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ABSTRACT 

In this thesis, both a method and a tool to enable efficient memory synthesis 
for real-time video processing systems on field programmable logic array are 
presented. In real-time video processing system (RTVPS), a set of operations are 
repetitively performed on every image frame in a video stream. These operations 
are usually computationally intensive and, depending on the video resolution, can 
also be very data transfer dominated. These operations, which often require data 
from several consecutive frames and many rows of data within each frame, must 
be performed accurately and under real-time constraints as the results greatly 
affect the accuracy of application. Application domains of these systems include 
machine vision, object recognition and tracking, visual enhancement and 
surveillance. 

Developments in field programmable gate arrays (FPGAs) have been the 
motivation for choosing them as the platform for implementing RTVPS. Essential 
logic resources required in RTVPS operations are currently available and are 
optimized and embedded in modern FPGAs. One such resource is the embedded 
memory used for data buffering during real-time video processing. Each data 
buffer corresponds to a row of pixels in a video frame, which is allocated using a 
synthesis tool that performs the mapping of buffers to embedded memories. This 
approach has been investigated and proven to be inefficient. An efficient 
alternative employing resource sharing and allocation width pipelining will be 
discussed in this thesis. 

A method for the optimised use of these embedded memories and, 
additionally, a tool supporting automatic generation of hardware descriptions 
language (HDL) modules for the synthesis of the memories according to the 
developed method are the main focus of this thesis. This method consists of the 
memory architecture, allocation and addressing. The central objective of this 
method is the optimised use of embedded memories in the process of buffering 
data on-chip for an RVTPS operation. The developed software tool is an 
environment for generating HDL codes implementing the memory sub-
components.  

The tool integrates with the Interface and Memory Modelling (IMEM) tools 
in such a way that the IMEM’s output - the memory requirements of a RTVPS - is 
imported and processed in order to generate the HDL codes. IMEM is based on the 
philosophy that the memory requirements of an RTVPS can be modelled and 
synthesized separately from the development of the core RTVPS algorithm thus 
freeing the designer to focus on the development of the algorithm while relying on 
IMEM for the implementation of memory sub-components. 
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SAMMANDRAG 

I denna avhandling presenteras en metod och ett verktyg för möjliggörandet 
av effektiv minnessyntes för vidoebearbetande system i realtid på Field 
Programmable Gate Array (FPGA). I ett system som bearbetar video i realtid 
(RTVPS) upprepas en mängd processer i varje bildruta i en videosekvens. Dessa 
processer är ofta beräkningsintensiva och, beroende på videoupplösningen, kan de 
också vara mycket dataöverföringsstyrda. Processerna, som ofta kräver data från 
en mängd konsekutiva bildrutor och många dataserier inom varje ruta, måste 
genomföras exakt och under realtidsbegränsningar, då resultaten i hög grad 
påverkar tillämpningens exakthet. Tillämpningsområden för dessa system 
innefattar igenkänning av föremål, spårning av föremål samt övervakning. 

Utvecklade produkter inom FPGA har motiverat användandet av dessa som 
plattform för tillämpning av RTVPS. De nödvändiga logikresurser som krävs för 
RTVPS-processer är för tillfället tillgängliga, optimerade och inbyggda i modern 
FPGA. En sådan resurs är det inbyggda minne som används för datalagring under 
videoprocessning i realtid. Varje datalager motsvarar en rad pixlar i en videoruta 
som automatiskt allokeras på FPGAs. Denna metod har undersökts och visat sig 
vara effektiv. Ett effektivt alternativ som utnyttjar resursdelning och anslag vid 
rörledning diskuteras i denna avhandling. 

En metod för optimal användning av dessa inbäddade minnen och ett 
verktyg som stöder automatisk generering av HDL-koder för minnessyntes enligt 
den utvecklade metoden är fokus för denna avhandling. Denna metod består av 
minnesarkitektur, allokering och adressering. Metodens centrala mål är optimal 
användning av inbäddade minnen under lagring av data på chip för en RTVPS-
operation. Den utvecklade mjukvaran är en miljö för att generera HDL-koder, där 
minneskomponenter tillämpas. 

Verktyget integreras med IMEM-verktyg (Interface and Memory Modelling) 
på ett sådant sätt att IMEM:s utdata – minneskraven för ett RTVPS, importeras och 
behandlas för att generera HDL-koderna. IMEM baseras på filosofin att 
minneskraven för ett RTVPS kan modelleras och syntetiseras separat från 
utvecklandet av den ursprungliga huvudalgoritmen för RTVPS och därigenom ge 
designern frihet att fokusera på utvecklingen av algoritmen, medan IMEM 
används för tillämpning av minneskomponenter. 

 





vii 

 

ACKNOWLEDGEMENTS 

First of all I would like to show my great appreciation of my 
supervisors Prof. Mattias O’Nils, Prof. Bengt Oelmann and Dr. Benny 
Thörnberg for their academic and scientific guidance and inspirations, and for 
giving me the opportunity to study for Ph.D. Prof. Hans-Erik Nilsson and Dr. 
Jerzy Kirrander are greatly acknowledged for their contributions and 
inspirations. I am grateful to Fanny Burman and Lotta Söderström for their 
kind support. I would also like to thank all my colleagues at the Mid Sweden 
University, my friends and my family for their supports.  

 
I would also like to express my gratitude to the Mid Sweden Unviersity, 

the Swedish KK foundation and ARTES Graduate School for their financial 
supports. 

 
Sundsvall, Jan 2009 

 
 
 

Najeem Lawal 
 





ix 

 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................. III 

SAMMANDRAG .......................................................................................................V 

ACKNOWLEDGEMENTS.......................................................................................VII 

TABLE OF CONTENTS ..........................................................................................IX 

ABBREVIATIONS AND ACRONYMS ..................................................................XIII 

LIST OF FIGURES ................................................................................................ XV 

LIST OF TABLES ................................................................................................ XVII 

LIST OF PAPERS................................................................................................. XIX 

1 INTRODUCTION...............................................................................................1 
1.1 REAL-TIME VIDEO PROCESSING SYSTEM.............................................. 1 
1.2 IMPLEMENTATION ALTERNATIVES ......................................................... 4 

1.2.1 Application Specific Integrated Circuits..................................... 4 
1.2.2 Software Based Processors...................................................... 4 
1.2.3 Programmable Hardware Processors....................................... 4 

1.3 DATA REQUIREMENTS IN RTVPS......................................................... 6 
1.4 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS ................................ 9 
1.5 PROBLEM DESCRIPTION..................................................................... 10 
1.6 PERFORMANCE COMPARISON ............................................................ 11 

1.6.1 Experimental Set-Up ............................................................... 11 
1.6.2 Results .................................................................................... 12 
1.6.3 Conclusion............................................................................... 13 

1.7 MAIN CONTRIBUTIONS ....................................................................... 14 
1.8 THESIS OUTLINE................................................................................ 14 

2 FIELD PROGRAMMABLE GATE ARRAY (FPGA) .......................................15 
2.1.1 Programmable Logic Cells ...................................................... 15 
2.1.2 Programmable Interconnects .................................................. 17 
2.1.3 On-chip RAM Block................................................................. 19 
2.1.4 Embedded cores ..................................................................... 19 

3 RELATED WORKS.........................................................................................21 
3.1 CHALLENGES IN SYSTEM DEVELOPMENT ON FPGA ............................. 21 

3.1.1 Abstraction level ...................................................................... 21 
3.1.2 Design verification................................................................... 22 
3.1.3 Resource usage ...................................................................... 22 
3.1.4 Energy and power consumption.............................................. 22 



x 

3.2 DESIGN METHODS AND LANGUAGES ...................................................23 
3.2.1 C/C++ Models..........................................................................23 
3.2.2 Java Model ..............................................................................24 
3.2.3 MATLAB Model .......................................................................24 
3.2.4 Hardware Description Model ...................................................25 
3.2.5 Performance comparison ........................................................25 

3.3 PREVIOUS WORKS ON ON-CHIP MEMORY SYNTHESIS.........................26 
3.3.1 Allocation algorithms ...............................................................26 
3.3.2 Memory addressing .................................................................27 
3.3.3 C++ based System Synthesis .................................................28 
3.3.4 Constraint Generation .............................................................29 
3.3.5 Response to related works ......................................................29 

4 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING 
SYSTEMS........................................................................................................31 

4.1 IMEM SYNTHESIS WORKFLOW...........................................................31 
4.2 TOOL INTEGRATION............................................................................33 

4.2.1 Integration with C-Based tools.................................................33 
4.2.2 Integration with MATLAB.........................................................34 
4.2.3 Integration with Xilinx ISE and ModelSim................................34 

4.3 MEMORY SYNTHESIS ARCHITECTURE .................................................34 
4.4 MEMORY IMPLEMENTATION ................................................................37 
4.5 MEMORY ALLOCATION........................................................................38 

4.5.1 Allocation algorithm .................................................................38 
4.5.2 Definitions................................................................................39 
4.5.3 Proposed algorithm .................................................................42 
4.5.4 Complexity analysis.................................................................43 

4.6 ARCHITECTURE DRIVEN BLOCK RAM OPTIMISATION ...........................43 
4.7 MEMORY ACCESSING.........................................................................46 

4.7.1 Base Pointer Approach............................................................47 
4.7.2 Distributed Pointer Approach...................................................48 

4.8 CONSTRAINT GENERATION.................................................................49 
4.9 RESULTS...........................................................................................53 

4.9.1 Real-time video processing design cases ...............................53 
4.9.2 Allocation Results ....................................................................54 
4.9.3 Performance analysis with varying length and width ..............56 
4.9.4 Performance analysis with varying length and Block RAM sizes
 59 
4.9.5 Performance Analysis for video processing systems..............60 
4.9.6 Performance of Architecture Driven Memory Allocation .........62 
4.9.7 Results of the addressing........................................................63 
4.9.8 Result of Constraint Generation ..............................................64 

5 PAPERS SUMMARY ......................................................................................67 
5.1 MEMORY SYNTHESIS .........................................................................68 

5.1.1 Paper I .....................................................................................68 
5.1.2 Paper VII..................................................................................68 
5.1.3 Paper II ....................................................................................68 

5.2 PERFORMANCE ANALYSIS ..................................................................68 



xi 

5.2.1 Paper III................................................................................... 68 
5.2.2 Paper IV .................................................................................. 69 

5.3 TOOLS INTEGRATION ......................................................................... 69 
5.3.1 Paper V ................................................................................... 69 

5.4 POST-SYNTHESIS OPTIMISATION........................................................ 69 
5.4.1 Paper VI .................................................................................. 69 

5.5 AUTHORS CONTRIBUTIONS................................................................. 70 
6 THESIS SUMMARY........................................................................................71 

6.1 DISCUSSIONS .................................................................................... 71 
6.1.1 Memory architecture ............................................................... 71 
6.1.2 Memory allocation ................................................................... 72 
6.1.3 Memory addressing................................................................. 72 
6.1.4 Boundary conditions management.......................................... 72 
6.1.5 IMEM interfaces ...................................................................... 72 
6.1.6 Constraint Generation ............................................................. 73 

6.2 CONCLUSIONS................................................................................... 73 
6.3 FUTURE WORKS................................................................................ 74 

7 REFERENCE ..................................................................................................75 

APPENDIX A ..........................................................................................................81 

PAPER I ..................................................................................................................83 

PAPER II ...............................................................................................................107 

PAPER III ..............................................................................................................115 

PAPER IV..............................................................................................................121 

PAPER V...............................................................................................................131 

PAPER VI..............................................................................................................141 

PAPER VII.............................................................................................................149 

 





xiii 

 

ABBREVIATIONS AND ACRONYMS 

ALU ............. Arithmetic Logic Unit 
ASIC ............. Application Specific Integrated Circuit 
ASIP ............. Application Specific Instruction set Processor 
BRAM ………... Block RAM 
CAD ............. Computer Aided Design 
CLB ............. Configurable Logic Block 
CPLD ............. Complex PLD 
CPU ............. Central Processing Unit 
DCM ............. Digital Clock Manager 
DRAM ............. Dynamic RAM 
DSP ............. Digital Signal Processing 
FIFO ............. First In First Out 
FIR ............. Finite Inpulse Response 
FPGA ............. Field Programmble Gate Array 
GMO ............. Global Memory Object 
GPP ............. General Purpose Processor 
HDL ............. Hardware Description Language 
HDTV ............. High-Definition Television 
HLL ............. High Level programming Language 
IIR ............. Infinte Impulse Ressponse  
IMEM ............. Interface and Memory Modeling 
IP ............. Intellectual Property 
IOB ............. Input/Output Block 
LUT ............. Look Up Table 
MMX ............. Multimedia Extension 
PLD ............. Programmble Logic Device 
RAM ............. Random Access Memory 
RISC ............. Reduced Instruction Set Computer 
RTL ............. Register Transfer Level 
RTVPS ............. Real-Time Video Processing System 
SIMD ……….. Single Instruction Multiple Datapath 
SLWC ............. Sliding Window Controller 
SRAM ............. Static RAM 
UML ............. Unified Modelling Language 
VHDL ............. VHSIC HDL 
VHSIC ............. Very-High-Speed Integrated Circuits 
VIP ............. Video/Image Processing 
VLIW ............. Very Large Instruction Word 
VLSI ............. Very Large Scale Integration 



xiv 

 



xv 

 

LIST OF FIGURES 

Figure 1. Improving visual appearance 2 
Figure 2. Preparing for feature measurement 2 
Figure 3. Video processing system 3 
Figure 4. Time-to-Market - FPGAs vs. ASICs [14] 5 
Figure 5. Product time-in-market [14] 5 
Figure 6. Signal processing implementation spectrum [15]. 6 
Figure 7. Comparison of various implementation platforms [8] 6 
Figure 8. Neighbourhood oriented image processing 7 
Figure 9. Spatial temporal oriented image processing 8 
Figure 10 Circular buffers as line buffers. 10 
Figure 11 Block-RAM data flow at read first operation. 10 
Figure 12 Resource usage on FPGA 12 
Figure 13  Resource usage on DSP 13 
Figure 14  Performance 13 
Figure 15. Power consumption 13 
Figure 16. Overview of Xilinx Spartan 3 [48] 16 
Figure 17. Xilinx Spartan 3 CLB [48] 16 
Figure 18. FPGA Interconnects 17 
Figure 19. RAM data path [50] 19 
Figure 20. Spartan 3 MicroBlaze embedded processor [54]. 20 
Figure 21. Design Flow for implementing custom applications on FPGA 25 
Figure 22. System synthesis workflow. 32 
Figure 23 System integration and verification. 33 
Figure 24. IMEM model of a video processing system. 35 
Figure 25 A: Spatio-temporal neighbourhood of pixels. B: Memory architecture 

for a single image processing operation. 35 
Figure 26 Boundary conditions implementation architecture. 36 
Figure 27 Neighbourhood oriented system. 36 
Figure 28 Global Memory Object formation 37 
Figure 29. Traditional memory allocation. 38 
Figure 30. Proposed memory allocation. 39 
Figure 31. Partitioning global memory object. 41 
Figure 32. Allocation model. 42 
Figure 33. The proposed allocation algorithm. 42 
Figure 34 Architecture driven memory allocation 46 
Figure 35 Two memory accessing approaches 47 
Figure 36. Base Pointer Approach. 48 
Figure 37. Distributed Approach. 49 
Figure 38. Constraint generation algorithm 52 
Figure 39. Clock distributions showing the effect of constraints 52 
Figure 40. Constraint generation workflow 53 
Figure 41. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA. 56 
Figure 42a. First test scenario on Spartan 2E. 57 
Figure 43a. Second test scenario on Spartan 2E. 58 



xvi 

Figure 44. Block RAM usage with varying memory requirements 60 
Figure 45. Memory usage 63 
Figure 46. Post-PAR Clock distribution of design case 2 63 
Figure 47. Relationship between thesis papers. 67 
 



xvii 

 

LIST OF TABLES 

Table 1. Summary of FPGA inter-connects .................................................... 18 
Table 2. Memory requirement of considered design cases. ........................... 54 
Table 3. Allocation result of the algorithm on Spartan 2E............................... 54 
Table 4. Allocation result of the algorithm on Spartan 3. ................................ 54 
Table 5.Average allocation results for all cases ............................................. 61 
Table 6. Allocation on Spartan II ..................................................................... 61 
Table 7. Allocation on Spartan III .................................................................... 61 
Table 8. Comparison of the two approaches. ................................................. 63 
Table 9. Resource usage summary ................................................................ 65 
Table 10. Dynamic power consumption.......................................................... 66 
Table 11. Authors’ Contributions..................................................................... 70 
 





xix 

 

LIST OF PAPERS 

This thesis is mainly based on the following five papers, herein referred 
to by their Roman numerals:  

 
Paper I 
 
 

RAM Allocation Algorithm for Video Processing 
Applications on FPGA,  
Najeem Lawal, Benny Thörnberg, Mattias O’Nils and Håkan 
Norell,  
Accepted for publication in Journal of Circuits, Systems and 
Computers., Vol. 15, No. 5, October 2006. 

  
Paper II Address Generation for FPGA RAMs for Efficient 

Implementation of Real-Time Video Processing Systems,  
N. Lawal, B. Thörnberg, M. O'Nils,  
Proceedings of the Conference on Field Programmable Logic 
and Applications, Tampere, Finland, 2005, pp. 136 - 141. 
ISBN 0-7803-9362-7 

  
Paper III Embedded FPGA Memory Requirements for Real-Time Video 

Processing Applications 
Najeem Lawal and Mattias O'Nils, 
Proceedings of the 23rd Norchip Conference, Oulu, Finland 
November 2005, pp. 206 - 209. 
ISBN 1-4244-0064-3 

  
Paper IV Automatic Generation of Spatial and Temporal Memory 

Architectures for Embedded Video Processing Systems,  
H. Norell, N. Lawal and M.  O’Nils,  
In European Association for Signal and Image Processing 
(EURASIP) Journal on Embedded Systems, Volume 2007, 2007. 

  
Paper V C++ based System Synthesis of Real-Time Video Processing 

Systems targeting FPGA Implementation,  
N. Lawal, B. Thörnberg and M.  O’Nils,  
Proceeding of the 21th International Parallel and Distributed 
Processing Symposium (IPDPS 2007), 26-30 March 2007, Long 
Beach, California, USA. 

  
Paper VI Power-aware Automatic Constraint Generation for FPGA 

Based Real-Time Video Processing Systems 
N. Lawal, B. Thörnberg and M.  O’Nils,  
Proceedings of the 25th IEEE Norchip Conference, Aalborg 
Denmark November 2007, pp. 1 - 5. 
ISBN: 978-1-4244-1516-8 

  



xx 

Paper VII Architecture driven memory allocation for FPGA Based 
Real-Time Video Processing Systems 
N. Lawal, B. Thörnberg and M.  O’Nils,  
Submitted to Journal of Embedded Hardware Design. 
 

