

Thesis for the degree of Licentiate of Technology
Sundsvall 2006

Memory Synthesis for FPGA Implementation of
Real-Time Video Processing Systems

Najeem Lawal

Supervisors: Professor Mattias O’Nils
 Docent Bengt Oelmann
 Doctor Benny Thörnberg

Electronics Design Division, in the

Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall, Sweden

ISSN 1652-8948
Mid Sweden University Licentiate Thesis 14

ISBN 91-85317-30-6

Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall
framläggs till offentlig granskning för avläggande av teknologie licenciates
examen i elektronik torsdagen den 22 Nov. 2006, klockan 10:30 i sal O111,

Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska.

Memory Synthesis for FPGA Implementation of Real-Time
Video Processing Systems

Najeem Lawal

© Najeem Lawal, 2006

Electronics Design Division, in the
Department of Information Technology and Media
Mid Sweden University, SE-851 70 Sundsvall
Sweden

Telephone: +46 (0)60 148561

Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2006

iii

ABSTRACT

In this thesis, a both method and a tool to enable efficient memory synthesis
for real-time video processing systems on field programmable logic array are
presented. In real-time video processing system (RTVPS), a set of operations are
repetitively performed on every image frame in a video stream. These operations
are usually computationally intensive and, depending on the video resolution, can
also be very data transfer dominated. These operations, which often require data
from several consecutive frames and many rows of data within each frame, must
be performed accurately and under real-time constraints as the results greatly
affect the accuracy of application. Application domains of these systems include
object recognition, object tracking and surveillance.

Developments in field programmable gate array (FPGA) have been the
motivation for choosing them as the platform for implementing RTVPS. Essential
logic resources required in RTVPS operation are currently available optimized and
embedded in modern FPGAs. One such resource is the embedded memory used
for data buffering during real-time video processing. Each data buffer corresponds
to a row of pixels in a video frame, which is allocated using a synthesis tool that
performs the mapping of buffers to embedded memories. This approach has been
investigated and proven to be inefficient. An efficient alternative employing
resource sharing and allocation width pipelining will be discussed in this thesis.

A method for the optimal use of these embedded memories and,
additionally, a tool supporting automatic generation of hardware descriptions
language (HDL) codes for the synthesis of the memories according to the
developed method are the main focus of this thesis. This method consists of the
memory architecture, allocation and addressing. The central objective of this
method is the optimal use of embedded memories in the process of buffering data
on-chip for an RVTPS operation. The developed software tool is an environment
for generating HDL codes implementing the memory sub-components.

The tool integrates with the Interface and Memory Modelling (IMEM) tools
in such a way that the IMEM’s output - the memory requirements of a RTVPS - is
imported and processed in order to generate the HDL codes. IMEM is based on the
philosophy that the memory requirements of an RTVPS can be modelled and
synthesized separately from the development of the core RTVPS algorithm thus
freeing the designer to focus on the development of the algorithm while relying on
IMEM for the implementation of memory sub-components.

v

SAMMANDRAG

I denna avhandling presenteras en metod och ett verktyg för möjliggörandet
av effektiv minnessyntes för vidoebearbetande system i realtid på Field
Programmable Gate Array (FPGA). I ett system som bearbetar video i realtid
(RTVPS) upprepas en mängd processer i varje bildruta i en videosekvens. Dessa
processer är ofta beräkningsintensiva och, beroende på videoupplösningen, kan de
också vara mycket dataöverföringsstyrda. Processerna, som ofta kräver data från
en mängd konsekutiva bildrutor och många dataserier inom varje ruta, måste
genomföras exakt och under realtidsbegränsningar, då resultaten i hög grad
påverkar tillämpningens exakthet. Tillämpningsområden för dessa system
innefattar igenkänning av föremål, spårning av föremål samt övervakning.

Utvecklade produkter inom FPGA har motiverat användandet av dessa som
plattform för tillämpning av RTVPS. De nödvändiga logikresurser som krävs för
RTVPS-processer är för tillfället tillgängliga, optimerade och inbyggda i modern
FPGA. En sådan resurs är det inbyggda minne som används för datalagring under
videoprocessning i realtid. Varje datalager motsvarar en rad pixlar i en videoruta
som automatiskt allokeras på FPGAs. Denna metod har undersökts och visat sig
vara effektiv. Ett effektivt alternativ som utnyttjar resursdelning och anslag vid
rörledning diskuteras i denna avhandling.

En metod för optimal användning av dessa inbäddade minnen och ett
verktyg som stöder automatisk generering av HDL-koder för minnessyntes enligt
den utvecklade metoden är fokus för denna avhandling. Denna metod består av
minnesarkitektur, allokering och adressering. Metodens centrala mål är optimal
användning av inbäddade minnen under lagring av data på chip för en RTVPS-
operation. Den utvecklade mjukvaran är en miljö för att generera HDL-koder, där
minneskomponenter tillämpas.

