoT industry. The term
LPWAN signifies three characteristics:

1) Low power consumption
2) Wide area coverage
3) Cellular-like infrastructure for Internet connectivity

Fig. 1 briefs on the range versus data rate of different com-
munication technologies. The bandwidth of LoRa is extremely
small, but provides an extremely long range, sometimes
crossing the traditional 3G/4G cellular networks. Moreover,
LPWANs have lower data rates than Bluetooth and ZigBee,
and outperform both of them in range.

GPS independent positioning systems are an exciting field
of work. Location techniques commonly use GPS, Bluetooth,
or radio frequency identication (RFID) technologies [7]. A
disadvantage of GPS is that the satellite signals are blocked
by obstacles, in addition, variations in weather results in
approximations with errors of meters, so it is not possible to
use this system as a method for indoor location [8]. RSSI
fingerprinting has been implemented using Bluetooth low
energy (BLE) systems on a large scale. However, Bluetooth
technology has limited coverage and this communication is
focused on very short distances to achieve the location.

LPWANs provide a middle ground between GNSS and BLE



positioning systems. Unlike BLE systems, they have a range
of kilometers and enable outdoor localization. On the other
hand, unlike GPS, LPWANs work indoors without a direct
line-of-sight with the transmission satellites. LPWANs not
only increase the range but also allow for reliable position-
ing both in indoor and outdoor environments due to their
low frequency band and consequently less signal attenuation.
The RSSI-to-distance mapping is a suitable alternative to
construct a robust, deployment based positioning system due
to its dependence on the environment of operation. Since
LoRa networks are expensive to set up, extensive planning
is necessary before their deployment. Therefore, in this paper
we present a comprehensive analysis of RSSI fingerprinting
using LoRa networks for both indoor and outdoor locations.
More specifically, we obtain the patterns of received power
on a LoRa gateway at various distances from its transmitting
end-device and model the large-scale path loss characteristics
from the readings. Using a log-distance path loss model, we
evaluate the path loss exponent (PLE) of various environments.
Furthermore, we also characterize the standard deviation of
shadowing for different environments. The study is, therefore,
a pre-cursor to make positioning/localization systems using the
LoRaWAN technology.

The rest of the paper is organized as follows. In Section
II, we briefly describe characteristics of LoRa technology.
Section III provides the details of data collection. Section
IV presents the analytical details followed by the outdoor
and indoor analysis. We conclude the paper by profiling our
environment using path loss exponent and standard deviation
of shadowing.

II. LORA TECHNOLOGY

A. Characteristics of LoRa Technology

The LoRa protocol works on three completely different
frequency bands: 867–869MHz, 902–928 MHz and 430–
510 MHz. The bandwidth of LoRa in all scenarios can either
be 125 kHz, 250 kHz or 500 kHz [9]. LoRa uses chirp
signals to modulate information. A chirp is a tone in which
frequency changes with time. Fig. 2 shows chirps; the solid
lines represent an up-chirp whereas the dotted lines represent
a down-chirp.
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Fig. 2. Chirp spread spectrum of LoRa technology.

The chirps in LoRa modulation are cyclic and the frequency
jumps determine how data is encoded. A symbol represents
one or more bits of data. If the symbol has a spreading factor
of 7, it carries 7 bits and the values can range from 0-127.
These divisions of frequency are called chips. The chips/s are
defined by the bandwidth. For a bandwidth of 125 kHz, we
can transfer 125000 chips/s. The symbol rate can be calculated
as

Rs =
BW

2SF
=

Rc

2SF
[symbols/s], (1)

where BW is the bandwidth, Rc is the chip rate and SF is the
spreading factor, as shown in [10]. The time-on-air is directly
affected by the spreading factor. A larger spreading factor
signifies a higher symbol duration (or in other words, more
raw bits) and more time-on-air [11], hence mapping a larger
physical range. This relation of SF and signal range has direct
implications on the RSSI to distance mapping.

B. Limitations of LoRa Technology

The LoRa technology has limited support for real-time
applications. The long range of LoRa comes at the price
of a low data rate of 27 kbps [12]. LoRa imposes a 1%
duty cycle, which causes long intervals between consecutive
packet transmissions. This is a problem inherent to most
of the sub-bands used by LoRa, hence, it will not likely
be suitable for applications that require frequent, real-time,
location information [13].

III. DATA COLLECTION SETUP

Our data collection setup consists of a gateway and an end
device (ED) as shown in Fig. 3. We use Dragino LG01 LoRa
Gateway [14] while the ED is a LoRa wireless transceiver
shield attached to an Arduino Uno development board. The
gateway receives LoRa modulated packets from the ED on
433 MHz frequency band. We use 2.5 dBi antennas for signal
transmission and reception.