 
Related papers not included into this thesis: 
 

 Evaluation of embedded RAM characteristics for FPGA 
implementation of real-time image processing systems,  
J. Rojas, N. Lawal and M. O'Nils,  
Study report 

  
 Comparison of FPGA and DSP performances in 

neighbourhood oriented real-time video processing  
Najeem Lawal, 
Study report 

  
 C++ based System Synthesis of Real-Time Video Processing 

Systems targeting FPGA Implementation,  
M. O'Nils, B. Thörnberg and N. Lawal, 
In Proceeding of FPGAworld Conference, Nov 2007. 



1 

 
 
 
 
 
 
 
 
 
 

1 INTRODUCTION 

This thesis is concerned with memory synthesis in the implementation of 
real-time video processing systems on field programmable gate arrays. This 
memory synthesis considers memory architecture, allocation, accessing, power 
optimisation and constraint generation. Our interest in memory synthesis is to 
provide an easy to use high-level design tool for managing the data required in 
real-time video processing systems. This interest originates from the fact that 
implementing memory for required data is extremely taxing, the available memory 
is limited and the current memory synthesis methodologies do not offer a cost-
effective use of the limited memory.  To present this thesis, we will first present the 
essential background to a real-time video processing system in Section 1.1. Section 
1.2 presents four alternatives for implementing real-time video processing systems. 
In Section 1.3 we will identify sources for the data requirement in video processing 
and the motivation behind this work. We present the contribution of this thesis in 
Section 1.4. Finally, in Section 1.5 we will present the outline of this thesis. 

 
 

1.1 REAL-TIME VIDEO PROCESSING SYSTEM 

Images represent an important part of information communication in 
everyday life. They are essential parts of the interaction between people, human-
computer interaction and computer computation. Images are useful in reasoning, 
education, communication, navigation and analysis. Image processing can be 
described as a task which converts an input image into a modified output image or 
a task that extract information from the features present in an image. Image 
processing is used for two somewhat different purposes namely: 

 
1. improving the visual appearance of images to the human viewer 
2. preparing images for the measurement of the features and the 

structures present 
 
Because these two purposes are different, the operations involved in them 

might also be different, but they do share many common operations. In general the 
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purpose of image processing is not to reduce data content (which might often be 
case when images are transformed from colour images to gray-scale images or 
from gray-scale images to binary) but to preserve and magnify the quality of the 
image. For visual enhancement, operations that facilitate human comprehension 
and that make images subjectively appealing are carried out. Examples of these 
operations include contrast adjustment, image smoothening and colourisation. The 
operations are useful in video entertainment, image printing, transmission and 
reproduction. Figure 1 shows different operations that can be applied to an 
original image (A) to make it visually appealing and comprehensible. 

In image measurement, operations that cause the image features to be well 
defined and more pronounced through enhanced edges or uniform brightness for 
objective analysis and classification are carried-out. Examples of these operations 
include image segmentation, noise elimination and morphological erosion and 
dilation. These operations find applications in robot vision and machine vision. 
Figure 2 shows operations that can be applied to an input image to make the 
counting of the features in the image easier and autonomous by a computer. 

 

       
(A)          (B)  (C) (D) 

Figure 1. Improving visual appearance 
 

      
(A)           (B)  (C) (D) 

Figure 2. Preparing for feature measurement 
 

The effectiveness of image processing operations affect the complexity of the 
subsequent stages of image usage such as image compression and de-compression, 
image storage and retrieval and, image transmission. Thus image processing 
operations will continue to play a major role in the hand-held, battery-power 
mobile devices for video conferencing, video telephony and robot vision. This is 
because an excellently processed, feature enhanced and error free image will 
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greatly simplify a coding algorithm and provide better use of storage spaces and 
transmission bandwidth. 

Video processing is essentially image processing in which the time domain 
is considered. This means that it might be necessary to register and process 
temporal changes in the image content. Figure 3A shows a typical set-up of a video 
processing system. The set-up includes an image acquisition device (the camera), 
the image processing unit (the processor) and an information consumption unit 
(the display). Of course, it is possible to have other components such as light 
sources, storage devices, human observers and communication devices based on 
applications. We will however focus on the essential aspects of image processing. 
Figure 3B shows the relationship between a single picture element (pixel) and an 
image whereas Figure 3C depicts the relationship between images and video. At 
the lowest level of operation, video processing involves the processing of each 
pixel in an image and image after image through-out the video stream. 

 

(A) 

   
Acquisition  Processing  Consumption 

 

(B)  

 Valid  Image Row

Image Pixel Clock 

Image Pixel Data

Valid  Image Data Image Blanking Image Blanking 

 

...

...

...

...

P6 P0 P1 P2 P3 P4 P5 Pn-5 Pn-4 Pn-3 Pn-2 Pn-1

 

 

(C) 

 

Image x Image x+1 Image x +2  
Figure 3. Video processing system 

 
Real-Time Video Processing System (RTVPS) is the term used to describe a 

class of video processing system in which the video signal is processed at the rate 
of video capture such that the rate of generating output pixels matches the rate of 
receiving input pixels. Hence there is a throughput of one pixel per clock cycle. 
Thus after an initial delay, the system enters a state during which a pixel is being 
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received at the input side and, at the same time, a pixel is being produced at the 
output side. This does not, however, imply that this output pixel is the result of the 
newly received input pixel since there would be delays due to data buffering and 
pipelines in the computation.  

 
 

1.2 IMPLEMENTATION ALTERNATIVES 

In the following sub-sections, we will present four major alternatives for 
implementing RTVPS namely 1) general purpose processors, 2) application specific 
instruction-set processors, 3) field programmable gate arrays and 4) application 
specific integrated circuits. In general, implementation platforms can be classified 
as general purpose and applications specific from functionality point of view or 
they can be classified as reconfigurable or non-reconfigurable from 
programmability point of view. 

 
1.2.1 Application Specific Integrated Circuits 

Application Specific Integrated Circuits (ASICs) are fabricated and tailor-
made for special or dedicated applications. This means that their precise functions 
and performance are considered and fully analyzed before fabrication. The 
consequence is efficiency, reliability and high performance. However, changes in 
system requirements which might be due to an oversight or a changing system 
demands results in a complete replacement of the device. In addition, unless 
market volume demand could really justify the manufacturing cost, the 
development costs for ASICs are a major set back. The trade-offs between 
performance and flexibility, which has an influence on the choice of computing 
devices, are presented in [1]. 

 
1.2.2 Software Based Processors 

General Purpose Processors (GPPs) and Application Specific Instruction-set 
Processors (ASIPs) are software based and highly reconfigurable. On these devices 
application programs are written in high level languages and executed within a 
processor. Due to the sequential nature of these programs, large overheads are 
involved in the instruction set generation, decoding and execution. This limits the 
performance and throughput of these devices thus leading to the development of 
many instruction set architectures, which includes, VLIW, SIMD and MMX [2]. The 
main objective is for performance improvements through parallelism, pipelining, 
caching, and concurrency. The literature has much information with regards to the 
specifics of these architectures and since it is not the focus of the paper detailed 
discussions will not be provided. 

 
1.2.3 Programmable Hardware Processors 

In the hardware domain programmability can be achieved through the 
programmable gate-array or logic-devices which are commonly used. Depending 
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on the capacity and architecture of the constituent basic elements, reconfigurable 
hardware can be categorized as programmable logic devices (PLD), complex PLD 
(CPLD) and Field Programmable Gate Array (FPGA). An overview of technology, 
architecture and programming tools for programmable hardware devices is 
presented in [5]. FPGA programmability enables hardware designers to greatly 
reduce the overall product time-to-market as shown in Figure 4.  

 

Relative Time 

FPGA 

ASIC 

0 100 

Significatnt FPGA Time Savings 

Test Vector Generation 

Production Ramp-up Simulation 

Sales

Sales

 
Figure 4. Time-to-Market - FPGAs vs. ASICs [14] 

 
Other advantages of a programmable hardware solution include reduced 

development costs (minor non-recurring engineering costs), the possibility of rapid 
prototyping and the ability to support field upgrades and remote downloads that 
will extend the longevity of the product in the market (time-in-market) [14]. These 
are depicted in Figure 5. Hence according to Figure 5, the sooner that hardware 
designers market their   products, the greater their income. This is one of the major 
advantages of FPGAs and explains why many applications, which have 
historically been implemented in software and/or ASIC, are now being developed 
as FPGAs [6], [7]. 

 

Start of Market Window End of Market Window

Potential
Market

Realized Market due to
time-to-market delays

 
Figure 5. Product time-in-market [14] 

 
The implementation of computationally intensive and data transfer 

dominated applications, which are common in RTVPS, has previously been 
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dominated by Digital Signal Processors (DSP) and dedicated application specific 
integrated circuits (ASIC). However, developments in FPGA have made it possible 
to implement RTVPS applications using FPGA [6], [7]. Figure 6 shows the 
implementation spectrum across computing devices. It should be noted that the 
different platforms in Figure 6 are not isolated as depicted in the figure but are 
over-lapping clouds. Figure 7 summaries the characteristics of the four platforms 
discussed above. From this comparison it is obvious that FPGA provides a 
reasonable performance alternative for image/video processing in real-time with 
the possibilities of re-programmability with evolving application specifications. 
For this reason FPGA has been chosen as the implementation platform for RTVPS. 
The following sections will focus on a detailed discussion on the FPGA technology. 
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Figure 6. Signal processing implementation spectrum [15]. 
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1.3 DATA REQUIREMENTS IN RTVPS 

In this thesis introduction, we will not deal with discussions related to image 
acquisition such as lighting and optical set-up, image sampling and quantization. 
We will also not dwell on discussions regarding post processing and image 
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consumption such as monitor display, information reporting or decision making 
from the results of image processing. The stages as represented in Figure 3A are 
important to the core processing but are not included in the scope of this thesis. 
Our concern is with the operations involved in image processing and the need for 
data storage in image processing. We note that image processing can be carried out 
in two domains namely  

 
1. spatial domain image processing 
2. frequency domain image processing 

 
Spatial domain depends on raw image pixel data and direct manipulation of 

pixel whereas frequency domain processing is based on the Fourier or cosine 
transform of the image and the manipulation of the frequency components of the 
image data.  

In spatial domain, image processing can be pixel-wise. This is referred to as 
point processing. It describes the operations that depend solely on the pixel value 
without any reference to the values of the surrounding pixels. This type of 
operation may require pixels from two image sources or an image source and a 
transformation function. Examples of this type of processing include image 
negation, image addition and subtraction, thresholding and histogram 
equalisation. 

In addition, spatial domain image processing can be in the form of 
neighbourhood processing. It describes operations in which the values of a group 
of pixels in an input image are required to compute only one pixel in the output 
image. This type of processing may require a processing mask or kernel which 
defines the operation. Examples of this type of processing include statistical 
operations such as the mean, median, maximum and minimum, convolutions 
operations such as a Laplacian filter, edge detection and a morphological 
operation. Figure 8 shows an example of neighbourhood based image processing 
and the data registers required to compute an output pixel. It also shows the need 
for buffer in order to have the appropriate set of pixel data. 
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Figure 8. Neighbourhood oriented image processing 
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Furthermore, image processing can be temporal processing and is essentially 

neighbourhood processing in which the image data is extracted from more than 
one image frame. As with neighbourhood processing the computation produces 
only pixel data for all the input pixel data. An example of this type of image 
processing includes cubic median filter. Figure 9 shows a spatial temporal 
neighbourhood of 27 pixels from 3 frames. For this image processing operation, we 
will require 27 registers, 6 row buffers and 2 frame buffers. 
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Figure 9. Spatial temporal oriented image processing 

 
In general, it is common that in a typical RTVPS the majority of the 

operations are neighbourhood oriented and thus has the requirement for the 
buffers for the necessary neighbourhood pixel data (Figure 8 and Figure 9). A 
neighbourhood of pixels constitutes a set of pixel data from which an RTVPS 
operator in the processing algorithm calculates an output pixel corresponding to 
the neighbourhood's central pixel. The neighbourhood is built around each pixel in 
the input image in order to generate an output image. The consequence is that a 
large number of data buffers (line- and frame-buffers) are required which is, in 
turn, dependent on the size of the video frame and the operation window in order 
to ensure that all the required pixel data for each operation are available. Line 
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buffers are used to store rows of pixels in the spatial neighbourhood. A spatial 
neighbourhood normally has dimensions of M-by-N, where M and N are odd 
values such that the central pixel is symmetrical about any axis. N and M denote 
the height and width of the spatial neighbourhood and usually determines the 
number of line buffers and delay elements required by the spatial neighbourhood 
operator. Frame buffers are used to store images in the temporal neighbourhood. A 
temporal neighbourhood normally has dimensions of L-by-M-by-N where M and 
N are defined as above and L, also an odd value, denotes the temporal depth of the 
neighbourhood. L determines the number of frame buffers in the temporal 
neighbourhood. Line buffers are usually allocated to on-chip memories while 
external memories are required for frame buffers. The size of each element in these 
buffers depends on the dynamic range of the video signal. Hence a 5-by-5 spatial 
neighbourhood requires four line buffers while two line buffers are required by a 
3-by-3 neighbourhood. In the temporal domain, a neighbourhood of seven frames 
will require six frame buffers. An efficient data management tool is required since 
memory access generally constitutes major bottlenecks. 

 
 

1.4 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS 

If a simple RTVPS application is considered involving only a spatial domain, 
for example a Sobel Operator for detecting edges in a video frame, then a 
neighbourhood (3-by-3) would be built around each pixel in the frame. Building 
such a neighbourhood requires the data of the necessary pixels to be stored. Figure 
8 depicts such a neighbourhood where, pij represents the pixel data at the i-th 
column and j-th row in the neighbourhood, dpixel is the pixel data entering the 
neighbourhood as the processing window traverses all the pixels in the image and 
d is a clock delay. Line buffers are required to store this pixel data in order to 
create the neighbourhood. In Figure 8b, these buffers are represented as a line 
buffer. A line buffer can be thought of as a First-In-First-Out shift register (FIFO) - 
with pre-determined constant length - that can be implemented as a circular buffer 
allocated to a set of memory locations. The example in Figure 10 depicts a set of 
eight memory locations, n-8 to n-1, which are indexed by a pointer in a modulus-8 
order. For every pointer position, pixel data Pn-8 is firstly read and then pixel data 
Pn is written. The Xilinx block-RAM has the attractiveness of allowing this first-
read-then-write operation to execute in one single clock cycle.  

Figure 11 depicts a Xilinx block-RAM for one of the two ports at a read-first-
then-write operation. This memory has two synchronous independent access ports. 
Both ports have the set of signals shown in Figure 11. Data_in and Data_out are 
input- and output data busses. These busses are latched on the rising or falling 
clock edge, depending on the configuration. WE enables a write operation to the 
memory location, pointed to by Address, after that a read operation is performed. 
This feature allows a memory location to be both read and written at the same 
clock cycle using one single port. In addition, the dual independent ports enable 
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two FIFOs to be allocated to one block-RAM without serializing the memory 
accesses. This explains why we do not consider scheduling effects in our memory 
allocation optimization model. 
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Figure 10 Circular buffers as line buffers. 
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Figure 11 Block-RAM data flow at read first operation. 

 
The management of the line-buffers (memory objects) identified in Figure 8 

and Figure 9 is the focus of this work. The main goal is to develop an automatic 
memory synthesis tool that makes the most efficient use of the addressable 
memory locations available in all of the instantiated embedded memory before 
instantiating another. 

 
 

1.5 PROBLEM DESCRIPTION 

The method of allocating the line buffers identified in Figure 8 and Figure 9  
to the embedded memory greatly affects the use of the memory depending on the 
size of the on-chip memory. In addition, the length of the line buffer and the bit-
width of each of the elements in the line buffer also affects the efficiency of the 
allocation. Increasing the neighbourhood dimension, in terms of the number of 
frames, L, the width of the video frame, M and number of line buffers, N as well as 
the number of operators in the RTVPS application leads to increasing complexities 
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in data management. In general, managing the data required in such a 
neighbourhood leads to four major problems namely: 
 

1. Data allocation problems due to pixel-width and video-resolution (when 
the bit-width of each element in a line buffer and its length are not directly 
supported for optimised allocation) 

2. Data management problems with the  increasing number of line buffers, N 
3. Data management problems caused by with the increasing number of 

RTVPS operators and number of frames, L 
4. Power consumption problem due to complex data routing 

 
These problems will be discussed at a later stage in the thesis (Section 4.5). 
 
 

1.6 PERFORMANCE COMPARISON 

In Section 1.2, we discussed possible implementation alternatives for real-
time image processing. In Section 1.3 we identified the memory requirements 
typical in RTVPS and provided the motivation behind the requirement for the 
efficient allocation of the memories in Section 1.4. Section 1.5 presented problems 
that may arise during the allocation of these memories.  By using the problem 
presented in Section 1.5 as the performance index we will in this section compare 
two of these alternatives from Section 1.2 namely DSP and FPGA. We chose these 
two because they are both reconfigurable and are targeted as being effective for the 
specific application area. 

The objective of these experiments is to find the relationship between the 
power consumption, performance and resource usage on FPGA and DSP and the 
size of the neighbourhood window required in real-time video processing systems. 
The experiments were conducted under three scenarios, namely, 1-bit morphology 
erosion, 8-bit average filter and 8-bit convolution filter. These filters are typical 
examples of neighbourhood oriented operation. For the convolution filters, we 
assumed 8-bit mask values. For these scenarios three neighbourhood sizes (3x3, 
5x5 and 7x7) were used. For simplicity, we chose neighbourhoods with square 
dimensions. For these experiments, input video streams with 640-by-480 frame 
resolution were used.  

 
1.6.1 Experimental Set-Up 

The experimental set-up for the FPGA is as follows, we implemented the 
architecture in Figure 26 and the video processing filters for the different 
neighbourhood sizes. We assumed the input video stream is limited by the FPGA 
performance rather than the camera. The implementation was synthesised using 
the Xilinx Integrated Software Environment software version 8.1i in order to obtain 
the post-place and route resource usage and performance. The Xilinx XPower 
software was used to calculate the power consumption per clock cycle. 
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The experimental set-up for DSP is as follows, we assume the TMS320C6418 
DSP runs at 600MHz and that the input data stream is at 10 MPixels/s thus lower 
reducing the CPU utilization and power consumption. Since our implementation 
avoids boundary conditions by increasing the image size, we assume perfect cache 
hits, local memory allocations for all the line-buffers, and one data read for the 
newest neighbourhood pixel and one memory write for the newly computed data 
corresponding to the central pixel in the output image. Using Texas Instrument 
Code Composer Studio software version 2.10, we were able to profile and achieve 
performances closer to the benchmarks values [96]. 