Verktyget integreras med IMEM-verktyg (Interface and Memory Modelling)
på ett sådant sätt att IMEM:s utdata – minneskraven för ett RTVPS, importeras och
behandlas för att generera HDL-koderna. IMEM baseras på filosofin att
minneskraven för ett RTVPS kan modelleras och syntetiseras separat från
utvecklandet av den ursprungliga huvudalgoritmen för RTVPS och därigenom ge
designern frihet att fokusera på utvecklingen av algoritmen, medan IMEM
används för tillämpning av minneskomponenter.

vii

ACKNOWLEDGEMENTS

First of all I would like to greatly appreciate my supervisors Prof.
Mattias O’Nils, Doc. Bengt Oelmann and Dr. Benny Thörnberg for their
academic and scientific guidance and inspirations, and for giving me the
opportunity to study for Ph.D. Prof. Hans-Erik Nilsson, Dr. Jerzy Kirrander
and Håkan Norell are greatly acknowledged for their contributions and
inspirations. I am grateful to Fanny Burman and Malin Bydén-Sjöbom for
their kind supports.

I would like to thank all my colleagues at the Mid Sweden University

namely, Suliman, Jon, Niklas, Cao, Göran, Peng, Kannan, Mats, Krister, Janne,
Johan, Fredrik, Kent, Henrik, Claes, Börje, Lotta, Andreas and Magnus for
their supports and companionship during this research and for making my
life in Sweden more interesting.

I would also like to express my gratitude to the Mid Sweden Unviersity,

the Swedish KK foundation and ARTES Graduate School for their financial
supports.

I would like to appreciate Professor Petru Eles for accepting to be my

opponent.

Finally, I am grateful to my family and friends for their supports.

Sundsvall, Nov 2006

Najeem Lawal

ix

TABLE OF CONTENTS

ABSTRACT ... III

SAMMANDRAG ...V

ACKNOWLEDGEMENTS...VII

TABLE OF CONTENTS ..IX

ABBREVIATIONS AND ACRONYMS ..XIII

LIST OF FIGURES .. XV

LIST OF TABLES .. XVII

LIST OF PAPERS... XIX

1 INTRODUCTION...1
1.1 REAL-TIME VIDEO PROCESSING SYSTEM (RTVPS)1
1.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA) ..2
1.3 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS ..4
1.4 PROBLEM DESCRIPTION...5
1.5 MAIN CONTRIBUTIONS ...6
1.6 THESIS OUTLINE..6

2 RELATED WORKS...7
2.1 WHY FPGA? ..7

2.1.1 Programmable Logic Cells ..7
2.1.2 On-chip RAM...9
2.1.3 Embedded cores ...10
2.1.4 Challenges in system development on FPGA11

2.2 EARLIER WORKS ON ON-CHIP MEMORY SYNTHESIS13
2.2.1 Allocation algorithms ...13
2.2.2 Memory addressing...14
2.2.3 Response to related works..15

3 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING
SYSTEMS ...17

3.1 IMEM SYNTHESIS WORKFLOW ..17
3.2 MEMORY ARCHITECTURE...18
3.3 MEMORY ALLOCATION ...19

3.3.1 Allocation algorithm...20
3.3.2 Definitions..21
3.3.3 Proposed algorithm ...24
3.3.4 Complexity analysis...25

x

3.4 MEMORY ACCESSING...25
3.4.1 Base Pointer Approach..26
3.4.2 Distributed Pointer Approach...28

3.5 RESULTS...29
3.5.1 Real-time video processing design cases29
3.5.2 Allocation Results ..30
3.5.3 Performance analysis with varying length and width33
3.5.4 Performance analysis with varying length and Block RAM sizes....35
3.5.5 Performance Analysis for video processing systems......................37
3.5.6 Results of the addressing..38

3.6 COMPARISON WITH DSP ..39
3.6.1 DSP Implementation..39
3.6.2 FPGA Implementation ...40
3.6.3 Comparison Results ..41

3.7 INTEGRATION WITH IMEM ..43
4 PAPERS SUMMARY ..45

4.1 MEMORY SYNTHESIS ...45
4.1.1 Paper I ...45
4.1.2 Paper II ..46

4.2 PERFORMANCE ANALYSIS ..46
4.2.1 Paper III ...46
4.2.2 Paper IV...46
4.2.3 Paper V..46

4.3 AUTHORS CONTRIBUTIONS...47
5 THESIS SUMMARY ..49

5.1 DISCUSSIONS ..49
5.1.1 Memory architecture..49
5.1.2 Memory allocation ...49
5.1.3 Memory addressing ...50
5.1.4 Boundary conditions management..50
5.1.5 IMEM interfaces...50

5.2 CONCLUSIONS ...50
5.3 FUTURE WORKS ..51

5.3.1 Video data interface...51
5.3.2 Tools interfacing ..51
5.3.3 Prototyping environment..52
5.3.4 Neighbourhood oriented operations ..52
5.3.5 Central Controller State Machine ..52
5.3.6 Power models..52