The ED is programmed to send one LoRa modulated packet
periodically. The LG01 Gateway is connected through a LAN
(local area network) cable to a processing unit. This creates a
network port between our processing machine (i.e., a personal
computer, PC) and the gateway. The PC uses Python with the
paramiko library to open a Secure Shell (SSH) tunnel with
the gateway, which is used to telnet the gateway at its local
IP address. The PC then uses openpyxl to log the collected
RSSI readings in a file.

For RSSI fingerprinting in LOS conditions, we selected an
open real-life environment in order to avoid reflections from
any surrounding structures. A 3D view of the environment
chosen for the collection of outdoor LOS data can be seen
in Fig. 4. We collected RSSI data up to a distance of 25 m
in an open-air LOS setting. Data is collected in 21 constant
incremental steps from 1 m to 25 m. These readings are then
concatenated to form a large dataset of 35,280 readings of 126
(21 increments x 6 SFs) different combinations.

We employed a similar setup and procedure to collect NLOS
indoor data for 18 instances of distance in four different



environments at SF7. The four considered environments are
the ground floor (floor 0), floor 1, floor 2 and floor 3 of
the building with varying propagation conditions. The data
collected from each environment is then concatenated to form
a dataset of 16,811 readings of 72 different combinations. A
3D model of the NLOS data collection site is shown in Fig. 5.

IV. DATA ANALYSIS

Mostly the radio propagation models are developed using
a combination of analytical and empirical techniques. In this
study, we employ curve fitting to estimate a model for RSSI
to distance mapping. This approach offers the advantage of
accounting various factors implicitly that may be known or
unknown, and can be tested by collecting new data in different
environments.

The received power Pr in dBm over a wireless link between
a transmitter and a receiver is generally given by

Pr = Pt − L, (2)

where Pt is the transmission power (dBm) and L is the path
loss described as

L = 10n log10 d+ β, (3)

where d is the distance between the transmitter and the
receiver, and n is the path loss exponent (PLE). The parameter
β is the fixed path loss. A correct choice of the free space
reference distance is necessary for the propagation environ-
ment. We selected a reference distance (d0) of 10 m, which
is appropriate for micro-cellular systems [15]. The path loss
can be represented as

PL(dB) = PL(d0) + 10n log10

(
d

d0

)
, (4)

where PL represents the path loss (dB), PL(d0) represents the
path loss at 10 m. The reference path loss calculated through
d0, combined with n provides the path loss for the distance d.

After finding path loss from (4), we use equation (2) to
calculate the received power Pr. The transmission power is
-19 dBm at the ED during data collection. RSSI fingerprint-
ing requires a probabilistic map of received power to the
transmitter-receiver (T-R) distance. To calculate the probability

Fig. 3. Data collection setup using Dragino LG01 LoRa Gateway and LoRa
ED transceiver.

Fig. 4. Outdoor LOS data collection site

Fig. 5. A 3D view of NLOS indoor data collection site.

of obtaining a particular RSSI (dBm) at a fixed T-R distance,
we use

Pr [Pr(d) < γ] = Q

(
Pr(d)− γ

σ

)
(5)

where Q(·) is the Gaussian Q-function defined as

Q(z) =
1

2

[
1− erf

(
z√
2

)]
(6)

As shown in [15]. Eq. (5) determines the probability that
the received signal power remains below a certain threshold
γ (dBm). This probability is used to estimate the RSSI that
will be achievable in a given setup. As the path loss varies
with environment, hence this probability also varies across
different channel propagation conditions. We use equations
(5) and (6) to analyze the path loss exponent and standard
deviation of shadowing at the outdoor LOS and indoor NLOS
environments.

A. Outdoor Data Analysis

We performed logarithmic curve fitting on the RSSI data
to determine RSSI to distance mapping for different SFs.
Fig. 6 shows distance vs RSSI curves, which are obtained
using numerical curve fitting. It is observed that, at a given
distance, the RSSI obtained at SF7 is more than that of SF12.
This shows that, for the same distance, SF7 can map more
RSSI values as compared to the other SFs.

In the outdoor LOS environment, the values of the slope
(i.e., PLE) and the root mean square error (RMSE) at different
spreading factors are given in Table I. It can be seen that
the PLE for SF7 is approximately 2.4 while it is higher for
other SFs. The RMSE provides the standard deviation of
shadowing, which is the lowest for SF7. It implies that SF7
is less likely to be affected by the environmental shadowing



Fig. 6. The variation of mean RSSI with distance at different SFs for outdoor
LOS environment.

TABLE I
OUTDOOR PATH LOSS AND STANDARD DEVIATION OF SHADOWING FOR

DIFFERENT SFS

SF Path loss exponent RMSE (dB)
7 2.397 3.055

8 2.206 3.490

9 2.164 3.888

10 2.233 3.805

11 2.269 3.881

12 2.027 3.344

than the other SFs. Therefore, we will use SF7 to profile the
indoor environments in the next subsection.