 
1.6.2 Results 

 Figure 12 - Figure 15 show the results obtained. It should be noted for the 
performance figures, that as long as there are available resources on the FPGA, the 
performance for the system will be the same regardless of the number of active 
operators. For the DSP the performance (samples per second) will decrease when 
additional functionality is added to the system. Thus, the performance numbers 
are somewhat biased towards the DSP. The energy figures are also fairer in a 
comparison between the two architectures. The results show that for this class of 
operations, with optimized memory allocation and the accessing method presented 
in this thesis, and full parallel and pipeline operations, FPGA achieves a better 
performances in between 2.0 to 8.7 in terms of throughput and an average reduced 
energy consumption of 80 times per sample. It should be noted for the 
performance figures, that as long as there are resources available on the FPGA, the 
performance for the system will be the same regardless of the number of active 
operators. For the DSP the performance (samples per second) will decrease when 
additional functionality is added to the system. Thus, this means that the 
performance numbers are somewhat biased towards the DSP. The energy figures 
are fairer in a comparison between the two architectures.  
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Figure 12 Resource usage on FPGA 
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Figure 13  Resource usage on DSP 
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Figure 15. Power consumption 

 
1.6.3 Conclusion 

This experiment shows that implementing applications on FPGA can take 
advantage of the application’s specific memory requirements in order to develop 
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optimised memory architecture which when combined with the possibilities of 
optimised memory allocation and accessing and full parallel and pipeline 
operations, will make FPGA achieve a better performance by about 2.0 to 8.7 in 
terms of throughput and an average of 80 times lower energy consumption per 
sample over DSP. 

 
 

1.7 MAIN CONTRIBUTIONS  

The main contribution in this thesis is to provide solutions to the problems 
identified in Section 1.5. The following solutions are offered to the problems: 

 
1. Memory architecture - organizing the data required by the RTVPS 

operator. 
2. Memory allocations and accessing 
3. Interfaces to data required by operators in a temporal neighbourhood  
4. Low power optimization 
5. High-level interface for describing the required memories and 

generation hardware implementation. 
 
These solutions will be discussed at a later stage together with the results 

obtained by their use. Tests on the performance of the solutions and comparisons 
with other works are also discussed.  

 
 

1.8 THESIS OUTLINE 

The next section presents the developments and trends within FPGA with 
the focus on embedded memory and DSP core. Earlier research works relating to 
on-chip memory allocation, memory addressing, power management and 
constraint generation are presented in Section 3.  Section 4 presents the 
contribution of this research and the connections between this research and other 
high-level design tool for real-time video processing systems are also presented in 
addition to the experimental results and performance analysis under increasing 
RTVPS complexity and FPGA technology. Section 5 summarises the work covered 
by all the papers included in this thesis. The papers, which represent original 
contributions to this research work, are presented in the appendices. Section 6 
summarises and concludes the contribution of this thesis. 
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2 FIELD PROGRAMMABLE GATE ARRAY (FPGA) 

FPGAs have been employed in implementing high-performance 
computations such as fuzzy logic controller, [37], complex Monte Carlos and 
percolation problem simulations [38]. In [6], an FPGA was used for face tracking in 
streaming video using a Radial Basis Function (RBF) neural network for real-time 
verification. The literature is exhaustive with regards to the use of FPGAs for 
network monitoring, audio/video signal processing and safety critical 
applications. These are the application areas previously dominated by DSP. The 
attractions for implementing these applications on FPGAs can be traced to those 
features that distinguish them from other computing platforms. These features are 
listed as follows [39] 

 
• On-chip RAM blocks and distributed memories 
• Embedded processors 
• Dedicated computational units (multipliers and DSP block) 
• Programmable logic cells  
• Programmable interconnect  
• Programmable Input/Output cells 

 
Although specific implementation details vary among the vendors, the focus 

here is on the low-cost Xilinx Spartan 3 [48] and additionally, the features common 
to the FPGA vendors are presented in detail. Figure 16 shows the architectural 
overview of Xilinx Spartan 3. In the figure, DCM, IOB and CLB represent Digital 
Clock Manager, Input/Output Blocks and Configurable Logic Blocks respectively. 
The remaining part of this section will discuss the list above. 

 
2.1.1 Programmable Logic Cells 

The programmable logic cell is the basic building block for implementing 
combinatorial and sequential logic. Logic cells are mostly categorized as either 
fine-grain or coarse-grain architectures, depending on their number of gates. Since 
the logic cell is the smallest unit available, it can be organized programmatically 
into complex units needed to perform functional requirement of the device. In an 
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SRAM-based FPGA, a logic cell essentially consists of a lookup table (LUT) and a 
register to store the LUT value [49]. For example, LUTs provide the main resource 
for implementing logic functions. LUTs can also be configured as a Distributed 
RAM or as a 16-bit shift register. The storage elements can be programmed as 
either a D-type flip-flop or a level-sensitive latch in order to provide a means of 
synchronizing data to a clock signal. Wide-function multiplexers effectively 
combine LUTs in order to permit more complex logic operations. The carry chain, 
together with various dedicated arithmetic logic gates, supports rapid and efficient 
implementations of mathematical operations. 

For Xilinx Spartan 3 FPGA, the logic cell is coarse-grain based and is referred 
to as the configurable logic block (CLB). Each CLB contains both combinatorial and 
sequential logics [50]. The function of a CLB is stored in a RAM-based look-up 
table (LUT) within the CLB. The programming on the LUT determines the use of a 
CLB for logical and data storage functions. Figure 17 depicts the implementation of 
CLBs for Xilinx Spartan 3. Each CLB is organized into four interconnected slices. 
Each slice contains two logic function generators (LUTs), two storage elements,                
wide function multiplexers, carry logic and arithmetic gates in addition to other 
elements.  

 
Figure 16. Overview of Xilinx Spartan 3 [48]  

 

 
Figure 17. Xilinx Spartan 3 CLB [48] 
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2.1.2 Programmable Interconnects 

Interconnects provide the mechanism for routing signals between logic cells, 
memory blocks, DSP blocks and I/O pins inside the FPGA. Interconnects are 
usually optimized for efficient signal transport based on the signal frequency and 
the distance between the signal source and the sink to ensure predictability, signal 
integrity and performance repeatability. Interconnects are called MultiTrack 
Interconnect (Direct link, Local, C4, C16, R4 and R24) in Altera Stratix II, 
Programmable Interconnect (Long, Hex, Double and Direct lines ) in Xilinx Spartan 
3,  Routing Resources (ultra-fast local resources, efficient long-line resources, high-
speed very-long-line resources and high performance  VersaNet networks) in Actel 
ProASIC3 [53] and Programmable Logic Routing (short wires, dual wires, quad 
wires, express wires, distributed networks and default wires) in QuickLogic 
Eclipse II.  Figure 18 shows the Xilinx Spartan 3 FPGA interconnects while Table 1 
summarizes their characteristics. 

 

 
Figure 18. FPGA Interconnects 
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Table 1. Summary of FPGA inter-connects 

Device Interconnect Range  Performance 

Xilinx [48] Long Line 1 out of every 6 CLBs High frequency signals 
Minimal loading effect 

 Hex Line 1 out of every 3 CLBs Near high frequency 
signals 
High connectivity 

 Double Line 1 out of every 2 CLBs High flexibility 

 Direct Lines Adjacent CLBs  Connects to other 
interconnects 

Altera [51] Local Interconnect ALM-to-ALM in 
same LAB 

Fast 

 Direct Link Connects adjacent 
block 

Fast 

 Column Interconnects Column-to-Column 
variable length  

Optimized for  distance 
variable speed 

 Row Interconnects Row-to-row variable 
length 

Optimized for  distance 
variable speed 

Actel [53] Local Line Versatile-to-
VersaTile 

Ultra fast 

 Long Line Variable lengths -  1, 
2 or 4 VersaTile 

Efficient for long 
distances  

 Very-Long Line Horizontally 12 
VersaTile  
Vertically  - 16 
VersaTile 

High speed 

 VersaNet  Global Network High performance 
High fan-out 
Low skew 

QuickLogic [52] Short wires 1 logic cell vertically  

 Dual wires 2 logic cell 
horizontally 

 

 Quad wires 4 logic cell Medium fan-out 

 Express wires Device length High fan-out 

 Distributed Networks   

 Default wires   
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2.1.3 On-chip RAM Block 
Access to data during signal processing greatly affects the performance of a 

system. Data fetches from the external memory are subject to latency of the 
communicating devices and signal integrity due to cross-talk from neighbouring 
signals. The availability of on-chip RAM memory reduces this latency. The random 
access memory (RAM) offers fast direct access to re-writeable memory locations 
making it appropriate for use with streaming data where buffering or caching of 
data is necessary. On-chip RAMs can be implemented as single-port, dual-port and 
multi-port [49].  

Typical on-chip dual- and single-port RAMs have the necessary control 
signals and, data and address busses for independent memory access (reading and 
writing) at a port [48]. In addition, a RAM block can be asynchronous or 
synchronous depending on whether the read and write cycles can be triggered by 
control and/or address transitions asynchronous to a clock or synchronous to the 
system clock [50]. Figure 19 shows the data path of a full implementation of true 
dual-port on the Xilinx Spartan 3 FPGA. In the figure, data path 1 implements 
write to and read from Port A, data path 2 implements write to and read from Port 
B, data path 3 implements data transfer from Port A to Port B, and data path 4 
implements data transfer from Port B to Port A. A single port allocation can be 
achieved through data path 1 or 2 if implemented exclusively. Data paths 3 or 4 are 
used to implement dual port allocation. A true dual port allocation is achieved 
when data paths 1 and 2 are implemented together on a single Block RAM. The 
problem of address contention in dual- and multi-port can be solved by specifying 
the order of execution for example, read first or write first. 
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Figure 19. RAM data path [50]  

 
2.1.4 Embedded cores  

Different FPGA vendors provide an embedded core for implementing signal 
processing tasks that are not easily achievable in hardware or which have a 
reduced real-time performance. In the Stratix Architecture these are called Digital 
Signal Processing (DSP) Blocks [51], Embedded Multipliers in Spartan 3 [48] and 
Embedded Computational Units in Eclipse II [52]. Thus, DSP functions such as FIR 
filters, IIR filters, fast Fourier transforms, direct cosine transforms, correlators and 
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functions such as multiply-add and multiply-accumulate can be readily 
implemented using these embedded cores. Multipliers are implemented as 9-by-9, 
18-by-18 or 36-by-36 bits multipliers. However, they can be cascaded for higher 
multiplicands.  

In addition to multipliers, FPGA sometimes come with hard-core embedded 
processors for the implementation of control intense algorithms and divide 
functions that are better implemented via high level languages such as C/C++. It is 
also possible for a designer to implement a micro-controller and a processor core 
when the core is not embedded in the FPGA. Using the Xilinx Embedded 
Development Kit, a 32-bit RISC architecture-based soft processor that runs at 150 
MHz to deliver up to 120 DMIPs [54] can be implemented on a Xilinx Spartan 3 
FPGA. Figure 20 shows the functional parts of the Spartan 3 MicroBlaze embedded 
processor [54].  

IP cores optimized for different FPGAs are provided by the different FPGA 
vendors. In addition, glue logics for IP cores developed by third parties are 
provided. Hence FPGAs, which are primarily hardware platforms, provide a 
medium for implementing software algorithms which in turn, enable better 
implementation of complex functions. When combined with on-chip RAM, soft 
cores reduce both latency, by means of their close proximity to the required data, 
and system costs through the elimination of external microcontrollers. 
Development suites for porting applications on this embedded processor or using 
the multipliers are usually provided by the FPGA vendors.  
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Figure 20. Spartan 3 MicroBlaze embedded processor [54]. 
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3 RELATED WORKS 

In this section, we will discuss various options for implementing RTVPS, 
programming and implementation trajectory relevant to this research and related 
works. 

With the current industry requirement for high-definition television (HDTV) 
resolution, the demand for HDTV cameras and video processor engines to process 
1280x720 pixels per frame at 60 frames per seconds (merely 5,5296,000 pixels per 
seconds) is obvious and can even be a real-time processing demand. Because of the 
high data rate and large memory requirements in RTVPS it is required that the 
platform for implementing RTVPS has sufficient performance capability and that 
this matches the RTVPS application implemented on it. In addition, RTVPS are 
computationally intensive and usually consists of a sequence of operations that is 
performed repetitively on every pixel in the video stream. The sequence is 
determined at design time and can be captured as a non-cyclic signal or data flow 
graph. These complexities make the task of choosing an implementation platform 
for an RTVPS application rather difficult. On the one hand, high performance 
requirement suggests a hardware oriented implementation while on the other 
hand the ability to change and redesign an application based on evolving 
specifications places a constraint of device reuse through programmability on the 
implementation platform.  

 
3.1 CHALLENGES IN SYSTEM DEVELOPMENT ON FPGA  

Although FPGAs offer many opportunities, there are a number of challenges 
to system development particularly in the field of video processing. Some of these 
challenges include the abstraction level, design verification, resource usage and 
power consumption which will be discussed in the following sections: 

 
3.1.1 Abstraction level 

A major challenge to implementing applications on FPGAs is the 
programming model, which is at a very low level of logic abstraction through  its 
hardware description languages and thus requires a high level of expertise and 
time. Often designers familiar with software programming languages conceive 
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algorithm executions in sequential order and thus attempt to program hardware in 
a similar manner. This leads to non-optimal implementations. There are many 
design tools whose aim is to translate software codes into hardware [21], [20] [98]-
[99]. In this thesis we raise the abstraction level for implementing memory sub-
component for an RTVPS by means of a memory allocation tool. 

 
3.1.2 Design verification 

As FPGA capabilities and design complexities increase, verification and 
simulation also become more complex. In order to satisfy the requirements of 
complex designs both Verilog and VHDL are often used to implement design sub-
components, often through IP cores. Co-simulation and synthesis of the sub-
components are both difficult and error prone. In addition access to simulation 
stimuli and responses are often complex and are provided by other tools written in 
other languages. This leads to coping with procedural language interfaces relating 
to two languages within one design. Design considerations to overcome this 
problem are presented in [100] while [101] presented formal semantics for Verilog-
VHDL co-simulation.  

 
3.1.3 Resource usage 

The essential resources on FPGAs are arithmetic and logic resources, 
embedded memory and logic cells. They are available in an optimised form but in 
limited amounts. It is necessary to have a balanced usage of these resources in an 
application in order to avoid a shortage of one type of resource while having an 
excess of others. In this thesis we have achieved an efficient use of embedded 
memories. In the future we would like to find an efficient use of the arithmetic 
resources and logic cells through resource reuse within each operator in an RTVPS. 
This operator-based resource reuse will minimise the routing network and thus 
increase its speed performance at a reduced active power to the routing network. 

 
3.1.4 Energy and power consumption 

In FPGA two major sources of energy consumption include active power 
and leakage current. Energy consumption based on leakage current depends on 
the process technology [35], [36] and can only be addressed by the FPGA vendors. 
A study of the leakage current on Xilinx Spartan 2E, 3 and Virtex 2 shows an 
increasing trend. Energy consumption based on active power depends on activities 
at the I/O blocks, switching activities on the routing network and logic cells, and 
memory accesses. By using an embedded memory to implement line buffers, we 
reduce the data transfer to external memories [102] and thus reduce I/O block 
switching activities. Power consumption can be further reduced through efficient 
embedded memory accesses, compact routing network and efficient logic design. 
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3.2 DESIGN METHODS AND LANGUAGES 

Implementing electronic systems is greatly influenced by many factors 
relating to the system specifications. These factors include system complexity, 
design time and performance. As a result it is required that design methods and 
tools must be able to capture these system specifications at a high-level and in a 
seamless manner and, in addition synthesize and verify that all the constraints 
have been satisfied. It is common to capture specifications graphically by using 
visual modelling tools like UML (Unified Modelling Language). Because UML was 
designed for modelling software systems it is not the most appropriate tool for 
modelling electronic systems. There are however, research effort aimed at 
generation synthesisable VHDL from UML models [103] - [105]. Typically, 
modelling electronic systems for signal processing and for which extensive design 
simulation is required, is carried out by using modelling environments such as, 
SystemC, Simulink and LabView. 

 Traditionally, hardware devices are implemented by low-level coding in 
hardware description language (HDL). This approach is very remote from the high 
level specification tool and can be a very tedious task. Attempts at implementing 
devices at abstraction levels of closer to specifications, have led to many 
propositions for implementing hardware from high level languages (HLL). These 
include C/C++ [18]-[23], Java [24]-[27], MATLAB [28], [29]. In addition, since 
current and future electronic devices would implement embedded systems with 
increasing functions that cannot be effectively modelled in hardware there is a 
necessity for software components in the system design. This leads to 
hardware/software co-design. Such software components are implemented in 
HLL after comprehensive exploration and partitioning into software/hardware 
components [30]-[32]. The following subsections report works in HLL for 
implementing electronic devices. 

 
3.2.1 C/C++ Models 

Due to familiarity with C and its variants, many works have focused on 
synthesizing hardware from C. In addition, since C modules can be compiled into 
object codes for several architectures, compiling these object codes into hardware is 
seen as an efficient way for producing hardware synthesis from system level 
designs. De Micheli [21] summarized the major research contribution in the use of 
C/C++ for hardware modelling and synthesis while Edwards [22] provided in 
detail, challenges to hardware synthesis from C-based languages. It was observed 
in [22] that the approach generates inefficient hardware due to difficulties in 
specifying or inferring concurrency, time, type and communication in C and its 
variants. Ghosh et al. [23] suggested the extension of a subset of C/C++ and 
proposed a C/C++-based design environment, Scenic, for hardware modelling and 
synthesis. The subset will exclude non synthesizable constructs while the extension 
will incorporate a construct that has the ability to handle concurrency, time, 
communication and types. To these ends, modelling languages such as SystemC 
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[19] and HardwareC [32] have been optimized to efficiently overcome some of 
these shortcomings (for example, both handling concurrency through process-level 
parallelism) and are often employed to capture the system behaviour in the form of 
executable specifications. The executable specifications provide the possibility for 
design exploration, making choices from different algorithms and resources, 
system functionality partitioning (choices between software and hardware), and 
memory requirements and state transitions. These specifications can be converted 
into RTL design either manually or automatically using CAD tools like the 
Synopsis C2HDL [98] (creates VHDL and Verilog modules from multi-module 
level hierarchy in C and also provides HDL simulations). 