6 REFERENCE...53

APPENDIX A...57

PAPER I ..59

PAPER II ...83

xi

PAPER III ..91

PAPER IV..97

PAPER V...105

xiii

ABBREVIATIONS AND ACRONYMS

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction set Processor
CAD Computer Aided Design
CLB Configurable Logic Block
CPLD Complex PLD
CPU Central Processing Unit
DRAM Dynamic RAM
DSP Digital Signal Processing
FIFO First In First Out
FPGA Field Programmble Gate Array
GMO Global Memory Object
HDL Hardware Description Language
HLL High Level programming Language
IMEM Interface and Memory Modeling
IP Intellectual Property
LUT Look Up Table
PLD Programmble Logic Device
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RTVPS Real-Time Video Processing System
SLWC Sliding Window Controller
SRAM Static RAM
VHDL VLSI HDL
VIP Video/Image Processing
VLSI Very Large Scale Integration

xv

LIST OF FIGURES

Fig. 1. Time-to-Market - FPGAs vs. ASIC [11] 2
Fig. 2. Product time-in-market [11] 3
Fig. 3. Signal processing implementation spectrum [12]. 3
Fig. 4 Basic architecture for the implementation of line buffers in

neighbourhood oriented image processing operations. Part a) shows an
example of a 3-by-3 neighbourhood and b) its implementation. 5

Fig. 5 Overview of Xilinx Spartan 3 [22] 8
Fig. 6 Xilinx Spartan 3 CLB [22] 8
Fig. 7 SRAM core cell [23] 9
Fig. 8. RAM data path [24] 10
Fig. 9. Spartan 3 MicroBlaze embedded processor [27]. 11
Fig. 10. System synthesis workflow 18
Fig. 11 Global Memory Object formation 19
Fig. 12. Traditional memory allocation. 19
Fig. 13. Proposed memory allocation. 21
Fig. 14. Partitioning global memory object. 23
Fig. 15. Allocation model. 24
Fig. 16. The proposed allocation algorithm. 25
Fig. 17 Two memory accessing approaches 26
Fig. 18. Base Pointer Approach. 27
Fig. 19. Distributed Approach. 29
Fig. 20. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA. 32
Fig. 21a. First test scenario on Spartan 2E. 33
Fig. 22a. Second test scenario on Spartan 2E. 34
Fig. 23. Block RAM usage with varying memory requirements 36
Fig. 24 Boundary conditions implementation architecture 40
Fig. 25 Resource usage on FPGA 41
Fig. 26 Resource usage on DSP 42
Fig. 27 Performance 42
Fig. 28. Power consumption 42
Fig. 29 System integration and verification 43
Fig. 30 Relationship between thesis papers. 45

xvii

LIST OF TABLES

Table 1. Memory requirement of considered design cases.30
Table 2. Allocation result of the algorithm on Spartan 2E.......................................30
Table 3. Allocation result of the algorithm on Spartan 3. ..31
Table 4. Average allocation results for all cases ..37
Table 5. Allocation on Spartan II ..37
Table 6. Allocation on Spartan III ...38
Table 7. Comparison of the two approaches. ...38
Table 8. Authors’ Contributions...47

xix

LIST OF PAPERS

This thesis is mainly based on the following five papers, herein referred
to by their Roman numerals:

Paper I

RAM Allocation Algorithm for Video Processing
Applications on FPGA,
Najeem Lawal, Benny Thörnberg, Mattias O’Nils and Håkan
Norell,
Accepted for publication in Journal of Circuits, Systems and
Computers., Vol. 15, No. 5, October 2006.

Paper II Address Generation for FPGA RAMs for Efficient

Implementation of Real-Time Video Processing Systems,
N. Lawal, B. Thörnberg, M. O'Nils,
Proceedings of the Conference on Field Programmable Logic
and Applications, Tampere, Finland, 2005, pp. 136 - 141.
ISBN 0-7803-9362-7

Paper III Embedded FPGA Memory Requirements for Real-Time Video

Processing Applications
Najeem Lawal and Mattias O'Nils,
Proceedings of the 23rd Norchip Conference, Oulu, Finland
November 2005, pp. 206 - 209.
ISBN 1-4244-0064-3

Paper IV Comparison of FPGA and DSP performances in

neighbourhood oriented real-time video processing
Najeem Lawal, Håkan Norell and Mattias O'Nils,
Submitted to Transactions of VLSI Systems Special Section on
Configurable Computing Systems,

Paper V Automatic Generation of Spatial and Temporal Memory

Architectures for Embedded Video Processing Systems,
H. Norell, N. Lawal and M. O’Nils,
Accepted for publication in European Association for Signal and
Image Processing (EURASIP) Journal on Embedded Systems.

xx

Related papers not included into this thesis:

 Evaluation of embedded RAM characteristics for FPGA
implementation of real-time image processing systems,
J. Rojas, N. Lawal and M. O'Nils,
In manuscript

 C++ based System Synthesis of Real-Time Video Processing

Systems targeting FPGA Implementation,
M. O'Nils, B. Thörnberg and N. Lawal,
In Proceeding of FPGAworld Conference, Nov 2007.

1

1 INTRODUCTION

This thesis concerns the memory synthesis for the real-time implementation
of video processing systems on FPGA. Real-Time Video Processing System
(RTVPS) will first be introduced, followed by a brief introduction to Field
Programmable Gate Array (FPGA), which will be compared to other
implementation platforms. A justification for the choice of FPGA as the target
platform for the work in this thesis will be given. The motivation for embarking on
the research work presented in this thesis is also provided. In the later sections,
related works and the contributions of this thesis are presented.

1.1 REAL-TIME VIDEO PROCESSING SYSTEM (RTVPS)

In an RTVPS the video signal is processed sufficiently quickly so that the
rate of generating output pixels matches the rate of receiving input pixels. Hence
there is a throughput of one pixel per clock cycle. Thus after an initial delay, the
system enters a state during which a pixel is being received at the input side and,
at the same time, a pixel is being produced at the output side. This does not,
however, imply that this output pixel is the result of the newly received input pixel
since there would be delays due to data buffering and pipelines in the
computation.

