

Thesis for the degree of Doctor of Technology
Sundsvall 2008

Memory Synthesis for FPGA Implementation of
Real-Time Video Processing Systems

Najeem Lawal

Supervisors: Professor Mattias O’Nils
 Professor Bengt Oelmann
 Doctor Benny Thörnberg

Electronics Design Division, in the

Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall, Sweden

ISSN 1652-893X
Mid Sweden University Doctoral Thesis 66

ISBN 978-91-86073-26-8

Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall
framläggs till offentlig granskning för avläggande av teknologie doktors
examen i elektronik onsdagen den 07 Jan 2009, klockan 10:30 i sal O102,
Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska.

Memory Synthesis for FPGA Implementation of Real-Time
Video Processing Systems

Najeem Lawal

© Najeem Lawal, 2009

Electronics Design Division, in the
Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall
Sweden

Telephone: +46 (0)60 148561

Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2009

iii

ABSTRACT

In this thesis, both a method and a tool to enable efficient memory synthesis
for real-time video processing systems on field programmable logic array are
presented. In real-time video processing system (RTVPS), a set of operations are
repetitively performed on every image frame in a video stream. These operations
are usually computationally intensive and, depending on the video resolution, can
also be very data transfer dominated. These operations, which often require data
from several consecutive frames and many rows of data within each frame, must
be performed accurately and under real-time constraints as the results greatly
affect the accuracy of application. Application domains of these systems include
machine vision, object recognition and tracking, visual enhancement and
surveillance.

Developments in field programmable gate arrays (FPGAs) have been the
motivation for choosing them as the platform for implementing RTVPS. Essential
logic resources required in RTVPS operations are currently available and are
optimized and embedded in modern FPGAs. One such resource is the embedded
memory used for data buffering during real-time video processing. Each data
buffer corresponds to a row of pixels in a video frame, which is allocated using a
synthesis tool that performs the mapping of buffers to embedded memories. This
approach has been investigated and proven to be inefficient. An efficient
alternative employing resource sharing and allocation width pipelining will be
discussed in this thesis.

A method for the optimised use of these embedded memories and,
additionally, a tool supporting automatic generation of hardware descriptions
language (HDL) modules for the synthesis of the memories according to the
developed method are the main focus of this thesis. This method consists of the
memory architecture, allocation and addressing. The central objective of this
method is the optimised use of embedded memories in the process of buffering
data on-chip for an RVTPS operation. The developed software tool is an
environment for generating HDL codes implementing the memory sub-
components.

The tool integrates with the Interface and Memory Modelling (IMEM) tools
in such a way that the IMEM’s output - the memory requirements of a RTVPS - is
imported and processed in order to generate the HDL codes. IMEM is based on the
philosophy that the memory requirements of an RTVPS can be modelled and
synthesized separately from the development of the core RTVPS algorithm thus
freeing the designer to focus on the development of the algorithm while relying on
IMEM for the implementation of memory sub-components.

v

SAMMANDRAG

I denna avhandling presenteras en metod och ett verktyg för möjliggörandet
av effektiv minnessyntes för vidoebearbetande system i realtid på Field
Programmable Gate Array (FPGA). I ett system som bearbetar video i realtid
(RTVPS) upprepas en mängd processer i varje bildruta i en videosekvens. Dessa
processer är ofta beräkningsintensiva och, beroende på videoupplösningen, kan de
också vara mycket dataöverföringsstyrda. Processerna, som ofta kräver data från
en mängd konsekutiva bildrutor och många dataserier inom varje ruta, måste
genomföras exakt och under realtidsbegränsningar, då resultaten i hög grad
påverkar tillämpningens exakthet. Tillämpningsområden för dessa system
innefattar igenkänning av föremål, spårning av föremål samt övervakning.

Utvecklade produkter inom FPGA har motiverat användandet av dessa som
plattform för tillämpning av RTVPS. De nödvändiga logikresurser som krävs för
RTVPS-processer är för tillfället tillgängliga, optimerade och inbyggda i modern
FPGA. En sådan resurs är det inbyggda minne som används för datalagring under
videoprocessning i realtid. Varje datalager motsvarar en rad pixlar i en videoruta
som automatiskt allokeras på FPGAs. Denna metod har undersökts och visat sig
vara effektiv. Ett effektivt alternativ som utnyttjar resursdelning och anslag vid
rörledning diskuteras i denna avhandling.

En metod för optimal användning av dessa inbäddade minnen och ett
verktyg som stöder automatisk generering av HDL-koder för minnessyntes enligt
den utvecklade metoden är fokus för denna avhandling. Denna metod består av
minnesarkitektur, allokering och adressering. Metodens centrala mål är optimal
användning av inbäddade minnen under lagring av data på chip för en RTVPS-
operation. Den utvecklade mjukvaran är en miljö för att generera HDL-koder, där
minneskomponenter tillämpas.

Verktyget integreras med IMEM-verktyg (Interface and Memory Modelling)
på ett sådant sätt att IMEM:s utdata – minneskraven för ett RTVPS, importeras och
behandlas för att generera HDL-koderna. IMEM baseras på filosofin att
minneskraven för ett RTVPS kan modelleras och syntetiseras separat från
utvecklandet av den ursprungliga huvudalgoritmen för RTVPS och därigenom ge
designern frihet att fokusera på utvecklingen av algoritmen, medan IMEM
används för tillämpning av minneskomponenter.

vii

ACKNOWLEDGEMENTS

First of all I would like to show my great appreciation of my
supervisors Prof. Mattias O’Nils, Prof. Bengt Oelmann and Dr. Benny
Thörnberg for their academic and scientific guidance and inspirations, and for
giving me the opportunity to study for Ph.D. Prof. Hans-Erik Nilsson and Dr.
Jerzy Kirrander are greatly acknowledged for their contributions and
inspirations. I am grateful to Fanny Burman and Lotta Söderström for their
kind support. I would also like to thank all my colleagues at the Mid Sweden
University, my friends and my family for their supports.

I would also like to express my gratitude to the Mid Sweden Unviersity,

the Swedish KK foundation and ARTES Graduate School for their financial
supports.

Sundsvall, Jan 2009

Najeem Lawal

ix

TABLE OF CONTENTS

ABSTRACT ... III

SAMMANDRAG ...V

ACKNOWLEDGEMENTS...VII

TABLE OF CONTENTS ..IX

ABBREVIATIONS AND ACRONYMS ..XIII

LIST OF FIGURES .. XV

LIST OF TABLES .. XVII

LIST OF PAPERS... XIX

1 INTRODUCTION...1
1.1 REAL-TIME VIDEO PROCESSING SYSTEM.. 1
1.2 IMPLEMENTATION ALTERNATIVES ... 4

1.2.1 Application Specific Integrated Circuits..................................... 4
1.2.2 Software Based Processors.. 4
1.2.3 Programmable Hardware Processors....................................... 4

1.3 DATA REQUIREMENTS IN RTVPS... 6
1.4 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS 9
1.5 PROBLEM DESCRIPTION... 10
1.6 PERFORMANCE COMPARISON .. 11

1.6.1 Experimental Set-Up ... 11
1.6.2 Results .. 12
1.6.3 Conclusion... 13

1.7 MAIN CONTRIBUTIONS ... 14
1.8 THESIS OUTLINE.. 14

2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)15
2.1.1 Programmable Logic Cells .. 15
2.1.2 Programmable Interconnects .. 17
2.1.3 On-chip RAM Block... 19
2.1.4 Embedded cores ... 19

3 RELATED WORKS...21
3.1 CHALLENGES IN SYSTEM DEVELOPMENT ON FPGA 21

3.1.1 Abstraction level .. 21
3.1.2 Design verification... 22
3.1.3 Resource usage .. 22
3.1.4 Energy and power consumption.. 22

x

3.2 DESIGN METHODS AND LANGUAGES ...23
3.2.1 C/C++ Models..23
3.2.2 Java Model ..24
3.2.3 MATLAB Model ...24
3.2.4 Hardware Description Model ...25
3.2.5 Performance comparison ..25

3.3 PREVIOUS WORKS ON ON-CHIP MEMORY SYNTHESIS.........................26
3.3.1 Allocation algorithms ...26
3.3.2 Memory addressing ...27
3.3.3 C++ based System Synthesis ...28
3.3.4 Constraint Generation ...29
3.3.5 Response to related works ..29

4 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING
SYSTEMS..31

4.1 IMEM SYNTHESIS WORKFLOW...31
4.2 TOOL INTEGRATION..33

4.2.1 Integration with C-Based tools...33
4.2.2 Integration with MATLAB...34
4.2.3 Integration with Xilinx ISE and ModelSim................................34

4.3 MEMORY SYNTHESIS ARCHITECTURE ...34
4.4 MEMORY IMPLEMENTATION ..37
4.5 MEMORY ALLOCATION..38

4.5.1 Allocation algorithm ...38
4.5.2 Definitions..39
4.5.3 Proposed algorithm ...42
4.5.4 Complexity analysis...43

4.6 ARCHITECTURE DRIVEN BLOCK RAM OPTIMISATION43
4.7 MEMORY ACCESSING...46

4.7.1 Base Pointer Approach..47
4.7.2 Distributed Pointer Approach...48

4.8 CONSTRAINT GENERATION...49
4.9 RESULTS...53

4.9.1 Real-time video processing design cases53
4.9.2 Allocation Results ..54
4.9.3 Performance analysis with varying length and width56
4.9.4 Performance analysis with varying length and Block RAM sizes
 59
4.9.5 Performance Analysis for video processing systems..............60
4.9.6 Performance of Architecture Driven Memory Allocation62
4.9.7 Results of the addressing..63
4.9.8 Result of Constraint Generation ..64

5 PAPERS SUMMARY ..67
5.1 MEMORY SYNTHESIS ...68

5.1.1 Paper I ...68
5.1.2 Paper VII..68
5.1.3 Paper II ..68

5.2 PERFORMANCE ANALYSIS ..68

xi

5.2.1 Paper III... 68
5.2.2 Paper IV .. 69

5.3 TOOLS INTEGRATION ... 69
5.3.1 Paper V ... 69

5.4 POST-SYNTHESIS OPTIMISATION.. 69
5.4.1 Paper VI .. 69

5.5 AUTHORS CONTRIBUTIONS... 70
6 THESIS SUMMARY..71

6.1 DISCUSSIONS .. 71
6.1.1 Memory architecture ... 71
6.1.2 Memory allocation ... 72
6.1.3 Memory addressing... 72
6.1.4 Boundary conditions management.. 72
6.1.5 IMEM interfaces .. 72
6.1.6 Constraint Generation ... 73

6.2 CONCLUSIONS... 73
6.3 FUTURE WORKS.. 74

7 REFERENCE ..75

APPENDIX A ..81

PAPER I ..83

PAPER II ...107

PAPER III ..115

PAPER IV..121

PAPER V...131

PAPER VI..141

PAPER VII...149

xiii

ABBREVIATIONS AND ACRONYMS

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction set Processor
BRAM ………... Block RAM
CAD Computer Aided Design
CLB Configurable Logic Block
CPLD Complex PLD
CPU Central Processing Unit
DCM Digital Clock Manager
DRAM Dynamic RAM
DSP Digital Signal Processing
FIFO First In First Out
FIR Finite Inpulse Response
FPGA Field Programmble Gate Array
GMO Global Memory Object
GPP General Purpose Processor
HDL Hardware Description Language
HDTV High-Definition Television
HLL High Level programming Language
IIR Infinte Impulse Ressponse
IMEM Interface and Memory Modeling
IP Intellectual Property
IOB Input/Output Block
LUT Look Up Table
MMX Multimedia Extension
PLD Programmble Logic Device
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RTL Register Transfer Level
RTVPS Real-Time Video Processing System
SIMD ……….. Single Instruction Multiple Datapath
SLWC Sliding Window Controller
SRAM Static RAM
UML Unified Modelling Language
VHDL VHSIC HDL
VHSIC Very-High-Speed Integrated Circuits
VIP Video/Image Processing
VLIW Very Large Instruction Word
VLSI Very Large Scale Integration

xiv

xv

LIST OF FIGURES

Figure 1. Improving visual appearance 2
Figure 2. Preparing for feature measurement 2
Figure 3. Video processing system 3
Figure 4. Time-to-Market - FPGAs vs. ASICs [14] 5
Figure 5. Product time-in-market [14] 5
Figure 6. Signal processing implementation spectrum [15]. 6
Figure 7. Comparison of various implementation platforms [8] 6
Figure 8. Neighbourhood oriented image processing 7
Figure 9. Spatial temporal oriented image processing 8
Figure 10 Circular buffers as line buffers. 10
Figure 11 Block-RAM data flow at read first operation. 10
Figure 12 Resource usage on FPGA 12
Figure 13 Resource usage on DSP 13
Figure 14 Performance 13
Figure 15. Power consumption 13
Figure 16. Overview of Xilinx Spartan 3 [48] 16
Figure 17. Xilinx Spartan 3 CLB [48] 16
Figure 18. FPGA Interconnects 17
Figure 19. RAM data path [50] 19
Figure 20. Spartan 3 MicroBlaze embedded processor [54]. 20
Figure 21. Design Flow for implementing custom applications on FPGA 25
Figure 22. System synthesis workflow. 32
Figure 23 System integration and verification. 33
Figure 24. IMEM model of a video processing system. 35
Figure 25 A: Spatio-temporal neighbourhood of pixels. B: Memory architecture

for a single image processing operation. 35
Figure 26 Boundary conditions implementation architecture. 36
Figure 27 Neighbourhood oriented system. 36
Figure 28 Global Memory Object formation 37
Figure 29. Traditional memory allocation. 38
Figure 30. Proposed memory allocation. 39
Figure 31. Partitioning global memory object. 41
Figure 32. Allocation model. 42
Figure 33. The proposed allocation algorithm. 42
Figure 34 Architecture driven memory allocation 46
Figure 35 Two memory accessing approaches 47
Figure 36. Base Pointer Approach. 48
Figure 37. Distributed Approach. 49
Figure 38. Constraint generation algorithm 52
Figure 39. Clock distributions showing the effect of constraints 52
Figure 40. Constraint generation workflow 53
Figure 41. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA. 56
Figure 42a. First test scenario on Spartan 2E. 57
Figure 43a. Second test scenario on Spartan 2E. 58

xvi

Figure 44. Block RAM usage with varying memory requirements 60
Figure 45. Memory usage 63
Figure 46. Post-PAR Clock distribution of design case 2 63
Figure 47. Relationship between thesis papers. 67

xvii

LIST OF TABLES

Table 1. Summary of FPGA inter-connects .. 18
Table 2. Memory requirement of considered design cases. 54
Table 3. Allocation result of the algorithm on Spartan 2E............................... 54
Table 4. Allocation result of the algorithm on Spartan 3. 54
Table 5.Average allocation results for all cases ... 61
Table 6. Allocation on Spartan II ... 61
Table 7. Allocation on Spartan III .. 61
Table 8. Comparison of the two approaches. ... 63
Table 9. Resource usage summary .. 65
Table 10. Dynamic power consumption.. 66
Table 11. Authors’ Contributions... 70

xix

LIST OF PAPERS

This thesis is mainly based on the following five papers, herein referred
to by their Roman numerals:

Paper I

RAM Allocation Algorithm for Video Processing
Applications on FPGA,
Najeem Lawal, Benny Thörnberg, Mattias O’Nils and Håkan
Norell,
Accepted for publication in Journal of Circuits, Systems and
Computers., Vol. 15, No. 5, October 2006.

Paper II Address Generation for FPGA RAMs for Efficient

Implementation of Real-Time Video Processing Systems,
N. Lawal, B. Thörnberg, M. O'Nils,
Proceedings of the Conference on Field Programmable Logic
and Applications, Tampere, Finland, 2005, pp. 136 - 141.
ISBN 0-7803-9362-7

Paper III Embedded FPGA Memory Requirements for Real-Time Video

Processing Applications
Najeem Lawal and Mattias O'Nils,
Proceedings of the 23rd Norchip Conference, Oulu, Finland
November 2005, pp. 206 - 209.
ISBN 1-4244-0064-3

Paper IV Automatic Generation of Spatial and Temporal Memory

Architectures for Embedded Video Processing Systems,
H. Norell, N. Lawal and M. O’Nils,
In European Association for Signal and Image Processing
(EURASIP) Journal on Embedded Systems, Volume 2007, 2007.

Paper V C++ based System Synthesis of Real-Time Video Processing

Systems targeting FPGA Implementation,
N. Lawal, B. Thörnberg and M. O’Nils,
Proceeding of the 21th International Parallel and Distributed
Processing Symposium (IPDPS 2007), 26-30 March 2007, Long
Beach, California, USA.

Paper VI Power-aware Automatic Constraint Generation for FPGA

Based Real-Time Video Processing Systems
N. Lawal, B. Thörnberg and M. O’Nils,
Proceedings of the 25th IEEE Norchip Conference, Aalborg
Denmark November 2007, pp. 1 - 5.
ISBN: 978-1-4244-1516-8

xx

Paper VII Architecture driven memory allocation for FPGA Based
Real-Time Video Processing Systems
N. Lawal, B. Thörnberg and M. O’Nils,
Submitted to Journal of Embedded Hardware Design.

Related papers not included into this thesis:

 Evaluation of embedded RAM characteristics for FPGA
implementation of real-time image processing systems,
J. Rojas, N. Lawal and M. O'Nils,
Study report

 Comparison of FPGA and DSP performances in

neighbourhood oriented real-time video processing
Najeem Lawal,
Study report

 C++ based System Synthesis of Real-Time Video Processing

Systems targeting FPGA Implementation,
M. O'Nils, B. Thörnberg and N. Lawal,
In Proceeding of FPGAworld Conference, Nov 2007.

1

1 INTRODUCTION

This thesis is concerned with memory synthesis in the implementation of
real-time video processing systems on field programmable gate arrays. This
memory synthesis considers memory architecture, allocation, accessing, power
optimisation and constraint generation. Our interest in memory synthesis is to
provide an easy to use high-level design tool for managing the data required in
real-time video processing systems. This interest originates from the fact that
implementing memory for required data is extremely taxing, the available memory
is limited and the current memory synthesis methodologies do not offer a cost-
effective use of the limited memory. To present this thesis, we will first present the
essential background to a real-time video processing system in Section 1.1. Section
1.2 presents four alternatives for implementing real-time video processing systems.
In Section 1.3 we will identify sources for the data requirement in video processing
and the motivation behind this work. We present the contribution of this thesis in
Section 1.4. Finally, in Section 1.5 we will present the outline of this thesis.

1.1 REAL-TIME VIDEO PROCESSING SYSTEM

Images represent an important part of information communication in
everyday life. They are essential parts of the interaction between people, human-
computer interaction and computer computation. Images are useful in reasoning,
education, communication, navigation and analysis. Image processing can be
described as a task which converts an input image into a modified output image or
a task that extract information from the features present in an image. Image
processing is used for two somewhat different purposes namely:

1. improving the visual appearance of images to the human viewer
2. preparing images for the measurement of the features and the

structures present

Because these two purposes are different, the operations involved in them

might also be different, but they do share many common operations. In general the

2

purpose of image processing is not to reduce data content (which might often be
case when images are transformed from colour images to gray-scale images or
from gray-scale images to binary) but to preserve and magnify the quality of the
image. For visual enhancement, operations that facilitate human comprehension
and that make images subjectively appealing are carried out. Examples of these
operations include contrast adjustment, image smoothening and colourisation. The
operations are useful in video entertainment, image printing, transmission and
reproduction. Figure 1 shows different operations that can be applied to an
original image (A) to make it visually appealing and comprehensible.

In image measurement, operations that cause the image features to be well
defined and more pronounced through enhanced edges or uniform brightness for
objective analysis and classification are carried-out. Examples of these operations
include image segmentation, noise elimination and morphological erosion and
dilation. These operations find applications in robot vision and machine vision.
Figure 2 shows operations that can be applied to an input image to make the
counting of the features in the image easier and autonomous by a computer.

(A) (B) (C) (D)

Figure 1. Improving visual appearance

(A) (B) (C) (D)

Figure 2. Preparing for feature measurement

The effectiveness of image processing operations affect the complexity of the
subsequent stages of image usage such as image compression and de-compression,
image storage and retrieval and, image transmission. Thus image processing
operations will continue to play a major role in the hand-held, battery-power
mobile devices for video conferencing, video telephony and robot vision. This is
because an excellently processed, feature enhanced and error free image will

3

greatly simplify a coding algorithm and provide better use of storage spaces and
transmission bandwidth.

Video processing is essentially image processing in which the time domain
is considered. This means that it might be necessary to register and process
temporal changes in the image content. Figure 3A shows a typical set-up of a video
processing system. The set-up includes an image acquisition device (the camera),
the image processing unit (the processor) and an information consumption unit
(the display). Of course, it is possible to have other components such as light
sources, storage devices, human observers and communication devices based on
applications. We will however focus on the essential aspects of image processing.
Figure 3B shows the relationship between a single picture element (pixel) and an
image whereas Figure 3C depicts the relationship between images and video. At
the lowest level of operation, video processing involves the processing of each
pixel in an image and image after image through-out the video stream.