 
3.2.2 Java Model 

As stated previously, one of the problems associated with modelling 
hardware with HLL is concurrency. This is because HLLs are sequential in nature 
whereas hardware gates and logic operate in parallel. Java has an advantage over 
C/C++ in concurrency through threads (embedded in the language). C++ based 
modelling languages like SystemC implements concurrency through an extension.  
In [24] and [25] Java was used for the system specifications, partitioning, functional 
validation and synthesis. In [24] control- and data-flow dependencies were 
employed in order to implement concurrency. In [25] an abstractable synchronous 
reactive model was developed and successive, formal refinement methodology 
was used achieve determinism and bounded resources usage in the developed 
embedded system. The pure object oriented nature of the Java programming 
language was explored in [26] for hardware specification and synthesis through 
multithreaded JavaBeans. Sea Cucumber [27] is a Java compiler that synthesizes 
hardware from Java class files. The input class files must be organized as a set of 
inter-communicating, concurrent threads in order to be able to exploit coarse- and 
fine-grain parallelism in the generated hardware. Coarse-grain parallelism is 
extracted at the communicating thread level while fine-grain parallelism is 
extracted within the body of each thread. 

 
3.2.3 MATLAB Model 

Unlike C/C++ and Java variable types are not specified in MATLAB and 
simulation of non-matrix code can be slow, its growing popularity especially for 
computational intensive algorithms has led to the development of a compiler for 
generating synthesizable RTL description of MATLAB codes [28], [29]. The 
compiler firstly parses the input MATLAB code to represent variables with the 
minimum number of bits, then scalarizes the matrix operations into loops before 
exploring parallelization through a data-parallel or systolic approach. Where 
necessary, IP cores are integrated prior to the code optimization phase. The 
resulting VHDL code is passed to a commercial tool for synthesis. 
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3.2.4 Hardware Description Model 
The most efficient approach to designing electronic devices is the high-level 

synthesis of behaviour description captured at the RTL level using a hardware 
description language (HDL) such as Very Large Scale Integrated Circuit (VLSI) 
HDL (VHDL) [16] and Verilog [17]. An HDL description can be a structural or 
behavioural model of a design [34]. A structural model specifies the hierarchical 
build-up of a design from the smaller components available in the design library 
and the nets that connect them while a behavioural model is a program specifying 
how to construct a component from its input. A component is a complete design 
entity with the input and output ports and provides sufficient information to 
achieve the outputs from the inputs. Usually a design description contains both 
structural and behavioural models. Design descriptions are compiled into the RTL 
representation of the design. Netlister is a tool that converts RTL into a netlist that 
can be deployed into the FPGA. Figure 21 shows the design flow for the high-level 
synthesis of an FPGA. This model involves writing and compiling behavioural 
descriptions of the system, simulating and verifying the requirements of the 
system both at functional- and gate-level, performing low level power-, area-, and 
performance optimizations, pad insertion, and creating and deploying the netlist of 
the system for the target FPGA.  
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Figure 21. Design Flow for implementing custom applications on FPGA 
 

3.2.5 Performance comparison 

Common problems associated with hardware synthesis from HLL fall within both 
the area and speed performances. The performance of the system generated from 
these HLLs is greater than those generated manually [22], [24] and [28]. A 
consequence of this is the required amount of logic resources (area). In addition, 
hardware synthesized directly from HDL tends to be faster than that implemented 
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from HLL (speed). Hence there is the need for code optimization. However, in view 
of the design time reduction, efficient design specification, algorithm explorations, 
hardware-software partition and verification achievable through HLL and the 
abundant FPGA resources, these limitations can be overlooked or justified. 

 
 

3.3 PREVIOUS WORKS ON ON-CHIP MEMORY SYNTHESIS 

In this section, the focus is on memory allocation and addressing, targeting 
FPGA on-chip memory. Works relating to memory estimations are not included 
since such works have been extensively studied and addressed while developing 
IMEM [88], [89]. In addition, allocation of external memories is not included in this 
thesis. 

 
3.3.1 Allocation algorithms 

There have been many algorithms for the optimal storage of a scalar 
variable. These approaches usually involve storing scalar variables with non-
overlapping lifetimes in the same register or by grouping the scalars together to 
form an array which would be allocated to a Block RAM. A common feature of 
these approaches is the necessity for scheduling and determining a memory access 
pattern. These efficient and well researched approaches cannot be used for 
allocating large array variables which is the result of the line buffers (identified in 
Figure 8) because of the following: 

 
1. it is assumed that the elements in the line buffers have regular 

cyclical read-and-write access patterns relating to the video frame 
width typical of FIFOs,  

2. it is assumed that the size of the line buffers is large which often 
leads to allocating one line buffer to many Block RAMs hence 
grouping many line buffers into one Block RAM is not a feasible 
option 

3. the identical access pattern of all the line buffers and the 
requirement of a one pixel per clock cycle throughput eliminates 
access scheduling 

 
Because of the above concerns only related works which focus on the 

allocation of array variable will be presented 
Diniz et al. [58] presented a C-compiler that can extract storage requirements 

and considers data reuse as registers and allocates Block RAMs together with 
datapath- and control structures. The compiler employs data access patterns in a 
loop nest to minimize memory access and uses registers to exploit data queues 
after loop unrolling. However, exactly how the memory allocation is performed is 
not addressed by Diniz et al. 
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The MeSA algorithm [59] is based on the clustering of array variables to 
determine the memory configuration that will result in the minimum total memory 
area. The number of memory modules, the size of each module, the number of 
ports for each module and the cost of grouping a set of input array variables, are 
all computed. The number of ports is balanced for serialized memory accesses 
within a control and data flow graph. This algorithm cannot however be 
considered for implementing RTVPS on FPGA. This is because large array 
variables cannot be distributed among a set of memory modules. 

A general approach to FPGA memory allocation and assignment was 
presented by Gokhale et al. [60]. This approach starts from C code, for which the 
presented method allocates both external and internal memories. Automatic 
partitioning of a single array among different memories is however not covered by 
this work.  

Baradaran et al. [61] presented a close algorithm but the focus was on the 
analysis and identification of data reuse and the allocation on an FPGA embedded 
Block RAM in the presence of a limited number of registers.  

The work by Schmit and Thomas [62] performs array grouping (vertically 
and horizontally) and dimensional transformation (array widening and array 
narrowing). According to the authors, array widening is useful for read-only 
arrays and those accessed in loops with an unrolled number of iterations. Array 
narrowing slows the effective access time of the array. Vertical array grouping is 
similar to the global memory object architecture used in this thesis (details in 
Section 3) with the variation that the grouping is on memory objects required by 
one operation. Neither horizontal grouping nor the accompanying scheduling are 
considered in this work, however dual port mapping of two memory objects is 
implemented in order to achieve more efficient memory usage.  

Jha and Dutt [63] presented two algorithms for memory mapping. The first, 
linear memory mapping, approximates a target memory word-count to the largest 
power-of-two that is less than or equal to the source memory word-count. The 
second, exhaustive memory mapping, assumes that a target memory module may 
have larger bit-width and word counts. These approaches lead to unused memory 
space on the target memories particularly in on-chip memories. The work did not 
address multiple parallel accesses to a memory module via a different port. 

 
3.3.2 Memory addressing 

Memory accesses are a major contributor to the power consumption 
especially in data transfer intensive applications such as RTVPS. Activities in the 
memory address buffers, address decoding circuitry and off-chip drivers of the 
address bus, are reflected in the power dissipations. There have been many works 
aimed at lowering the impact of memory access on power consumption. The 
majority, however, are tailored towards their memory architecture for efficiency 
purposes. The general approach is to use a counter to evaluate the value of the 
address bus of on-chip memories. These approaches are reviewed in this section. In 
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addition, latency in memory accesses affects the system performance. Hence 
effective optimization can be achieved through efficient memory architecture and 
addressing procedure.  

In [76] it was noted that most behavioural synthesis tools do not support 
FPGA vendor specific external memory interfacing. The authors proposed an 
approach which includes target architecture oriented timing requirements for 
accessing memory and application specific memory access pattern information. 

In [75] a technique exploiting regularity and spatial locality in memory 
access pattern in order to achieve low power mapping of arrays in behavioural 
specifications to physical memory was presented. 

The work presented by Doggett et al. is optimal in the case of large numbers 
of memory banks being used, as is typical in volume rendering in medical 
applications [64]. The work presented a cubic addressing scheme and used FIFO 
buffers to minimize the pipeline stalling effect of cache misses 

The address generation scheme by Grant el al. is an efficient option for 
accessing data with addresses within the power range of two [65]. The scheme uses 
a register and optionally an offset, to specify memory read/write addresses. 

The memory exploration algorithm in [66] implements memory allocation 
and array-mapping to RAMs through tight links to the scheduling effect and non-
uniform access speeds among the RAM ports to achieve near optimal memory area 
and efficient energy requirement. The algorithm is, however, complex and the 
execution time may slow down hardware design. Moreover the exploration targets 
SRAM and DRAM as opposed to the on-chip FPGA Block RAMs, which are the 
focus of this thesis.  

The address generation technique in [67] is based on address bit inversion to 
yield effective access time to memory at the cost of up to an extra 17.4% of used 
memory.  

In [68] and [77], various high-level optimizations were explored in order to 
reduce the addressing overhead. Many efficient, often heuristics based, memory 
optimization algorithms have been developed similar to those in [69], [70], 
however, the majority are tailored to be efficient on DSP.  

 
3.3.3 C++ based System Synthesis 

C++ modules can be compiled into object codes for several architectures and 
compiling these object codes into hardware is seen as an efficient means of 
hardware synthesis from system level designs.  However because of the nature of 
the programming model, there are challenges in specifying concurrency and time. 
Modelling languages like SystemC [19] and HardwareC [32] are often employed to 
capture the system behaviour in the form of executable specifications. 

Current approaches to C/C++ based system synthesis, or any other 
synthesis environment, do not make efficient use of the FPGA architecture 
especially the memory sub-systems for real-time video processing systems [21], 
[22]. This is due to the manner in which memories are currently being instantiated 
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in FPGAs. In this thesis, we present a system synthesis tool for implementing 
RTVPS with multiple neighbourhood oriented filters targeting FPGAs.  

The tool takes advantage of our already developed memory modelling tool 
IMEM, memory allocation, boundary conditions management tool and 
behavioural simulation platform. The synthesis process explicitly separates the 
modelling and implementation of memory requirements and behaviour of the 
filter functions. In this thesis we show that real-time video processing systems can 
be synthesized from C/C++ or SystemC codes for FPGA implementation. The 
approach supports verification through simulation of both the C/C++ and VHDL 
modules of the filter with a real video signal to ensure that the behavioural 
specifications of the filter are satisfied. 

 
3.3.4 Constraint Generation 

Investigating dynamic power consumption in modern FPGAs can easily be 
justified based on the results in [40] which show that in Xilinx Virtex-II FPGA, 
optimizing the routing network can affect 60% of the dynamic power. In the case of 
the Altera Stratix II FPGA, the routing network accounts for about 40% of the total 
dynamic power consumption [41]. Hence a great deal of dynamic power can be 
minimized at design time by optimizing or constraining the routing network. In 
[42] a low-power FPGA routing switch was proposed. The approach which is 
capable of achieving a 28% reduction in dynamic power is best directed to FPGA 
vendors for consideration when designing routing switches. The work in [43] 
showed that by focusing on optimizing placement and routing, a power reduction 
of up to 19.4% can be achieved. This work differs from [43] because it focuses on a 
real-time video system and a power reduction in such a data transfer intensive 
system. The approach here is to take advantage of the block RAMs sites and to 
constraint logic placements to be as close to the block RAMs as possible. The 
closest work to this research is [44] in which dynamic power is minimized when 
mapping memory specification to on-chip FPGA memory. The work in [44] focuses 
on algorithms for logical-to-physical memory mapping. The main contribution, in 
this case is the automatic constraint generation for real-time video processing 
systems towards lower power consumption. 

 
 

3.3.5 Response to related works 
None of the allocation and addressing methods in Sections 3.3.1 and 3.3.2 

were considered as being appropriate for the management of the memory 
requirements of RTVPS while using the limited embedded FPGA memories. This is 
because these algorithms do not fully utilize the configurable data port widths 
supported by the FPGA and the true dual port capabilities of the Block RAMs. In 
addition, we consider that the data memory architecture in [90] is considered to be 
more efficient for RTVPS data management hence allocation and addressing 
methods based on this architecture would be efficient. This is the motivation 
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behind the development and implementation of a new allocation algorithm 
designed to maximize the memory usage while minimizing the read/write 
accesses. In addition, two approaches to access the allocated memories have been 
developed.  

The work in this thesis achieves near optimal results in terms of the number 
of allocated memories, the amount of unused memories and the access speed by 
fully utilizing the combination of FPGA embedded memory capabilities and the 
RTVPS regular data pattern. In addition, by using power consumption estimates in 
the allocation cost and by applying place and route constraints to the design, we 
achieve a more efficient implementation. 
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4 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING SYSTEMS  

This section presents the research work of in Papers I to VII. In this thesis the 
term Memory Synthesis refers to the implementation of logical memory required for 
data storage in the physical memory in a device (FPGA). This process involves 
defining memory architecture, memory allocation and accessing, power 
optimisation and constraint generation. These terms will be discussed in the 
following subsections. Managing the line-buffers (memory objects) identified in 
Figure 8 is the focus of this work. The main goal is to develop an automatic 
memory synthesis tool that makes efficient use of all the addressable memory 
locations available in all the instantiated FPGA on-chip memory before 
instantiating another.  

 Before presenting the memory synthesis tool developed in this thesis, we 
will first present how it can be integrated into design tools that are readily 
available to hardware designers. Section 3.2 showed that there are many existing 
approaches to implementing designs in hardware. Examples of how to integrate 
with three of the implementation methods from Section 3.2 will be discussed. The 
approach adopted in this work is to manage the memory requirement aspect of an 
RTVPS application while the designer implements the tasks in the RTVPS 
application either manually or through the use of high level design tools. In 
general, it is expected that the memory management modules and the tasks 
requiring the memory can be separately compiled into VHDL. The combination 
will then be compiled by a synthesis tool into FPGA. This synthesis approach is 
based on the IMEM design tool [88], [89] being developed at the Mid Sweden 
Unviersity. IMEM (interface and memory modelling) is based on the philosophy 
that the memory requirement of an RTVPS can be modelled and synthesised 
independently of the synthesis of the RTVPS filters. Thus this thesis presents the 
synthesis of the on-chip memory requirements specified within IMEM. 

 
 

4.1 IMEM SYNTHESIS WORKFLOW 

The IMEM synthesis workflow depicted in Figure 22 demonstrates how our 
research on modelling and high-level synthesis fits into an implementation 
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trajectory. This workflow is defined at six different levels along the left-hand axis. 
The video-processing algorithm is developed and simulated using IMEM at level 1. 
This executable model can then be verified through functional simulation. Data 
dependency information, frame sizes, composition of the 3-dimensional 
neighbourhoods and colour space models are exported into an interface and 
memory model at level 2. Hence it is at this level that the memory requirements of 
an RTVPS are separated from the behavioural C++ description of the RTVPS filters 
(as shown in Figure 24B). The interface between the memory and filters of each 
operator is also defined at this level. The model exported in level 2 is the input to 
the memory synthesis process at level 3. This is where memory estimation, 
memory hierarchy optimization, memory allocation and address generation are 
performed.  

At level 3, the SystemC functional description together with the interface 
template generated from the memory model are synthesized using a SystemC 
based commercial high-level synthesis tool for example the Agility Compiler from 
Celoxica. The VHDL modules from both the functional part and the optimized 
interface and memory model are integrated at level 4 and synthesized at level 5. In 
this manner, the components separated at level 2 are integrated at level 5. 
Hardware simulation and compilation are also carried out. 
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Figure 22. System synthesis workflow. 
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4.2 TOOL INTEGRATION 

 
4.2.1 Integration with C-Based tools 

Figure 23 depicts the integration of tools and steps required for system 
synthesis and verification. The memory requirement, determined by IMEM 
(example is shown in Figure 23 [A]) is used in the memory synthesis tool to 
generate a memory management module in VHDL and a SystemC header module 
(Figure 23 [B]) that contains a reference to the neighbourhood oriented filter 
written in C/C++/SystemC (Figure 23 [C]) as a clock sensitive thread. SystemC 
compilation refines the filter function iteratively through simulation until a 
synthesizable module satisfying the behavioural specifications of the RTVPS is 
achieved. This module is then compiled into VHDL module. 
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[A] Memory Requirements
      Video Width:    640 
      Pixel Width:      8 
      # of Line buffers: 2 
 
[B] #include "systemc.h" 
    SC_MODULE( VIP_Algorithm ) { 
    public: 
     sc_in< bool > input_signals; 
     sc_out< sc_uint<8> output; 
     void Filter_Core();     
     SC_CTOR(VIP_Algorithm ) { 
       SC_THREAD(Filter_Core ); 
       sensitive_pos << clk; 
     } 
    }; 
 
[C] Filter_Core() { 
      // A normal VIP algorithm 
      // function written in  
      // C/C++/SystemC. 
      int<16> var; // variables 
      // Manipulate inputs 
      output = input_signals * 2; 
    } 

 
Figure 23 System integration and verification. 
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VHDL compilation instantiates the memory management module and the 
synthesizable filter function, implements the timing relation of the system data-
flow and verifies the behaviour of the system by simulation. The final VHDL 
module is synthesized and downloaded into FPGA. The SystemC simulator is also 
used to provide video signal impulse data to the VHDL simulator test-bench and 
to write its video response thus verifying that the VHDL module produces the 
expected result. 

From Figure 23 we can define two approaches to implementing RTVPS 
namely, automatic synthesis, in which C-like algorithms can be compiled into HDL 
while our tool is used to manage memories, and semi-automatic synthesis in which 
the designer writes HDL modules and relies on our tool which is used to manage 
memories. 

 
4.2.2 Integration with MATLAB 

Using the Xilinx System Generator for DSP [55] and AccelDSP Synthesis 
tools [56] it is possible to implement video processing within the MATLAB / 
Simulink environment and generate VHDL modules. For this integration Figure 23 
can be modified to replace SystemC Compilation with MATLAB Compilation. 
These tools also support co-simulation of hardware modules in VHDL with 
MATLAB modules. In this manner it is possible to perform hardware-in-the-loop 
implementation of an algorithm. In this research we have integrated and tested the 
results of our memory management tool with MATLAB using the Xilinx System 
Generator for DSP and AccelDSP Synthesis tools for simulation, synthesis and 
hardware-in-the-loop co-simulation. These were conducted by implementing 
Figure 26a using our tool and implementing Figure 26b using MATLAB.  

 
4.2.3 Integration with Xilinx ISE and ModelSim 

Because the results of the memory management tool are VHDL modules, 
they can be easily integrated with the rest for simulation and synthesis before the 
final download into the FPGA. In this manner, the Xilinx ISE tool is used to 
compile and implement the two parts in Figure 26 thus implementing steps 5 and 6 
in Figure 22. 