A common feature in RTVPS is that the majority of the operations are
neighbourhood oriented and thus require buffers for the pixel data required in the
neighbourhood [1]. A neighbourhood of pixels constitutes a set of pixel data from
which an RTVPS operator in the processing algorithm calculates an output pixel
corresponding to the neighbourhood's central pixel. The neighbourhood is built
around each pixel in the input image to generate an output image. The
consequence is that a large amount of data buffers (line- and frame-buffers) are
required depending on the size of the video frame and the operation window to
ensure that all the required pixel data for each operation are available. Line buffers
are used to store rows of pixels in the spatial neighbourhood. A spatial
neighbourhood normally has dimensions of M-by-N, where M and N are odd
values such that the central pixel is symmetrical about any axis. N and M denote
the height and width of the spatial neighbourhood and usually determine the
number of line buffers and delay elements required by the spatial neighbourhood
operator respectively. Frame buffers are used to store images in the temporal
neighbourhood. A temporal neighbourhood normally has dimensions of L-by-M-
by-N, where M and N are defined as above and L, also an odd value, denotes the
temporal depth of the neighbourhood. L determines the number of frame buffers
in the temporal neighbourhood. Line buffers are usually allocated to on-chip
memories while external memories are required for frame buffers. The size of each
element in these buffers depends on the dynamic range of the video signal. Hence
a 5-by-5 spatial neighbourhood requires four line buffers while two line buffers are

2

required by a 3-by-3 neighbourhood. In the temporal domain, a neighbourhood of
seven frames will require six frame buffers. An efficient data management tool is
required since memory accesses generally constitute major bottlenecks.

1.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Reconfigurable computing involves the use of reprogrammable hardware- /
software-based devices such as a custom-built computing machine in order to
implement the current functional demands of the systems [2]. This means that as
the system requirements increase, more modules can be added to extend the
computational capability of the system to meet the new requirements. The obvious
advantages are that new chips would not have to be built each time the system
requirements change and also the opportunity to customize the device through
Intellectual Property (IP) reuse for different functions. Hence, with a library of IP
cores, different components can be glued together to meet the system
requirements. The sacrifice is that the platform is required to accommodate a very
wide range of possible implementation updates and application areas, which
means there is no guarantee that the total capacity of the devices will always be
used and hence there is rarely optimal usage of resources. When compared to
ASIC and ASIP, reconfigurable devices tend have low performance since there are
based on generic hardware architecture which has not been optimized for any
specific application domain.

Depending on the capacity and architecture of the constituent basic
elements, reconfigurable hardware can be categorized as programmable logic
devices (PLD), complex PLD (CPLD) and FPGA. An overview of technology,
architecture and programming tools for programmable hardware devices is
presented in [3]. FPGA programmability enables hardware designers to greatly
reduce the overall product time-to-market as shown in Fig. 1.

Relative Time

FPGA

ASIC

0 100

Significatnt FPGA Time Savings

Test Vector Generation

Production Ramp-up Simulation

Sales

Sales

Fig. 1. Time-to-Market - FPGAs vs. ASIC [11]

3

Other advantages of a programmable solution include reduced development
costs (little non-recurring engineering costs), the possibility of rapid prototyping
and the ability to support field upgrades and remote downloads that will extend
the longevity of the product in the market (time-in-market). These are depicted in
Fig. 2. Hence according to Fig. 2, the sooner that hardware designers market their
products, the greater their income. This is one of the major advantages of FPGAs
and explains why many applications, which have historically been implemented in
software and/or ASIC, are now being implemented on FPGAs [4], [5].

Start of Market Window End of Market Window

Potential
Market

Realized Market due to
time-to-market delays

Fig. 2. Product time-in-market [11]

The implementation of computationally intensive and data transfer

dominated applications, which are common in RTVPS, has previously been
dominated by Digital Signal Processors (DSP) and dedicated applications specific
integrated circuit (ASIC). However, developments in FPGA have made it possible
to implement RTVPS applications using FPGA [4], [5]. Fig. 3 shows the
implementation spectrum across computing devices. It should be noted that the
different platforms in Fig. 3 are not isolated as depicted in the figure but are over-
lapping clouds.

General-Purpose
Processor

Programmable
DSP

Reconfigurable
Hardware

Specialization

Programmability

ASIC

Fig. 3. Signal processing implementation spectrum [12].

4

FPGA has been compared to DSP and ASIC for many applications, domains
[4] - [10]. [10] provides both quantitative and qualitative arguments for the
performance advantages of FPGA. As shown in Fig. 3, FPGA offers specialization
and performance which is close to ASIC, but it is not as easily programmable as
DSP and processors. This limitation had led to the development of hardware
description languages and tools to reduce the challenges of FPGA programming.
The developed languages include the following, VHDL [13], Verilog [14], C/C++
[15], SystemC [16], MATLAB [17] and Java [18].

Because of its software re-configurability, hardware performance, IP reuse,
time-to-market and increased number of optimised embedded resources, FPGA
has been chosen as the target platform for the method developed in this thesis.