(A)

Acquisition Processing Consumption

(B)

 Valid Image Row

Image Pixel Clock

Image Pixel Data

Valid Image Data Image Blanking Image Blanking

...

...

...

...

P6 P0 P1 P2 P3 P4 P5 Pn-5 Pn-4 Pn-3 Pn-2 Pn-1

(C)

Image x Image x+1 Image x +2
Figure 3. Video processing system

Real-Time Video Processing System (RTVPS) is the term used to describe a

class of video processing system in which the video signal is processed at the rate
of video capture such that the rate of generating output pixels matches the rate of
receiving input pixels. Hence there is a throughput of one pixel per clock cycle.
Thus after an initial delay, the system enters a state during which a pixel is being

4

received at the input side and, at the same time, a pixel is being produced at the
output side. This does not, however, imply that this output pixel is the result of the
newly received input pixel since there would be delays due to data buffering and
pipelines in the computation.

1.2 IMPLEMENTATION ALTERNATIVES

In the following sub-sections, we will present four major alternatives for
implementing RTVPS namely 1) general purpose processors, 2) application specific
instruction-set processors, 3) field programmable gate arrays and 4) application
specific integrated circuits. In general, implementation platforms can be classified
as general purpose and applications specific from functionality point of view or
they can be classified as reconfigurable or non-reconfigurable from
programmability point of view.

1.2.1 Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASICs) are fabricated and tailor-
made for special or dedicated applications. This means that their precise functions
and performance are considered and fully analyzed before fabrication. The
consequence is efficiency, reliability and high performance. However, changes in
system requirements which might be due to an oversight or a changing system
demands results in a complete replacement of the device. In addition, unless
market volume demand could really justify the manufacturing cost, the
development costs for ASICs are a major set back. The trade-offs between
performance and flexibility, which has an influence on the choice of computing
devices, are presented in [1].

1.2.2 Software Based Processors

General Purpose Processors (GPPs) and Application Specific Instruction-set
Processors (ASIPs) are software based and highly reconfigurable. On these devices
application programs are written in high level languages and executed within a
processor. Due to the sequential nature of these programs, large overheads are
involved in the instruction set generation, decoding and execution. This limits the
performance and throughput of these devices thus leading to the development of
many instruction set architectures, which includes, VLIW, SIMD and MMX [2]. The
main objective is for performance improvements through parallelism, pipelining,
caching, and concurrency. The literature has much information with regards to the
specifics of these architectures and since it is not the focus of the paper detailed
discussions will not be provided.

1.2.3 Programmable Hardware Processors

In the hardware domain programmability can be achieved through the
programmable gate-array or logic-devices which are commonly used. Depending

5

on the capacity and architecture of the constituent basic elements, reconfigurable
hardware can be categorized as programmable logic devices (PLD), complex PLD
(CPLD) and Field Programmable Gate Array (FPGA). An overview of technology,
architecture and programming tools for programmable hardware devices is
presented in [5]. FPGA programmability enables hardware designers to greatly
reduce the overall product time-to-market as shown in Figure 4.

Relative Time

FPGA

ASIC

0 100

Significatnt FPGA Time Savings

Test Vector Generation

Production Ramp-up Simulation

Sales

Sales

Figure 4. Time-to-Market - FPGAs vs. ASICs [14]

Other advantages of a programmable hardware solution include reduced

development costs (minor non-recurring engineering costs), the possibility of rapid
prototyping and the ability to support field upgrades and remote downloads that
will extend the longevity of the product in the market (time-in-market) [14]. These
are depicted in Figure 5. Hence according to Figure 5, the sooner that hardware
designers market their products, the greater their income. This is one of the major
advantages of FPGAs and explains why many applications, which have
historically been implemented in software and/or ASIC, are now being developed
as FPGAs [6], [7].

Start of Market Window End of Market Window

Potential
Market

Realized Market due to
time-to-market delays

Figure 5. Product time-in-market [14]

The implementation of computationally intensive and data transfer

dominated applications, which are common in RTVPS, has previously been

6

dominated by Digital Signal Processors (DSP) and dedicated application specific
integrated circuits (ASIC). However, developments in FPGA have made it possible
to implement RTVPS applications using FPGA [6], [7]. Figure 6 shows the
implementation spectrum across computing devices. It should be noted that the
different platforms in Figure 6 are not isolated as depicted in the figure but are
over-lapping clouds. Figure 7 summaries the characteristics of the four platforms
discussed above. From this comparison it is obvious that FPGA provides a
reasonable performance alternative for image/video processing in real-time with
the possibilities of re-programmability with evolving application specifications.
For this reason FPGA has been chosen as the implementation platform for RTVPS.
The following sections will focus on a detailed discussion on the FPGA technology.

General-Purpose
Processor

Programmable
DSP

Reconfigurable
Hardware

Specialization

Programmability

ASIC

Figure 6. Signal processing implementation spectrum [15].

F
l
e
x
i
b
i
l
i
t
y

Technology Performance
/ cost

Time to
market

Time to
change code
functionality

Power
Consumption

ASIC Very High Very Long Impossible Low

FPGA Medium –
High

Long Long Low – Medium

ASIP Medium Medium Medium Medium – High

GPP Low –
Medium

Very Short Very Short High

S
p
e
e
d

P
e
r
f
o
r
m
a
n
c
e
Figure 7. Comparison of various implementation platforms [8]

1.3 DATA REQUIREMENTS IN RTVPS

In this thesis introduction, we will not deal with discussions related to image
acquisition such as lighting and optical set-up, image sampling and quantization.
We will also not dwell on discussions regarding post processing and image

7

consumption such as monitor display, information reporting or decision making
from the results of image processing. The stages as represented in Figure 3A are
important to the core processing but are not included in the scope of this thesis.
Our concern is with the operations involved in image processing and the need for
data storage in image processing. We note that image processing can be carried out
in two domains namely

1. spatial domain image processing
2. frequency domain image processing

Spatial domain depends on raw image pixel data and direct manipulation of

pixel whereas frequency domain processing is based on the Fourier or cosine
transform of the image and the manipulation of the frequency components of the
image data.

In spatial domain, image processing can be pixel-wise. This is referred to as
point processing. It describes the operations that depend solely on the pixel value
without any reference to the values of the surrounding pixels. This type of
operation may require pixels from two image sources or an image source and a
transformation function. Examples of this type of processing include image
negation, image addition and subtraction, thresholding and histogram
equalisation.

In addition, spatial domain image processing can be in the form of
neighbourhood processing. It describes operations in which the values of a group
of pixels in an input image are required to compute only one pixel in the output
image. This type of processing may require a processing mask or kernel which
defines the operation. Examples of this type of processing include statistical
operations such as the mean, median, maximum and minimum, convolutions
operations such as a Laplacian filter, edge detection and a morphological
operation. Figure 8 shows an example of neighbourhood based image processing
and the data registers required to compute an output pixel. It also shows the need
for buffer in order to have the appropriate set of pixel data.

 NC -2 NC -2
1 1 1 1 1 1

p1-1 p10 p11

p0-1 p01

p-1-1

p00

p-10 p-11

p11 p10 p1-1 p01 p00 p0-1 p-11 p-10 p-1-1

A)

B)

Pixel Stream
Input dpixel

C

R

line buffer line buffer

Figure 8. Neighbourhood oriented image processing

8

Furthermore, image processing can be temporal processing and is essentially

neighbourhood processing in which the image data is extracted from more than
one image frame. As with neighbourhood processing the computation produces
only pixel data for all the input pixel data. An example of this type of image
processing includes cubic median filter. Figure 9 shows a spatial temporal
neighbourhood of 27 pixels from 3 frames. For this image processing operation, we
will require 27 registers, 6 row buffers and 2 frame buffers.

Register Line buffers
Frame buffer

C

R

F

RW

CW
r

x -2

r

x -1
x

FW

Figure 9. Spatial temporal oriented image processing

In general, it is common that in a typical RTVPS the majority of the

operations are neighbourhood oriented and thus has the requirement for the
buffers for the necessary neighbourhood pixel data (Figure 8 and Figure 9). A
neighbourhood of pixels constitutes a set of pixel data from which an RTVPS
operator in the processing algorithm calculates an output pixel corresponding to
the neighbourhood's central pixel. The neighbourhood is built around each pixel in
the input image in order to generate an output image. The consequence is that a
large number of data buffers (line- and frame-buffers) are required which is, in
turn, dependent on the size of the video frame and the operation window in order
to ensure that all the required pixel data for each operation are available. Line

9

buffers are used to store rows of pixels in the spatial neighbourhood. A spatial
neighbourhood normally has dimensions of M-by-N, where M and N are odd
values such that the central pixel is symmetrical about any axis. N and M denote
the height and width of the spatial neighbourhood and usually determines the
number of line buffers and delay elements required by the spatial neighbourhood
operator. Frame buffers are used to store images in the temporal neighbourhood. A
temporal neighbourhood normally has dimensions of L-by-M-by-N where M and
N are defined as above and L, also an odd value, denotes the temporal depth of the
neighbourhood. L determines the number of frame buffers in the temporal
neighbourhood. Line buffers are usually allocated to on-chip memories while
external memories are required for frame buffers. The size of each element in these
buffers depends on the dynamic range of the video signal. Hence a 5-by-5 spatial
neighbourhood requires four line buffers while two line buffers are required by a
3-by-3 neighbourhood. In the temporal domain, a neighbourhood of seven frames
will require six frame buffers. An efficient data management tool is required since
memory access generally constitutes major bottlenecks.

1.4 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS

If a simple RTVPS application is considered involving only a spatial domain,
for example a Sobel Operator for detecting edges in a video frame, then a
neighbourhood (3-by-3) would be built around each pixel in the frame. Building
such a neighbourhood requires the data of the necessary pixels to be stored. Figure
8 depicts such a neighbourhood where, pij represents the pixel data at the i-th
column and j-th row in the neighbourhood, dpixel is the pixel data entering the
neighbourhood as the processing window traverses all the pixels in the image and
d is a clock delay. Line buffers are required to store this pixel data in order to
create the neighbourhood. In Figure 8b, these buffers are represented as a line
buffer. A line buffer can be thought of as a First-In-First-Out shift register (FIFO) -
with pre-determined constant length - that can be implemented as a circular buffer
allocated to a set of memory locations. The example in Figure 10 depicts a set of
eight memory locations, n-8 to n-1, which are indexed by a pointer in a modulus-8
order. For every pointer position, pixel data Pn-8 is firstly read and then pixel data
Pn is written. The Xilinx block-RAM has the attractiveness of allowing this first-
read-then-write operation to execute in one single clock cycle.

Figure 11 depicts a Xilinx block-RAM for one of the two ports at a read-first-
then-write operation. This memory has two synchronous independent access ports.
Both ports have the set of signals shown in Figure 11. Data_in and Data_out are
input- and output data busses. These busses are latched on the rising or falling
clock edge, depending on the configuration. WE enables a write operation to the
memory location, pointed to by Address, after that a read operation is performed.
This feature allows a memory location to be both read and written at the same
clock cycle using one single port. In addition, the dual independent ports enable

10

two FIFOs to be allocated to one block-RAM without serializing the memory
accesses. This explains why we do not consider scheduling effects in our memory
allocation optimization model.

Pn-8

Current pointer
Position

Incremented at
every clock cycle.

Firstly,
read pixel Pn-8

Pn-7

Pn-6

Pn-5

Pn-4Pn-3

Pn-2

Pn-1

After read,
write pixel Pn

Figure 10 Circular buffers as line buffers.

RAM Location

Data_in

WE

Clock

Address

Data_out

Figure 11 Block-RAM data flow at read first operation.

The management of the line-buffers (memory objects) identified in Figure 8

and Figure 9 is the focus of this work. The main goal is to develop an automatic
memory synthesis tool that makes the most efficient use of the addressable
memory locations available in all of the instantiated embedded memory before
instantiating another.

1.5 PROBLEM DESCRIPTION

The method of allocating the line buffers identified in Figure 8 and Figure 9
to the embedded memory greatly affects the use of the memory depending on the
size of the on-chip memory. In addition, the length of the line buffer and the bit-
width of each of the elements in the line buffer also affects the efficiency of the
allocation. Increasing the neighbourhood dimension, in terms of the number of
frames, L, the width of the video frame, M and number of line buffers, N as well as
the number of operators in the RTVPS application leads to increasing complexities

11

in data management. In general, managing the data required in such a
neighbourhood leads to four major problems namely:

1. Data allocation problems due to pixel-width and video-resolution (when
the bit-width of each element in a line buffer and its length are not directly
supported for optimised allocation)

2. Data management problems with the increasing number of line buffers, N
3. Data management problems caused by with the increasing number of

RTVPS operators and number of frames, L
4. Power consumption problem due to complex data routing

These problems will be discussed at a later stage in the thesis (Section 4.5).

1.6 PERFORMANCE COMPARISON

In Section 1.2, we discussed possible implementation alternatives for real-
time image processing. In Section 1.3 we identified the memory requirements
typical in RTVPS and provided the motivation behind the requirement for the
efficient allocation of the memories in Section 1.4. Section 1.5 presented problems
that may arise during the allocation of these memories. By using the problem
presented in Section 1.5 as the performance index we will in this section compare
two of these alternatives from Section 1.2 namely DSP and FPGA. We chose these
two because they are both reconfigurable and are targeted as being effective for the
specific application area.

The objective of these experiments is to find the relationship between the
power consumption, performance and resource usage on FPGA and DSP and the
size of the neighbourhood window required in real-time video processing systems.
The experiments were conducted under three scenarios, namely, 1-bit morphology
erosion, 8-bit average filter and 8-bit convolution filter. These filters are typical
examples of neighbourhood oriented operation. For the convolution filters, we
assumed 8-bit mask values. For these scenarios three neighbourhood sizes (3x3,
5x5 and 7x7) were used. For simplicity, we chose neighbourhoods with square
dimensions. For these experiments, input video streams with 640-by-480 frame
resolution were used.

1.6.1 Experimental Set-Up

The experimental set-up for the FPGA is as follows, we implemented the
architecture in Figure 26 and the video processing filters for the different
neighbourhood sizes. We assumed the input video stream is limited by the FPGA
performance rather than the camera. The implementation was synthesised using
the Xilinx Integrated Software Environment software version 8.1i in order to obtain
the post-place and route resource usage and performance. The Xilinx XPower
software was used to calculate the power consumption per clock cycle.

12

The experimental set-up for DSP is as follows, we assume the TMS320C6418
DSP runs at 600MHz and that the input data stream is at 10 MPixels/s thus lower
reducing the CPU utilization and power consumption. Since our implementation
avoids boundary conditions by increasing the image size, we assume perfect cache
hits, local memory allocations for all the line-buffers, and one data read for the
newest neighbourhood pixel and one memory write for the newly computed data
corresponding to the central pixel in the output image. Using Texas Instrument
Code Composer Studio software version 2.10, we were able to profile and achieve
performances closer to the benchmarks values [96].

1.6.2 Results

 Figure 12 - Figure 15 show the results obtained. It should be noted for the
performance figures, that as long as there are available resources on the FPGA, the
performance for the system will be the same regardless of the number of active
operators. For the DSP the performance (samples per second) will decrease when
additional functionality is added to the system. Thus, the performance numbers
are somewhat biased towards the DSP. The energy figures are also fairer in a
comparison between the two architectures. The results show that for this class of
operations, with optimized memory allocation and the accessing method presented
in this thesis, and full parallel and pipeline operations, FPGA achieves a better
performances in between 2.0 to 8.7 in terms of throughput and an average reduced
energy consumption of 80 times per sample. It should be noted for the
performance figures, that as long as there are resources available on the FPGA, the
performance for the system will be the same regardless of the number of active
operators. For the DSP the performance (samples per second) will decrease when
additional functionality is added to the system. Thus, this means that the
performance numbers are somewhat biased towards the DSP. The energy figures
are fairer in a comparison between the two architectures.

R e so u r c e U sa g e
(# o f S l i c e s)

0

500

1000

1500

2000

2500

3000

8bi t A r i t h. Fi l t er 1bi t M or phol ogy 8bi t FI R

3x3

5x5

7x7

Figure 12 Resource usage on FPGA

13

R e so u r c e U sa g e
(C o d e S i z e)

34400

34500

34600

34700

34800

34900

35000

35100

35200

8bi t A r i t h. Fi l t er 1bi t M or phol ogy 8bi t FI R

3x3

5x5

7x7

Figure 13 Resource usage on DSP

T hr o ug hp ut (M Pix/ s)

0

20

40

60

80

100

120

140

FPGA DSP FPGA DSP FPGA DSP

8bi t Ar i th. Fi l ter 1bi t Mor phology 8bi t FIR

3x3

5x5

7x7

Figure 14 Performance

Energy (µJ)

0.10

1.00

10.00

100.00

1000.00

3x3 5x5 7x7

8bit Arith. FPGA
8bit Arith. DSP
1bit Morph. FPGA
1bit Morph. DSP
8bit FIR FPGA
8bit FIR DSP

Figure 15. Power consumption

1.6.3 Conclusion

This experiment shows that implementing applications on FPGA can take
advantage of the application’s specific memory requirements in order to develop

14

optimised memory architecture which when combined with the possibilities of
optimised memory allocation and accessing and full parallel and pipeline
operations, will make FPGA achieve a better performance by about 2.0 to 8.7 in
terms of throughput and an average of 80 times lower energy consumption per
sample over DSP.

1.7 MAIN CONTRIBUTIONS

The main contribution in this thesis is to provide solutions to the problems
identified in Section 1.5. The following solutions are offered to the problems:

1. Memory architecture - organizing the data required by the RTVPS

operator.
2. Memory allocations and accessing
3. Interfaces to data required by operators in a temporal neighbourhood
4. Low power optimization
5. High-level interface for describing the required memories and

generation hardware implementation.

These solutions will be discussed at a later stage together with the results

obtained by their use. Tests on the performance of the solutions and comparisons
with other works are also discussed.

1.8 THESIS OUTLINE

The next section presents the developments and trends within FPGA with
the focus on embedded memory and DSP core. Earlier research works relating to
on-chip memory allocation, memory addressing, power management and
constraint generation are presented in Section 3. Section 4 presents the
contribution of this research and the connections between this research and other
high-level design tool for real-time video processing systems are also presented in
addition to the experimental results and performance analysis under increasing
RTVPS complexity and FPGA technology. Section 5 summarises the work covered
by all the papers included in this thesis. The papers, which represent original
contributions to this research work, are presented in the appendices. Section 6
summarises and concludes the contribution of this thesis.

15

2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)

FPGAs have been employed in implementing high-performance
computations such as fuzzy logic controller, [37], complex Monte Carlos and
percolation problem simulations [38]. In [6], an FPGA was used for face tracking in
streaming video using a Radial Basis Function (RBF) neural network for real-time
verification. The literature is exhaustive with regards to the use of FPGAs for
network monitoring, audio/video signal processing and safety critical
applications. These are the application areas previously dominated by DSP. The
attractions for implementing these applications on FPGAs can be traced to those
features that distinguish them from other computing platforms. These features are
listed as follows [39]

• On-chip RAM blocks and distributed memories
• Embedded processors
• Dedicated computational units (multipliers and DSP block)
• Programmable logic cells
• Programmable interconnect
• Programmable Input/Output cells

Although specific implementation details vary among the vendors, the focus

here is on the low-cost Xilinx Spartan 3 [48] and additionally, the features common
to the FPGA vendors are presented in detail. Figure 16 shows the architectural
overview of Xilinx Spartan 3. In the figure, DCM, IOB and CLB represent Digital
Clock Manager, Input/Output Blocks and Configurable Logic Blocks respectively.
The remaining part of this section will discuss the list above.

2.1.1 Programmable Logic Cells

The programmable logic cell is the basic building block for implementing
combinatorial and sequential logic. Logic cells are mostly categorized as either
fine-grain or coarse-grain architectures, depending on their number of gates. Since
the logic cell is the smallest unit available, it can be organized programmatically
into complex units needed to perform functional requirement of the device. In an

16

SRAM-based FPGA, a logic cell essentially consists of a lookup table (LUT) and a
register to store the LUT value [49]. For example, LUTs provide the main resource
for implementing logic functions. LUTs can also be configured as a Distributed
RAM or as a 16-bit shift register. The storage elements can be programmed as
either a D-type flip-flop or a level-sensitive latch in order to provide a means of
synchronizing data to a clock signal. Wide-function multiplexers effectively
combine LUTs in order to permit more complex logic operations. The carry chain,
together with various dedicated arithmetic logic gates, supports rapid and efficient
implementations of mathematical operations.

For Xilinx Spartan 3 FPGA, the logic cell is coarse-grain based and is referred
to as the configurable logic block (CLB). Each CLB contains both combinatorial and
sequential logics [50]. The function of a CLB is stored in a RAM-based look-up
table (LUT) within the CLB. The programming on the LUT determines the use of a
CLB for logical and data storage functions. Figure 17 depicts the implementation of
CLBs for Xilinx Spartan 3. Each CLB is organized into four interconnected slices.
Each slice contains two logic function generators (LUTs), two storage elements,
wide function multiplexers, carry logic and arithmetic gates in addition to other
elements.