 
 

4.3 MEMORY SYNTHESIS ARCHITECTURE 

Within IMEM a video system is captured using a coarse grained 
synchronous dataflow graph, an example of which is shown in Figure 24A. Each 
node in the graph represents both the abstract video interface and the memory 
model as shown in Figure 24B. The memory model is a description of the 
neighbourhood of pixels on which the task operates. Figure 25A shows an example 
of a neighbourhood. In addition, each node in Figure 24A contains a description of 
the task’s functional behaviour. The task does not include any data dependency or 
timing information related to the dataflow. It is simply a description of the 
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relationship between the input and output pixels. The target hardware architecture 
is FPGA which has on-chip Block RAMs. These RAMs are required as the cache 
memory for streaming data oriented applications such as RTVPS. Resource reuse is 
not possible between processes but only within individual tasks (as shown in 
Figure 24 and Figure 25).  
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Figure 24. IMEM model of a video processing system. 
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Figure 25 A: Spatio-temporal neighbourhood of pixels. B: Memory architecture for 

a single image processing operation. 
 
The architecture in Figure 26 handles the data storage and boundary 

conditions for the spatial pixel neighbourhood shown in Figure 25.  In Figure 26, 
the video/image processing (VIP) algorithm is the neighbourhood oriented filter. It 
is connected to the memory architecture through the port interfaces for all the pixel 
data required in the neighbourhood. The sliding window controller SLWC 
monitors the central pixel in a spatial neighbourhood and using the position 
information provides valid data for all the pixels in the spatial neighbourhood 
through the Line buffers, Window ctrl and Pixel Switch. The Line buffers in Figure 25B 
are required to buffer image data in order to create the neighbourhood shown in 
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Figure 25A. They are implemented in hardware through the line-buffer modules 
described in detail in Sections 1.3 and 1.4. Window control (Window ctrl) provides 
control signals used by the Pixel switch to build a spatial neighbourhood around 
the current pixel. Window ctrl is implemented in the hardware such that only one 
copy is instantiated and used to control all Pixel Switch modules instantiated for all 
the spatial neighbourhoods in a VIP algorithm involving more than one frame. The 
Pixel switch replaces all pixels in a spatial neighbourhood affected by the boundary 
condition using predefined default values if the central pixel is at the image 
boundary. The output sync is optional and is required to realign the pixels with 
other video signals where time synchronized data and control signal outputs are 
expected. This is because the neighbourhood’s output pixel is usually skewed with 
respect to the input video control signals by an amount depending on the 
neighbourhood size and the number of pipeline stages.  
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Figure 26 Boundary conditions implementation architecture. 

 
The architecture in Figure 27 eliminates the optional output sync and is 

suitable for a system with many neighbourhoods and a high demand for Block 
RAMs. A central state machine is employed to maintain the data and control signal 
synchronization for all the neighbourhoods. 
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Figure 27 Neighbourhood oriented system.  
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The memory synthesis tool developed in this thesis creates all the necessary 
memory and control functionality required for a functional spatio-temporal 
RTVPS. The required memory architecture specified within the IMEM for both 
spatial and temporal neighbourhoods is automatically optimized and mapped 
against the memory resources in such a manner that it produces an efficient 
implementation in terms of used resources. The tool also generates a VHDL 
template for the filter function, instantiates the filter and interfaces it with a 
memory management VHDL. 

 
 

4.4 MEMORY IMPLEMENTATION 

In a hardware implementation of RTVPS, only one operator can use the 
memory objects (Figure 8 and Figure 25) and all the memory objects are used 
simultaneously in the RTVPS. It is assumed that the memory objects can be 
grouped together to form global memory objects at the operator level.  This 
grouping can be achieved through: 

 plinesiR wnW ×=
  (3) 

where WRi is the width of the global memory object at the operator, nlines is 
the number of required line buffers for an operator and wp is the bit width 
representing a pixel. The length of the global memory object is equal to those of the 
memory objects that formed it, i.e. the image width [90]. This architecture is 
preferable to that of the direct mapping of memory objects to a memory location. 
This preference is because global memory objects require a minimal number of 
required memory entities in comparison to direct mapping architecture. 
Consequently, the number of memory accesses for an RTVPS operation is minimal 
for a global memory object. 

To illustrate the formation of the global memory objects, consider an RTVPS 
operator that requires a neighbourhood of a 5x5 window with a 12-bit gray scale 
and a 640 by 480 frame size as the input video stream. This would result in the 
creation of four memory objects each of length L (=640) and width 12. The memory 
objects would be combined to create a GMO Ri of width 48. Figure 28 depicts this 
illustration where op_id represents the operator requiring the GMO. 

 
 

L by 48 
 
 

Ri 
 
 

op_id = 1 

L  by 12 

L  by 12 

L  by 12 

L by 12 

 
Figure 28 Global Memory Object formation 
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4.5 MEMORY ALLOCATION 

Single port memory configuration or a dual-port in which one port is used 
for writing and another for reading usually leads to unused memory areas because 
it allocates only one memory object to the Block RAM. If the memory object does 
not completely occupy the Block RAM there will be unused memory area. Figure 
29 depicts an example of such an allocation. As shown, after the allocation of 
memory objects 1 and 2 to memory areas A1 and A2 on Block RAMs 1 and 2 
respectively, the remaining memory areas B1 and B2 remain unused and 
subsequent memory objects will be allocated to other Block RAMs. Hence these 
types of memory allocation approaches can be very inefficient unless the allocated 
data is exactly the size of the memory module which is, however, very rarely the 
case. 

 
 

Memory Object 1 
A1 

B1 

Block RAM 1 

Memory Object 2 
A2 

B2 

Block RAM 2 

Memory Object  
(width=12) 

Memory Object 
(width=12) 

a 

b   Allocation datapath width = 16  
Figure 29. Traditional memory allocation. 

 
Although, FPGA allows for the allocation of memory objects of any datapath 

widths, it is however left to the designer to ensure the efficient use of the FPGA on-
chip memories during memory allocation. Naturally, a higher datapath width is 
used when the width of the memory object is not a member of the datapath widths 
specified by the FPGA. Figure 29b shows an attempt to allocate an object of width 
12 on Xilinx Spartan 3. Since a datapath width of 12 is not specified by the FPGA 
and 16 is the next datapath width that is a member of the Xilinx Spartan 3 datapath 
widths, allocation of the memory object is made using a datapath of 16. This will 
result in 4L bits being wasted, where L is the length of the memory object. An 
alternative is to partition the memory objects into using the supported widths. 

These two sources of inefficient allocation are the reasons for researching 
both the allocation architecture and an algorithm based on the architecture that 
makes efficient use of memories. To achieve efficient allocation, the advantage of 
parallel accesses to Block RAMs through two independent ports is exploited.  

 
4.5.1 Allocation algorithm 

As presented by O’Nils et al. dual-port configuration of FPGA Block RAMs 
and global memory object allocation for RTVPS provide an efficient use of Block 
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RAMs [90]. An algorithm taking advantage of such efficient memory allocation 
techniques and the possibility of parallel accesses to Block RAMs through two 
independent ports will be presented in this section. Figure 30 shows attempts at 
finding an optimal use of the remaining memory resources identified in an FPGA 
Block RAM. If the remaining memory space is a single rectangular block as shown 
in Figure 30A, allocation is made to it through the second data port. If the 
remaining memory space is not a single rectangular block, it is divided into two 
rectangular blocks B and C as shown in Figure 30B. Allocation can be made to B or 
C through the second data port. Because Block RAMs currently support a 
maximum of two data ports, only block B or block C can be allocated depending 
on its size and the sizes of the memory objects awaiting allocation while the other 
block will never be used. As a result, the developed algorithm seeks the allocation 
for which the unused memory space is minimal by ensuring that, after allocation 
through port A, the remaining memory space forms a rectangular block, and by 
finding the memory object that uses as much of this block as possible. Hence, one 
of the indicators used in measuring the efficiency of the algorithm is the size of the 
unused memory resources. 

 
 

Part of 
object 2 

Useable memory

Memory Bank 2 

Part of  
object 2 

Memory Object 1 

Memory Bank 1 

Access via 
Data Port A 

Access via 
Data Port B 

Access via 
Data Port A 

Access via 
Data Port B 

 A 

 
 

Memory Object 1 
A Unused 

memory1

Block RAM 1 

Unused memory C

Memory Object 1 
A 

Unused 
memory 
B 

B 

Unused memory C 

Memory Object 1 
A 

Unused 
mem. B 

 
Figure 30. Proposed memory allocation. 

 
4.5.2 Definitions 

To find the optimal use of the Block RAM, the algorithm must observe some 
definitions and constraints. These are listed as follows: 

 
(i) M is the set of all the available Block RAM Mk and K is the number of Block 

RAMs.  
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 { }KkMM k ,...,2,1==  (4) 

(ii) SMk is the size of the Block RAM Mk and is specified by the FPGA. For example, 
in Xilinx Spartan 2E FPGA SMk is 4096 bits [93]. The memory objects allocated 
to the Block RAM determine the length LMk and width WMk of Mk. 

(iii) Wc is the set of all possible datapath widths Wn for Block RAMs on the FPGA. 
For example, 1, 2, 4, 8, and 16 are allowed on Xilinx Spartan 2E FPGA [93]. 

 { }NnWW nc ,...,2,1==  (5) 

(iv) R is the set of all memory objects Ri to be allocated and I is the number of 
memory objects. 

 { }IiRR i ,...,2,1==  (6) 

(v) The size SRi of memory object Ri is defined as theproduct of the length LRi and 
the data width WRi of the memory object Ri. 

 RiRiRi WLS ×=  (7) 

(vi) Each global memory object is characterised by a quadruple of op_idRi, LRi, WRi 

and xRi. 

 Ri(op_idRi, LRi, WRi, xRi )  (8) 

where op_idRi is an identifier for the operator in which the memory objects 
making up the global memory object Ri are defined and xRi is the segment in which 
a memory object is located on the global memory object after partitioning into 
units of allowable data widths in Wc. 

 
(vii)  If WRi is not a member of Wc, Ri is partitioned into rj partitions such that the 

width, wR, of each partition is a member of Wc where j = 1, 2, … J and J is the 
number of partitions in object Ri. 

{ }JjWwxwLidoprR cRRiRiRiRiji i ,...,2,1,),,,_( =∈=  (9) 

(viii) Memory object Ri may be allocated to as many Block RAMs as required. 

 ∑
=

≤×
K

k
RiRiki SWL

1
,  (10) 

where Li,k is the part of length LRi allocated at Mk. 
(ix) Block RAM only supports a maximum of two data ports. 
(x) Di,k is the decision to  allocate some or all of the memory objects Ri at Mk. A 

value of 0, 1 or 2 on Di,k means no allocation, single-port allocation or true 
dual-port allocation respectively. 

 ∑
=

2 ≤ 
I

i
kiD

1
,  (11) 
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(xi) For all Ri in R and Mk in M that form part of the Di,k, the sum of the allocations 
may not be more than the size of the Block RAM. 

 ∑
=

≤×
I

ii
MkRiki SWL ,  (12) 

(xii) For all Di,k, in the set of allocation decisions, AD, the unused memory space in 
Mk is defined as UMk. 

∑
=

×−=∈∀
I

ii
RikiMkkki WLSUMADD ,, ,  (13) 

(xiii) The objective function of the algorithm is to minimize the sum of all UMk. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈∀ ∑

ki
kki UMADD

,
, min,  (14) 

To illustrate definitions (vi) and (vii), if the global memory object Ri of width 
48 in Figure 28 were to be allocated on Xilinx Spartan 2E, Ri would then be 
partitioned into three rj each with a width of 16 since it is not possible to have a 
datapath width of 48 on a Spartan 2E. xRi will be 1, 2 and 3 for the first, second and 
third partitions indicating least, middle and most significant partitions on Ri. 
Figure 31 depicts this illustration. 

 
 L by 12 

L by 12 

L by 12 

L by 12 
L by 48 

 
 
 
 
 

op_id = 1   xRi = 1 

L by 16 
  op_id = 1        xRi = 3 

L by 16 
op_id = 1        xRi = 1 

L by 16 
op_id = 1        xRi = 2 

 
Figure 31. Partitioning global memory object. 

 
For every Block RAM available on the FPGA, attempts are made to allocate a 

global memory object to it. The amount of unused memory space UMk is estimated. 
If UMk is zero, the allocation decision is stored and the iteration continues to the 
next memory object or Block RAM. Other possibilities are then considered such 
that UMk is minimal. The final decision is based on the allocations offering the least 
amount for the sum of the unused memory space on all Block RAMs. Figure 32 
shows the allocation algorithm in relation to the definitions and constraints listed 
above before making the final decision. In the figure, any Ri is an allocation 
candidate to any Mk. Since Mk supports only two ports and in line with definition 
(x), only two Ris that minimize UMk can at most be selected such that our objective 
function, definition (xiii) is achieved after all Ris are allocated. According to 
definitions (vii) and (viii), a global memory object may be partitioned into many 
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smaller units and many Block RAMs. By exploiting FPGA parallel access to Block 
RAMs this enables the reconstruction of the object in order to achieve a throughput 
of one pixel per clock cycle. 

 
 

M2 

R2 

Mk 

Ri 

MK 

RI 

M1 

R1 

…

…

…

…

K is number of available memory modules 

I is number of memory objects to be allocated

Di, k 

Mk is defined by LMk, WMk and SMk. SMk = LMk * WMk 

Ri is defined by LRi, WRi and SRi. SRi = LRi * WRi

 
Figure 32. Allocation model. 

 
4.5.3 Proposed algorithm 

The proposed allocation algorithm is presented in Figure 33. A more 
detailed form of the algorithm in the form of pseudo-code is presented in Figure 
A.1 in Appendix A.  In step 1, the algorithm creates global memory objects 
according to Eq. (3). In step 2, the algorithm ensures that the global memory objects 
conform to the allowable port width configuration according to definition vii. This 
step is captured in a procedure, configure_global_memory_objects(R), presented at the 
lower part of Figure A. Steps 3, 6, 7 and 8 ensure that the algorithm iterates 
through all the memory objects starting with the first. In step 4 the global memory 
objects are allocated to the Block RAMs according to definitions (viii) to (xi) while 
optimal use of unallocated memory space in the Block RAM through the second 
port is implemented in step 5, which is also in accordance with definitions (viii) to 
(xi). Optimal allocation is that for which the unused memory space is a minimum, 
preferably zero using either one or two ports in the Block RAM. 

 
 The Proposed Allocation Algorithm 
 
Algorithm:  Memory Allocation(R, M) 
Parameters: R[R

1
 … R

I
] set of I memory objects; 

            M[M
1
 … M

K
] set of K Block RAMs; 

Return:     M
A
[M

A1
 … M

AK
] set of K Allocated Block RAMs; 

 
1. Create global memory objects (GMO) 
2. Configure GMOs 
3. Starting with the first GMO and the first Block RAM 
4. Allocate GMO to Block RAM via port A. 
5. If Block RAM is not fully used find maximum use of 

remaining memory via port B using another GMO. 
6. Select the next GMO when the current has been fully 

allocated. 
7. Select the next Block RAM when all the memory space 

has been optimally used. 
8. Return the set of allocated Block RAMs after 

allocating all GMOs.  
Figure 33. The proposed allocation algorithm. 
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4.5.4 Complexity analysis 

In estimating the complexity of the algorithm, the number of available Block 
RAMs, K, and the number of memory objects, I, after partitioning with respect to 
their width, play major roles. Since the algorithm conducts a single iteration 
through the sets of Block RAMs and two iterations through the set of memory 
objects as shown in steps 3, 4 and 5 in Figure 33 (see also Figure A in the 
Appendix), the allocation algorithm AA is a function of K and I and its complexity 
can be expressed as  

 ( ) ( )2, IKIKAA ⋅Ο=  (15) 

The algorithm is thus, at worst, of the third order of the larger of K and I. 
Implementation costs depend on the representations of the properties of the Block 
RAMs, memory objects and allocation objects, and the arithmetic and logic 
operations defined for them. 

 
 

4.6 ARCHITECTURE DRIVEN BLOCK RAM OPTIMISATION  

To achieve architecture driven memory allocation targeting a given FPGA 
architecture, information about the amount and location of block RAMs, the 
structure and organization (number of rows and columns) of the logic elements 
and the amount of distributed RAM bits that can be implemented using the logic 
elements are read from the database. In addition, estimates concerning the number 
of logic elements, the block RAMs, the minimum clock frequency and other logic 
resources required to implement the video processing application are read from 
the high-level system specification. With this information, IMEM seeks an 
allocation alternative that uses the minimum number of block RAMs by allocating 
logical memory requirements below a threshold to CLBs. The threshold is 
determined by simulations for the given architecture and the clock frequency of 
the application. The threshold is chosen such that the power consumption by the 
CLBs implementing the logical memory does not exceed the power consumed by 
the block RAM. The objective of the proposed architecture driven allocation can be 
summarized as:  

 
• Allocate logical memory requirement below a given threshold to 

CLBs 
• Ensure power consumption by CLB allocation is not larger than 

that by block RAM. 
 
The search for the lowest area and power costs is formulated as follows: 
 
MP is the set of memory partition defined within IMEM [91] in order to 

allocate the line buffers in Figure 25 to physical memory. 
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MP = {mpi | i = 1, 2, …, I}   (16) 

The memory partitions in Eqn. 16 are created by a heuristics-based 
algorithm defined in Section 4.5 above, [91] (Figure 36, Figure 37) to efficiently 
allocate the GMOs, based on the memory architecture stated above in Eqn. 3. The 
algorithm creates the GMOs and partitions them to ensure that their widths are 
directly supported by the FPGA block RAMs. It also takes advantage of the dual 
port capabilities of the Block RAMs, with independent read and write accesses at 
both ports, to achieve near optimal allocations and the possibility of allocating a 
GMO to as many Block RAMs as is required. The allocation algorithm in Section 
4.5  will be augmented by a Block RAM usage minimization goal described in this 
section. The intermediate result consisting of memory partition ready for allocation 
is the memory requirements input to this minimisation work.  

CLBS defines the set of CLBs available in the FPGA organized in terms of 
rows r and columns c. 

CLBS = {clbr,c | r = 0, 1, …, R -1 ^ c = 0, 1, …, C -1} (17) 

where R and C represent the number of CLB rows and columns in the FPGA 
respectively. CLBS’ (= R · C) gives the number of CLBs in the FPGA. BRAMS 
defines the number of FPGA block RAMs and their location given in terms of row 
rr and column cc. 

BRAMS = {bramrr,cc | rr = 0, 1,…, RR -1 ^ cc = 0, 1,…, CC -1} (18) 

where RR and CC represent the number of block RAM rows and columns in 
the FPGA respectively. BRAMS’ (= RR · CC) gives the number of BRAMs in the 
FPGA. The total logic area required (TLR) in terms of CLBs to implement the tasks 
in the video processing is calculated as  

∑
=

=
K

k
ktlrTLR

1

   (19) 

where tlrk is the number of CLBs required by task k and K is number of tasks 
in the dataflow graph (Figure 24). Eqn. 19 can be estimated from the datasheet of 
the IP cores or from a database of the filters previously implemented for the 
RTVPS and currently being re-used. After estimating the task area cost, the tool 
must estimate the amount of CLB resources available for memory allocation by 
through using Eqn. 20. 