The variation in path loss at different spreading factors
with respect to distance is shown in Fig. 7. The results
prove that the SF7 experiences more path loss than other
SFs, and consequently, has a shorter range than SF8 to SF12.
The RSSI-to-distance function maps a particular RSSI value
(dBm) to a range of distances. Since SF7 provides a lower
range than other SFs, it maps more RSSI values to a smaller
range of distances, hence creating a one-to-some mapping as
compared to SF12’s one-to-many RSSI-to-distance mapping.
This sensitivity provides the most precise RSSI-to-distance
maps. Because of its higher range, SF12 experiences the least
path loss during propagation.

The probability that the RSSI falls below a certain threshold
is shown in the cumulative distribution function (CDF) of
Fig. 8. It shows that the probability of an SF7 signal to go
below -85 dBm is negligible. Hence, at a distance of 12.8 m,
SF7 will always provide a signal strength above -83 dBm. This
shows that SF7 maps more RSSI values to the same range of
distances than SF8 to SF12. This accurate mapping is achieved
at the cost of a smaller range of distances as SF7 pans less
area than SF12.

Fig. 7. The variation of path loss with distance for different SFs for outdoor
LOS environment.
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Fig. 8. The cumulative distribution function (CDF) showing the probability
of outdoor LOS RSSI at different SFs.

It can be seen in Table II that the spreading factor of 7
provides the best resolution on the training set, equal to 3.928
meters.

TABLE II
ACCURACY OF RSSI TO DISTANCE MAPPING FOR DIFFERENT SFS IN

OUTDOOR LOS ENVIRONMENTS

SF Resolution (m)
7 3.928
8 6.332
9 6.950
10 5.920
11 6.356
12 6.087



Fig. 9. The variation of mean NLOS RSSI between floors of a building.

B. Indoor Data Analysis

Fig. 9 shows the variation of RSSI at different floors of
a building. The RSSI values are higher at the ground floor
than that of floors 1, 2 and 3. Floor 1 and 2 show anomalous
behaviour due to diffraction and superposition of waves.The
standard deviation of shadowing at each floor is provided by
the RMSE, which is given in the Table III.

TABLE III
STANDARD DEVIATION OF SHADOWING FOR DIFFERENT FLOORS IN

INDOOR NLOS ENVIRONMENTS

Floor Path loss Exponent RMSE (dB)
Ground 1.609 4.624

1st 2.809 5.409

2nd 2.369 3.563

3rd 3.632 4.416

How path loss varies in NLOS conditions with distance
at each floor can be seen in Fig. 10. LOS path loss is also
shown to highlight that LOS has the least slope or the lowest
PLE.The path loss exponent of ground floor can be explained
by the tunnel effect of indoor LOS environments. Tunnels act
as waveguides and provide a path loss exponent between 1.6
to 1.8 [15] .The path loss experienced by floor 2 is less than
that of floor 1 due to the effects of superposition. Diffraction
of waves from two walls (floor 1 and floor 2) cause them to
superimpose at the receiver and provide a higher RSSI.

It can be seen in Table IV that the best resolution has
been achieved on floor 3 as compared to the other floors.
It evidences that the distance measurement is accurate up to
4.550 meters.

The probability that the received signal level will be below
γ at different floors is shown in Fig. 11. It shows that the
probability of an SF7 signal at floor 3 to go below -180 dBm
is zero. Hence, at a distance of 20m, floor 0 would give an

Fig. 10. The variation of indoor NLOS path loss between floors of a building.
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Fig. 11. The cumulative distribution function (CDF) showing the probability
of indoor NLOS RSSI at different floors

TABLE IV
ACCURACY OF NLOS RSSI TO DISTANCE MAPPING AT DIFFERENT

FLOORS

SF Resolution (m)
Ground 22.969
1st 6.837
2nd 5.189
3rd 4.550

RSSI of -108 dBm whereas floor 3 would will always provide
a signal strength above -175 dBm.

The non-overlapping slopes of the CDF suggest that LoRa
could be used in indoor NLOS localization, by using machine
learning to predict the number of obstacles between the user
and the receiver. By training the machine learning models to



predict the number of obstacles between the transmitter and
the receiver, and the T-R distance, we can create a robust
localization system unique to the environment it is operating
in. The positioning system deployed using LoRa technology
would require a calibration-based deployment approach as the
path loss varies with environments.

V. CONCLUSION

This paper aimed to analyze RSSI fingerprinting in LoRa
networks. The method employed path loss for the estimation
of the probability of RSSI to go below a certain value.
This method provides a quantitative measure of estimating
the probability of obtaining a range of RSSI at the receiver.
We have extensively tested LoRa for NLOS localization and
concluded that machine learning algorithms could use RSSI
to predict the number of obstacles. Future work includes
a thorough testing of LoRa communication using machine
learning algorithms at different environments for the purpose
of obstacle/ environmental profiling. The conclusions of this
paper can be used alongside time difference of arrival (TDoA)
localization to create a robust positioning system.
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