Figure 16. Overview of Xilinx Spartan 3 [48]

Figure 17. Xilinx Spartan 3 CLB [48]

17

2.1.2 Programmable Interconnects

Interconnects provide the mechanism for routing signals between logic cells,
memory blocks, DSP blocks and I/O pins inside the FPGA. Interconnects are
usually optimized for efficient signal transport based on the signal frequency and
the distance between the signal source and the sink to ensure predictability, signal
integrity and performance repeatability. Interconnects are called MultiTrack
Interconnect (Direct link, Local, C4, C16, R4 and R24) in Altera Stratix II,
Programmable Interconnect (Long, Hex, Double and Direct lines) in Xilinx Spartan
3, Routing Resources (ultra-fast local resources, efficient long-line resources, high-
speed very-long-line resources and high performance VersaNet networks) in Actel
ProASIC3 [53] and Programmable Logic Routing (short wires, dual wires, quad
wires, express wires, distributed networks and default wires) in QuickLogic
Eclipse II. Figure 18 shows the Xilinx Spartan 3 FPGA interconnects while Table 1
summarizes their characteristics.

Figure 18. FPGA Interconnects

18

Table 1. Summary of FPGA inter-connects

Device Interconnect Range Performance

Xilinx [48] Long Line 1 out of every 6 CLBs High frequency signals
Minimal loading effect

 Hex Line 1 out of every 3 CLBs Near high frequency
signals
High connectivity

 Double Line 1 out of every 2 CLBs High flexibility

 Direct Lines Adjacent CLBs Connects to other
interconnects

Altera [51] Local Interconnect ALM-to-ALM in
same LAB

Fast

 Direct Link Connects adjacent
block

Fast

 Column Interconnects Column-to-Column
variable length

Optimized for distance
variable speed

 Row Interconnects Row-to-row variable
length

Optimized for distance
variable speed

Actel [53] Local Line Versatile-to-
VersaTile

Ultra fast

 Long Line Variable lengths - 1,
2 or 4 VersaTile

Efficient for long
distances

 Very-Long Line Horizontally 12
VersaTile
Vertically - 16
VersaTile

High speed

 VersaNet Global Network High performance
High fan-out
Low skew

QuickLogic [52] Short wires 1 logic cell vertically

 Dual wires 2 logic cell
horizontally

 Quad wires 4 logic cell Medium fan-out

 Express wires Device length High fan-out

 Distributed Networks

 Default wires

19

2.1.3 On-chip RAM Block
Access to data during signal processing greatly affects the performance of a

system. Data fetches from the external memory are subject to latency of the
communicating devices and signal integrity due to cross-talk from neighbouring
signals. The availability of on-chip RAM memory reduces this latency. The random
access memory (RAM) offers fast direct access to re-writeable memory locations
making it appropriate for use with streaming data where buffering or caching of
data is necessary. On-chip RAMs can be implemented as single-port, dual-port and
multi-port [49].

Typical on-chip dual- and single-port RAMs have the necessary control
signals and, data and address busses for independent memory access (reading and
writing) at a port [48]. In addition, a RAM block can be asynchronous or
synchronous depending on whether the read and write cycles can be triggered by
control and/or address transitions asynchronous to a clock or synchronous to the
system clock [50]. Figure 19 shows the data path of a full implementation of true
dual-port on the Xilinx Spartan 3 FPGA. In the figure, data path 1 implements
write to and read from Port A, data path 2 implements write to and read from Port
B, data path 3 implements data transfer from Port A to Port B, and data path 4
implements data transfer from Port B to Port A. A single port allocation can be
achieved through data path 1 or 2 if implemented exclusively. Data paths 3 or 4 are
used to implement dual port allocation. A true dual port allocation is achieved
when data paths 1 and 2 are implemented together on a single Block RAM. The
problem of address contention in dual- and multi-port can be solved by specifying
the order of execution for example, read first or write first.

Spartan-3
Dual-Port

Block RAM Po
rt

A

Write

Read

Write

Read

Write

Read

Read

Write

Po
rt

B

3

1

4

2

Figure 19. RAM data path [50]

2.1.4 Embedded cores

Different FPGA vendors provide an embedded core for implementing signal
processing tasks that are not easily achievable in hardware or which have a
reduced real-time performance. In the Stratix Architecture these are called Digital
Signal Processing (DSP) Blocks [51], Embedded Multipliers in Spartan 3 [48] and
Embedded Computational Units in Eclipse II [52]. Thus, DSP functions such as FIR
filters, IIR filters, fast Fourier transforms, direct cosine transforms, correlators and

20

functions such as multiply-add and multiply-accumulate can be readily
implemented using these embedded cores. Multipliers are implemented as 9-by-9,
18-by-18 or 36-by-36 bits multipliers. However, they can be cascaded for higher
multiplicands.

In addition to multipliers, FPGA sometimes come with hard-core embedded
processors for the implementation of control intense algorithms and divide
functions that are better implemented via high level languages such as C/C++. It is
also possible for a designer to implement a micro-controller and a processor core
when the core is not embedded in the FPGA. Using the Xilinx Embedded
Development Kit, a 32-bit RISC architecture-based soft processor that runs at 150
MHz to deliver up to 120 DMIPs [54] can be implemented on a Xilinx Spartan 3
FPGA. Figure 20 shows the functional parts of the Spartan 3 MicroBlaze embedded
processor [54].

IP cores optimized for different FPGAs are provided by the different FPGA
vendors. In addition, glue logics for IP cores developed by third parties are
provided. Hence FPGAs, which are primarily hardware platforms, provide a
medium for implementing software algorithms which in turn, enable better
implementation of complex functions. When combined with on-chip RAM, soft
cores reduce both latency, by means of their close proximity to the required data,
and system costs through the elimination of external microcontrollers.
Development suites for porting applications on this embedded processor or using
the multipliers are usually provided by the FPGA vendors.

Clock

Reset

Interrupt

JTAG Ports

Micorblaze
CPU
Core

DOPB

DLMB ILMB

Dual Ported
BlockRAM

(BRAM)

A B

OPB

UART 4X
GPIO

JTAG_UART

Figure 20. Spartan 3 MicroBlaze embedded processor [54].

21

3 RELATED WORKS

In this section, we will discuss various options for implementing RTVPS,
programming and implementation trajectory relevant to this research and related
works.

With the current industry requirement for high-definition television (HDTV)
resolution, the demand for HDTV cameras and video processor engines to process
1280x720 pixels per frame at 60 frames per seconds (merely 5,5296,000 pixels per
seconds) is obvious and can even be a real-time processing demand. Because of the
high data rate and large memory requirements in RTVPS it is required that the
platform for implementing RTVPS has sufficient performance capability and that
this matches the RTVPS application implemented on it. In addition, RTVPS are
computationally intensive and usually consists of a sequence of operations that is
performed repetitively on every pixel in the video stream. The sequence is
determined at design time and can be captured as a non-cyclic signal or data flow
graph. These complexities make the task of choosing an implementation platform
for an RTVPS application rather difficult. On the one hand, high performance
requirement suggests a hardware oriented implementation while on the other
hand the ability to change and redesign an application based on evolving
specifications places a constraint of device reuse through programmability on the
implementation platform.

3.1 CHALLENGES IN SYSTEM DEVELOPMENT ON FPGA

Although FPGAs offer many opportunities, there are a number of challenges
to system development particularly in the field of video processing. Some of these
challenges include the abstraction level, design verification, resource usage and
power consumption which will be discussed in the following sections:

3.1.1 Abstraction level

A major challenge to implementing applications on FPGAs is the
programming model, which is at a very low level of logic abstraction through its
hardware description languages and thus requires a high level of expertise and
time. Often designers familiar with software programming languages conceive

22

algorithm executions in sequential order and thus attempt to program hardware in
a similar manner. This leads to non-optimal implementations. There are many
design tools whose aim is to translate software codes into hardware [21], [20] [98]-
[99]. In this thesis we raise the abstraction level for implementing memory sub-
component for an RTVPS by means of a memory allocation tool.

3.1.2 Design verification

As FPGA capabilities and design complexities increase, verification and
simulation also become more complex. In order to satisfy the requirements of
complex designs both Verilog and VHDL are often used to implement design sub-
components, often through IP cores. Co-simulation and synthesis of the sub-
components are both difficult and error prone. In addition access to simulation
stimuli and responses are often complex and are provided by other tools written in
other languages. This leads to coping with procedural language interfaces relating
to two languages within one design. Design considerations to overcome this
problem are presented in [100] while [101] presented formal semantics for Verilog-
VHDL co-simulation.

3.1.3 Resource usage

The essential resources on FPGAs are arithmetic and logic resources,
embedded memory and logic cells. They are available in an optimised form but in
limited amounts. It is necessary to have a balanced usage of these resources in an
application in order to avoid a shortage of one type of resource while having an
excess of others. In this thesis we have achieved an efficient use of embedded
memories. In the future we would like to find an efficient use of the arithmetic
resources and logic cells through resource reuse within each operator in an RTVPS.
This operator-based resource reuse will minimise the routing network and thus
increase its speed performance at a reduced active power to the routing network.

3.1.4 Energy and power consumption

In FPGA two major sources of energy consumption include active power
and leakage current. Energy consumption based on leakage current depends on
the process technology [35], [36] and can only be addressed by the FPGA vendors.
A study of the leakage current on Xilinx Spartan 2E, 3 and Virtex 2 shows an
increasing trend. Energy consumption based on active power depends on activities
at the I/O blocks, switching activities on the routing network and logic cells, and
memory accesses. By using an embedded memory to implement line buffers, we
reduce the data transfer to external memories [102] and thus reduce I/O block
switching activities. Power consumption can be further reduced through efficient
embedded memory accesses, compact routing network and efficient logic design.

23

3.2 DESIGN METHODS AND LANGUAGES

Implementing electronic systems is greatly influenced by many factors
relating to the system specifications. These factors include system complexity,
design time and performance. As a result it is required that design methods and
tools must be able to capture these system specifications at a high-level and in a
seamless manner and, in addition synthesize and verify that all the constraints
have been satisfied. It is common to capture specifications graphically by using
visual modelling tools like UML (Unified Modelling Language). Because UML was
designed for modelling software systems it is not the most appropriate tool for
modelling electronic systems. There are however, research effort aimed at
generation synthesisable VHDL from UML models [103] - [105]. Typically,
modelling electronic systems for signal processing and for which extensive design
simulation is required, is carried out by using modelling environments such as,
SystemC, Simulink and LabView.

 Traditionally, hardware devices are implemented by low-level coding in
hardware description language (HDL). This approach is very remote from the high
level specification tool and can be a very tedious task. Attempts at implementing
devices at abstraction levels of closer to specifications, have led to many
propositions for implementing hardware from high level languages (HLL). These
include C/C++ [18]-[23], Java [24]-[27], MATLAB [28], [29]. In addition, since
current and future electronic devices would implement embedded systems with
increasing functions that cannot be effectively modelled in hardware there is a
necessity for software components in the system design. This leads to
hardware/software co-design. Such software components are implemented in
HLL after comprehensive exploration and partitioning into software/hardware
components [30]-[32]. The following subsections report works in HLL for
implementing electronic devices.

3.2.1 C/C++ Models

Due to familiarity with C and its variants, many works have focused on
synthesizing hardware from C. In addition, since C modules can be compiled into
object codes for several architectures, compiling these object codes into hardware is
seen as an efficient way for producing hardware synthesis from system level
designs. De Micheli [21] summarized the major research contribution in the use of
C/C++ for hardware modelling and synthesis while Edwards [22] provided in
detail, challenges to hardware synthesis from C-based languages. It was observed
in [22] that the approach generates inefficient hardware due to difficulties in
specifying or inferring concurrency, time, type and communication in C and its
variants. Ghosh et al. [23] suggested the extension of a subset of C/C++ and
proposed a C/C++-based design environment, Scenic, for hardware modelling and
synthesis. The subset will exclude non synthesizable constructs while the extension
will incorporate a construct that has the ability to handle concurrency, time,
communication and types. To these ends, modelling languages such as SystemC

24

[19] and HardwareC [32] have been optimized to efficiently overcome some of
these shortcomings (for example, both handling concurrency through process-level
parallelism) and are often employed to capture the system behaviour in the form of
executable specifications. The executable specifications provide the possibility for
design exploration, making choices from different algorithms and resources,
system functionality partitioning (choices between software and hardware), and
memory requirements and state transitions. These specifications can be converted
into RTL design either manually or automatically using CAD tools like the
Synopsis C2HDL [98] (creates VHDL and Verilog modules from multi-module
level hierarchy in C and also provides HDL simulations).

3.2.2 Java Model

As stated previously, one of the problems associated with modelling
hardware with HLL is concurrency. This is because HLLs are sequential in nature
whereas hardware gates and logic operate in parallel. Java has an advantage over
C/C++ in concurrency through threads (embedded in the language). C++ based
modelling languages like SystemC implements concurrency through an extension.
In [24] and [25] Java was used for the system specifications, partitioning, functional
validation and synthesis. In [24] control- and data-flow dependencies were
employed in order to implement concurrency. In [25] an abstractable synchronous
reactive model was developed and successive, formal refinement methodology
was used achieve determinism and bounded resources usage in the developed
embedded system. The pure object oriented nature of the Java programming
language was explored in [26] for hardware specification and synthesis through
multithreaded JavaBeans. Sea Cucumber [27] is a Java compiler that synthesizes
hardware from Java class files. The input class files must be organized as a set of
inter-communicating, concurrent threads in order to be able to exploit coarse- and
fine-grain parallelism in the generated hardware. Coarse-grain parallelism is
extracted at the communicating thread level while fine-grain parallelism is
extracted within the body of each thread.

3.2.3 MATLAB Model

Unlike C/C++ and Java variable types are not specified in MATLAB and
simulation of non-matrix code can be slow, its growing popularity especially for
computational intensive algorithms has led to the development of a compiler for
generating synthesizable RTL description of MATLAB codes [28], [29]. The
compiler firstly parses the input MATLAB code to represent variables with the
minimum number of bits, then scalarizes the matrix operations into loops before
exploring parallelization through a data-parallel or systolic approach. Where
necessary, IP cores are integrated prior to the code optimization phase. The
resulting VHDL code is passed to a commercial tool for synthesis.

25

3.2.4 Hardware Description Model
The most efficient approach to designing electronic devices is the high-level

synthesis of behaviour description captured at the RTL level using a hardware
description language (HDL) such as Very Large Scale Integrated Circuit (VLSI)
HDL (VHDL) [16] and Verilog [17]. An HDL description can be a structural or
behavioural model of a design [34]. A structural model specifies the hierarchical
build-up of a design from the smaller components available in the design library
and the nets that connect them while a behavioural model is a program specifying
how to construct a component from its input. A component is a complete design
entity with the input and output ports and provides sufficient information to
achieve the outputs from the inputs. Usually a design description contains both
structural and behavioural models. Design descriptions are compiled into the RTL
representation of the design. Netlister is a tool that converts RTL into a netlist that
can be deployed into the FPGA. Figure 21 shows the design flow for the high-level
synthesis of an FPGA. This model involves writing and compiling behavioural
descriptions of the system, simulating and verifying the requirements of the
system both at functional- and gate-level, performing low level power-, area-, and
performance optimizations, pad insertion, and creating and deploying the netlist of
the system for the target FPGA.

Behavioral
description

Internal
representation

Si
m

ul
at

io
n

en
vi

ro
m

en
t

Design
constraints

High level
synthesis

RTL
netlist

RTL
library

Compiler

Netlister

Figure 21. Design Flow for implementing custom applications on FPGA

3.2.5 Performance comparison

Common problems associated with hardware synthesis from HLL fall within both
the area and speed performances. The performance of the system generated from
these HLLs is greater than those generated manually [22], [24] and [28]. A
consequence of this is the required amount of logic resources (area). In addition,
hardware synthesized directly from HDL tends to be faster than that implemented

26

from HLL (speed). Hence there is the need for code optimization. However, in view
of the design time reduction, efficient design specification, algorithm explorations,
hardware-software partition and verification achievable through HLL and the
abundant FPGA resources, these limitations can be overlooked or justified.

3.3 PREVIOUS WORKS ON ON-CHIP MEMORY SYNTHESIS

In this section, the focus is on memory allocation and addressing, targeting
FPGA on-chip memory. Works relating to memory estimations are not included
since such works have been extensively studied and addressed while developing
IMEM [88], [89]. In addition, allocation of external memories is not included in this
thesis.

3.3.1 Allocation algorithms

There have been many algorithms for the optimal storage of a scalar
variable. These approaches usually involve storing scalar variables with non-
overlapping lifetimes in the same register or by grouping the scalars together to
form an array which would be allocated to a Block RAM. A common feature of
these approaches is the necessity for scheduling and determining a memory access
pattern. These efficient and well researched approaches cannot be used for
allocating large array variables which is the result of the line buffers (identified in
Figure 8) because of the following:

1. it is assumed that the elements in the line buffers have regular

cyclical read-and-write access patterns relating to the video frame
width typical of FIFOs,

2. it is assumed that the size of the line buffers is large which often
leads to allocating one line buffer to many Block RAMs hence
grouping many line buffers into one Block RAM is not a feasible
option

3. the identical access pattern of all the line buffers and the
requirement of a one pixel per clock cycle throughput eliminates
access scheduling

Because of the above concerns only related works which focus on the

allocation of array variable will be presented
Diniz et al. [58] presented a C-compiler that can extract storage requirements

and considers data reuse as registers and allocates Block RAMs together with
datapath- and control structures. The compiler employs data access patterns in a
loop nest to minimize memory access and uses registers to exploit data queues
after loop unrolling. However, exactly how the memory allocation is performed is
not addressed by Diniz et al.

27

The MeSA algorithm [59] is based on the clustering of array variables to
determine the memory configuration that will result in the minimum total memory
area. The number of memory modules, the size of each module, the number of
ports for each module and the cost of grouping a set of input array variables, are
all computed. The number of ports is balanced for serialized memory accesses
within a control and data flow graph. This algorithm cannot however be
considered for implementing RTVPS on FPGA. This is because large array
variables cannot be distributed among a set of memory modules.

A general approach to FPGA memory allocation and assignment was
presented by Gokhale et al. [60]. This approach starts from C code, for which the
presented method allocates both external and internal memories. Automatic
partitioning of a single array among different memories is however not covered by
this work.

Baradaran et al. [61] presented a close algorithm but the focus was on the
analysis and identification of data reuse and the allocation on an FPGA embedded
Block RAM in the presence of a limited number of registers.

The work by Schmit and Thomas [62] performs array grouping (vertically
and horizontally) and dimensional transformation (array widening and array
narrowing). According to the authors, array widening is useful for read-only
arrays and those accessed in loops with an unrolled number of iterations. Array
narrowing slows the effective access time of the array. Vertical array grouping is
similar to the global memory object architecture used in this thesis (details in
Section 3) with the variation that the grouping is on memory objects required by
one operation. Neither horizontal grouping nor the accompanying scheduling are
considered in this work, however dual port mapping of two memory objects is
implemented in order to achieve more efficient memory usage.

Jha and Dutt [63] presented two algorithms for memory mapping. The first,
linear memory mapping, approximates a target memory word-count to the largest
power-of-two that is less than or equal to the source memory word-count. The
second, exhaustive memory mapping, assumes that a target memory module may
have larger bit-width and word counts. These approaches lead to unused memory
space on the target memories particularly in on-chip memories. The work did not
address multiple parallel accesses to a memory module via a different port.

3.3.2 Memory addressing

Memory accesses are a major contributor to the power consumption
especially in data transfer intensive applications such as RTVPS. Activities in the
memory address buffers, address decoding circuitry and off-chip drivers of the
address bus, are reflected in the power dissipations. There have been many works
aimed at lowering the impact of memory access on power consumption. The
majority, however, are tailored towards their memory architecture for efficiency
purposes. The general approach is to use a counter to evaluate the value of the
address bus of on-chip memories. These approaches are reviewed in this section. In

28

addition, latency in memory accesses affects the system performance. Hence
effective optimization can be achieved through efficient memory architecture and
addressing procedure.

In [76] it was noted that most behavioural synthesis tools do not support
FPGA vendor specific external memory interfacing. The authors proposed an
approach which includes target architecture oriented timing requirements for
accessing memory and application specific memory access pattern information.

In [75] a technique exploiting regularity and spatial locality in memory
access pattern in order to achieve low power mapping of arrays in behavioural
specifications to physical memory was presented.

The work presented by Doggett et al. is optimal in the case of large numbers
of memory banks being used, as is typical in volume rendering in medical
applications [64]. The work presented a cubic addressing scheme and used FIFO
buffers to minimize the pipeline stalling effect of cache misses

The address generation scheme by Grant el al. is an efficient option for
accessing data with addresses within the power range of two [65]. The scheme uses
a register and optionally an offset, to specify memory read/write addresses.

The memory exploration algorithm in [66] implements memory allocation
and array-mapping to RAMs through tight links to the scheduling effect and non-
uniform access speeds among the RAM ports to achieve near optimal memory area
and efficient energy requirement. The algorithm is, however, complex and the
execution time may slow down hardware design. Moreover the exploration targets
SRAM and DRAM as opposed to the on-chip FPGA Block RAMs, which are the
focus of this thesis.