)( MFTLRCLBSACLB +−=   (20) 

where MF in Eqn. 20 is the Mark-up Factor used to denote the amount of 
logic in terms of CLBs required to link different tasks together and to the modules 
implementing their memory sub-system as shown in Figure 26. MF can be given as 
an estimate or be determined from the datasheet for each task. The expressions for 
the allocation cost of a given logical memory requirement to distributed RAMs or 
Block RAMs are defined as:   
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∑
=

×⋅×
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=
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j
CLBCLB RjP

JACLB
ACCLB

1

)(1_    (21) 

BRAMBRAM
BRAM

RP
A

ACBRAM ××
−×

=
12

1_    (22) 

Eqn. 21 provides an expression for estimating the cost (CLB_AC) of 
allocating a given memory partition to CLBs J. It is defined as functions of the 
available CLBs, required CLBs, power consumption PCLB by the CLBs and 
associated routing resources [45], [40] across the CLBs. Eqn. 22 gives the cost 
(BRAM_AC) of allocating the same amount of memory to a single port of a dual 
ported BRAM. Hence allocation utilizes only one of the two ports times the 
number of available BRAMs. The cost is also given in terms of the power 
consumption of the BRAM PBRAM and signal routing RBRAM. The Power 
consumption resulting from interconnect routing is not considered due to the 
estimation complexity already in pre-place-and-route high-level design 
environment. There will be a reduction in the power consumption resulting from 
moving data the allocation from block RAMs to the distributed RAM. This is 
because data will be allocated locally where they are required and hence avoiding 
routing to a specific block RAM site. However RCLB and RBRAM are routing factors 
for CLB and block RAMs to account for the interconnection and can be determined 
by mean of simulation.  

Figure 34 shows the architecture driven memory allocation optimization 
approach. It requires the memory partitions from within the IMEM environment 
and information about CLBs and BRAMs read from the architecture description 
file (ADF). ADF contains information concerning the essential features of the target 
FPGA. In addition, estimates of the amount of CLB required to implement the 
tasks (Figure 24, Figure 25) in the design are read from the IP core datasheets.  

Step 1 in Figure 34 determines the maximum amount ML of bit that can be 
allocated using CLB distributed RAMs based on the application frequency and the 
power consumption data for distributed and block RAMs of the target FPGA. 
Using ML the set of memory partitions MP to be allocated will be divided into 
those that can only be allocated using BRAM and those that might be allocated to 
the distributed RAM or block RAM.  

The choice of allocation of smaller memory partitions that are candidate for 
either distributed or block RAM memory is motivated by Eqn. 8 and Eqn. 9. Step 5 
performs dual port memory allocation of memory partition mpi larger than ML 
based on the algorithm in Section 4.5. Steps 6 to 13 compare the estimated power 
consumption and allocation cost of the CLBs and BRAM required to allocate costs 
fof a given memory partition mpi. The option that offers the lower cost is chosen. 
Step 2 ensures that preference is given to larger memory partitions during block 
RAM allocation whereas step 6 ensures the reverse during distributed RAM 
allocation. The approach in Figure 34 has been implemented and incorporated into 
the IMEM toolset to improve its memory management efficiency. 



46 

 

 

Architecture drive memory allocation 
 
Algorithm: Power Optimization(ADF, IMEM) 
 
1: ML = memory_upper_limit(freq, ADF) 
 
/* Allocate large memory objects to BRAMs */ 
2: sort(mp, ‘descending’) 
3: for each mpi in MP  
4:   if sizeof(mpi) > ML  
5:     perform_dual_port_allocation(mpi,IMEM) 
      
/* Allocate small memory objects using cost */ 
6: sort(mp, ‘ascending’) 
7: for each mpi in MP 
8:   if sizeof(mpi) < ML { 
9:    estimate no of CLB required to allocate mpi
 
 /* Using Eqn. 8 */ 
10:    estimate CLB allocation cost for mpi 
 
 /* Using Eqn. 9 */ 
11:    estimate BRAM allocation cost for mpi 
  
/* Choose allocation option with lower cost */ 
12:    select CLB/BRAM allocation with lower cost 
13:    update allocation_cost 
     } 

 
Figure 34 Architecture driven memory allocation  

 
 

4.7 MEMORY ACCESSING 

The allocation software ensures that each entry of a Block RAM data object 
stores information concerning the width and length of the GMO segment allocated 
to it, the port used for allocation and the hierarchy of its segment in the GMO. In 
addition, each partition stores information about the Block RAM to which it is 
allocated, the port of allocation and its start address on the Block RAM, the GMO 
and segment to which it belongs. 

The advantage of sequential accesses to memory for RTVPS applications can 
lead to improved memory performance by using pointers whose values increase 
whenever there are valid pixel values. Using the GMO architecture further reduces 
the number of such pointers to one for each RTVPS operator. The pointers may be 
implemented by using a single counter for each GMO, further referred to as the 
base pointer, or by using a counter for each partition in a GMO, further referred to 
as the distributed pointers.  

To this end, the results from the memory allocation stage are imported into 
the address generation module. From these allocation results GMOs are 
reconstructed, and address spans for each partition in a Block RAM are generated. 
The start and end addresses for each partition are calculated. Offsets are 



47 

considered where dual ports are used for the allocation on Block RAMs for 
different partitions in order to avoid memory overlap. The generated addresses are 
used to determine the location of each GMO element. Two approaches for 
accessing the GMO elements have been developed, namely the base pointer 
approach and the distributed pointer approach and these are presented as follows. 
These two approaches are depicted in Figure 35 while details of their 
implementations are presented in the following subsections. 

 
  GMO 1 

  Length = L 
  L = p1 + p2 

Partition 1 
Length = p1 

Partition 2 
Length = p2 

Base Pointer 
base = 0 – L - 1 

   0                           p1 - 1    0          p2 - 1 

BR1 BR2 

if  base < p1  
    access BR1 
else  
   access BR2 

offset 

(a) 

(b) 

 GMO 1 
  Length = L 
  L = p1 + p2 

Partition 1 
Length = p1 

Partition 2 
Length = p2 

   0                          p1 - 1   0          p2 - 1 

BR1 BR2 

offset 

 
Figure 35 Two memory accessing approaches 

 
4.7.1 Base Pointer Approach 

In this approach, a single pointer is used to track the location of the element 
to be accessed in the GMO. The pointer starts at zero and increases to one less than 
the length of the GMO and then resets to zero. Since the memory accesses are 
clocked, the value of the pointer increases with clocked access to the Block RAM 
when there are valid data. Address spans for each partition of the GMO are used to 
determine the relevant Block RAM relating to the element accessed, depending on 
the value of the pointer. Hence, only the relevant Block RAMs are enabled while 
the other related Block RAMs are disabled. Figure 35a, depicts this approach for a 
simplified case in which a GMO consists of a single segment with two partitions. 

In the figure, partitions p1 and p2 are allocated to Block RAMs BR1 and BR2. 
From Figure 35a, when the value of the counter base is within the span of p1, the 
appropriate port on BR1 is enabled and accessed while the relevant port on BR2 is 
disabled. The reverse is the case when base is no longer within the span of p1, i.e. 
within the span of p2. This simple example could be extended to cases in which 
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more than one segment makes up a GMO and each segment has more than 2 
partitions. A formal description of this approach is shown in Figure 36a.  

Figure 36b depicts the base pointer implementation of the GMO shown in 
Figure 31. In the figure, BR1_EN_A, BR2_EN_A and BR2_EN_B represent the 
enable signals on port A of BR1, port A of BR2, and port B of BR2 respectively. 
Likewise, BR1_A_Adr, BR2_A_Adr and BR2_B_Adr are the address signals on port 
A of BR1, port A of BR2, and port B of BR2 respectively. A Block RAM is enabled 
or disabled by assigning ‘1’ or ‘0’ to its enable signal. 

 
 (a) 

 For each GMO:  
• create Address Table from segments and partitions that make up the 

GMO to determine when to enable Block RAMs among related 
partitions 

• create an incrementable pointer of length ( )⎡ ⎤L2log  which increases 
when there are valid pixel values 

• using Address Table and pointer value enable appropriate Block 
RAMs and set the values of address signals.  

(b) 

512 by 32 
 

op  = 1          
seg = 1 
par = 1 

BR1 Port A 

128 by 32
 

op  = 1          
seg = 1 
par = 2 

640 by 16 
op = 1    seg = 2    par = 1 

BR2 Port B Port A 

offset=320 

0  ≤   bp  ≤   639 
    BR2_EN_A = 1 
    BR2_A_Adr     = bp 

512  ≤  bp  ≤   639 
    BR2_EN_B = 1 
    BR2_EN_B = 0 
    BR2_B_Adr     = offset + bp - 512 

0  ≤  bp  ≤   511 
    BR1_EN_A = 1 
    BR2_EN_B = 0 
    BR1_A_Adr     = bp 

Base Pointer bp = 0 - 639 

 
Figure 36. Base Pointer Approach. 

 
 

4.7.2 Distributed Pointer Approach 
In this approach, each partition is handled separately, starting with the first 

partition in a segment. Local pointers equal in length to that of each partition are 
created. As long as the enable signal of Block RAM for a partition is high, memory 
access is initiated at its first position using its pointer and continues incrementally, 
if valid data are available until its full length is achieved. During this period, the 
partition ensures its enable signal is re-asserted while the enable signals of the 
neighbouring partitions of the same segment are de-asserted. Controls are 
transferred to the next partition of a similar segment when the upper limit of the 
partition is reached. If however, the partition is the last in the segment, controls are 
transferred to the first partition. Since the address buses of partitions on Block 
RAMs provide appropriate bit vectors to cover their entire lengths, they are used 
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as the local pointer. In this approach, the enable signals of all the first partitions are 
set to high at start-up to ensure that memory accesses start with the first partitions. 
Figure 35b depicts this approach. A simplified case of a GMO consisting of a single 
segment with two partitions p1 and p2 allocated on Block RAMs BR1 and BR2 
respectively is considered in Figure 35b. Figure 37a and Figure 37b show formal 
descriptions and implementations of the GMO depicted in Figure 31 using this 
approach respectively. Signals in Figure 37b have similar meanings to those in 
Figure 36b. Since the 640-by-16 partition is the only one in its segment, it is always 
enabled and the address is reset to 0 when it reaches its upper limit. 

 
 

For each segment in each GMO: 
• create Address Table for each partition in the segment 
• create an incrementable pointer of length ( )⎡ ⎤p2log  which increases 

when there are valid pixel data for partitions in the segment 
• start memory access with the first partition with start address of 0 
• enable Block RAM of currently active partition and disable Block 

RAMs of related partitions while pointer is less than partition’s length  
• if pointer of active equals partition’s length less one, reset it to 0, 

disable it and enable next (or first partition if this is the last partition). 
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< 639

    BR2_A_Adr = BR2_A_Adr + 1
 

BR2_EN_A = 1 & BR2_A_Adr
= 639

    BR2_A_Adr = 0 
 
BR2_EN_A = 1  
 

BR2_EN_B = 1 & 
BR2_B_Adr < offset + 127 
    BR2_EN_B = 1 
    BR2_EN_B = 0 
    BR2_B_Adr     = 
BR2_B_Adr + 1 
 
BR2_EN_B = 1 & 
BR2_B_Adr = offset + 127 
    BR2_EN_B = 0 
    BR2_EN_B = 1 
    BR2_B_Adr  = offset  

BR1_EN_A = 1 & BR1_A_Adr < 511
    BR1_EN_A = 1 
    BR2_EN_B = 0 
    BR1_A_Adr     = BR1_A_Adr + 1 
 
BR1_EN_A = 1 & BR1_A_Adr  =  511 
    BR1_EN_A = 0 
    BR2_EN_B = 1 
    BR1_A_Adr = 0 

 
Figure 37. Distributed Approach. 

 
 

4.8 CONSTRAINT GENERATION 

To generate constraints targeting a given FPGA architecture, the information 
about the amount and location of block RAMs, the clock regions, the number of 
logic elements within each clock region and used IO pins, is read from the 
database. In addition, the amount of logic elements, block RAMs and other 
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resources required to implement the design is read from the synthesis report. With 
these two sets of information, block RAMs are placed in clock regions closest to 
most of the IO pins and design logics are constrained to be placed as close to the 
used block RAMs as possible. The approach is shown in Figure 38. Placement of 
both the design logic and block RAMs is such that a minimal number of clock 
regions is used. This approach is suitable for video processing systems because 
they are data dominated thus requiring large memory accesses to block RAMs. 
Constraining logic to be placed close to block RAMs within a minimal number of 
clock regions leads to reduced interconnections, shorter delays and reduced power 
consumption. However, the number of block RAMs may require more than one 
block RAM column, thus requiring placement across the FPGA chip. For this 
scenario, logic elements are placed such that they are equidistant from the two 
block RAM columns. Placement is further optimized by using a logic element 
based placement constraint in addition to the clock regions.  

The place and route constraints are generated for the memory subsystem of 
each task in the system dataflow graph (Figure 24) whereas the filters are made to 
overlap many memory subsystems. For this work we have used the Xilinx Spartan 
3 FPGA. However, the approach can be adapted for any FPGA architecture. The 
automatically generated constraints will now be presented. 

 
OPTIMIZATION GOAL [94]: The synthesis reports show that 

the designs can meet the frequency requirements hence placement can 
be optimized for area by setting the constraint OPTIMIZE to AREA. 
Other possible values are SPEED and BALANCE.  

 
OPTIMIZATION EFFORT [94]: The overall, placement and 

router optimization efforts are set to high through the constraint 
OPT_EFFORT = HIGH. This may require more implementation time 
but the results are always better. Alternative values are NONE, 
STANDARD and MEDIUM. 

 
DESIGN HIERARCHY [94]: Design hierarchy is dissolve by 

setting the constraint KEEP_HIERARCHY to FALSE in order to flatten 
the design. This choice increases the possibility of logic sharing and 
optimization. The alternative value is TRUE. 

 
RELATIVE LOCATION [94]: the design is constrained to use 

relative location in order to relationally place logics and block RAMs 
based on their functions and hierarchy by setting the constraint 
USE_RLOC to TRUE. In this way block RAMs whose inputs or 
outputs connect to IO pins are placed as close to the IO pins as 
possible while other block RAMs are placed relative to them. The 
alternative value is FALSE. 
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DESIGN GROUPS [94]: the entire design can be grouped 
according to the system flow graph (Figure 24) into small components 
to manage the design complexity. The memory sub-component of 
each task in Figure 24 is defined as an area group and placed by clock 
regions. The filters in all the tasks are grouped together into an area 
group and placed in such a way that it overlaps other area groups. 
This is to allow for flexible inter-group communication. Compact 
placement of the area groups is ensured by setting the 
COMPRESSION factor of each group to the highest (100%). 
 
Figure 38 shows in pseudo-code the constraint generation approach 

presented in here. The resource requirement of all the line-buffers are read from 
the IMEM model and are collected in a set LB whereas the resources available in 
each of the clock-regions are read from the database and collected in a set CR. Each 
LBi and CRj,k is defined in terms of the amount of block RAMs, multipliers, and 
logic blocks. The algorithm searches for a set of CRj,k that satisfies all the resource 
requirements for all the LBis and for which the over-all difference in area 
requirements and occupied area is minimal. LBAi and CRAj,k are the area 
requirements up to LBi and the available resources up to CRj,k respectively. Figure 
39 depicts the clock distribution of a design case (discussed in the next section) 
implemented without (A) and with (B) the constraints. From Figure 39 it is obvious 
that the implementation without constraints will consume more dynamic power 
since it occupies a larger area and requires a wider clock network. Figure 40 shows 
the workflow by which the IMEM tool set automatically generates the place and 
route constraints. All the required information is gathered from the IMEM model 
of the system flow graph (Figure 24, Figure 26) and FPGA architecture. The output 
of the algorithm is a user constraint file (UCF). 
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/* Gather background information */ 
CR = read_clock_region_info() 
LB = read_linebuffers_resource_use(IMEM) 
 
/* expression for estimating area cost*/ 

∑
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/* Using area as cost criterion, find the CRj,ks 
to in which to place LBis with minimal cost */ 
generate_placement_constraint(LBi,CRj,k){  
 write placement constraint for LB1 at CR1,1 
 for each LBi {/* i > 1 */ 
  for each unused_cr { 
 estimate area_cost 
 select CRj,k with minimum area_cost 
 write PAR constraint for LBi at CRj,k
 update area_cost 
 } 
 } 
} 

 
Figure 38. Constraint generation algorithm 

 

  
A)    B) 

Figure 39. Clock distributions showing the effect of constraints 
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Figure 40. Constraint generation workflow 

 
 

4.9 RESULTS 

In this section the results obtained after implementing the algorithm and the 
analysis of its performance are presented as follows. Section 4.9.1 presents the 
performance of the algorithm under real-time video processing design. Section 
4.9.3 presents its performance, under two test scenarios modelled upon one of the 
real-time design cases. The performance of the memory synthesis with varying 
memory requirements and Block RAM sizes is presented in Section 4.9.4. Section 
4.9.5 presents the performance analysis for eleven video processing systems 
published by other researchers. Section 4.9.7 compares the performance of the two 
memory addressing schemes presented in Section 4.7. 

 
4.9.1 Real-time video processing design cases 

The algorithm has been implemented in C++ using the object-oriented 
approach. The implementation was simulated using the memory requirements of 
real-time video processing design cases [90]. The first design case was a spatio-
temporal median filter with a neighbourhood of seven frames and two line buffers. 
Two instances of this design case were considered. The first, (1-1), being a VGA 
frame with 24-bit RGB pixels and a 640 frame length while the second, (1-2), was a 
PAL frame with an 8-bit gray scale pixel and a 708 frame length. The second design 
case was a machine vision system with a median filter, segmentation and three 1-
bit morphological operations. For this design case two instances were also 
considered. The first case, (2-1), being an 8-bit gray-scale, which had a VGA 
resolution as its input video stream, while the second, (2-2), had a 12-bit gray scale 
with a 1.3 MPixel resolution as its input video stream. Table 2 shows the summary 
of the memory requirements for the design cases considered. In the table column 2 
shows the number of video processing filters in the design case while column 3 
shows the number of line buffers required by each filter. For design cases 1-1 and 
1-2 seven 3x3 filters were used, each requiring two line buffers while for design 
cases 2-1 and 2-2, one 5x5 median filter, one segmentation operation and three 17-
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by-17 morphological filters requiring four, one and sixteen line buffers respectively 
were used. Columns four, five and six represent the pixel resolution, the length of 
the line buffer and the memory requirement for each filter respectively. 