1.3 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS

If a simple RTVPS application is considered involving only spatial domain,
for example a Sobel Operator for detecting edges in a video frame, then a
neighbourhood (3-by-3) would be built around each pixel in the frame. Building
such a neighbourhood requires the necessary pixel data to be stored. Fig. 4 depicts
such a neighbourhood where, pij represents the pixel data at the i-th column and j-
th row in the neighbourhood, dpixel is the pixel data entering the neighbourhood as
the processing window traverses all the pixels in the image and d is a clock delay.
Line buffers are required to store these pixel data in order to create the
neighbourhood. In Fig. 4b, these buffers are represented as line buffer. A line buffer
can be thought of as a First-In-First-Out shift register (FIFO) - with predetermined
constant length - that can be implemented as a circular buffer allocated to a set of
memory locations.

5

Line buffer Line buffer

d d d d d d

p11 p12 p13

p21 p23

p31

p22

p32 p33

p33 p32 p31 p23 p22 p21 p13 p12 p11

a)

b)
dpixel

dpixel

Fig. 4 Basic architecture for the implementation of line buffers in neighbourhood
oriented image processing operations. Part a) shows an example of a 3-by-3

neighbourhood and b) its implementation.

Managing the line-buffers (memory objects) identified in Fig. 4 is the focus
of this work. The main goal is to develop an automatic memory synthesis tool that
makes the most efficient use of the addressable memory locations available in all of
the instantiated FPGA on-chip memory before instantiating another.

1.4 PROBLEM DESCRIPTION

The method of allocating the line buffers identified in Fig. 4 to FPGA on-chip
memory greatly affects use of the memory depending on the size of the on-chip
memory. In addition, the length of the line buffer and the bit-width of each of the
elements in the line buffer also affect the efficiency of the allocation. Increasing the
neighbourhood dimension, in terms of the number of frames, L, the width of the
video frame, M and number of line buffers, N as well as the number of operators in
the RTVPS application leads to increasing complexities in data management. In
general, managing the data required in such a neighbourhood leads to three major
problems namely:

1. Data allocation problems due to pixel- and video-width (when the bit-
width of each element in a line buffer and its length are not directly
supported for allocation)

2. Data management problems caused by the increasing number of line
buffers, N

3. Data management problems caused by the increasing number of RTVPS
operators and number of frames, L

6

These problems will be discussed at a later stage in the thesis (Section 3.3).

1.5 MAIN CONTRIBUTIONS

The main contribution of this research is to provide solutions to the
problems identified above. The following solutions are offered to the problems:

1. Memory architecture - organizing the data required by RTVPS operator.
2. Memory allocations and accessing.
3. Interfaces to frame data required by operators in temporal neighbourhood.

These solutions will be discussed at a later stage together with the results

obtained by their use. Tests on the performance of the solutions and comparisons
with other works are also discussed.

1.6 THESIS OUTLINE

The next section presents the developments and trends within FPGA with
focus on embedded memory and DSP cores. Earlier research works relating to on-
chip memory allocation and memory addressing are also presented. In Section 3,
the contribution of this research work is presented. The connections between this
work and others at Mid Sweden University are presented. Section 3 also presents
the results of this work, the performance when increasing RTVPS complexity as
well as FPGA technology and comparisons with other works. Section 4
summarises the work covered by all the papers included in this thesis. The papers,
which represent original contributions of this research work, are added as
appendices. Section 5 summarises and concludes the contribution of this thesis.

7

2 RELATED WORKS

In this section, FPGA features relevant to this research and earlier work in
the field of memory optimization for FPGA are presented.

2.1 WHY FPGA?

FPGAs have been employed in implementing high-performance
computations such as fuzzy logic controller, [19], complex Monte Carlos and
percolation problem simulations [20]. In [4], an FPGA was used for face tracking in
streaming video using an RBF neural network for real-time verification. The
literature is exhaustive with regards to the use of FPGAs for network monitoring,
audio/video signal processing and safety critical applications. These are the
application areas previously earlier dominated by DSP. The attractions for
implementing these applications on FPGAs can be traced to those features that
distinguish them from other computing platforms. These features are listed as
follows [21]

1. On-chip RAM blocks and distributed memories
2. Embedded processors
3. Dedicated computational units (multipliers and DSP block)
4. Programmable logic cells
5. Programmable interconnect
6. Programmable Input/Output cells
7. Logic cells can implement combinational and/or sequential logic.

Although specific implementation details vary among the vendors, the focus

here is on Xilinx Spartan 3 [22] and additionally, the features common to the FPGA
vendors are presented in detail. Fig. 5 shows the architectural overview of Xilinx
Spartan 3. In the figure, DCM, IOB and CLB represent Digital Clock Manager,
Input/Output Blocks and Configurable Logic Blocks respectively. The remaining
part of this section will discuss the first four items in the above list.