The address generation technique in [67] is based on address bit inversion to
yield effective access time to memory at the cost of up to an extra 17.4% of used
memory.

In [68] and [77], various high-level optimizations were explored in order to
reduce the addressing overhead. Many efficient, often heuristics based, memory
optimization algorithms have been developed similar to those in [69], [70],
however, the majority are tailored to be efficient on DSP.

3.3.3 C++ based System Synthesis

C++ modules can be compiled into object codes for several architectures and
compiling these object codes into hardware is seen as an efficient means of
hardware synthesis from system level designs. However because of the nature of
the programming model, there are challenges in specifying concurrency and time.
Modelling languages like SystemC [19] and HardwareC [32] are often employed to
capture the system behaviour in the form of executable specifications.

Current approaches to C/C++ based system synthesis, or any other
synthesis environment, do not make efficient use of the FPGA architecture
especially the memory sub-systems for real-time video processing systems [21],
[22]. This is due to the manner in which memories are currently being instantiated

29

in FPGAs. In this thesis, we present a system synthesis tool for implementing
RTVPS with multiple neighbourhood oriented filters targeting FPGAs.

The tool takes advantage of our already developed memory modelling tool
IMEM, memory allocation, boundary conditions management tool and
behavioural simulation platform. The synthesis process explicitly separates the
modelling and implementation of memory requirements and behaviour of the
filter functions. In this thesis we show that real-time video processing systems can
be synthesized from C/C++ or SystemC codes for FPGA implementation. The
approach supports verification through simulation of both the C/C++ and VHDL
modules of the filter with a real video signal to ensure that the behavioural
specifications of the filter are satisfied.

3.3.4 Constraint Generation

Investigating dynamic power consumption in modern FPGAs can easily be
justified based on the results in [40] which show that in Xilinx Virtex-II FPGA,
optimizing the routing network can affect 60% of the dynamic power. In the case of
the Altera Stratix II FPGA, the routing network accounts for about 40% of the total
dynamic power consumption [41]. Hence a great deal of dynamic power can be
minimized at design time by optimizing or constraining the routing network. In
[42] a low-power FPGA routing switch was proposed. The approach which is
capable of achieving a 28% reduction in dynamic power is best directed to FPGA
vendors for consideration when designing routing switches. The work in [43]
showed that by focusing on optimizing placement and routing, a power reduction
of up to 19.4% can be achieved. This work differs from [43] because it focuses on a
real-time video system and a power reduction in such a data transfer intensive
system. The approach here is to take advantage of the block RAMs sites and to
constraint logic placements to be as close to the block RAMs as possible. The
closest work to this research is [44] in which dynamic power is minimized when
mapping memory specification to on-chip FPGA memory. The work in [44] focuses
on algorithms for logical-to-physical memory mapping. The main contribution, in
this case is the automatic constraint generation for real-time video processing
systems towards lower power consumption.

3.3.5 Response to related works
None of the allocation and addressing methods in Sections 3.3.1 and 3.3.2

were considered as being appropriate for the management of the memory
requirements of RTVPS while using the limited embedded FPGA memories. This is
because these algorithms do not fully utilize the configurable data port widths
supported by the FPGA and the true dual port capabilities of the Block RAMs. In
addition, we consider that the data memory architecture in [90] is considered to be
more efficient for RTVPS data management hence allocation and addressing
methods based on this architecture would be efficient. This is the motivation

30

behind the development and implementation of a new allocation algorithm
designed to maximize the memory usage while minimizing the read/write
accesses. In addition, two approaches to access the allocated memories have been
developed.

The work in this thesis achieves near optimal results in terms of the number
of allocated memories, the amount of unused memories and the access speed by
fully utilizing the combination of FPGA embedded memory capabilities and the
RTVPS regular data pattern. In addition, by using power consumption estimates in
the allocation cost and by applying place and route constraints to the design, we
achieve a more efficient implementation.

31

4 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING SYSTEMS

This section presents the research work of in Papers I to VII. In this thesis the
term Memory Synthesis refers to the implementation of logical memory required for
data storage in the physical memory in a device (FPGA). This process involves
defining memory architecture, memory allocation and accessing, power
optimisation and constraint generation. These terms will be discussed in the
following subsections. Managing the line-buffers (memory objects) identified in
Figure 8 is the focus of this work. The main goal is to develop an automatic
memory synthesis tool that makes efficient use of all the addressable memory
locations available in all the instantiated FPGA on-chip memory before
instantiating another.

 Before presenting the memory synthesis tool developed in this thesis, we
will first present how it can be integrated into design tools that are readily
available to hardware designers. Section 3.2 showed that there are many existing
approaches to implementing designs in hardware. Examples of how to integrate
with three of the implementation methods from Section 3.2 will be discussed. The
approach adopted in this work is to manage the memory requirement aspect of an
RTVPS application while the designer implements the tasks in the RTVPS
application either manually or through the use of high level design tools. In
general, it is expected that the memory management modules and the tasks
requiring the memory can be separately compiled into VHDL. The combination
will then be compiled by a synthesis tool into FPGA. This synthesis approach is
based on the IMEM design tool [88], [89] being developed at the Mid Sweden
Unviersity. IMEM (interface and memory modelling) is based on the philosophy
that the memory requirement of an RTVPS can be modelled and synthesised
independently of the synthesis of the RTVPS filters. Thus this thesis presents the
synthesis of the on-chip memory requirements specified within IMEM.

4.1 IMEM SYNTHESIS WORKFLOW

The IMEM synthesis workflow depicted in Figure 22 demonstrates how our
research on modelling and high-level synthesis fits into an implementation

32

trajectory. This workflow is defined at six different levels along the left-hand axis.
The video-processing algorithm is developed and simulated using IMEM at level 1.
This executable model can then be verified through functional simulation. Data
dependency information, frame sizes, composition of the 3-dimensional
neighbourhoods and colour space models are exported into an interface and
memory model at level 2. Hence it is at this level that the memory requirements of
an RTVPS are separated from the behavioural C++ description of the RTVPS filters
(as shown in Figure 24B). The interface between the memory and filters of each
operator is also defined at this level. The model exported in level 2 is the input to
the memory synthesis process at level 3. This is where memory estimation,
memory hierarchy optimization, memory allocation and address generation are
performed.

At level 3, the SystemC functional description together with the interface
template generated from the memory model are synthesized using a SystemC
based commercial high-level synthesis tool for example the Agility Compiler from
Celoxica. The VHDL modules from both the functional part and the optimized
interface and memory model are integrated at level 4 and synthesized at level 5. In
this manner, the components separated at level 2 are integrated at level 5.
Hardware simulation and compilation are also carried out.

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

1

2

3

4

5

6

Memory Hierarchy
Optimization

IMEM
Conceptual Modelling

IMEM Projector High-level Synthesis
Memory

Allocation
Address

Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Agility)

Functional mapping
of algorithm

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

Memory
Storage

Estimation

Figure 22. System synthesis workflow.

33

4.2 TOOL INTEGRATION

4.2.1 Integration with C-Based tools

Figure 23 depicts the integration of tools and steps required for system
synthesis and verification. The memory requirement, determined by IMEM
(example is shown in Figure 23 [A]) is used in the memory synthesis tool to
generate a memory management module in VHDL and a SystemC header module
(Figure 23 [B]) that contains a reference to the neighbourhood oriented filter
written in C/C++/SystemC (Figure 23 [C]) as a clock sensitive thread. SystemC
compilation refines the filter function iteratively through simulation until a
synthesizable module satisfying the behavioural specifications of the RTVPS is
achieved. This module is then compiled into VHDL module.

SystemC
Simulator

VHDL
Simulator

Impulse

Response

Behavioral
Specification

Semi-automatic
Synthesis

 Automatic Synthesis

C/C++ Filter function [C]

Mem
Req.

[A]

SystemC
Compilation

VHDL
Compilation

Memory
Synthesis

FPGA

SystemC
Module [B]

VHDL
Module

(Fig 26b)

Memory Management
VHDL Module

(Fig 26a)

Netlist

IMEM

[A] Memory Requirements
 Video Width: 640
 Pixel Width: 8
 # of Line buffers: 2

[B] #include "systemc.h"
 SC_MODULE(VIP_Algorithm) {
 public:
 sc_in< bool > input_signals;
 sc_out< sc_uint<8> output;
 void Filter_Core();
 SC_CTOR(VIP_Algorithm) {
 SC_THREAD(Filter_Core);
 sensitive_pos << clk;
 }
 };

[C] Filter_Core() {
 // A normal VIP algorithm
 // function written in
 // C/C++/SystemC.
 int<16> var; // variables
 // Manipulate inputs
 output = input_signals * 2;
 }

Figure 23 System integration and verification.

34

VHDL compilation instantiates the memory management module and the
synthesizable filter function, implements the timing relation of the system data-
flow and verifies the behaviour of the system by simulation. The final VHDL
module is synthesized and downloaded into FPGA. The SystemC simulator is also
used to provide video signal impulse data to the VHDL simulator test-bench and
to write its video response thus verifying that the VHDL module produces the
expected result.

From Figure 23 we can define two approaches to implementing RTVPS
namely, automatic synthesis, in which C-like algorithms can be compiled into HDL
while our tool is used to manage memories, and semi-automatic synthesis in which
the designer writes HDL modules and relies on our tool which is used to manage
memories.

4.2.2 Integration with MATLAB

Using the Xilinx System Generator for DSP [55] and AccelDSP Synthesis
tools [56] it is possible to implement video processing within the MATLAB /
Simulink environment and generate VHDL modules. For this integration Figure 23
can be modified to replace SystemC Compilation with MATLAB Compilation.
These tools also support co-simulation of hardware modules in VHDL with
MATLAB modules. In this manner it is possible to perform hardware-in-the-loop
implementation of an algorithm. In this research we have integrated and tested the
results of our memory management tool with MATLAB using the Xilinx System
Generator for DSP and AccelDSP Synthesis tools for simulation, synthesis and
hardware-in-the-loop co-simulation. These were conducted by implementing
Figure 26a using our tool and implementing Figure 26b using MATLAB.

4.2.3 Integration with Xilinx ISE and ModelSim

Because the results of the memory management tool are VHDL modules,
they can be easily integrated with the rest for simulation and synthesis before the
final download into the FPGA. In this manner, the Xilinx ISE tool is used to
compile and implement the two parts in Figure 26 thus implementing steps 5 and 6
in Figure 22.

4.3 MEMORY SYNTHESIS ARCHITECTURE

Within IMEM a video system is captured using a coarse grained
synchronous dataflow graph, an example of which is shown in Figure 24A. Each
node in the graph represents both the abstract video interface and the memory
model as shown in Figure 24B. The memory model is a description of the
neighbourhood of pixels on which the task operates. Figure 25A shows an example
of a neighbourhood. In addition, each node in Figure 24A contains a description of
the task’s functional behaviour. The task does not include any data dependency or
timing information related to the dataflow. It is simply a description of the

35

relationship between the input and output pixels. The target hardware architecture
is FPGA which has on-chip Block RAMs. These RAMs are required as the cache
memory for streaming data oriented applications such as RTVPS. Resource reuse is
not possible between processes but only within individual tasks (as shown in
Figure 24 and Figure 25).

p1 p2 p3 p4

p5 p6 p7

in out

A)

B)

IMEM model

C++ function

Task

Figure 24. IMEM model of a video processing system.

row

column

b33

Line buffer Line buffer

d d d d d d

a33 a32 a31 a23 a22 a21 a13 a12 a11

Pixel
input

a11 a12 a13

a21 a22 a23

a31 a32 a33

A)

B)

W=3

W

Figure 25 A: Spatio-temporal neighbourhood of pixels. B: Memory architecture for

a single image processing operation.

The architecture in Figure 26 handles the data storage and boundary

conditions for the spatial pixel neighbourhood shown in Figure 25. In Figure 26,
the video/image processing (VIP) algorithm is the neighbourhood oriented filter. It
is connected to the memory architecture through the port interfaces for all the pixel
data required in the neighbourhood. The sliding window controller SLWC
monitors the central pixel in a spatial neighbourhood and using the position
information provides valid data for all the pixels in the spatial neighbourhood
through the Line buffers, Window ctrl and Pixel Switch. The Line buffers in Figure 25B
are required to buffer image data in order to create the neighbourhood shown in

36

Figure 25A. They are implemented in hardware through the line-buffer modules
described in detail in Sections 1.3 and 1.4. Window control (Window ctrl) provides
control signals used by the Pixel switch to build a spatial neighbourhood around
the current pixel. Window ctrl is implemented in the hardware such that only one
copy is instantiated and used to control all Pixel Switch modules instantiated for all
the spatial neighbourhoods in a VIP algorithm involving more than one frame. The
Pixel switch replaces all pixels in a spatial neighbourhood affected by the boundary
condition using predefined default values if the central pixel is at the image
boundary. The output sync is optional and is required to realign the pixels with
other video signals where time synchronized data and control signal outputs are
expected. This is because the neighbourhood’s output pixel is usually skewed with
respect to the input video control signals by an amount depending on the
neighbourhood size and the number of pipeline stages.

Linebuffers

Window
ctrl

Pixel
switch

SLWC

...

VIP Algorithm

Sync.

a11 a12 a13

a21 a22 a23

a31 a32 a33

In
data

Neighbourhood
data

Neighbourhood
output

Out
data

a)

b)

Figure 26 Boundary conditions implementation architecture.

The architecture in Figure 27 eliminates the optional output sync and is

suitable for a system with many neighbourhoods and a high demand for Block
RAMs. A central state machine is employed to maintain the data and control signal
synchronization for all the neighbourhoods.

Central State

Machine

Operator 1
(Mem & Algorithm)

Operator 2
(Mem & Algorithm)

Operator n
(Mem & Algorithm)

Data &
Control
to video

sink

Data &
Control
from
video
source

Control signal
Data signal

Figure 27 Neighbourhood oriented system.

37

The memory synthesis tool developed in this thesis creates all the necessary
memory and control functionality required for a functional spatio-temporal
RTVPS. The required memory architecture specified within the IMEM for both
spatial and temporal neighbourhoods is automatically optimized and mapped
against the memory resources in such a manner that it produces an efficient
implementation in terms of used resources. The tool also generates a VHDL
template for the filter function, instantiates the filter and interfaces it with a
memory management VHDL.

4.4 MEMORY IMPLEMENTATION

In a hardware implementation of RTVPS, only one operator can use the
memory objects (Figure 8 and Figure 25) and all the memory objects are used
simultaneously in the RTVPS. It is assumed that the memory objects can be
grouped together to form global memory objects at the operator level. This
grouping can be achieved through:

 plinesiR wnW ×=
 (3)

where WRi is the width of the global memory object at the operator, nlines is
the number of required line buffers for an operator and wp is the bit width
representing a pixel. The length of the global memory object is equal to those of the
memory objects that formed it, i.e. the image width [90]. This architecture is
preferable to that of the direct mapping of memory objects to a memory location.
This preference is because global memory objects require a minimal number of
required memory entities in comparison to direct mapping architecture.
Consequently, the number of memory accesses for an RTVPS operation is minimal
for a global memory object.

To illustrate the formation of the global memory objects, consider an RTVPS
operator that requires a neighbourhood of a 5x5 window with a 12-bit gray scale
and a 640 by 480 frame size as the input video stream. This would result in the
creation of four memory objects each of length L (=640) and width 12. The memory
objects would be combined to create a GMO Ri of width 48. Figure 28 depicts this
illustration where op_id represents the operator requiring the GMO.

L by 48

Ri

op_id = 1

L by 12

L by 12

L by 12

L by 12

Figure 28 Global Memory Object formation

38

4.5 MEMORY ALLOCATION

Single port memory configuration or a dual-port in which one port is used
for writing and another for reading usually leads to unused memory areas because
it allocates only one memory object to the Block RAM. If the memory object does
not completely occupy the Block RAM there will be unused memory area. Figure
29 depicts an example of such an allocation. As shown, after the allocation of
memory objects 1 and 2 to memory areas A1 and A2 on Block RAMs 1 and 2
respectively, the remaining memory areas B1 and B2 remain unused and
subsequent memory objects will be allocated to other Block RAMs. Hence these
types of memory allocation approaches can be very inefficient unless the allocated
data is exactly the size of the memory module which is, however, very rarely the
case.

Memory Object 1
A1

B1

Block RAM 1

Memory Object 2
A2

B2

Block RAM 2

Memory Object
(width=12)

Memory Object
(width=12)

a

b Allocation datapath width = 16
Figure 29. Traditional memory allocation.

Although, FPGA allows for the allocation of memory objects of any datapath

widths, it is however left to the designer to ensure the efficient use of the FPGA on-
chip memories during memory allocation. Naturally, a higher datapath width is
used when the width of the memory object is not a member of the datapath widths
specified by the FPGA. Figure 29b shows an attempt to allocate an object of width
12 on Xilinx Spartan 3. Since a datapath width of 12 is not specified by the FPGA
and 16 is the next datapath width that is a member of the Xilinx Spartan 3 datapath
widths, allocation of the memory object is made using a datapath of 16. This will
result in 4L bits being wasted, where L is the length of the memory object. An
alternative is to partition the memory objects into using the supported widths.

These two sources of inefficient allocation are the reasons for researching
both the allocation architecture and an algorithm based on the architecture that
makes efficient use of memories. To achieve efficient allocation, the advantage of
parallel accesses to Block RAMs through two independent ports is exploited.

4.5.1 Allocation algorithm

As presented by O’Nils et al. dual-port configuration of FPGA Block RAMs
and global memory object allocation for RTVPS provide an efficient use of Block

39

RAMs [90]. An algorithm taking advantage of such efficient memory allocation
techniques and the possibility of parallel accesses to Block RAMs through two
independent ports will be presented in this section. Figure 30 shows attempts at
finding an optimal use of the remaining memory resources identified in an FPGA
Block RAM. If the remaining memory space is a single rectangular block as shown
in Figure 30A, allocation is made to it through the second data port. If the
remaining memory space is not a single rectangular block, it is divided into two
rectangular blocks B and C as shown in Figure 30B. Allocation can be made to B or
C through the second data port. Because Block RAMs currently support a
maximum of two data ports, only block B or block C can be allocated depending
on its size and the sizes of the memory objects awaiting allocation while the other
block will never be used. As a result, the developed algorithm seeks the allocation
for which the unused memory space is minimal by ensuring that, after allocation
through port A, the remaining memory space forms a rectangular block, and by
finding the memory object that uses as much of this block as possible. Hence, one
of the indicators used in measuring the efficiency of the algorithm is the size of the
unused memory resources.

Part of
object 2

Useable memory

Memory Bank 2

Part of
object 2

Memory Object 1

Memory Bank 1

Access via
Data Port A

Access via
Data Port B

Access via
Data Port A

Access via
Data Port B

 A

Memory Object 1
A Unused

memory1

Block RAM 1

Unused memory C

Memory Object 1
A

Unused
memory
B

B

Unused memory C

Memory Object 1
A

Unused
mem. B

Figure 30. Proposed memory allocation.

4.5.2 Definitions

To find the optimal use of the Block RAM, the algorithm must observe some
definitions and constraints. These are listed as follows:

(i) M is the set of all the available Block RAM Mk and K is the number of Block

RAMs.

40

 { }KkMM k ,...,2,1== (4)

(ii) SMk is the size of the Block RAM Mk and is specified by the FPGA. For example,
in Xilinx Spartan 2E FPGA SMk is 4096 bits [93]. The memory objects allocated
to the Block RAM determine the length LMk and width WMk of Mk.

(iii) Wc is the set of all possible datapath widths Wn for Block RAMs on the FPGA.
For example, 1, 2, 4, 8, and 16 are allowed on Xilinx Spartan 2E FPGA [93].

 { }NnWW nc ,...,2,1== (5)

(iv) R is the set of all memory objects Ri to be allocated and I is the number of
memory objects.

 { }IiRR i ,...,2,1== (6)

(v) The size SRi of memory object Ri is defined as theproduct of the length LRi and
the data width WRi of the memory object Ri.

 RiRiRi WLS ×= (7)

(vi) Each global memory object is characterised by a quadruple of op_idRi, LRi, WRi

and xRi.

 Ri(op_idRi, LRi, WRi, xRi) (8)

where op_idRi is an identifier for the operator in which the memory objects
making up the global memory object Ri are defined and xRi is the segment in which
a memory object is located on the global memory object after partitioning into
units of allowable data widths in Wc.

(vii) If WRi is not a member of Wc, Ri is partitioned into rj partitions such that the

width, wR, of each partition is a member of Wc where j = 1, 2, … J and J is the
number of partitions in object Ri.

{ }JjWwxwLidoprR cRRiRiRiRiji i ,...,2,1,),,,_(=∈= (9)

(viii) Memory object Ri may be allocated to as many Block RAMs as required.