 
Table 2. Memory requirement of considered design cases. 

 
 
 
 
 
 
 
 
 

 
4.9.2 Allocation Results 

Table 3 and Table 4 show the results obtained using the implementation of 
the algorithm for allocating the design cases considered on Xilinx Spartan 2E and 
Spartan 3 FPGA respectively.  

 
Table 3. Allocation result of the algorithm on Spartan 2E. 

 

 

 

 

 
Table 4. Allocation result of the algorithm on Spartan 3. 

 

 

 

 
 

 
 
In the tables the theoretical minima Block RAM required for allocation were 

estimated from Eqn. 14 [90].  

 
( )⎥⎥

⎤
⎢
⎢

⎡
=

BRAM
Sizeminimal

size
 (23) 

Design Case # Rows Width Length Size (Kbit) 
Case 1-1 7 2 24 640 210 
Case 1-2 7 2 8 708 77.4 
Case 2-1 1 

1 
3 

4 
1 

16 

8 
19 
1 

640 
256 
640 

20.0 
4.75 
30.0 

Case 2-2 1 
1 
3 

4 
1 

16 

12 
21 
1 

1300 
4096 
1300 

60.94 
84.0 
60.94 

Design Case minima  Block RAM  % minima 

Case 1-1 53 53 100 
Case 1-2 20 20 100 
Case 2-1 14 14 100 
Case 2-2 52 52 100 

Design Cases Minima Block RAM  % minima 

Case 1-1 14 14 100 
Case 1-2 5 6 120 
Case 2-1 4 5 125 
Case 2-2 13 13 100 
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where Size is the number of bits required by the design case, given in 
column 6 of Table 2, and the size of BRAM is the numbers of bits in one block 
RAM, 4 Kbit for a Xilinx Spartan 2E and 16kbit (without parity) for Spartan 3 [93], 
[50]. Table 3 shows that the algorithm requires no more than the minimum value 
for the allocation of each of the design cases on Spartan 2E. Hence, it is in total 
agreement with the minimum requirements for Spartan 2E. On Spartan 3, 
allocation requirements were equal to the minimum values except for two of the 
design cases. The minimum value is calculated for the allocation on a Block RAM 
with an infinite number of ports. The minimum value, however, only indicates the 
effectiveness of the allocation but not its feasibility, since it is not possible to have 
Block RAMs with an infinite number of ports. The implementation for Spartan 3 
did not consider parity. The parity feature on Xilinx Spartan 3 FPGA increases the 
available Block RAM size by providing an additional bit for every 8 bits [50]. When 
the parity bit is taken into consideration it makes it possible to have width 
configurations that are multiples of the 9-bit on the Block RAM. In this manner, 
18Kbits of Block RAM size can be achieved instead of 16Kbits. This parity feature 
was not considered since it is only specific to some of the Xilinx FPGA families and 
not all FPGAs have this feature. From Table 4, the non-minimum result of the 
algorithm in design cases 1-2 and 2-1 is because, if a design case has many 
operators in relation to the total storage requirement and/or the size of each Block 
RAM, the number of ports on each Block RAM will limit the allocation. 

Figure 41 shows the mapping of the memory objects to the Block RAMs for 
the design Case 2-1 on Xilinx Spartan 2E. The identifiers of the global memory 
objects and the Blocks RAMs are shown. In addition, the figure shows that 
memory objects were allocated to as many Block RAMs as required. This is a case 
of dynamic partitioning with respect to the length. In the figure, each block is 
annotated by “WxL” and “op_id: y” where W, L and y represent the width, 
memory depth and operator id of the allocated partition respectively. BRAMs 7 
and 8 in the figure exploit the independence of the data path width and memory 
depth for the two ports on a dual-ported RAM. In BRAM 7, Port A is allocated 
with a partition which has a data path width of 2 and a depth of 256 while Port B is 
allocated with a partition with a data path width of 16 and a depth of 224. 

In Figure 41 memory object 1 of width 32 bits and length 640 was firstly 
partitioned width-wise into two partitions each of width 16 bits and length 640. 
Then the first partition was allocated to Block RAMs 1, 2 and 3, by partitioning it 
length-wise and allocating partitions of lengths 256, 256 and 128 respectively, 
completely filling the Block RAMs 1 and 2 using only one port. The second 
partition of memory object 1 was also partitioned length-wise and allocated to 
Block RAMs 3, 4 and 5. This width-wise and length-wise partitioning of the 
memory object makes it possible to allocate a memory object to many Block RAMs 
and to configure the memory object with widths feasible in the FPGA. In the 
figure, the lower and upper allocations were through ports A and B respectively. 
The figure also indicates the width and length of the memory objects allocated at 
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each Block RAM. In addition, unused memory space is specified on Block RAM 14 
where it occurred. This memory space can be used through the second port. 

 

 
Figure 41. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA. 
 
 

4.9.3 Performance analysis with varying length and width 
To test the performance of the algorithm, the memory requirements for 

allocation were varied under two scenarios such that they are similar to design 
case 1-1. The two test scenarios are presented as follows. 

 
4.9.3.1 First test scenario  

In this test scenario, four frame lengths L (320, 640, 1280 and 2560) were used 
while the widths W were determined by the memory requirement, which was 
allowed to vary from 100kbit to 2000kbit. This test scenario was simulated for 
XILINX Spartan 2E and 3 FPGA. The minimum Block RAM allocation was plotted 
along with the estimated Block RAMs for the four values L. On Spartan 2E, the 
minima were equal to those estimated by the algorithm for all values of L whereas 
on Spartan 3, the minima differed from the values obtained for L = 320 and the 
estimated values obtained for other values of L equalled the minima for most of the 
memory requirements. Figure 42 shows the performance of the algorithm for this 
test scenario. 
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Figure 42a. First test scenario on Spartan 2E. 

  
Figure 42b. First test scenario on Spartan 3. 

 
4.9.3.2 Second test scenario 

In this test scenario, four values of width W (3, 6, 12 and 24) were used while 
the length L was determined by the memory requirement, which also ranged from 
100 to 2000 Kbits. The test scenario was simulated for Spartan 2E and 3. The results 
obtained for the theoretical minima and the estimated Block RAMs for the different 
values of W were equal when Spartan 2E was used but differed when memory 
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requirements less than 200kbit on Spartan 3 were used. Figure 43 shows the 
performance of the algorithm for this test scenario.  

As shown in Figure 42 and Figure 43, allocations on Spartan 2E equalled the 
theoretical minima whereas those on Spartan 3 differed slightly. This is because the 
Block RAM sizes are smaller in Spartan 2E and were more easily managed.  In 
Figure 42b, allocations with L=320 required I excess of the theoretical minima due 
to the small sizes of the memory objects with respect to the sizes of the Block 
RAMs. The average variation of the number of Block RAMs from the theoretical 
minima is 6%. In Figure 43b, the first allocation using W=3 had a variation of 14% 
from the theoretical minima also due to the small sizes of the memory objects. 
Configuring the global memory objects width-wise to only data-path widths 
allowed by the FPGA technology leads to the efficient utilization of the Block 
RAMs. This enables the allocation results to be close to the theoretical minima.  

By definition, the theoretical minimum assumes a Block RAM with an 
infinite number of ports making it possible to allocate to the Block RAM until it is 
fully used. It is not a practical value but rather a metric used to measure the 
optimality of the algorithm. Consequently, the higher the number of ports on Block 
RAMs the closer the algorithm result is to the theoretical minimum. 

 

 
Figure 43a. Second test scenario on Spartan 2E. 
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Figure 43b. Second test scenario on Spartan 3. 

 
 

4.9.4 Performance analysis with varying length and Block RAM sizes 
The performance of the memory synthesis has been investigated in this 

thesis using varying memory requirements with respect to the frame resolutions of 
RTVPS design cases in Table 2. The analysis is performed such that the design 
cases are allocated onto different existing and extrapolated FPGA memory 
architectures. Figure 44 shows the results obtained for high (twice), medium 
(normal) and low (half) frame resolutions of the design cases in Table 2. In the 
figure the columns represent the frame resolutions. The upper and the lower rows 
represent the number of Block RAMs used for allocating the memory objects and 
the percentage of unused memories respectively. In the upper row Block RAM 
sizes were presented in increasing order from left to right but in decreasing order 
in the lower row. 

The results reveal that for a given resolution, the amount of unused memory 
increases with Block RAM size. Also for high frame resolutions the amount of 
unused memory in the allocated Block RAMs is small when compared to the 
medium and low frame resolutions. This result is to be expected since the 
allocation of large memory objects onto small Block RAMs leads to greater 
efficiency than the allocation of small memories onto large Block RAMs. Hence, the 
use of an un-multiplexed memory architecture will lead to more costly 
implementations. To avoid this, FPGAs should support multiple RAMs sizes and 
wider data-paths. Alternatively, efficient use of the current large RAMs can be 
achieved through the time-multiplexed architecture. However, this will degrade 
the performance and possibly increase the power consumption, which will make 
the FPGA architecture less attractive for video processing systems. These results 
can guide both RTVPS designers and the development of new FPGA architectures. 
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Figure 44. Block RAM usage with varying memory requirements 

 
4.9.5 Performance Analysis for video processing systems 

In this section, the performance test of the allocation algorithm on video 
processing systems published in the literature [78]-[87] is presented. The tests are 
still in manuscript form and are to be sent for publication after further extensive 
testing.  The algorithm was implemented using Block RAM sizes of 2, 4, 8, 16 and 
32Kbits, each with data path width configurations of 2, 4, 8, 16, 32 bits.  

The average results for the allocation of the test designs [78]-[87] are shown 
in Table 5 The results for all design cases were combined together in order to 
observe the memory sets producing the best allocation results. The most 
satisfactory allocation results were acquired using a RAM size of 8Kbits and a data 
path width of 16 or 32 bits, and this achieved an average allocation efficiency of 
92.5%. However, larger memory sets, up to 16Kbit, also generated satisfactory 
results when combined with wide data path widths. 

The use of large memory sets, as predicted, proved to be inferior to that for 
small sets in the majority of cases which is in agreement with the allocation results 
for the architecture initially produced by O’Nils in [90]. The allocation efficiencies 
of the algorithm on RAMs with a size corresponding to the configuration of a 
Xilinx Spartan-2 and Spartan-3 are presented in Table 6 and Table 7. On both 
Spartan-2 and Spartan-3, the algorithm achieves a 100% allocation efficiency in 9 
out of 11 cases. 
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Table 5.Average allocation results for all cases 

Average allocation efficiency 
 2 bit 4 bit 8 bit 16 bit 32 bit 

2Kb 74,1% 88,2% 89,3% -- -- 
4Kb 55,5% 82,4% 90,5% 91,8% -- 
8Kb 45,0% 62,4% 86,4% 92,5% 92,5% 

16Kb 35,8% 52,9% 68,4% 88,1% 90,9% 
32Kb 31,2% 44,0% 60,1% 73,2% 82,5% 

 
Table 6. Allocation on Spartan II 

Allocation result of the algorithm on Spartan 2 

Design case
Min. req. 
BRAM 

Block 
RAM 

Allocation 
efficiency 

Case A [78] 3 5 60% 
Case B [79] 5 5 100% 
Case C [80] 1 1 100% 
Case D [81] 2 2 100% 
Case E [81] 3 3 100% 
Case F [82] 1 1 100% 
Case G [83] 5 10 50% 
Case H [84] 7 7 100% 
Case I [85] 1 1 100% 
Case J [86] 21 21 100% 
Case K [87] 51 51 100% 

 
Table 7. Allocation on Spartan III 

Allocation result of the algorithm on Spartan 3 

Design case
Min. req. 
BRAM 

Block 
RAM 

Allocation 
efficiency 

Case A [78] 1 2 50% 
Case B [79] 2 2 100% 
Case C [80] 1 1 100% 
Case D [81] 1 1 100% 
Case E [81] 1 1 100% 
Case F [82] 1 1 100% 
Case G [83] 2 4 50% 
Case H [84] 2 2 100% 
Case I [85] 1 1 100% 
Case J [86] 6 6 100% 
Case K [87] 13 13 100% 
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4.9.6 Performance of Architecture Driven Memory Allocation 
To test the effect of considering the FPGA architecture in memory allocation 

as presented in Section 4.6, Design cases 1-1 and 2-1 in Section 4.9.1 were used.  
Although the two design cases were specified for 8-bits VGA resolution video 
streams, for the purpose of these tests the pixels were allowed to have values of 6, 
8 9 and 10 bits whereas the frame width were given the values 256, 320 512, 640 
and 800. The stretching of the pixel and frame resolutions was carried out to 
observe how the synthesis tool will perform under various memory requirements. 
Figure 45 shows the block RAM memory usage for the design cases under various 
pixel and frame resolutions. In the figure, columns such as ‘6w’ report block RAM 
usage by the allocation in Section 4.5 which finds an efficient method of memory 
allocation but without considering the possibility of allocation to distributed RAMs 
as presented in this thesis. 

The designs were implemented according to the architecture in Figure 26 
which abstracted the memory subsystem from the task. Hence configuring the 
memory requirements does affect the tasks configuration, the exception being 
through generic parameters. The designs were synthesized and analyzed for post-
place and route simulation for power consumption. We found minimal changes in 
the number of CLBs used (between 6 and 12) and small changes in the power 
consumption. We have not presented the changes in either the CLBs or the power 
consumption because they were rather small and constant. Figure 46 shows the 
post-place and route clock distribution of the design case 2 using the approaches 
adopted in Section 4.5 and Section 4.6. The figure shows that logic distribution is 
concentrated on the right-side of the chip where most of the instantiated block 
RAMs are located as well as the centre where the clock network is most efficient. 
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Figure 45. Memory usage 

 
 

 
A) B) 

Figure 46. Post-PAR Clock distribution of design case 2 
 
 

4.9.7 Results of the addressing 
Table 8 shows the resources required to access the allocated memory objects 

for the design cases in Table 2, the number of Block RAMs required for the 
allocations and the hardware operating frequency for the two approaches. Xilinx 
Spartan 3 FPGA was the target platform for implementing both approaches. 

 

Table 8. Comparison of the two approaches. 

Case 1-1 Case 1-2 Case 2-1 Case 2-2 
 BP Dist BP Dist BP Dist BP Dist 
No. of 4 input LUTs: 653 994 334 356 155 191 560 804 
No. of BRAMs: 14 14 6 6 5 5 13 13 
Max. Frequency (MHz): 116 186 106 183 140 214 91 173 
Frequency Comparison (%): 100 160 100 173 100 153 100 190 
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Depending on the number of partitions relating to a GMO, address look-up 

tables are required to set the enable signals and the values of the address signals to 
the appropriate Block RAMs on which the element of the GMO currently being 
pointed at is allocated, while also disabling related Block RAMs. In the Base 
Pointer Approach, these accesses to the Block RAMs are centrally controlled at the 
GMO level using a pointer. Hence, only one set of address look-up tables is 
required for each GMO. By contrast, in the Distributed Approach, each partition 
has its separate address look-up table, unrelated to those of related partitions. The 
use of a partition’s address look-up table depends on the value of its enable signal. 
Hence the total number of address look-up tables for one GMO depends on the 
number of partitions making up the GMO. This is evident by comparing Figure 36c 
and Figure 37c. The first row of Table 8 confirms this. Thus the Base Pointer 
Approach yields more efficient use of hardware resources than does the 
Distributed Approach. The differences in resource requirements are however 
marginal,  amounting to less than 3% of the available resources, for example, Xilinx 
Spartan 3 XC3S400 series [48]. 

Delays associated with large counter values in single based pointers and the 
distribution of the pointer values are eliminated in the Distributed Pointer 
Approach since each Block RAM partition has one local pointer. The use of small 
counters to evaluate addresses for each partition in the Distributed Pointer 
Approach increases the speed of memory accesses and consequently, increases 
operating frequency. This is because all signals required for memory accesses are 
calculated simultaneously at the clock edge. As the third and fourth rows in Table 
8 show, the Distributed Approach yields more rapid access to data than does the 
Base Pointer Approach. 

  
 

4.9.8 Result of Constraint Generation 
To test the performance of the generated constraints we implemented three 

neighbourhood oriented filters. The first is part of a video surveillance system 
consisting of two 1-bit, 5-by-5 neighbourhoods, two 1-bit, 9-by-9 neighbourhoods 
and one 8-bits, 2700 clock-cycle delay-buffer. The second filter is a pre-processing 
stage of an 8-bits object classification system. It consist of a 3-by-3 median filter, a 
3-by-3 Sobel edge detect operator and a 3-by-3 average filter. The third filter is 
identical to the second filter apart from the fact that the pixels are 24-bits rather 
than 8-bits. These filters represent a wide range of operations typical of pre-
processing stages in real-time video processing systems namely logical, compare 
and branch, data buffering and arithmetic operations and reasonably wide 
neighbourhood sizes. 

The memory sub-systems of the filters were implemented using the 
standard memory allocation in the RTL synthesis tool and by the IMEM tool. The 
filters along with the memory parts were synthesized and verified by means of 
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both behavioural simulation and post-place and route simulation models. Xilinx 
Spartan 3 400 FPGA was chosen because it has a sufficient amount of block RAMs 
with the possibility of using up to 75% of the logic blocks. It should be noted that 
for the standard design, the Xilinx synthesis tool instantiated block RAMs for the 1-
bit line buffers until all the block RAMs were fully used after which distributed 
RAMs were used. Table 9. shows the resources usage and the maximum frequency 
of the designs implemented by the standard approach and by the IMEM tool for 
the three design cases. 

The filters were simulated at a frequency of 10MHz (25 frames per seconds) 
with three 640-by-480 input images namely Mandril, Chessboard and Peppers. The 
simulation time was limited to 6 milliseconds due to the large size of the generated 
value change dump (VCD) file which was in excess of 4 gigabytes. This simulation 
time is reasonable because it is about 20% of the total required simulation time. 
Table 10 shows the dynamic power consumption for the clock, signals and logic of 
the designs implemented using the standard method, by the IMEM tool and the 
IMEM with constraints. The Xilinx XPower tool was used in obtaining these 
values. The table shows a dramatic reduction in power consumption between  the 
standard and IMEM designs. This is attributed to the real-time video processing 
specific memory architecture implemented in IMEM. IMEM with constraints 
designs have further power reductions especially in relation to the clock net due to 
the compact placement and constraining of the designs.  