2.1.1 Programmable Logic Cells

The programmable logic cell is the basic building block for implementing
combinatorial and sequential logic. Logic cells are mostly categorized as either
fine-grain or coarse-grain architectures, depending on the number of gates in them.
Since the logic cell is the smallest unit available, it can be organized
programmatically into complex units needed to perform functional requirement of
the device. In an SRAM-based FPGA, a logic cell essentially consists of a lookup
table (LUT) and a register to store the LUT value [23]. For example, LUTs provide
the main resource for implementing logic functions. LUTs can be configured as
Distributed RAM or a 16-bit shift register. The storage elements can be

8

programmed as either a D-type flip-flop or a level-sensitive latch to provide a
means to synchronize data to a clock signal. Wide-function multiplexers effectively
combine LUTs in order to permit more complex logic operations. The carry chain,
together with various dedicated arithmetic logic gates, supports rapid and efficient
implementations of mathematical operations.

For Xilinx Spartan 3 FPGA, the logic cell is coarse-grain based and is referred
to as the configurable logic block (CLB). Each CLB contains both combinatorial and
sequential logics [24]. The function of a CLB is stored in a RAM-based look-up
table (LUT) within the CLB. The programming on the LUT determines the use of a
CLB for logical and data storage functions. Fig. 6 depicts the implementation of
CLBs for Xilinx Spartan 3. Each CLB is organized into four interconnected slices.
Each slice contains two logic function generators (LUTs), two storage elements,
wide function multiplexers, carry logic and arithmetic gates in addition to other
elements.

Fig. 5 Overview of Xilinx Spartan 3 [22]

Fig. 6 Xilinx Spartan 3 CLB [22]

9

2.1.2 On-chip RAM
Access to data during signal processing greatly affects the performance of a

system. Data fetches from external memory are subject to latency of the
communicating devices and signal integrity due to cross-talk from neighbouring
signals. The availability of on-chip RAM memory eliminates / reduces this latency.
The random access memory (RAM) offers fast direct access to re-writeable memory
locations making it appropriate for use with streaming data where buffering or
caching of data is necessary. RAMs can be dynamic (DRAM) or static (SRAM).
SRAMs are faster, larger (6 transistor core, Fig. 7) and require more power while
DRAMs are slower, smaller (1 transistor core), requires less power, and requires
that the data be periodically refreshed due to substrate leakage [23]. Although,
SRAMs are bulkier than DRAMs they are used in fabricating FPGA basic logic cells
and on-RAM due to speed and because they do not require data refresh. On-chip
RAMs can be implemented as single-port, dual-port and multi-port [23]. Fig. 7
shows the SRAM core circuit. The memory value is stored in the loop connected
pair of inverters. The two extreme transistors connect the bits line to the inverters.
When the select (powered by the RAM enable) signal is low, the inverters reinforce
their values. When the select is high, a read is performed by driving the bit lines
value (pre-charged to VDD) to the value of the closer inverter. With a high value on
select, a write is performed by loading the bit lines appropriately and using their
values to drive the inverters. This is possible since the bit lines have higher
capacitances than the inverters [23]. The core in Fig. 7 implements a single port
RAM, but a dual-port RAM can be achieved by the additional select and bit lines
connected to transistors at the opposite ends of the inverters (in parallel with those
presently linking the bit lines to the inverters). In a similar manner, multi-port RAM
can be built by increasing the number of bit lines and the linking transistor pairs.
Obviously the additional costs for select line, two bit lines and two transistors make
it expensive to implement multi port RAMs.

select

bit bit'

+

Fig. 7 SRAM core cell [23]

10

Typical on-chip dual- and single-port RAMs have the necessary control

signals and, data and address busses for independent memory access (reading and
writing) at a port [22]. In addition, a RAM block can be asynchronous or
synchronous depending on whether the read and write cycles can be triggered by
control and/or address transitions asynchronous to a clock or synchronous to the
system clock [24]. Fig. 8 shows data path of a full implementation of true dual-port
on the Xilinx Spartan 3 FPGA. In the figure, data path 1 implements write to and
read from Port A, data path 2 write to and read from Port B, data path 3
implements data transfer from Port A to Port B, and data path 4 implements data
transfer from Port B to Port A. Single port allocation can be achieved through data
path 1 or 2 if implemented exclusively. Data paths 3 or 4 are used to implement
dual port allocation. A true dual port allocation is achieved when data paths 1 and
2 are implemented together on a single Block RAM. The problem of address
contention in dual- and multi-port can be solved by specifying the order of
execution for example, read first or write first.

Spartan-3
Dual-Port

Block RAM Po
rt

A

Write

Read

Write

Read

Write

Read

Read

Write

Po
rt

B

3

1

4

2

Fig. 8. RAM data path [24]

2.1.3 Embedded cores

Different FPGA vendors provide embedded core for implementing signal
processing tasks that are not easily achievable in hardware or which have a
reduced real-time performance. In the Stratix Architecture these are called Digital
Signal Processing (DSP) Blocks [25], Embedded Multipliers in Spartan 3 [22] and
Embedded Computational Units in Eclipse II [26]. Thus, DSP functions such as FIR
filters, IIR filters, fast Fourier transforms, direct cosine transforms, correlators and
functions such as multiply-add and multiply-accumulate can be readily
implemented using these embedded cores. Multipliers are implemented as 9-by-9,
18-by-18 or 36-by-36 bits multipliers. However, they can be cascaded for higher
multiplicands.