 ∑
=

≤×
K

k
RiRiki SWL

1
, (10)

where Li,k is the part of length LRi allocated at Mk.
(ix) Block RAM only supports a maximum of two data ports.
(x) Di,k is the decision to allocate some or all of the memory objects Ri at Mk. A

value of 0, 1 or 2 on Di,k means no allocation, single-port allocation or true
dual-port allocation respectively.

 ∑
=

2 ≤
I

i
kiD

1
, (11)

41

(xi) For all Ri in R and Mk in M that form part of the Di,k, the sum of the allocations
may not be more than the size of the Block RAM.

 ∑
=

≤×
I

ii
MkRiki SWL , (12)

(xii) For all Di,k, in the set of allocation decisions, AD, the unused memory space in
Mk is defined as UMk.

∑
=

×−=∈∀
I

ii
RikiMkkki WLSUMADD ,, , (13)

(xiii) The objective function of the algorithm is to minimize the sum of all UMk.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈∀ ∑

ki
kki UMADD

,
, min, (14)

To illustrate definitions (vi) and (vii), if the global memory object Ri of width
48 in Figure 28 were to be allocated on Xilinx Spartan 2E, Ri would then be
partitioned into three rj each with a width of 16 since it is not possible to have a
datapath width of 48 on a Spartan 2E. xRi will be 1, 2 and 3 for the first, second and
third partitions indicating least, middle and most significant partitions on Ri.
Figure 31 depicts this illustration.

 L by 12

L by 12

L by 12

L by 12
L by 48

op_id = 1 xRi = 1

L by 16
 op_id = 1 xRi = 3

L by 16
op_id = 1 xRi = 1

L by 16
op_id = 1 xRi = 2

Figure 31. Partitioning global memory object.

For every Block RAM available on the FPGA, attempts are made to allocate a

global memory object to it. The amount of unused memory space UMk is estimated.
If UMk is zero, the allocation decision is stored and the iteration continues to the
next memory object or Block RAM. Other possibilities are then considered such
that UMk is minimal. The final decision is based on the allocations offering the least
amount for the sum of the unused memory space on all Block RAMs. Figure 32
shows the allocation algorithm in relation to the definitions and constraints listed
above before making the final decision. In the figure, any Ri is an allocation
candidate to any Mk. Since Mk supports only two ports and in line with definition
(x), only two Ris that minimize UMk can at most be selected such that our objective
function, definition (xiii) is achieved after all Ris are allocated. According to
definitions (vii) and (viii), a global memory object may be partitioned into many

42

smaller units and many Block RAMs. By exploiting FPGA parallel access to Block
RAMs this enables the reconstruction of the object in order to achieve a throughput
of one pixel per clock cycle.

M2

R2

Mk

Ri

MK

RI

M1

R1

…

…

…

…

K is number of available memory modules

I is number of memory objects to be allocated

Di, k

Mk is defined by LMk, WMk and SMk. SMk = LMk * WMk

Ri is defined by LRi, WRi and SRi. SRi = LRi * WRi

Figure 32. Allocation model.

4.5.3 Proposed algorithm

The proposed allocation algorithm is presented in Figure 33. A more
detailed form of the algorithm in the form of pseudo-code is presented in Figure
A.1 in Appendix A. In step 1, the algorithm creates global memory objects
according to Eq. (3). In step 2, the algorithm ensures that the global memory objects
conform to the allowable port width configuration according to definition vii. This
step is captured in a procedure, configure_global_memory_objects(R), presented at the
lower part of Figure A. Steps 3, 6, 7 and 8 ensure that the algorithm iterates
through all the memory objects starting with the first. In step 4 the global memory
objects are allocated to the Block RAMs according to definitions (viii) to (xi) while
optimal use of unallocated memory space in the Block RAM through the second
port is implemented in step 5, which is also in accordance with definitions (viii) to
(xi). Optimal allocation is that for which the unused memory space is a minimum,
preferably zero using either one or two ports in the Block RAM.

 The Proposed Allocation Algorithm

Algorithm: Memory Allocation(R, M)
Parameters: R[R

1
 … R

I
] set of I memory objects;

 M[M
1
 … M

K
] set of K Block RAMs;

Return: M
A
[M

A1
 … M

AK
] set of K Allocated Block RAMs;

1. Create global memory objects (GMO)
2. Configure GMOs
3. Starting with the first GMO and the first Block RAM
4. Allocate GMO to Block RAM via port A.
5. If Block RAM is not fully used find maximum use of

remaining memory via port B using another GMO.
6. Select the next GMO when the current has been fully

allocated.
7. Select the next Block RAM when all the memory space

has been optimally used.
8. Return the set of allocated Block RAMs after

allocating all GMOs.
Figure 33. The proposed allocation algorithm.

43

4.5.4 Complexity analysis

In estimating the complexity of the algorithm, the number of available Block
RAMs, K, and the number of memory objects, I, after partitioning with respect to
their width, play major roles. Since the algorithm conducts a single iteration
through the sets of Block RAMs and two iterations through the set of memory
objects as shown in steps 3, 4 and 5 in Figure 33 (see also Figure A in the
Appendix), the allocation algorithm AA is a function of K and I and its complexity
can be expressed as

 () ()2, IKIKAA ⋅Ο= (15)

The algorithm is thus, at worst, of the third order of the larger of K and I.
Implementation costs depend on the representations of the properties of the Block
RAMs, memory objects and allocation objects, and the arithmetic and logic
operations defined for them.

4.6 ARCHITECTURE DRIVEN BLOCK RAM OPTIMISATION

To achieve architecture driven memory allocation targeting a given FPGA
architecture, information about the amount and location of block RAMs, the
structure and organization (number of rows and columns) of the logic elements
and the amount of distributed RAM bits that can be implemented using the logic
elements are read from the database. In addition, estimates concerning the number
of logic elements, the block RAMs, the minimum clock frequency and other logic
resources required to implement the video processing application are read from
the high-level system specification. With this information, IMEM seeks an
allocation alternative that uses the minimum number of block RAMs by allocating
logical memory requirements below a threshold to CLBs. The threshold is
determined by simulations for the given architecture and the clock frequency of
the application. The threshold is chosen such that the power consumption by the
CLBs implementing the logical memory does not exceed the power consumed by
the block RAM. The objective of the proposed architecture driven allocation can be
summarized as:

• Allocate logical memory requirement below a given threshold to

CLBs
• Ensure power consumption by CLB allocation is not larger than

that by block RAM.

The search for the lowest area and power costs is formulated as follows:

MP is the set of memory partition defined within IMEM [91] in order to

allocate the line buffers in Figure 25 to physical memory.

44

MP = {mpi | i = 1, 2, …, I} (16)

The memory partitions in Eqn. 16 are created by a heuristics-based
algorithm defined in Section 4.5 above, [91] (Figure 36, Figure 37) to efficiently
allocate the GMOs, based on the memory architecture stated above in Eqn. 3. The
algorithm creates the GMOs and partitions them to ensure that their widths are
directly supported by the FPGA block RAMs. It also takes advantage of the dual
port capabilities of the Block RAMs, with independent read and write accesses at
both ports, to achieve near optimal allocations and the possibility of allocating a
GMO to as many Block RAMs as is required. The allocation algorithm in Section
4.5 will be augmented by a Block RAM usage minimization goal described in this
section. The intermediate result consisting of memory partition ready for allocation
is the memory requirements input to this minimisation work.

CLBS defines the set of CLBs available in the FPGA organized in terms of
rows r and columns c.

CLBS = {clbr,c | r = 0, 1, …, R -1 ^ c = 0, 1, …, C -1} (17)

where R and C represent the number of CLB rows and columns in the FPGA
respectively. CLBS’ (= R · C) gives the number of CLBs in the FPGA. BRAMS
defines the number of FPGA block RAMs and their location given in terms of row
rr and column cc.

BRAMS = {bramrr,cc | rr = 0, 1,…, RR -1 ^ cc = 0, 1,…, CC -1} (18)

where RR and CC represent the number of block RAM rows and columns in
the FPGA respectively. BRAMS’ (= RR · CC) gives the number of BRAMs in the
FPGA. The total logic area required (TLR) in terms of CLBs to implement the tasks
in the video processing is calculated as

∑
=

=
K

k
ktlrTLR

1

 (19)

where tlrk is the number of CLBs required by task k and K is number of tasks
in the dataflow graph (Figure 24). Eqn. 19 can be estimated from the datasheet of
the IP cores or from a database of the filters previously implemented for the
RTVPS and currently being re-used. After estimating the task area cost, the tool
must estimate the amount of CLB resources available for memory allocation by
through using Eqn. 20.

)(MFTLRCLBSACLB +−= (20)

where MF in Eqn. 20 is the Mark-up Factor used to denote the amount of
logic in terms of CLBs required to link different tasks together and to the modules
implementing their memory sub-system as shown in Figure 26. MF can be given as
an estimate or be determined from the datasheet for each task. The expressions for
the allocation cost of a given logical memory requirement to distributed RAMs or
Block RAMs are defined as:

45

∑
=

×⋅×
−

=
J

j
CLBCLB RjP

JACLB
ACCLB

1

)(1_ (21)

BRAMBRAM
BRAM

RP
A

ACBRAM ××
−×

=
12

1_ (22)

Eqn. 21 provides an expression for estimating the cost (CLB_AC) of
allocating a given memory partition to CLBs J. It is defined as functions of the
available CLBs, required CLBs, power consumption PCLB by the CLBs and
associated routing resources [45], [40] across the CLBs. Eqn. 22 gives the cost
(BRAM_AC) of allocating the same amount of memory to a single port of a dual
ported BRAM. Hence allocation utilizes only one of the two ports times the
number of available BRAMs. The cost is also given in terms of the power
consumption of the BRAM PBRAM and signal routing RBRAM. The Power
consumption resulting from interconnect routing is not considered due to the
estimation complexity already in pre-place-and-route high-level design
environment. There will be a reduction in the power consumption resulting from
moving data the allocation from block RAMs to the distributed RAM. This is
because data will be allocated locally where they are required and hence avoiding
routing to a specific block RAM site. However RCLB and RBRAM are routing factors
for CLB and block RAMs to account for the interconnection and can be determined
by mean of simulation.

Figure 34 shows the architecture driven memory allocation optimization
approach. It requires the memory partitions from within the IMEM environment
and information about CLBs and BRAMs read from the architecture description
file (ADF). ADF contains information concerning the essential features of the target
FPGA. In addition, estimates of the amount of CLB required to implement the
tasks (Figure 24, Figure 25) in the design are read from the IP core datasheets.

Step 1 in Figure 34 determines the maximum amount ML of bit that can be
allocated using CLB distributed RAMs based on the application frequency and the
power consumption data for distributed and block RAMs of the target FPGA.
Using ML the set of memory partitions MP to be allocated will be divided into
those that can only be allocated using BRAM and those that might be allocated to
the distributed RAM or block RAM.

The choice of allocation of smaller memory partitions that are candidate for
either distributed or block RAM memory is motivated by Eqn. 8 and Eqn. 9. Step 5
performs dual port memory allocation of memory partition mpi larger than ML
based on the algorithm in Section 4.5. Steps 6 to 13 compare the estimated power
consumption and allocation cost of the CLBs and BRAM required to allocate costs
fof a given memory partition mpi. The option that offers the lower cost is chosen.
Step 2 ensures that preference is given to larger memory partitions during block
RAM allocation whereas step 6 ensures the reverse during distributed RAM
allocation. The approach in Figure 34 has been implemented and incorporated into
the IMEM toolset to improve its memory management efficiency.

46

Architecture drive memory allocation

Algorithm: Power Optimization(ADF, IMEM)

1: ML = memory_upper_limit(freq, ADF)

/* Allocate large memory objects to BRAMs */
2: sort(mp, ‘descending’)
3: for each mpi in MP
4: if sizeof(mpi) > ML
5: perform_dual_port_allocation(mpi,IMEM)

/* Allocate small memory objects using cost */
6: sort(mp, ‘ascending’)
7: for each mpi in MP
8: if sizeof(mpi) < ML {
9: estimate no of CLB required to allocate mpi

 /* Using Eqn. 8 */
10: estimate CLB allocation cost for mpi

 /* Using Eqn. 9 */
11: estimate BRAM allocation cost for mpi

/* Choose allocation option with lower cost */
12: select CLB/BRAM allocation with lower cost
13: update allocation_cost
 }

Figure 34 Architecture driven memory allocation

4.7 MEMORY ACCESSING

The allocation software ensures that each entry of a Block RAM data object
stores information concerning the width and length of the GMO segment allocated
to it, the port used for allocation and the hierarchy of its segment in the GMO. In
addition, each partition stores information about the Block RAM to which it is
allocated, the port of allocation and its start address on the Block RAM, the GMO
and segment to which it belongs.

The advantage of sequential accesses to memory for RTVPS applications can
lead to improved memory performance by using pointers whose values increase
whenever there are valid pixel values. Using the GMO architecture further reduces
the number of such pointers to one for each RTVPS operator. The pointers may be
implemented by using a single counter for each GMO, further referred to as the
base pointer, or by using a counter for each partition in a GMO, further referred to
as the distributed pointers.

To this end, the results from the memory allocation stage are imported into
the address generation module. From these allocation results GMOs are
reconstructed, and address spans for each partition in a Block RAM are generated.
The start and end addresses for each partition are calculated. Offsets are

47

considered where dual ports are used for the allocation on Block RAMs for
different partitions in order to avoid memory overlap. The generated addresses are
used to determine the location of each GMO element. Two approaches for
accessing the GMO elements have been developed, namely the base pointer
approach and the distributed pointer approach and these are presented as follows.
These two approaches are depicted in Figure 35 while details of their
implementations are presented in the following subsections.

 GMO 1

 Length = L
 L = p1 + p2

Partition 1
Length = p1

Partition 2
Length = p2

Base Pointer
base = 0 – L - 1

 0 p1 - 1 0 p2 - 1

BR1 BR2

if base < p1
 access BR1
else
 access BR2

offset

(a)

(b)

 GMO 1
 Length = L
 L = p1 + p2

Partition 1
Length = p1

Partition 2
Length = p2

 0 p1 - 1 0 p2 - 1

BR1 BR2

offset

Figure 35 Two memory accessing approaches

4.7.1 Base Pointer Approach

In this approach, a single pointer is used to track the location of the element
to be accessed in the GMO. The pointer starts at zero and increases to one less than
the length of the GMO and then resets to zero. Since the memory accesses are
clocked, the value of the pointer increases with clocked access to the Block RAM
when there are valid data. Address spans for each partition of the GMO are used to
determine the relevant Block RAM relating to the element accessed, depending on
the value of the pointer. Hence, only the relevant Block RAMs are enabled while
the other related Block RAMs are disabled. Figure 35a, depicts this approach for a
simplified case in which a GMO consists of a single segment with two partitions.

In the figure, partitions p1 and p2 are allocated to Block RAMs BR1 and BR2.
From Figure 35a, when the value of the counter base is within the span of p1, the
appropriate port on BR1 is enabled and accessed while the relevant port on BR2 is
disabled. The reverse is the case when base is no longer within the span of p1, i.e.
within the span of p2. This simple example could be extended to cases in which

48

more than one segment makes up a GMO and each segment has more than 2
partitions. A formal description of this approach is shown in Figure 36a.

Figure 36b depicts the base pointer implementation of the GMO shown in
Figure 31. In the figure, BR1_EN_A, BR2_EN_A and BR2_EN_B represent the
enable signals on port A of BR1, port A of BR2, and port B of BR2 respectively.
Likewise, BR1_A_Adr, BR2_A_Adr and BR2_B_Adr are the address signals on port
A of BR1, port A of BR2, and port B of BR2 respectively. A Block RAM is enabled
or disabled by assigning ‘1’ or ‘0’ to its enable signal.

 (a)

 For each GMO:
• create Address Table from segments and partitions that make up the

GMO to determine when to enable Block RAMs among related
partitions

• create an incrementable pointer of length ()⎡ ⎤L2log which increases
when there are valid pixel values

• using Address Table and pointer value enable appropriate Block
RAMs and set the values of address signals.

(b)

512 by 32

op = 1
seg = 1
par = 1

BR1 Port A

128 by 32

op = 1
seg = 1
par = 2

640 by 16
op = 1 seg = 2 par = 1

BR2 Port B Port A

offset=320

0 ≤ bp ≤ 639
 BR2_EN_A = 1
 BR2_A_Adr = bp

512 ≤ bp ≤ 639
 BR2_EN_B = 1
 BR2_EN_B = 0
 BR2_B_Adr = offset + bp - 512

0 ≤ bp ≤ 511
 BR1_EN_A = 1
 BR2_EN_B = 0
 BR1_A_Adr = bp

Base Pointer bp = 0 - 639

Figure 36. Base Pointer Approach.

4.7.2 Distributed Pointer Approach
In this approach, each partition is handled separately, starting with the first

partition in a segment. Local pointers equal in length to that of each partition are
created. As long as the enable signal of Block RAM for a partition is high, memory
access is initiated at its first position using its pointer and continues incrementally,
if valid data are available until its full length is achieved. During this period, the
partition ensures its enable signal is re-asserted while the enable signals of the
neighbouring partitions of the same segment are de-asserted. Controls are
transferred to the next partition of a similar segment when the upper limit of the
partition is reached. If however, the partition is the last in the segment, controls are
transferred to the first partition. Since the address buses of partitions on Block
RAMs provide appropriate bit vectors to cover their entire lengths, they are used

49

as the local pointer. In this approach, the enable signals of all the first partitions are
set to high at start-up to ensure that memory accesses start with the first partitions.
Figure 35b depicts this approach. A simplified case of a GMO consisting of a single
segment with two partitions p1 and p2 allocated on Block RAMs BR1 and BR2
respectively is considered in Figure 35b. Figure 37a and Figure 37b show formal
descriptions and implementations of the GMO depicted in Figure 31 using this
approach respectively. Signals in Figure 37b have similar meanings to those in
Figure 36b. Since the 640-by-16 partition is the only one in its segment, it is always
enabled and the address is reset to 0 when it reaches its upper limit.

For each segment in each GMO:
• create Address Table for each partition in the segment
• create an incrementable pointer of length ()⎡ ⎤p2log which increases

when there are valid pixel data for partitions in the segment
• start memory access with the first partition with start address of 0
• enable Block RAM of currently active partition and disable Block

RAMs of related partitions while pointer is less than partition’s length
• if pointer of active equals partition’s length less one, reset it to 0,

disable it and enable next (or first partition if this is the last partition).

(a)

(b) 512 by 32

op = 1
seg = 1
par = 1

BR1 Port A

128 by 32

op = 1
seg = 1
par = 2

640 by 16
op = 1 seg = 2 par = 1

BR2 Port B Port A

offset=320

BR2_EN_A = 1 & BR2_A_Adr
< 639

 BR2_A_Adr = BR2_A_Adr + 1

BR2_EN_A = 1 & BR2_A_Adr
= 639

 BR2_A_Adr = 0

BR2_EN_A = 1

BR2_EN_B = 1 &
BR2_B_Adr < offset + 127
 BR2_EN_B = 1
 BR2_EN_B = 0
 BR2_B_Adr =
BR2_B_Adr + 1

BR2_EN_B = 1 &
BR2_B_Adr = offset + 127
 BR2_EN_B = 0
 BR2_EN_B = 1
 BR2_B_Adr = offset

BR1_EN_A = 1 & BR1_A_Adr < 511
 BR1_EN_A = 1
 BR2_EN_B = 0
 BR1_A_Adr = BR1_A_Adr + 1

BR1_EN_A = 1 & BR1_A_Adr = 511
 BR1_EN_A = 0
 BR2_EN_B = 1
 BR1_A_Adr = 0

Figure 37. Distributed Approach.

4.8 CONSTRAINT GENERATION

To generate constraints targeting a given FPGA architecture, the information
about the amount and location of block RAMs, the clock regions, the number of
logic elements within each clock region and used IO pins, is read from the
database. In addition, the amount of logic elements, block RAMs and other

50

resources required to implement the design is read from the synthesis report. With
these two sets of information, block RAMs are placed in clock regions closest to
most of the IO pins and design logics are constrained to be placed as close to the
used block RAMs as possible. The approach is shown in Figure 38. Placement of
both the design logic and block RAMs is such that a minimal number of clock
regions is used. This approach is suitable for video processing systems because
they are data dominated thus requiring large memory accesses to block RAMs.
Constraining logic to be placed close to block RAMs within a minimal number of
clock regions leads to reduced interconnections, shorter delays and reduced power
consumption. However, the number of block RAMs may require more than one
block RAM column, thus requiring placement across the FPGA chip. For this
scenario, logic elements are placed such that they are equidistant from the two
block RAM columns. Placement is further optimized by using a logic element
based placement constraint in addition to the clock regions.

The place and route constraints are generated for the memory subsystem of
each task in the system dataflow graph (Figure 24) whereas the filters are made to
overlap many memory subsystems. For this work we have used the Xilinx Spartan
3 FPGA. However, the approach can be adapted for any FPGA architecture. The
automatically generated constraints will now be presented.

OPTIMIZATION GOAL [94]: The synthesis reports show that

the designs can meet the frequency requirements hence placement can
be optimized for area by setting the constraint OPTIMIZE to AREA.
Other possible values are SPEED and BALANCE.