 

Table 9. Resource usage summary 

 
 

  Case I Case II  Case III 
Resources std imem std imem std imem

# of Slices:  1188 873 840 1244 2199 3084
# of Flip Flips: 590 798 1060 1642 2874 4357
# of 4 in LUT: 3210 1587 1363 2117 3440 5070
# of BRAMs:  16 9  6 4  12  8
Freq (MHz):  68 108 79 79 79 79
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Table 10. Dynamic power consumption 

 

Test Case I (µW) Case II (µW) Case III (µW) 
Input std imem i + c std imem i + c std imem i + c 

Mand             
Clock:  1495 1072 835 875 1167 661 1457 1611 1327
Signals: 2038 388 359 1799 1244 1497 5420 4054 4439
Logics: 1589 607 565 2231 1207 1216 5907 3770 3702
Total 5122 2067 1759 4905 3618 3374 12784 9435 9468
Chess             
Clock:  1495 1072 835 875 1167 661 1457 1611 1327
Signals: 1785 281 274 545 369 451 1506 1124 1263
Logics: 1239 379 341 572 376 372 1448 988 983
Total 4519 1732 1450 1992 1912 1484 4411 3723 3573
Peppers             
Clock:  1495 1072 835 875 1167 661 1457 1611 1327
Signals: 1730 333 310 1665 831 982 3456 2575 2826
Logics: 1134 550 502 1199 826 372 4103 2477 2440
Total 4359 1955 1647 3739 2824 2015 9016 6663 6593
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5 PAPERS SUMMARY 

Using the IMEM workflow as a guideline, the relationship between the 
seven main papers in this thesis is shown in Figure 47. The papers can be grouped 
as memory synthesis (allocation and addressing), performance analysis, 
integration and post-synthesis optimisation. The papers are summarised as 
follows. 

 

 

Interface and 
Memory Model 

Simulation Input 
Stimuli 

Functional Simulation 
Data Output 

Memory Hierarchy 
Optimization 

VHDL code for 
FPGA  

FPGA logic compiler 

FPGA based 
execution platform

IMEM
Conceptual Modelling 

Memory storage 
estimation 

 

IMEM Projector High-level Synthesis
Memory 

Allocation 
Address  

Generation 

Interface generation 

VHDL code for 
FPGA  

C++ High level 
synthesis (Agility) 

Functional mapping 
of algorithm 

Papers I &  VIIPaper II 

Paper III Papers V & VI 
Paper IV 

 
Figure 47. Relationship between thesis papers. 
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5.1 MEMORY SYNTHESIS 

 
5.1.1 Paper I 

This paper proposed and developed the allocation algorithm for allocating 
the estimated on-chip memory requirements. The algorithm is based on heuristics 
and near optimally allocates memories based on previously proposed memory 
architecture which was concluded to be efficient for real-time video processing 
systems. The optimised allocations are the one in which the amount of unused 
memory location on instantiated memories is minimal, preferably zero. 

 
5.1.2 Paper VII 

This paper extended Paper I to take advantage of the FPGA architecture by 
using a cost function defined in terms of required memory sizes, available block 
and distributed RAMs resources to motivate the allocation decision. The work in 
this paper in conjunction with Paper I, provides a more efficient means of 
allocating on-chip memories than current practices in automatic synthesis tools. 

 
5.1.3 Paper II 

This paper proposed and developed two memory accessing approaches for 
allocated memories. The two approaches were compared and it was shown that 
one approach was more area efficient while the other was more speed efficient. 
Automatic generation of VHDL modules for managing (allocating and addressing) 
memories was implemented in order to access the efficiency of the two accessing 
approaches.  

 
 

5.2 PERFORMANCE ANALYSIS 

 
5.2.1 Paper III 

This paper presented an analysis of a variety of memory requirements of 
video processing systems allocated using these embedded memory resources. The 
analysis was performed using the memory architecture, allocation and addressing 
approaches in this thesis over a wide range of possible on-chip memory capacities 
and video resolutions. The analysis showed that should FPGAs support multiple 
memory sizes, then a greater use of on-chip memories would be achieved because 
according to the results obtained the amount of unused memory increases with 
Block RAM size for a given resolution. The paper also showed that the amount of 
unused memory reduces as video frame resolutions increases. 
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5.2.2 Paper IV 
This paper presented a platform that automatically and optimally 

implements memory requirements for spatial and temporal real-time video 
processing systems targeting FPGAs. The platform is built on the works in this 
thesis in order to provide data interfaces to a filter core. The work manages 
boundary conditions in order to provide accurate data at image boundaries. The 
work in this paper relieves the video processing designer of the burden of 
managing the memory requirements. It provides and instantiates a wrapper 
module for the filter such that the designer is only required to implement the filter 
algorithm in the wrapper. 

 
 

5.3 TOOLS INTEGRATION 

 
5.3.1 Paper V 

This paper presented a synthesis tool for C++ based synthesis of real-time 
video processing systems targeting FPGAs. The tool produces cost effective 
implementations capable of running at high clock speeds. The number of used 
block RAMs is lower than it would be for a manual design and the speed of the 
memory architecture is close to the speed of the FPGA resources. The algorithm 
that requires the memory synthesized using this high-level synthesis tool can be 
written manually or by using third party SystemC to HDL compilers. Thus, the 
tool presented in this paper is a significant towards accomplishing a compiler that 
effectively synthesizes real-time video processing systems on to an FPGA. This can 
lead to new video processing applications, where the combination of high 
performance, cost effective FPGA and a fully automated design flow would fulfil 
the requirements that otherwise would be difficult to meet by most commercial 
tools but are possible by means of the tool in this paper due to the resource reuse 
through true dual port allocation to Block RAMs. 

 
 

5.4 POST-SYNTHESIS OPTIMISATION 

 
5.4.1 Paper VI 

This paper presented an approach that automatically generates FPGA place 
and route constraints that yield up to 28% reduction in dynamic power 
consumption and reduced development time. Reduction in dynamic power 
consumption can be achieved by focusing on clock nets and signals, and by taking 
advantage of the application domain further reduction is possible through 
constraints oriented towards the essential design components. Because on-chip 
memories are essential components in FPGA implementation of real-time video 
processing systems, specifying constraints that take advantage of their location led 
to lower power consumption and better resource utilization.  
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5.5 AUTHORS CONTRIBUTIONS 

The exact contributions of the authors of the seven central papers in this 
thesis are summarized in Table 11. In the table M and C represent the main author 
and co-author respectively. 

 
Table 11. Authors’ Contributions 

Paper # NL MO HN BT Contributions 
I M C C C NL: Developed and implemented the allocation 

algorithm 
MO: Supervisor 
HN: Analysis and discussion on algorithm feasibility  
BT: Analysed the algorithm results from formal 
modelling viewpoint. 
 

II M C  C NL: Developed and implemented the addressing 
approaches 
MO: Supervisor 
BT: Writing of introduction 
 

III M C   NL: Implemented the experimental analyses 
MO: Supervisor 
 

IV C C M  NL: Implemented spatial memories and, spatial and 
spatio-temporal filters to test the implemented 
architecture 
MO: Supervisor 
HN: Provided the Module for managing the boundary 
conditions and provision of interface to background 
memory for temporal neighbourhood 
 

V M C  C NL: Developed and implemented the synthesis 
approach 
BT: Discussions and review of the paper 
MO: Supervisor 
 

VI M C  C NL: Developed and implemented the automatic 
constraint generation approach 
BT: Discussions and review of the paper 
MO: Supervisor 
 

VII M C  C NL: Developed and implemented the block RAM 
minimisation algorithm 
BT: Discussions and review of the paper  
MO: Supervisor 
 

 
1. Najeem Lawal (NL) 
2. Mattias O’Nils (MO) 
3. Håkan Norrel (HN) 
4. Benny Thörnberg (BT) 
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6 THESIS SUMMARY 

Algorithms for allocating and accessing the memory requirements of 
neighbourhood oriented RTVPS operations have been presented in this thesis. The 
work in this thesis has been inspired by the efforts involved in finding best 
practices in memory allocation to FPGA embedded memory and IMEM’s 
philosophy of memory modelling and synthesis independence of the synthesis of 
core RTVPS filters. This has led to demands for accurate memory estimations and 
efficient synthesis other than those currently available. 

An introduction to the research area addressed in this thesis has been 
presented in Section 1. Section 1.6 compared the performance of FPGA and DSP in 
implementing common RTVPS applications where cache memories are required. 
The comparison provides justification for adopting FPGA as the platform for 
RTVPS. Section 2 summarised the FPGA resources relevant to this research 
whereas Section 3 reviewed the previous works on memory allocation, addressing, 
constraint generation and power optimisation. Section 4 presented the main 
contribution of this work namely, how to find an automatic and efficient memory 
synthesis at low power consumption. Section 4 also presented how the work in this 
thesis integrates with other synthesis tools. Section 5 provided brief summaries of 
the original papers covered by this thesis and the contributions of the authors to 
the papers. 

This section presents the conclusion of the research work in this thesis and 
possible future works. 

 
 

6.1 DISCUSSIONS 

 
6.1.1 Memory architecture 

For each neighbourhood oriented operation in an RTVPS, the developed 
memory architecture groups all the required memory objects (line buffers) to form 
a global memory object. This approach offers the advantage of reducing the 
number of memory object to be managed by the design. The architecture is based 
on the fact that all the memory objects required by an operator will be accessed 
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simultaneously. This architecture leads to approximate savings of 50% with 
regards to the number of allocated memories for an operator. This is verified by 
observing that four memories would have been required to allocate the four line 
buffers identified in Figure 28 if the conventional allocation approach had been 
followed as against the two allocated memories in Figure 36 and Figure 37. 

 
6.1.2 Memory allocation 

An allocation algorithm has been developed and implemented for the 
optimal use of allocated memories. This is based on the fact that inefficient 
allocations are performed by the current synthesis tools in which memory objects 
are allocated using high datapath widths whenever the memory object width is not 
supported. The approach in this algorithm is to partition such unsupported 
widths. The advantage of true dual-port memory allocations with the capability of 
writing and reading at both ports in one clock cycle was adopted in order to 
achieve optimal results. By this means, up to four memory-accessing operations 
could be performed in one clock cycle on one memory. The performance of the 
algorithm has been investigated using various on-chip memory sizes and video 
frame resolutions. It has been shown that efficient memory utilization increases are 
possible with smaller memories and larger memory requirements (as depicted in 
Figure 44).  

 
6.1.3 Memory addressing 

Two addressing approaches for accessing memory have been proposed. The 
approaches are based on the regular pattern of data availability and production 
typical in video processing. One of the approaches tends to be implementation cost 
efficient producing savings of approximately 3% with regards to resources usage 
while the other produces higher access speed and provides higher speed 
performances of approximately 50%. These two approaches offer the designer the 
possibility of choosing between resource and speed optimisation.  

 
6.1.4 Boundary conditions management 

The memory allocation and addressing algorithms have been implemented 
in order to provide all the pixel data in the first column in a pixel neighbourhood. 
Local registers are required to delay pixel data for other locations in the 
neighbourhood (See Figure 26). However, in order to ensure valid data are used at 
the image boundaries, architecture has been developed and implemented, which 
replaces those neighbourhood pixels not within the image by means of a 
predetermined default value depending on the operation performed. 

 
6.1.5 IMEM interfaces 

The work in this research is part of the IMEM tool. It interfaces with IMEM 
to accept the description of the on-chip memory to be implemented as input and 
produces VHDL modules to manage the memory requirements. At the top level, 
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data and control interfaces are provided for the core video processing algorithm 
(Figure 26). This work allows the video processing designer to focus on the 
development of the processing algorithm while relying on IMEM to manage the 
memory requirements. 

 
6.1.6 Constraint Generation 

Significant reductions in dynamic power consumption can be achieved by 
focusing on clock nets and signals, and by taking advantage of the application 
domain. Further reduction is possible through constraints oriented towards the 
essential design components. Because on-chip memories are essential components 
in FPGA implementation of real-time video processing systems, specifying 
constraints that take advantage of their location can lead to lower power 
consumption and better resource utilization. This paper has presented an approach 
that automatically generates constraints that yields up to a 28% reduction in 
dynamic power consumption and reduced development time. 

 
 

6.2 CONCLUSIONS 

This thesis presents memory architecture and synthesis optimized for 
neighbourhood oriented real-time video processing systems in which memory 
write and read accesses exhibit a regular pattern. 

The architecture considers the memory requirements for each operator in the 
video processing system in order to create one memory object. This memory object 
is synthesised using embedded memories in order to minimise external memory 
accesses. The synthesis and addressing of the memory requirements has been 
automated into a tool that accepts the description of the spatial memory 
requirements for all the operators in the video processing system to generate 
hardware description language (HDL) modules implementing the memories.  

The work in this thesis has been integrated with other modelling and 
synthesis tools in order to create an environment for modelling, estimating, 
optimising and implementing both on-chip and off-chip memory requirements of 
neighbourhood-oriented video processing systems in addition to the boundary 
conditions of the algorithm. Within this environment, video processing engineers 
are only required to describe the memory requirements of the operators in terms of 
the number of frames, frame resolution, pixel resolutions and neighbourhood 
dimensions. The tools are able to implement all the memory requirements and thus 
enable the engineer to focus on the core algorithm for the system. 

This work has been tested using many video processing systems with a 
variety of frame and pixel resolutions, neighbourhood dimensions and different 
sizes of embedded memories. The results were found to be very close to the 
theoretical minima while still offering high memory access speed performances. 

FPGAs have been chosen as the target platform for the video processing 
systems studied in this thesis. This choice was made despite the challenges of 
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programmability due to possibilities of reduced time-to-market, low non-recurring 
engineering cost and programmability in comparison to ASICs, and efficiency of 
hardware implementation and high performance of embedded systems in 
comparison to DSPs. The contributions of this work reduce the challenges of 
system implementation on FPGA by reducing the design time through efficient 
automated memory synthesis.  

 
 

6.3 FUTURE WORKS 

In the future, research works should focus on integrating the IMEM tool 
with other tools including MATLAB, LabView, and Catapult C from Mentor 
Graphics. The goal is to provide a complete modelling, simulation and synthesis 
CAD-tool that follows the IMEM workflow to efficiently implement both on- and 
off-chip memory for RTVPS. 
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APPENDIX A 

The proposed allocation algorithm is presented in Figure A in pseudo-code. 
In step 1, the algorithm creates global memory objects according to Eq. (1). In step 
2, the algorithm ensures that they conform to the allowable port width 
configuration according to definition vii. This step is captured in a procedure, 
configure_global_memory_objects(R), presented below the algorithm in Figure A.1. In 
steps 3 through to 10, the global memory objects are allocated to the Block RAMs 
according to definitions viii to xi. In steps 11 through to 20, the algorithm finds the 
optimal use of unallocated memory space in the Block RAM through the second 
port. This allocation is also in accordance with definitions viii to xi. Steps 5 and 14 
handle the partitioning of the global memory objects with respect to length by 
allocating part of the length of the memory object to the Block RAM until the 
memory object has been completely allocated. In steps 7 to 9 and 15 to 17, the 
algorithm estimates the amount of the memory object possible for allocation to the 
available space on a Block RAM. This amount is used to update the memory object 
and the Block RAM if the allocation decision is made. In steps 18 to 20, the 
algorithm finds the memory object which, when allocated to the remaining space 
on the current Block RAM through port B, yields the optimal use of the Block 
RAM. The optimal allocation is that for which the unused memory space is 
minimum, preferably zero. 

The procedure for configuring the width of the global memory objects, 
configure_global_memory_objects(R), is based on definitions (iii) and (vii). In step 1 of 
the procedure, a container for the set of global memory objects is created. In this 
procedure, as the global memory objects are configured they are placed in this 
container. The container is returned in step 17 as the output of the procedure. As 
the procedure loops through the set of global memory objects in step 2, the width 
of each global memory object, WRi, is obtained in step 3 and compared in step 4 
with Wn. If WRi is not supported by the FPGA, the segment identifier is created in 
step 5. In steps 6 to 14, Wc is looped through and its members, Wn, are compared 
with the WRi. This comparison starts from the largest Wn down to the smallest. An 
appropriate number of times by which WRi is greater than Wn is used in creating 
segments according to definition vii. WRi is updated and reused until it is reduced 
to zero. If the FPGA supports WRi, in steps 15 and 16, the object is left un-
partitioned and placed in the returned container. 
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 The Proposed Allocation Algorithm 
 
Algorithm:  Memory Allocation(R, M) 
Parameters: R[R

1
 … R

I
] set of I memory objects; 

            M[M
1
 … M

K
] set of K Block RAMs; 

Return:     M[M
1
 … M

K
] set of K Allocated Block RAMs; 

 
{ 
1. create global memory object; 
2. R := configure_global_memory_objects(R); 
3. for M

k
 := M

1
 upto M

K
 

4. { for R
i
 := R

1
 upto R

I
 

5.   { determine length of R
i
 to be allocated; 

6.     determine port on M
k
 for allocation; 

7. Allocate R
i 
to M

k
; 

8. update M
k
;

 

9. update R
i
; 

10. if M
k
 has been completely used  

 { take next M
k
; 

} 
11.    else 
12. { if no_of_ports on M

k
 = 1 

13.   { pair(R
i
,M

k
.unused) best_alloc; 

14.     flag := TRUE; 
15.     for R

j
 := R

1
 upto R

I
 

16.        { determine length of R
j
 to be allocated 

17.       temporarily Allocate R
j 
to M

k
; 

18.       temporarily update M
k
;

 

17.       temporarily update R
j
; 

19.       if M
k
 is completely used 

      { Allocate R
j
to M

k
;  

  flag = FALSE; 
 take next M

k
; 

      }  
20.       pair(R

j
,M

k
.unused) temp_alloc; 

21.       if temp_alloc.second < best_alloc.second 
       { best_alloc := temp_alloc; 
       } 
     } 
22.     if flag = TRUE 

    { R
i
 := best_alloc.first; 

      Allocate R
i 
to M

k
; 

      update M
k
;

 

      update R
i
; 

    } 
  } 
} 

     } 
   } 
} 
 
Procedure:  configure_global_memory_objects(R) 
Parameters: R[R

1
 … R

I
] set of I memory objects; 

Return:     R[R
1
 … R

I
] set of I memory objects; 

 
{ 
1.  create new set of memory objects New_R; 
2.  for R

i
 := R

1
 upto R

I
 

3.  { width := R
i
.width; 

4.    if width ∉ W
c
 

5.    { segment_id := 1; 
6.      foreach W

i
 in W

c
 

7.      { if width ≥ W
i
 

8.    { count_max := width / W
i
; // integer division 

9.      width := width – (W
i 

× count_max); 
10.      for count := 1 upto count_max 
11.      { Mem_Obj temp(W

i
, R

i
.length, R

i
.operator_id); 

12.  temp.set_segment(segment_id); 
13.  add temp to new_R; 
14.  segment_id := segment_id + 1; 
      } 
    } 
  } 
      }  
15. else 
16. { add R

i
 to new_R; 

} 
    } 
17. return new_R; 
} 

 

Figure A.1. The proposed allocation algorithm. 
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