11

In addition to multipliers, FPGA often come with embedded processors for
the implementation of control intense algorithms and divide functions that are
better implemented via high level languages such as C/C++. It is also possible for
a designer to implement micro-controller and processor core when the core is not
embedded in the FPGA. Using the Xilinx Embedded Development Kit, a 32-bit
RISC architecture-based soft processor that runs at 150 MHz to deliver up to 120
DMIPs [27] can be implemented on a Xilinx Spartan 3 FPGA. Fig. 9 shows the
functional parts of the Spartan 3 MicroBlaze embedded processor [27].

IP cores optimized for different FPGAs are provided by the different FPGA
vendors. In addition, glue logics for IP cores developed by third parties are
provided. Hence FPGAs, which are primarily hardware platforms, provide a
medium for implementing software algorithms which in turn, enable better
implementation of complex function. When combined with on-chip RAM, soft
cores reduce both latency, by means of their close proximity to the required data,
and system costs through the elimination of external microcontrollers.
Development suites for porting applications on this embedded processor or using
the multipliers are usually provided by the FPGA vendors.

Clock

Reset

Interrupt

JTAG Ports

Micorblaze
CPU
Core

DOPB

DLMB ILMB

Dual Ported
BlockRAM

(BRAM)

A B

OPB

UART 4X
GPIO

JTAG_UART

Fig. 9. Spartan 3 MicroBlaze embedded processor [27].

2.1.4 Challenges in system development on FPGA

Although FPGAs offer many opportunities, there are a number of challenges
to system development particularly in the field of video processing. Some of these
challenges include abstraction level, design verification, resource usage and power
consumption which are discussed in the following sections:

Abstraction level
A major challenge to implementing applications on FPGAs is the

programming model, which is at a very low level of logic abstraction through

12

hardware description languages and thus requires a high level of expertise and
time. Often designers familiar with software programming languages conceive
algorithm executions in sequential order and thus try to program hardware in a
similar manner. This leads to non-optimal implementations. They are many design
tools whose aim is to translate software codes into hardware [15], [65] [66]-[67]. In
this work, the abstraction level for implementing memory sub-component for an
RTVPS by means of a memory allocation tool is raised.

Design verification
As FPGA capabilities and design complexities increase, verification and

simulation become more complex. In order to satisfy the requirements of complex
designs both Verilog and VHDL are often used to implement design sub-
components, often through IP cores. Co-simulation and synthesis of the sub-
components are both difficult and error prone. In addition access to simulation
stimuli and responses are often complex and are provided by other tools written in
other languages. This leads to coping with procedural language interfaces of the
two languages within one design. Design considerations to overcome this problem
are presented in [68] while [69] presented formal semantics for Verilog-VHDL co-
simulation.

Resource usage
The essential logic resources on FPGAs are arithmetic and logic resources,

embedded memory and logic cells. They are available optimised but in limited
amount. It is necessary to have a balanced usage of these resources in an
application in order to avoid shortage of one type of resource while having excess
of others. In this work we have achieved efficient use of embedded memories. In
the future we would find efficient use of the arithmetic resources and logic cells
through resource reuse within each operator in an RTVPS. This operator-based
resource reuse will minimise routing network thus increase speed performance at
reduced the active power to the routing network.

Energy and power consumption
In FPGA two major sources of energy consumption include active power

and leakage current. Energy consumption based on leakage current depends on
the process technology [RR] and can only be address by the FPGA vendors. A
study of the leakage current on Xilinx Spartan 2E, 3 and Virtex 2 shows an
increasing trend. Energy consumption based active power depends on activities at
the I/O blocks, switching activities on the routing network and logic cells, and
memory accesses. By using embedded memory to implement line buffers, we
reduce data transfer to external memories [70] and thus reduce I/O block
switching activities. Power consumption can be further reduced through efficient
embedded memory accesses, compact routing network and efficient logic design.

13

2.2 EARLIER WORKS ON ON-CHIP MEMORY SYNTHESIS

In this section, the focus is on memory allocation and addressing targeting
FPGA on-chip memory. Works relating to memory estimations are not included
since such works have been extensively studied and addressed while developing
IMEM [58], [59]. In addition, allocation of external memories is not included in this
thesis.

2.2.1 Allocation algorithms

There have been many algorithms for the optimal storage of a scalar
variable. These approaches usually involve storing scalar variables with non-
overlapping lifetime in the same register or grouping the scalars together to form
an array which would be allocated to a Block RAM. A common feature of these
approaches is the necessity for scheduling and determining memory access
pattern. These efficient and well researched approaches cannot be use for
allocating large array variables which result from the line buffers (identified in Fig.
4) because of the following:

1. it is assumed that the elements in the line buffers have regular

cyclical read-and-write access patterns relating to the video frame
width typical of FIFOs,

2. it is assumed that the size of the line buffers is large which often
leads to allocating one line buffer to many Block RAMs hence
grouping many line buffers into one Block RAM is not a feasible
option

3. the identical access pattern of all the line buffers and the
requirement of throughput of one pixel per clock cycle eliminates
access scheduling

Because of the above concerns only related works which focus on allocation

of array variable will be presented
Diniz et al. [28] presented a C-compiler that can extract storage requirements

and considers data reuse as registers and allocates Block RAMs together with
datapath- and control structures. The compiler employs data access patterns in a
loop nest to minimize memory access and uses registers to exploit data queues
after loop unrolling. However, exactly how the memory allocation is performed is
not addressed by Diniz et al.