OPTIMIZATION EFFORT [94]: The overall, placement and

router optimization efforts are set to high through the constraint
OPT_EFFORT = HIGH. This may require more implementation time
but the results are always better. Alternative values are NONE,
STANDARD and MEDIUM.

DESIGN HIERARCHY [94]: Design hierarchy is dissolve by

setting the constraint KEEP_HIERARCHY to FALSE in order to flatten
the design. This choice increases the possibility of logic sharing and
optimization. The alternative value is TRUE.

RELATIVE LOCATION [94]: the design is constrained to use

relative location in order to relationally place logics and block RAMs
based on their functions and hierarchy by setting the constraint
USE_RLOC to TRUE. In this way block RAMs whose inputs or
outputs connect to IO pins are placed as close to the IO pins as
possible while other block RAMs are placed relative to them. The
alternative value is FALSE.

51

DESIGN GROUPS [94]: the entire design can be grouped
according to the system flow graph (Figure 24) into small components
to manage the design complexity. The memory sub-component of
each task in Figure 24 is defined as an area group and placed by clock
regions. The filters in all the tasks are grouped together into an area
group and placed in such a way that it overlaps other area groups.
This is to allow for flexible inter-group communication. Compact
placement of the area groups is ensured by setting the
COMPRESSION factor of each group to the highest (100%).

Figure 38 shows in pseudo-code the constraint generation approach

presented in here. The resource requirement of all the line-buffers are read from
the IMEM model and are collected in a set LB whereas the resources available in
each of the clock-regions are read from the database and collected in a set CR. Each
LBi and CRj,k is defined in terms of the amount of block RAMs, multipliers, and
logic blocks. The algorithm searches for a set of CRj,k that satisfies all the resource
requirements for all the LBis and for which the over-all difference in area
requirements and occupied area is minimal. LBAi and CRAj,k are the area
requirements up to LBi and the available resources up to CRj,k respectively. Figure
39 depicts the clock distribution of a design case (discussed in the next section)
implemented without (A) and with (B) the constraints. From Figure 39 it is obvious
that the implementation without constraints will consume more dynamic power
since it occupies a larger area and requires a wider clock network. Figure 40 shows
the workflow by which the IMEM tool set automatically generates the place and
route constraints. All the required information is gathered from the IMEM model
of the system flow graph (Figure 24, Figure 26) and FPGA architecture. The output
of the algorithm is a user constraint file (UCF).

52

/* Gather background information */
CR = read_clock_region_info()
LB = read_linebuffers_resource_use(IMEM)

/* expression for estimating area cost*/

∑
=

=
i

x
xi LBareaLBA

1

)(

∑
==

=
kj

zy
zykj CRareaCRA

,

1,1
,,)(

ikj LBACRAtarea −= ,cos_

/* Using area as cost criterion, find the CRj,ks
to in which to place LBis with minimal cost */
generate_placement_constraint(LBi,CRj,k){
 write placement constraint for LB1 at CR1,1
 for each LBi {/* i > 1 */
 for each unused_cr {
 estimate area_cost
 select CRj,k with minimum area_cost
 write PAR constraint for LBi at CRj,k
 update area_cost
 }
 }
}

Figure 38. Constraint generation algorithm

A) B)

Figure 39. Clock distributions showing the effect of constraints

53

IMEM Model

Task RTL

Placement
constraints

Memory RTL RTL
Synthesis

Place & Route FPGA

FPGA
Architecture

database

User generated

IMEM generated

Third Part Tool

RTVPS
Specifications

Figure 40. Constraint generation workflow

4.9 RESULTS

In this section the results obtained after implementing the algorithm and the
analysis of its performance are presented as follows. Section 4.9.1 presents the
performance of the algorithm under real-time video processing design. Section
4.9.3 presents its performance, under two test scenarios modelled upon one of the
real-time design cases. The performance of the memory synthesis with varying
memory requirements and Block RAM sizes is presented in Section 4.9.4. Section
4.9.5 presents the performance analysis for eleven video processing systems
published by other researchers. Section 4.9.7 compares the performance of the two
memory addressing schemes presented in Section 4.7.

4.9.1 Real-time video processing design cases

The algorithm has been implemented in C++ using the object-oriented
approach. The implementation was simulated using the memory requirements of
real-time video processing design cases [90]. The first design case was a spatio-
temporal median filter with a neighbourhood of seven frames and two line buffers.
Two instances of this design case were considered. The first, (1-1), being a VGA
frame with 24-bit RGB pixels and a 640 frame length while the second, (1-2), was a
PAL frame with an 8-bit gray scale pixel and a 708 frame length. The second design
case was a machine vision system with a median filter, segmentation and three 1-
bit morphological operations. For this design case two instances were also
considered. The first case, (2-1), being an 8-bit gray-scale, which had a VGA
resolution as its input video stream, while the second, (2-2), had a 12-bit gray scale
with a 1.3 MPixel resolution as its input video stream. Table 2 shows the summary
of the memory requirements for the design cases considered. In the table column 2
shows the number of video processing filters in the design case while column 3
shows the number of line buffers required by each filter. For design cases 1-1 and
1-2 seven 3x3 filters were used, each requiring two line buffers while for design
cases 2-1 and 2-2, one 5x5 median filter, one segmentation operation and three 17-

54

by-17 morphological filters requiring four, one and sixteen line buffers respectively
were used. Columns four, five and six represent the pixel resolution, the length of
the line buffer and the memory requirement for each filter respectively.

Table 2. Memory requirement of considered design cases.

4.9.2 Allocation Results

Table 3 and Table 4 show the results obtained using the implementation of
the algorithm for allocating the design cases considered on Xilinx Spartan 2E and
Spartan 3 FPGA respectively.

Table 3. Allocation result of the algorithm on Spartan 2E.

Table 4. Allocation result of the algorithm on Spartan 3.

In the tables the theoretical minima Block RAM required for allocation were

estimated from Eqn. 14 [90].

()⎥⎥

⎤
⎢
⎢

⎡
=

BRAM
Sizeminimal

size
 (23)

Design Case # Rows Width Length Size (Kbit)
Case 1-1 7 2 24 640 210
Case 1-2 7 2 8 708 77.4
Case 2-1 1

1
3

4
1

16

8
19
1

640
256
640

20.0
4.75
30.0

Case 2-2 1
1
3

4
1

16

12
21
1

1300
4096
1300

60.94
84.0
60.94

Design Case minima Block RAM % minima

Case 1-1 53 53 100
Case 1-2 20 20 100
Case 2-1 14 14 100
Case 2-2 52 52 100

Design Cases Minima Block RAM % minima

Case 1-1 14 14 100
Case 1-2 5 6 120
Case 2-1 4 5 125
Case 2-2 13 13 100

55

where Size is the number of bits required by the design case, given in
column 6 of Table 2, and the size of BRAM is the numbers of bits in one block
RAM, 4 Kbit for a Xilinx Spartan 2E and 16kbit (without parity) for Spartan 3 [93],
[50]. Table 3 shows that the algorithm requires no more than the minimum value
for the allocation of each of the design cases on Spartan 2E. Hence, it is in total
agreement with the minimum requirements for Spartan 2E. On Spartan 3,
allocation requirements were equal to the minimum values except for two of the
design cases. The minimum value is calculated for the allocation on a Block RAM
with an infinite number of ports. The minimum value, however, only indicates the
effectiveness of the allocation but not its feasibility, since it is not possible to have
Block RAMs with an infinite number of ports. The implementation for Spartan 3
did not consider parity. The parity feature on Xilinx Spartan 3 FPGA increases the
available Block RAM size by providing an additional bit for every 8 bits [50]. When
the parity bit is taken into consideration it makes it possible to have width
configurations that are multiples of the 9-bit on the Block RAM. In this manner,
18Kbits of Block RAM size can be achieved instead of 16Kbits. This parity feature
was not considered since it is only specific to some of the Xilinx FPGA families and
not all FPGAs have this feature. From Table 4, the non-minimum result of the
algorithm in design cases 1-2 and 2-1 is because, if a design case has many
operators in relation to the total storage requirement and/or the size of each Block
RAM, the number of ports on each Block RAM will limit the allocation.

Figure 41 shows the mapping of the memory objects to the Block RAMs for
the design Case 2-1 on Xilinx Spartan 2E. The identifiers of the global memory
objects and the Blocks RAMs are shown. In addition, the figure shows that
memory objects were allocated to as many Block RAMs as required. This is a case
of dynamic partitioning with respect to the length. In the figure, each block is
annotated by “WxL” and “op_id: y” where W, L and y represent the width,
memory depth and operator id of the allocated partition respectively. BRAMs 7
and 8 in the figure exploit the independence of the data path width and memory
depth for the two ports on a dual-ported RAM. In BRAM 7, Port A is allocated
with a partition which has a data path width of 2 and a depth of 256 while Port B is
allocated with a partition with a data path width of 16 and a depth of 224.

In Figure 41 memory object 1 of width 32 bits and length 640 was firstly
partitioned width-wise into two partitions each of width 16 bits and length 640.
Then the first partition was allocated to Block RAMs 1, 2 and 3, by partitioning it
length-wise and allocating partitions of lengths 256, 256 and 128 respectively,
completely filling the Block RAMs 1 and 2 using only one port. The second
partition of memory object 1 was also partitioned length-wise and allocated to
Block RAMs 3, 4 and 5. This width-wise and length-wise partitioning of the
memory object makes it possible to allocate a memory object to many Block RAMs
and to configure the memory object with widths feasible in the FPGA. In the
figure, the lower and upper allocations were through ports A and B respectively.
The figure also indicates the width and length of the memory objects allocated at

56

each Block RAM. In addition, unused memory space is specified on Block RAM 14
where it occurred. This memory space can be used through the second port.

Figure 41. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA.

4.9.3 Performance analysis with varying length and width
To test the performance of the algorithm, the memory requirements for

allocation were varied under two scenarios such that they are similar to design
case 1-1. The two test scenarios are presented as follows.

4.9.3.1 First test scenario

In this test scenario, four frame lengths L (320, 640, 1280 and 2560) were used
while the widths W were determined by the memory requirement, which was
allowed to vary from 100kbit to 2000kbit. This test scenario was simulated for
XILINX Spartan 2E and 3 FPGA. The minimum Block RAM allocation was plotted
along with the estimated Block RAMs for the four values L. On Spartan 2E, the
minima were equal to those estimated by the algorithm for all values of L whereas
on Spartan 3, the minima differed from the values obtained for L = 320 and the
estimated values obtained for other values of L equalled the minima for most of the
memory requirements. Figure 42 shows the performance of the algorithm for this
test scenario.

57

Figure 42a. First test scenario on Spartan 2E.

Figure 42b. First test scenario on Spartan 3.

4.9.3.2 Second test scenario

In this test scenario, four values of width W (3, 6, 12 and 24) were used while
the length L was determined by the memory requirement, which also ranged from
100 to 2000 Kbits. The test scenario was simulated for Spartan 2E and 3. The results
obtained for the theoretical minima and the estimated Block RAMs for the different
values of W were equal when Spartan 2E was used but differed when memory

58

requirements less than 200kbit on Spartan 3 were used. Figure 43 shows the
performance of the algorithm for this test scenario.

As shown in Figure 42 and Figure 43, allocations on Spartan 2E equalled the
theoretical minima whereas those on Spartan 3 differed slightly. This is because the
Block RAM sizes are smaller in Spartan 2E and were more easily managed. In
Figure 42b, allocations with L=320 required I excess of the theoretical minima due
to the small sizes of the memory objects with respect to the sizes of the Block
RAMs. The average variation of the number of Block RAMs from the theoretical
minima is 6%. In Figure 43b, the first allocation using W=3 had a variation of 14%
from the theoretical minima also due to the small sizes of the memory objects.
Configuring the global memory objects width-wise to only data-path widths
allowed by the FPGA technology leads to the efficient utilization of the Block
RAMs. This enables the allocation results to be close to the theoretical minima.

By definition, the theoretical minimum assumes a Block RAM with an
infinite number of ports making it possible to allocate to the Block RAM until it is
fully used. It is not a practical value but rather a metric used to measure the
optimality of the algorithm. Consequently, the higher the number of ports on Block
RAMs the closer the algorithm result is to the theoretical minimum.

Figure 43a. Second test scenario on Spartan 2E.

59

Figure 43b. Second test scenario on Spartan 3.

4.9.4 Performance analysis with varying length and Block RAM sizes
The performance of the memory synthesis has been investigated in this

thesis using varying memory requirements with respect to the frame resolutions of
RTVPS design cases in Table 2. The analysis is performed such that the design
cases are allocated onto different existing and extrapolated FPGA memory
architectures. Figure 44 shows the results obtained for high (twice), medium
(normal) and low (half) frame resolutions of the design cases in Table 2. In the
figure the columns represent the frame resolutions. The upper and the lower rows
represent the number of Block RAMs used for allocating the memory objects and
the percentage of unused memories respectively. In the upper row Block RAM
sizes were presented in increasing order from left to right but in decreasing order
in the lower row.

The results reveal that for a given resolution, the amount of unused memory
increases with Block RAM size. Also for high frame resolutions the amount of
unused memory in the allocated Block RAMs is small when compared to the
medium and low frame resolutions. This result is to be expected since the
allocation of large memory objects onto small Block RAMs leads to greater
efficiency than the allocation of small memories onto large Block RAMs. Hence, the
use of an un-multiplexed memory architecture will lead to more costly
implementations. To avoid this, FPGAs should support multiple RAMs sizes and
wider data-paths. Alternatively, efficient use of the current large RAMs can be
achieved through the time-multiplexed architecture. However, this will degrade
the performance and possibly increase the power consumption, which will make
the FPGA architecture less attractive for video processing systems. These results
can guide both RTVPS designers and the development of new FPGA architectures.

60

4
16

32
64

128
256

0

10

20

30

40

Design Cases

Low Resolution

RAM size

of

 R
A

M
 u

se
d

1 1
1 2

2 1
2 2

4
16

32
64

128
256

0

20

40

60

Design Cases

Medium Resolution

RAM size

of

 R
A

M
 u

se
d

1 1
1 2

2 1
2 2

4
16

32
64

128
256

0

50

100

150

Design Case

High Resolution

RAM size

of

 R
A

M
 u

se
d

1 1
1 2

2 1
2 2

256
128

64
32

16
4

0

20

40

60

80

100

Design Cases
RAM size

%
 o

f R
A

M
 u

nu
se

d

1 1
1 2

2 1
2 2

256
128

64
32

16
4

0

20

40

60

80

100

Design Cases
RAM size

%
 o

f R
A

M
 u

nu
se

d

1 1
1 2

2 1
2 2

256
128

64
32

16
4

0

20

40

60

80

100

Design Case
RAM size

%
 o

f R
A

M
 u

nu
se

d

Figure 44. Block RAM usage with varying memory requirements

4.9.5 Performance Analysis for video processing systems

In this section, the performance test of the allocation algorithm on video
processing systems published in the literature [78]-[87] is presented. The tests are
still in manuscript form and are to be sent for publication after further extensive
testing. The algorithm was implemented using Block RAM sizes of 2, 4, 8, 16 and
32Kbits, each with data path width configurations of 2, 4, 8, 16, 32 bits.

The average results for the allocation of the test designs [78]-[87] are shown
in Table 5 The results for all design cases were combined together in order to
observe the memory sets producing the best allocation results. The most
satisfactory allocation results were acquired using a RAM size of 8Kbits and a data
path width of 16 or 32 bits, and this achieved an average allocation efficiency of
92.5%. However, larger memory sets, up to 16Kbit, also generated satisfactory
results when combined with wide data path widths.

The use of large memory sets, as predicted, proved to be inferior to that for
small sets in the majority of cases which is in agreement with the allocation results
for the architecture initially produced by O’Nils in [90]. The allocation efficiencies
of the algorithm on RAMs with a size corresponding to the configuration of a
Xilinx Spartan-2 and Spartan-3 are presented in Table 6 and Table 7. On both
Spartan-2 and Spartan-3, the algorithm achieves a 100% allocation efficiency in 9
out of 11 cases.

61

Table 5.Average allocation results for all cases

Average allocation efficiency
 2 bit 4 bit 8 bit 16 bit 32 bit

2Kb 74,1% 88,2% 89,3% -- --
4Kb 55,5% 82,4% 90,5% 91,8% --
8Kb 45,0% 62,4% 86,4% 92,5% 92,5%

16Kb 35,8% 52,9% 68,4% 88,1% 90,9%
32Kb 31,2% 44,0% 60,1% 73,2% 82,5%

Table 6. Allocation on Spartan II

Allocation result of the algorithm on Spartan 2

Design case
Min. req.
BRAM

Block
RAM

Allocation
efficiency

Case A [78] 3 5 60%
Case B [79] 5 5 100%
Case C [80] 1 1 100%
Case D [81] 2 2 100%
Case E [81] 3 3 100%
Case F [82] 1 1 100%
Case G [83] 5 10 50%
Case H [84] 7 7 100%
Case I [85] 1 1 100%
Case J [86] 21 21 100%
Case K [87] 51 51 100%

Table 7. Allocation on Spartan III

Allocation result of the algorithm on Spartan 3

Design case
Min. req.
BRAM

Block
RAM

Allocation
efficiency

Case A [78] 1 2 50%
Case B [79] 2 2 100%
Case C [80] 1 1 100%
Case D [81] 1 1 100%
Case E [81] 1 1 100%
Case F [82] 1 1 100%
Case G [83] 2 4 50%
Case H [84] 2 2 100%
Case I [85] 1 1 100%
Case J [86] 6 6 100%
Case K [87] 13 13 100%

62

4.9.6 Performance of Architecture Driven Memory Allocation
To test the effect of considering the FPGA architecture in memory allocation

as presented in Section 4.6, Design cases 1-1 and 2-1 in Section 4.9.1 were used.
Although the two design cases were specified for 8-bits VGA resolution video
streams, for the purpose of these tests the pixels were allowed to have values of 6,
8 9 and 10 bits whereas the frame width were given the values 256, 320 512, 640
and 800. The stretching of the pixel and frame resolutions was carried out to
observe how the synthesis tool will perform under various memory requirements.
Figure 45 shows the block RAM memory usage for the design cases under various
pixel and frame resolutions. In the figure, columns such as ‘6w’ report block RAM
usage by the allocation in Section 4.5 which finds an efficient method of memory
allocation but without considering the possibility of allocation to distributed RAMs
as presented in this thesis.

The designs were implemented according to the architecture in Figure 26
which abstracted the memory subsystem from the task. Hence configuring the
memory requirements does affect the tasks configuration, the exception being
through generic parameters. The designs were synthesized and analyzed for post-
place and route simulation for power consumption. We found minimal changes in
the number of CLBs used (between 6 and 12) and small changes in the power
consumption. We have not presented the changes in either the CLBs or the power
consumption because they were rather small and constant. Figure 46 shows the
post-place and route clock distribution of the design case 2 using the approaches
adopted in Section 4.5 and Section 4.6. The figure shows that logic distribution is
concentrated on the right-side of the chip where most of the instantiated block
RAMs are located as well as the centre where the clock network is most efficient.

6
6w

8

8w

9
9w

10

10w

800

512

256

0

2

4

6

8

Bits / Pixel

Design Case 1

Frame Width

of

 R
A

M
 u

se
d

w - without optimisation

63

6
6w

8

8w

9
9w

10

10w

800

512

256

0

2

4

6

8

Bits / Pixel

Design case 2

Frame Width

of

 R
A

M
 u

se
d

w - without optimisation

Figure 45. Memory usage

A) B)

Figure 46. Post-PAR Clock distribution of design case 2

4.9.7 Results of the addressing
Table 8 shows the resources required to access the allocated memory objects

for the design cases in Table 2, the number of Block RAMs required for the
allocations and the hardware operating frequency for the two approaches. Xilinx
Spartan 3 FPGA was the target platform for implementing both approaches.

Table 8. Comparison of the two approaches.

Case 1-1 Case 1-2 Case 2-1 Case 2-2
 BP Dist BP Dist BP Dist BP Dist
No. of 4 input LUTs: 653 994 334 356 155 191 560 804
No. of BRAMs: 14 14 6 6 5 5 13 13
Max. Frequency (MHz): 116 186 106 183 140 214 91 173
Frequency Comparison (%): 100 160 100 173 100 153 100 190

64

Depending on the number of partitions relating to a GMO, address look-up

tables are required to set the enable signals and the values of the address signals to
the appropriate Block RAMs on which the element of the GMO currently being
pointed at is allocated, while also disabling related Block RAMs. In the Base
Pointer Approach, these accesses to the Block RAMs are centrally controlled at the
GMO level using a pointer. Hence, only one set of address look-up tables is
required for each GMO. By contrast, in the Distributed Approach, each partition
has its separate address look-up table, unrelated to those of related partitions. The
use of a partition’s address look-up table depends on the value of its enable signal.
Hence the total number of address look-up tables for one GMO depends on the
number of partitions making up the GMO. This is evident by comparing Figure 36c
and Figure 37c. The first row of Table 8 confirms this. Thus the Base Pointer
Approach yields more efficient use of hardware resources than does the
Distributed Approach. The differences in resource requirements are however
marginal, amounting to less than 3% of the available resources, for example, Xilinx
Spartan 3 XC3S400 series [48].

Delays associated with large counter values in single based pointers and the
distribution of the pointer values are eliminated in the Distributed Pointer
Approach since each Block RAM partition has one local pointer. The use of small
counters to evaluate addresses for each partition in the Distributed Pointer
Approach increases the speed of memory accesses and consequently, increases
operating frequency. This is because all signals required for memory accesses are
calculated simultaneously at the clock edge. As the third and fourth rows in Table
8 show, the Distributed Approach yields more rapid access to data than does the
Base Pointer Approach.

4.9.8 Result of Constraint Generation
To test the performance of the generated constraints we implemented three

neighbourhood oriented filters. The first is part of a video surveillance system
consisting of two 1-bit, 5-by-5 neighbourhoods, two 1-bit, 9-by-9 neighbourhoods
and one 8-bits, 2700 clock-cycle delay-buffer. The second filter is a pre-processing
stage of an 8-bits object classification system. It consist of a 3-by-3 median filter, a
3-by-3 Sobel edge detect operator and a 3-by-3 average filter. The third filter is
identical to the second filter apart from the fact that the pixels are 24-bits rather
than 8-bits. These filters represent a wide range of operations typical of pre-
processing stages in real-time video processing systems namely logical, compare
and branch, data buffering and arithmetic operations and reasonably wide
neighbourhood sizes.

The memory sub-systems of the filters were implemented using the
standard memory allocation in the RTL synthesis tool and by the IMEM tool. The
filters along with the memory parts were synthesized and verified by means of

65

both behavioural simulation and post-place and route simulation models. Xilinx
Spartan 3 400 FPGA was chosen because it has a sufficient amount of block RAMs
with the possibility of using up to 75% of the logic blocks. It should be noted that
for the standard design, the Xilinx synthesis tool instantiated block RAMs for the 1-
bit line buffers until all the block RAMs were fully used after which distributed
RAMs were used. Table 9. shows the resources usage and the maximum frequency
of the designs implemented by the standard approach and by the IMEM tool for
the three design cases.

The filters were simulated at a frequency of 10MHz (25 frames per seconds)
with three 640-by-480 input images namely Mandril, Chessboard and Peppers. The
simulation time was limited to 6 milliseconds due to the large size of the generated
value change dump (VCD) file which was in excess of 4 gigabytes. This simulation
time is reasonable because it is about 20% of the total required simulation time.
Table 10 shows the dynamic power consumption for the clock, signals and logic of
the designs implemented using the standard method, by the IMEM tool and the
IMEM with constraints. The Xilinx XPower tool was used in obtaining these
values. The table shows a dramatic reduction in power consumption between the
standard and IMEM designs. This is attributed to the real-time video processing
specific memory architecture implemented in IMEM. IMEM with constraints
designs have further power reductions especially in relation to the clock net due to
the compact placement and constraining of the designs.

Table 9. Resource usage summary

 Case I Case II Case III
Resources std imem std imem std imem

of Slices: 1188 873 840 1244 2199 3084
of Flip Flips: 590 798 1060 1642 2874 4357
of 4 in LUT: 3210 1587 1363 2117 3440 5070
of BRAMs: 16 9 6 4 12 8
Freq (MHz): 68 108 79 79 79 79

66

Table 10. Dynamic power consumption

Test Case I (µW) Case II (µW) Case III (µW)
Input std imem i + c std imem i + c std imem i + c

Mand
Clock: 1495 1072 835 875 1167 661 1457 1611 1327
Signals: 2038 388 359 1799 1244 1497 5420 4054 4439
Logics: 1589 607 565 2231 1207 1216 5907 3770 3702
Total 5122 2067 1759 4905 3618 3374 12784 9435 9468
Chess
Clock: 1495 1072 835 875 1167 661 1457 1611 1327
Signals: 1785 281 274 545 369 451 1506 1124 1263
Logics: 1239 379 341 572 376 372 1448 988 983
Total 4519 1732 1450 1992 1912 1484 4411 3723 3573
Peppers
Clock: 1495 1072 835 875 1167 661 1457 1611 1327
Signals: 1730 333 310 1665 831 982 3456 2575 2826
Logics: 1134 550 502 1199 826 372 4103 2477 2440
Total 4359 1955 1647 3739 2824 2015 9016 6663 6593

67

5 PAPERS SUMMARY

Using the IMEM workflow as a guideline, the relationship between the
seven main papers in this thesis is shown in Figure 47. The papers can be grouped
as memory synthesis (allocation and addressing), performance analysis,
integration and post-synthesis optimisation. The papers are summarised as
follows.

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

Memory Hierarchy
Optimization

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

IMEM
Conceptual Modelling

Memory storage
estimation

IMEM Projector High-level Synthesis
Memory

Allocation
Address

Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Agility)

Functional mapping
of algorithm

Papers I & VIIPaper II

Paper III Papers V & VI
Paper IV

Figure 47. Relationship between thesis papers.

68

5.1 MEMORY SYNTHESIS

5.1.1 Paper I

This paper proposed and developed the allocation algorithm for allocating
the estimated on-chip memory requirements. The algorithm is based on heuristics
and near optimally allocates memories based on previously proposed memory
architecture which was concluded to be efficient for real-time video processing
systems. The optimised allocations are the one in which the amount of unused
memory location on instantiated memories is minimal, preferably zero.

5.1.2 Paper VII

This paper extended Paper I to take advantage of the FPGA architecture by
using a cost function defined in terms of required memory sizes, available block
and distributed RAMs resources to motivate the allocation decision. The work in
this paper in conjunction with Paper I, provides a more efficient means of
allocating on-chip memories than current practices in automatic synthesis tools.

5.1.3 Paper II

This paper proposed and developed two memory accessing approaches for
allocated memories. The two approaches were compared and it was shown that
one approach was more area efficient while the other was more speed efficient.
Automatic generation of VHDL modules for managing (allocating and addressing)
memories was implemented in order to access the efficiency of the two accessing
approaches.

5.2 PERFORMANCE ANALYSIS

5.2.1 Paper III

This paper presented an analysis of a variety of memory requirements of
video processing systems allocated using these embedded memory resources. The
analysis was performed using the memory architecture, allocation and addressing
approaches in this thesis over a wide range of possible on-chip memory capacities
and video resolutions. The analysis showed that should FPGAs support multiple
memory sizes, then a greater use of on-chip memories would be achieved because
according to the results obtained the amount of unused memory increases with
Block RAM size for a given resolution. The paper also showed that the amount of
unused memory reduces as video frame resolutions increases.

69

5.2.2 Paper IV
This paper presented a platform that automatically and optimally

implements memory requirements for spatial and temporal real-time video
processing systems targeting FPGAs. The platform is built on the works in this
thesis in order to provide data interfaces to a filter core. The work manages
boundary conditions in order to provide accurate data at image boundaries. The
work in this paper relieves the video processing designer of the burden of
managing the memory requirements. It provides and instantiates a wrapper
module for the filter such that the designer is only required to implement the filter
algorithm in the wrapper.

5.3 TOOLS INTEGRATION

5.3.1 Paper V

This paper presented a synthesis tool for C++ based synthesis of real-time
video processing systems targeting FPGAs. The tool produces cost effective
implementations capable of running at high clock speeds. The number of used
block RAMs is lower than it would be for a manual design and the speed of the
memory architecture is close to the speed of the FPGA resources. The algorithm
that requires the memory synthesized using this high-level synthesis tool can be
written manually or by using third party SystemC to HDL compilers. Thus, the
tool presented in this paper is a significant towards accomplishing a compiler that
effectively synthesizes real-time video processing systems on to an FPGA. This can
lead to new video processing applications, where the combination of high
performance, cost effective FPGA and a fully automated design flow would fulfil
the requirements that otherwise would be difficult to meet by most commercial
tools but are possible by means of the tool in this paper due to the resource reuse
through true dual port allocation to Block RAMs.

5.4 POST-SYNTHESIS OPTIMISATION

5.4.1 Paper VI

This paper presented an approach that automatically generates FPGA place
and route constraints that yield up to 28% reduction in dynamic power
consumption and reduced development time. Reduction in dynamic power
consumption can be achieved by focusing on clock nets and signals, and by taking
advantage of the application domain further reduction is possible through
constraints oriented towards the essential design components. Because on-chip
memories are essential components in FPGA implementation of real-time video
processing systems, specifying constraints that take advantage of their location led
to lower power consumption and better resource utilization.

70

5.5 AUTHORS CONTRIBUTIONS

The exact contributions of the authors of the seven central papers in this
thesis are summarized in Table 11. In the table M and C represent the main author
and co-author respectively.

Table 11. Authors’ Contributions

Paper # NL MO HN BT Contributions
I M C C C NL: Developed and implemented the allocation

algorithm
MO: Supervisor
HN: Analysis and discussion on algorithm feasibility
BT: Analysed the algorithm results from formal
modelling viewpoint.

II M C C NL: Developed and implemented the addressing
approaches
MO: Supervisor
BT: Writing of introduction

III M C NL: Implemented the experimental analyses
MO: Supervisor

IV C C M NL: Implemented spatial memories and, spatial and
spatio-temporal filters to test the implemented
architecture
MO: Supervisor
HN: Provided the Module for managing the boundary
conditions and provision of interface to background
memory for temporal neighbourhood

V M C C NL: Developed and implemented the synthesis
approach
BT: Discussions and review of the paper
MO: Supervisor

VI M C C NL: Developed and implemented the automatic
constraint generation approach
BT: Discussions and review of the paper
MO: Supervisor

VII M C C NL: Developed and implemented the block RAM
minimisation algorithm
BT: Discussions and review of the paper
MO: Supervisor

1. Najeem Lawal (NL)
2. Mattias O’Nils (MO)
3. Håkan Norrel (HN)
4. Benny Thörnberg (BT)

71

6 THESIS SUMMARY

Algorithms for allocating and accessing the memory requirements of
neighbourhood oriented RTVPS operations have been presented in this thesis. The
work in this thesis has been inspired by the efforts involved in finding best
practices in memory allocation to FPGA embedded memory and IMEM’s
philosophy of memory modelling and synthesis independence of the synthesis of
core RTVPS filters. This has led to demands for accurate memory estimations and
efficient synthesis other than those currently available.

An introduction to the research area addressed in this thesis has been
presented in Section 1. Section 1.6 compared the performance of FPGA and DSP in
implementing common RTVPS applications where cache memories are required.
The comparison provides justification for adopting FPGA as the platform for
RTVPS. Section 2 summarised the FPGA resources relevant to this research
whereas Section 3 reviewed the previous works on memory allocation, addressing,
constraint generation and power optimisation. Section 4 presented the main
contribution of this work namely, how to find an automatic and efficient memory
synthesis at low power consumption. Section 4 also presented how the work in this
thesis integrates with other synthesis tools. Section 5 provided brief summaries of
the original papers covered by this thesis and the contributions of the authors to
the papers.

This section presents the conclusion of the research work in this thesis and
possible future works.

6.1 DISCUSSIONS

6.1.1 Memory architecture

For each neighbourhood oriented operation in an RTVPS, the developed
memory architecture groups all the required memory objects (line buffers) to form
a global memory object. This approach offers the advantage of reducing the
number of memory object to be managed by the design. The architecture is based
on the fact that all the memory objects required by an operator will be accessed

72

simultaneously. This architecture leads to approximate savings of 50% with
regards to the number of allocated memories for an operator. This is verified by
observing that four memories would have been required to allocate the four line
buffers identified in Figure 28 if the conventional allocation approach had been
followed as against the two allocated memories in Figure 36 and Figure 37.

6.1.2 Memory allocation

An allocation algorithm has been developed and implemented for the
optimal use of allocated memories. This is based on the fact that inefficient
allocations are performed by the current synthesis tools in which memory objects
are allocated using high datapath widths whenever the memory object width is not
supported. The approach in this algorithm is to partition such unsupported
widths. The advantage of true dual-port memory allocations with the capability of
writing and reading at both ports in one clock cycle was adopted in order to
achieve optimal results. By this means, up to four memory-accessing operations
could be performed in one clock cycle on one memory. The performance of the
algorithm has been investigated using various on-chip memory sizes and video
frame resolutions. It has been shown that efficient memory utilization increases are
possible with smaller memories and larger memory requirements (as depicted in
Figure 44).

6.1.3 Memory addressing

Two addressing approaches for accessing memory have been proposed. The
approaches are based on the regular pattern of data availability and production
typical in video processing. One of the approaches tends to be implementation cost
efficient producing savings of approximately 3% with regards to resources usage
while the other produces higher access speed and provides higher speed
performances of approximately 50%. These two approaches offer the designer the
possibility of choosing between resource and speed optimisation.

6.1.4 Boundary conditions management

The memory allocation and addressing algorithms have been implemented
in order to provide all the pixel data in the first column in a pixel neighbourhood.
Local registers are required to delay pixel data for other locations in the
neighbourhood (See Figure 26). However, in order to ensure valid data are used at
the image boundaries, architecture has been developed and implemented, which
replaces those neighbourhood pixels not within the image by means of a
predetermined default value depending on the operation performed.

6.1.5 IMEM interfaces

The work in this research is part of the IMEM tool. It interfaces with IMEM
to accept the description of the on-chip memory to be implemented as input and
produces VHDL modules to manage the memory requirements. At the top level,

73

data and control interfaces are provided for the core video processing algorithm
(Figure 26). This work allows the video processing designer to focus on the
development of the processing algorithm while relying on IMEM to manage the
memory requirements.

6.1.6 Constraint Generation

Significant reductions in dynamic power consumption can be achieved by
focusing on clock nets and signals, and by taking advantage of the application
domain. Further reduction is possible through constraints oriented towards the
essential design components. Because on-chip memories are essential components
in FPGA implementation of real-time video processing systems, specifying
constraints that take advantage of their location can lead to lower power
consumption and better resource utilization. This paper has presented an approach
that automatically generates constraints that yields up to a 28% reduction in
dynamic power consumption and reduced development time.

6.2 CONCLUSIONS

This thesis presents memory architecture and synthesis optimized for
neighbourhood oriented real-time video processing systems in which memory
write and read accesses exhibit a regular pattern.

The architecture considers the memory requirements for each operator in the
video processing system in order to create one memory object. This memory object
is synthesised using embedded memories in order to minimise external memory
accesses. The synthesis and addressing of the memory requirements has been
automated into a tool that accepts the description of the spatial memory
requirements for all the operators in the video processing system to generate
hardware description language (HDL) modules implementing the memories.

The work in this thesis has been integrated with other modelling and
synthesis tools in order to create an environment for modelling, estimating,
optimising and implementing both on-chip and off-chip memory requirements of
neighbourhood-oriented video processing systems in addition to the boundary
conditions of the algorithm. Within this environment, video processing engineers
are only required to describe the memory requirements of the operators in terms of
the number of frames, frame resolution, pixel resolutions and neighbourhood
dimensions. The tools are able to implement all the memory requirements and thus
enable the engineer to focus on the core algorithm for the system.

This work has been tested using many video processing systems with a
variety of frame and pixel resolutions, neighbourhood dimensions and different
sizes of embedded memories. The results were found to be very close to the
theoretical minima while still offering high memory access speed performances.

FPGAs have been chosen as the target platform for the video processing
systems studied in this thesis. This choice was made despite the challenges of

74

programmability due to possibilities of reduced time-to-market, low non-recurring
engineering cost and programmability in comparison to ASICs, and efficiency of
hardware implementation and high performance of embedded systems in
comparison to DSPs. The contributions of this work reduce the challenges of
system implementation on FPGA by reducing the design time through efficient
automated memory synthesis.

6.3 FUTURE WORKS

In the future, research works should focus on integrating the IMEM tool
with other tools including MATLAB, LabView, and Catapult C from Mentor
Graphics. The goal is to provide a complete modelling, simulation and synthesis
CAD-tool that follows the IMEM workflow to efficiently implement both on- and
off-chip memory for RTVPS.

75

7 REFERENCE

[1] Guccione, S. A. and Gonzalez, M. J., “Classification and Performance of
Reconfigurable Architectures”, Springer Proceedings of Field Programmable
Logic and Applications, pages 439 - 447, 1995.

[2] Slingerland, N. and Smith, A. J., ”Performance Analysis of Instruction Set
Architecture Extensions for Multimedia”, In Proceedings of 3rd Workshop on
Media and Streaming Processors, pages 53 – 75, 2001.

[3] Gonzalez, R., and Woods, R., Digital Image Processing, 2nd edition,
Addison-Wesley Pub., 2002.

[4] Bhatia, D., “Reconfigurable Computing”, In Proceedings of IEEE 10th
International Conference on VLSI Design, pages 356 - 359, I997.

[5] Brown, S. J., “An overview of technology, architecture and CAD tools for
programmable logic devices”, In Proceedings of IEEE on Custom Integrated
Circuits Conference, pages 69 - 76, 1994.

[6] Yang, F. and Paindavoine, M., “Implementation of an RBF Neural Network
on Embedded Systems: Real-Time Face Tracking and Identity Verification”,
IEEE Trans. on Neural Networks, pages 1162 – 1175, 2003.

[7] Draper, B. A., Beveridge, J. R., Bohm, A. P. W., Ross, C. and Chawathe, M.,
“Accelerated image processing on FPGAs”, IEEE Transactions on Image
Processing, pages 1543 – 1551, 2003.

[8] Benkrid, K., “High Performance Reconfigurable Computing: From
Applications to Hardware”, IAENG International Journal of Computer
Science, 35:1, IJCS_35_1_04

[9] Lazarus, R. B. and Meyer, F. M. “Realization of a dynamically reconfigurable
preprocessor”, IEEE National Aerospace Electron Conference, pages 74 –
80, 1993.

[10] Jiang, J., Luk. W. and Rueckert, D. “FPGA-based computation of free-form
deformations in medical image registration”, In Proceedings of IEEE
International Conference on Field Programmable Technology (FPT), 2003,
pages 234 – 241.

[11] Dawood, A. S., Visser, S. J. and Williams, J. A. “Reconfigurable FPGAS for
real time image processing in space”, In Proceedings IEEE International
Conference on DSP, July 2002, pages 845 - 848.

[12] McCurry, P. Morgan, F. and Kilmartin, L. “Xilinx FPGA implementation of an
image classifier for object detection applications”, In Proceedings of the
IEEE International Conference on Image Processing, Oct. 2001, pages 346 -
349.

[13] Guo, Z., Najjar, W., Vahid, F. and Vissers, K. “A quantitative analysis of the
speedup factors of FPGAs over processors”, In Proceedings of ACM/SIGDA
12th International Symposium on FPGA, 2004, pages 162 - 170.

[14] Xilinx, Spartan FPGAs - Gate Array solutions, www.xilinx.com
[15] Tessier, R. and Burleson, W., “Reconfigurable Computing for Digital Signal

Processing: A Survey”, Journal of VLSI Signal Processing, Kluwer Academic
Publishers, 2001.

[16] Standard VHDL Language Reference Manual http://www.eda.org/vhdl-200x/
[17] Verilog, http://www.eda.org/sv/
[18] Gajski, D. D. and Ramachandran, L., “Introduction to High-Level Synthesis”,

IEEE Design & Test of Computers, 1994, pages 44 – 54.

76

[19] Open SystemC Initiative, “SystemC User’s Guide”, version 2.0.1,
www.systemc.org

[20] Sanguinetti, J. and Pursley, D., “High-Level Modeling and Hardware
Implementation with General-Purpose Languages and High-level Synthesis”,
In Proceedings of the 9th IEEE/DATC Electronic Design Processes
Workshop (EDP), April 2002.

[21] De Micheli, G., “Hardware synthesis from C/C++ models”, In Proceedings of
IEEE Design, Automation & Test in Europe Conference & Exhibition, Mar
1999, pages 382-383.

[22] Edwards, S. A., “The challenges of hardware synthesis from C-like
languages”, In Proceedings of IEEE Design, Automation & Test in Europe
Conference & Exhibition, Mar. 2005, pages 66 - 67.

[23] Ghosh, A., Kunkel, J. and Liao, S., “Hardware Synthesis from C/C++”, In
Proceedings of IEEE Design, Automation & Test in Europe Conference &
Exhibition, Mar. 1999, pages 387-389.

[24] Kuhn, T. and Rosenstiel, W., “Java based object oriented hardware
specification and synthesis” In Proceedings of ASP-DAC, Jan. 2000, pages
579 - 581.

[25] Helaihel, R. and Olukotun, K., “Java as a Specification Language for
Hardware-Software Systems”, IEEE/ACM International Conference on CAD,
1997, pages 690 - 697.

[26] Young, J. S., MacDonald, J., Shilman, M., Tabbara, P. H. and Newton, A. R.,
“Design and specification of embedded systems in Java using successive
formal refinement”, In Proceedings of the Design Automation Conference,
Jun. 1998, pages 70 - 75.

[27] Tripp, J. L., Jackson, P. A. and Hutchings, B. L., “Sea Cucumber: A
synthesizing compiler for FPGAs”, In Field-Programmable Logic and
Applications, Springer, Sept. 2002, pages 875 – 885.

[28] Haldar, M., Nayak, A., Choudhary, A. and Banerjee, P., “A system for
synthesizing optimized FPGA hardware from MATLAB”, IEEE/ACM
International Conference on CAD, Nov 2001, pages 314 - 319.

[29] Banerjee, P., Haldar, M., Nayak, A., Kim, V., Saxena, V., Parkes, S.,
Bagchi, D., Pal, S., Tripathi, N., Zaretsky, D., Anderson, R. and Uribe, J. R.,
“Overview of a compiler for synthesizing MATLAB programs onto FPGAs”, In
IEEE Transactions on VLSI Systems, Mar. 2004, pages 312 - 324.

[30] Thomas, D. E., Adams, J. K. and Schmit, H., “A Model and Methodology for
Hardware/Software Codesign”, IEEE Design and Test of Computers, Sept.
1993, pages 6 - 15.

[31] Kalavade, A. and Lee, E. A., “A Hardware/Software Codesign Methodology
for DSP applications”, IEEE Design and Test of Computers, Sept. 1993,
pages 16 - 28.

[32] Chiodo, M., Guisto, P., Jurecska, A., Hsieh, H. C., Sangiovanni-Vincentelli,
A. and Lavagno, L., “Hardware-Software Codesign of embedded Systems”,
Kluwer Academic Publishers Norwell, MA, USA, 2001, pages 313 - 323.

[33] Ku, D. and De Micheli, G., “HardwareC – A language for hardware design”,
Stanford Technical Report, CSL-TR-88-362, August 1988, and CSLTR-90,
April 1990 (Version 2.0).

[34] Ashnden, P. J, The designer’s guide to VHDL, Morgan Kaufmann
Publishers, 2002.

77

[35] George, V. and Rabaey, J. Low-Energy FPGAs: Architecture and Design,
Kluwer Academic Publishers, Boston, MA, 2001.

[36] Kusse, E. A. and Rabaey, J., “Low-energy embedded FPGA structures,”
International Symposium on Low Power Electronics & Design, Aug. 1998,
pages 155 - 160.

[37] Kim, D., “An Implementation of Fuzzy Logic Controller on the Reconfigurable
FPGA System”, IEEE Transactions on Industrial Electronics, Jun 2000,
pages 703 - 715.

[38] Cowen, C. P. and Monaghan, S., “A reconfigurable Monte-Carlo clustering
processor (MCCP)”, In Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, Apr. 1994, pages 59 - 65.

[39] Smith, M. J. S., Application Specific Integrated Circuits, Addison Wesley,
1997

[40] Shang, L., Kaviani, A. S. and Bathala, K., “Dynamic power consumption in
Virtex-II FPGA family”, In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Feb 2002, pages 157 -
164.

[41] Altera Corporation, Stratix II Low Power Design Techniques, March 2005,
Application note 378.

[42] Anderson, J. H. and Najm F. N., “A Novel Low-Power FPGA Routing
Switch”, In Proceedings of the IEEE Custom Integrated Circuits Conference
(CICC), Oct 2004, pages 718 - 722.

[43] Wang, L., French, M., Davoodi, A. and Agarwal, D., “FPGA Dynamic Power
Minimization through Placement and Routing Constraints”, EURASIP
Journal on Embedded Systems, 2006, pages 1 - 10.

[44] Tessier, R., Betz, V., Neto, D. and Gopalsamy, T., “Power-aware RAM
Mapping for FPGA Embedded Memory Blocks”, In Proceedings of ACM
Conference of FPGA, Feb. 2006.

[45] Degalahal, V. and Tuan, T., “Methodology for High Level Estimation of
Power Consumption”, Proceedings of the 2005 Conference on Asia South
Pacific design automation, pages 657 – 660.

[46] Xilinx Inc., Power Consumption in 65 nm FPGAs, www.xilinx.com
[47] Tuan, T. and Trimberger, S., The Power of FPGA Architectures, Xilinx Xcell

Journal, 2007, pages 12 - 15.
[48] Xilinx Inc., Spartan-3 FPGA Family: Complete Data Sheet, www.xilinx.com
[49] Wolf, W., FPGA-Based System Design, Prentice Hall, 2004
[50] Xilinx Inc., Using Block RAM in Spartan-3 FPGAs, www.xilinx.com
[51] Altera, Stratix II Architecture, www.altera.com
[52] QuickLogic, Eclipse II Family Data Sheet, www.quicklogic.com
[53] Actel, ProASIC3 Flash Family FPGA, www.actel.com
[54] Xilinx Inc., MicroBlaze Microcontroller Reference Design User Guide,

www.xilinx.com
[55] Xilinx Inc., System Generator for DSP, www.xilinx.com
[56] Xilinx Inc., AccelDSP Synthesis tool, www.xilinx.com
[57] Thörnberg, B., Palkovic, M., Hu, Q., Olsson, L., Kjeldsberg, P. G., O´Nils M.

and Catthoor, F., “Bit-Width Constrained Memory Hierarchy Optimization for
Real-Time Video Systems”, IEEE Transactions on CAD of Integrated Circuits
And Systems

78

[58] Diniz, P. and Park, J., “Automatic synthesis of data storage and control
structure for FPGA-based computing engines.” In Proceedings FCCM’00,
2000, IEEE Computer Society Press, pages 91 - 100.

[59] Ramachandran, L., Gajski, D. D. and Chaiyakul, V., “An Algorithm for Array
Variable Clustering”, In Proceedings European Design and Test Conference,
Feb.1994, pages 262 - 266.

[60] Gokhale, M. and Stone, J., “Automatic Allocation of Arrays to Memories in
FPGA Processors with Multiple Memory Banks”, In Proceedings of the IEEE
Symposium on Field-Programmable Custom Machines, 1999, pages 63 - 69.

[61] Baradaran, N., Park, J. and Diniz, P.C., “Compiler reuse analysis for the
mapping of data in FPGAs with RAM blocks”, In Proceedings IEEE
International Conference on Field-Programmable Technology, 2004, pages
145 - 152.

[62] Schmit, H. and Thomas, D.E., "Synthesis of application-specific memory
designs”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Mar. 1997, pages 101 -111.

[63] Jha, P. K. and Dutt N.D., “High-level library mapping for memories”, ACM
Transactions on Design Automation of Electronic Systems (TODAES) , Jul.
2000, pages 566 - 603.

[64] Doggett, M. and Meissner, M., “A Memory Addressing and Access Design
for Real Time Volume Rendering”, In Proceedings of IEEE International
Symposium on Circuits and Systems, Jun. 1999, pages 344 - 347.

[65] Grant, D., Denyer, P. B. and Finlay, I., “Synthesis of Address Generators”,
Digest of Technical Papers of IEEE International Conference on Computer-
Aided Design, Nov 1989, pages 116 - 119.

[66] Seo, J., Kim, T. and Panda, P. R., “Memory Allocation and Mapping in High-
Level Synthesis - An Integrated Approach”, IEEE Transactions on VLSI
Systems, Oct. 2003, pages 928 - 938.

[67] Schmit, H. and Thomas, D. E., “Address generation for memories containing
multiple arrays”, IEEE Transactions on CAD of Integrated Circuits and
Systems, May 1998, pages 377 - 385.

[68] Miranda, M., Catthoor, F., Janssen, M. and De Man, H., “High-level address
optimization and synthesis techniques for data-transfer-intensive
applications”, IEEE Transactions on VLSI Systems, Dec. 1998, pages 677 -
686.

[69] Leupers, R. and Marwedel, P., “Algorithms for Address Assignment in DSP
Code Generation”, Digest of Technical Papers of IEEE/ACM International
Conference on Computer-Aided Design, Nov. 1996, pages 109 - 112.

[70] Sugino, N., Miyazaki, H., Iimuro, S. and Nishihara, A., "Improved Code
Optimization Method Utilizing Memory Addressing Operation and its
Application to DSP Compiler", IEEE International Symposium on Circuits
and Systems, May 1996, pages 249 - 252.

[71] Vitabile, S., Gentile, A., Siniscalchi, S. M. and Sorbello, F., “Efficient Rapid
Prototyping of Image and Video Processing Algorithms”, In Proceedings of
EUROMICRO Systems on Digital System Design, 2004

[72] Drayer, H. T., and Araman, P. A., “A development System for Creating Real-
Time Machine Vision Hardware Using Field Programmable Gate Arrays”,
Proceedings of 32nd Hawaii International Conference on System Sciences,
1999.

79

[73] Bariamis, D. G., Iakovidis, D. K., Maroulis, D. E. and Karkanis, S. A., “An
FPGA-Based Architecture for Real Time Image Feature Extraction”,
International Conference on Pattern Recognition (ICPR'04), pages 801 -
804.

[74] Longfei, R. and Songyu, S. “Real-time duplex digital video surveillance
system and its implementation with FPGA”, In Proceedings of IEEE
International Conference on ASIC, 2001, pages 471 - 473.

[75] Panda, P. R. and Dutt, N. D., “Reducing Address Bus Transitions for Low
Power Memory Mapping”, In Proceedings of the IEEE European conference
on Design and Test, 1996, pages 63 - 67.

[76] Park, J. and Diniz, P. C., “Synthesis of Pipelined Memory Access Controllers
for Streamed Data Applications on FPGA-based Computing Engines”, In
Proceedings of IEEE International Symposium on Systems Synthesis
(ISSS), Oct. 2001, pages 221 - 226.

[77] Herz, M., Hartenstein, R., Miranda, M., Brockmeyer, E. and Catthoor, F.,
“Memory Addressing Organization for Stream-Based Reconfigurable
Computing”, In Proceedings of IEEE International Conference on
Electronics, Circuits and Systems, 2002, pages 813 - 817.

[78] Pan, J., Li, S. and Zhang, Y., “Automatic extraction of moving objects using
multiple features and multiple frames”, In Proceedings of IEEE International
Symposium on Circuits and Systems, May 2000.

[79] Smith, A. and Teal, M., “Identification and tracking of maritime objects in
near-infrared image sequences or collision avoidance”, In Proceedings of
International Conference on Image Processing and Its Applications (Conf.
Publ. No.465) , volume 1, July 1999, pages 250 – 254.

[80] Jang, J., Yu, D. and Sun, Z., “Real-time image processing system based on
FPGA for electronic endoscope”, In Proceedings of IEEE Asia-Pacific
Conference on Circuits and Systems. Electronic Communication Systems.
(Cat. No.00EX394), Dec. 2000, pages 682 - 685.

[81] Andreadis, I. and Louverdis, G., “Real-time adaptive image impulse noise
suppression”, IEEE Transactions Instrumentation and Measurement, June
2004, pages 798 - 806.

[82] Zhang, T. and Suen, C., “A fast thinning algorithm for thinning digital
patterns”, In Communications of the ACM, volume 27, Mar. 1984, pages 236
- 239.

[83] Rad, R. and Jamzad, M., “Real-time classification and tracking of multiple
vehicles in highways”, Pattern Recognition Letters, volume 26, Jul. 2005,
pages 1597 - 1607.

[84] Bosco, A., Mancuso, M., Battiato, S. and Spampinato, G., “Temporal noise
reduction of bayer matrixed video data”, In Proceedings of IEEE
International Conference on Multimedia and Expo (Cat. No.02TH8604),
vol.1, Aug. 2002, pages 681 - 684.

[85] Zheng, J., Feng, D., Zhang, Y., Siu, W. and Zhao, R., “An algorithm for video
monitoring under a slow moving background”, In Proceedings of
International Conference on Machine Learning and Cybernetics, Beijing,
Nov. 2002, pages 1626 - 1629.

[86] Zheng, D., Zhao, Y. and Wang, J., “An efficient method of licence plate
location”, Pattern Recognition Letters, pages 2431 - 2438, Volume 26, Issue
15, Jun. 2005.

80

[87] Abouelela, A., Abbas, H., Eldeeb, H., Wahdan, A. and Nassar, S.,
“Automated vision system for localizing structural defects in textile fabrics”,
Pattern Recognition Letters, 26 pages 1435 - 1443, 15 July 2005.

[88] Thörnberg, B., Norell, N. and O'Nils, M., ”IMEM: An object-oriented memory-
and interface modelling approach for real-time video systems”, In
Proceedings of the Forum on specification & Design Languages, Marseille,
Sept. 2002

[89] Thörnberg, B., Norell, N. and O'Nils, M., ”Conceptual Interface and Memory-
Modelling for Real-Time Image Processing Systems. IMEM: A tool for
Modelling, Simulation and Design Parameter Extraction”, In Proceedings of
IEEE Workshop on Multimedia Signal Processing, Dec. 2002.

[90] O’Nils, M., Thörnberg, B. and Norell, H., “A Comparison between Local and
Global Memory Allocation for FPGA Implementation of Real-Time Video
Processing Systems”, In Proceedings of IEEE International Conference on
Signals and Electronics Systems, Sept. 2004.

[91] Lawal, N., Thörnberg, B., O’Nils, M. and Norell, H., “RAM Allocation
Algorithm for Video Processing Applications on FPGA,” Journal on Circuits
Systems and Computers, Vol. 15, No. 5, Oct. 2006.

[92] Norell, H., Thörnberg, B. and O’Nils, M., “Automatic Hardware Synthesis of
Spatial Memory Models for Real-Time Image Processing Systems”,
Norchip´03, Riga, Latvia, Nov 10-11, 2003

[93] Xilinx Inc, Using Block Select RAM+ Memory in Spartan-II FPGAs, XAPP173
(v1.1), Dec 2000, www.xilinx.com

[94] Xilinx Inc., Constraint Guide, www.xilinx.com
[95] Texas Instruments, TMS320C64x Image/Video Processing Library,

http://www.ti.com
[96] Texas Instruments, TMS320C6000 Programmer’s Guide, http://www.ti.com
[97] Texas Instruments, TMS320C64x Technical Overview, http://www.ti.com
[98] Synopsys, C2HDL Compiler, www.synopsys.com
[99] Agility Compiler, www.celoxica.com/agility
[100] Martinolle, F. and Parvathy, U., "Mixed language design data access:

procedural interface design considerations", In Proceedings of VHDL
International Users Forum Fall Workshop, 2000, pages 95 - 99.

[101] Sasaki, H., "A formal semantics for Verilog-VHDL simulation interoperability
by abstract state machine", In Proceedings of DATE Conference and
Exhibition 1999, pages 353 - 357.

[102] Catthoor, F., Greef, E. de and Suytack, S., Custom Memory Management
Methodology. Kluwer Academic Publishers, 1998, ISBN 0-7923-8288-9.

[103] Coyle, F. P. and Thornton, M. A. “From UML to HDL: a Model Driven
Architectural Approach to Hardware-Software Co-Design”, In Proceedings of
Information Systems: New Generations Conference (ISNG), Apr. 2005,
pages 88 - 93.

[104] Bjarklund, D. and Lilius. J., "From UML behavioral descriptions to efficient
synthesirable VHDL", In Proceedings of IEEE NORCHIP Conference, Nov.
2002.

[105] Edwards, M. and Green, P., "UML for hardware and software object
modeling", UML for real: design of embedded real-time systems, 2003,
pages 127 - 147

81

APPENDIX A

The proposed allocation algorithm is presented in Figure A in pseudo-code.
In step 1, the algorithm creates global memory objects according to Eq. (1). In step
2, the algorithm ensures that they conform to the allowable port width
configuration according to definition vii. This step is captured in a procedure,
configure_global_memory_objects(R), presented below the algorithm in Figure A.1. In
steps 3 through to 10, the global memory objects are allocated to the Block RAMs
according to definitions viii to xi. In steps 11 through to 20, the algorithm finds the
optimal use of unallocated memory space in the Block RAM through the second
port. This allocation is also in accordance with definitions viii to xi. Steps 5 and 14
handle the partitioning of the global memory objects with respect to length by
allocating part of the length of the memory object to the Block RAM until the
memory object has been completely allocated. In steps 7 to 9 and 15 to 17, the
algorithm estimates the amount of the memory object possible for allocation to the
available space on a Block RAM. This amount is used to update the memory object
and the Block RAM if the allocation decision is made. In steps 18 to 20, the
algorithm finds the memory object which, when allocated to the remaining space
on the current Block RAM through port B, yields the optimal use of the Block
RAM. The optimal allocation is that for which the unused memory space is
minimum, preferably zero.

The procedure for configuring the width of the global memory objects,
configure_global_memory_objects(R), is based on definitions (iii) and (vii). In step 1 of
the procedure, a container for the set of global memory objects is created. In this
procedure, as the global memory objects are configured they are placed in this
container. The container is returned in step 17 as the output of the procedure. As
the procedure loops through the set of global memory objects in step 2, the width
of each global memory object, WRi, is obtained in step 3 and compared in step 4
with Wn. If WRi is not supported by the FPGA, the segment identifier is created in
step 5. In steps 6 to 14, Wc is looped through and its members, Wn, are compared
with the WRi. This comparison starts from the largest Wn down to the smallest. An
appropriate number of times by which WRi is greater than Wn is used in creating
segments according to definition vii. WRi is updated and reused until it is reduced
to zero. If the FPGA supports WRi, in steps 15 and 16, the object is left un-
partitioned and placed in the returned container.

82

 The Proposed Allocation Algorithm

Algorithm: Memory Allocation(R, M)
Parameters: R[R

1
 … R

I
] set of I memory objects;

 M[M
1
 … M

K
] set of K Block RAMs;

Return: M[M
1
 … M

K
] set of K Allocated Block RAMs;

{
1. create global memory object;
2. R := configure_global_memory_objects(R);
3. for M

k
 := M

1
 upto M

K

4. { for R
i
 := R

1
 upto R

I

5. { determine length of R
i
 to be allocated;

6. determine port on M
k
 for allocation;

7. Allocate R
i
to M

k
;

8. update M
k
;

9. update R
i
;

10. if M
k
 has been completely used

 { take next M
k
;

}
11. else
12. { if no_of_ports on M

k
 = 1

13. { pair(R
i
,M

k
.unused) best_alloc;

14. flag := TRUE;
15. for R

j
 := R

1
 upto R

I

16. { determine length of R
j
 to be allocated

17. temporarily Allocate R
j
to M

k
;

18. temporarily update M
k
;

17. temporarily update R
j
;

19. if M
k
 is completely used

 { Allocate R
j
to M

k
;

 flag = FALSE;
 take next M

k
;

 }
20. pair(R

j
,M

k
.unused) temp_alloc;

21. if temp_alloc.second < best_alloc.second
 { best_alloc := temp_alloc;
 }
 }
22. if flag = TRUE

 { R
i
 := best_alloc.first;

 Allocate R
i
to M

k
;

 update M
k
;

 update R
i
;

 }
 }
}

 }
 }
}

Procedure: configure_global_memory_objects(R)
Parameters: R[R

1
 … R

I
] set of I memory objects;

Return: R[R
1
 … R

I
] set of I memory objects;

{
1. create new set of memory objects New_R;
2. for R

i
 := R

1
 upto R

I

3. { width := R
i
.width;

4. if width ∉ W
c

5. { segment_id := 1;
6. foreach W

i
 in W

c

7. { if width ≥ W
i

8. { count_max := width / W
i
; // integer division

9. width := width – (W
i

× count_max);
10. for count := 1 upto count_max
11. { Mem_Obj temp(W

i
, R

i
.length, R

i
.operator_id);

12. temp.set_segment(segment_id);
13. add temp to new_R;
14. segment_id := segment_id + 1;
 }
 }
 }
 }
15. else
16. { add R

i
 to new_R;

}
 }
17. return new_R;
}

Figure A.1. The proposed allocation algorithm.

	ABSTRACT
	
	SAMMANDRAG
	
	ACKNOWLEDGEMENTS
	
	TABLE OF CONTENTS
	
	ABBREVIATIONS AND ACRONYMS
	
	LIST OF FIGURES
	1.1 Real-Time Video Processing System
	1.2 Implementation Alternatives
	1.2.1 Application Specific Integrated Circuits
	1.2.2 Software Based Processors
	1.2.3 Programmable Hardware Processors

	1.3 Data Requirements in RTVPS
	1.4 Motivation For Efficient Memory Synthesis
	1.5 Problem Description
	1.6 Performance Comparison
	1.6.1 Experimental Set-Up
	1.6.2 Results

	1.7 Main Contributions
	1.8 Thesis Outline
	3.1 Challenges in system development on FPGA
	3.2 Design Methods and Languages
	3.3 Previous Works On On-Chip Memory Synthesis
	4.1 IMEM Synthesis Workflow
	4.2 Tool Integration
	4.3 Memory Synthesis Architecture
	4.4 Memory Implementation
	4.5 Memory Allocation
	4.6 Architecture Driven Block RAM Optimisation
	4.7 Memory Accessing
	4.8 Constraint Generation
	4.9 Results
	4.9.3.1 First test scenario
	4.9.3.2 Second test scenario

	5.1 Memory Synthesis
	5.2 Performance Analysis
	5.3 Tools Integration
	5.4 Post-Synthesis Optimisation
	5.5 Authors Contributions
	6.1 Discussions
	6.2 Conclusions
	6.3 Future Works