The MeSA algorithm [29] is based on the clustering of array variables to
determine the memory configuration that will result in the minimum total memory
area. The number of memory modules, the size of each module, the number of
ports for each module and the cost of grouping a set of input array variables, are
all computed. The number of ports is balanced for serialized memory accesses
within a control and data flow graph. This algorithm cannot however be

14

considered for implementing RTVPS on FPGA. This is because large array
variables cannot be distributed among a set of memory modules.

A general approach to FPGA memory allocation and assignment was
presented by Gokhale et al. [30]. This approach starts from C code, for which the
presented method allocates both external and internal memories. Automatic
partitioning of a single array among different memories is however not covered by
this work.

Baradaran et al. [31] presented a close algorithm but the focus was on the
analysis and identification of data reuse and allocation on an FPGA embedded
Block RAM in the presence of a limited number of registers.

The work by Schmit and Thomas [32] performs array grouping (vertically
and horizontally) and dimensional transformation (array widening and array
narrowing). According to the authors, array widening is useful for read-only
arrays and those accessed in loops with an unrolled number of iterations. Array
narrowing slows the effective access time of the array. Vertical array grouping is
similar to the global memory object architecture used in this thesis (details in
Section 3) with the variation that the grouping is on memory objects required by
one operation. Neither horizontal grouping nor the accompanying scheduling are
considered in this work, however dual port mapping of two memory objects is
implemented to achieve more efficient memory usage.

Jha and Dutt [33] presented two algorithms for memory mapping. The first,
linear memory mapping, approximates target memory word-count to the largest
power-of-two that is less than or equal to the source memory word-count. The
second, exhaustive memory mapping, assumes that a target memory module may
have larger bit-width and word counts. These approaches lead to unused memory
space on the target memories particularly in on-chip memories. The work did not
address multiple parallel accesses to a memory module via a different port.

2.2.2 Memory addressing

Memory accesses are a major contributor to the power consumption
especially in data transfer intensive applications such as RTVPS. Activities in the
memory address buffers, address decoding circuitry and off-chip drivers of the
address bus, are reflected in the power dissipations. There have been many works
aimed at lowering the impact of memory access on power consumption. The
majority, however, are tailored towards their memory architecture for efficiency
purposes. The general approach is to use a counter to evaluate the value of the
address bus of on-chip memories. These approaches are reviewed in this section. In
addition, latency in memory accesses affects the system performance. Hence
effective optimization can be achieved through efficient memory architecture and
addressing procedure.

In [46] it was noted that most behavioural synthesis tools do not support
FPGA vendor specific external memory interfacing. The authors proposed an

15

approach which includes target architecture oriented timing requirements for
accessing memory and application specific memory access pattern information.

In [45] a technique exploiting regularity and spatial locality in memory
access pattern in order to achieve low power mapping of arrays in behavioural
specifications to physical memory was presented.

The work presented by Doggett et al. is optimal in the case of large numbers
of memory banks being used, as is typical in volume rendering in medical
applications [34]. The work presented a cubic addressing scheme and used FIFO
buffers to minimize the pipeline stalling effect of cache misses

The address generation scheme by Grant el al. is an efficient option for
accessing data with addresses within the power range of two [35]. The scheme uses
a register and optionally an offset, to specify memory read/write addresses.

The memory exploration algorithm in [36] implements memory allocation
and array-mapping to RAMs through tight links to the scheduling effect and non-
uniform access speeds among the RAM ports to achieve near optimal memory area
and efficient energy requirement. The algorithm is, however, complex and the
execution time may slow down hardware design. Moreover the exploration targets
SRAM and DRAM as opposed to the on-chip FPGA Block RAMs, which are the
focus of this thesis.

The address generation technique in [37] is based on address bit inversion to
yield effective access time to memory at the cost of up to an extra 17.4% of used
memory.

In [38] and [47], various high-level optimizations were explored in order to
reduce addressing overhead. Many efficient, often heuristics based, memory
optimization algorithms have been developed similar to those in [39], [40],
however, most of these are tailored to be efficient on DSP.

2.2.3 Response to related works

None of the allocation and addressing methods in Sections 2.2.1 and 2.2.2
were considered to be appropriate for managing memory requirements of RTVPS
while using the limited embedded FPGA memories. This is because these
algorithms do not fully utilize the configurable data port widths supported by the
FPGA and the true dual port capabilities of the Block RAMs. In addition, we
consider the data memory architecture in [60] is considered to be more efficient for
RTVPS data management hence allocation and addressing methods based on this
architecture would be efficient. This is the motivation behind the development and
implementing a new allocation algorithm designed to maximize the memory usage
while minimizing the read/write accesses. In addition, two approaches to access
the allocated memories have been developed.

The work in this thesis achieves near optimal results in terms of the number
of allocated memories, the amount of unused memories and the access speed by
fully utilizing the combination of FPGA embedded memory capabilities and
RTVPS regular data pattern.

16

17

3 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING SYSTEMS

This section presents the scientific work covered in Papers I to V. Memory
synthesis generally refers to data storage and management. The process involves
memory architecture, allocation and addressing. These terms are discussed in the
following subsections. Managing the line-buffers (memory objects) identified in
Fig. 4 is the focus of this work. The main goal is to develop an automatic memory
synthesis tool that makes the most efficient use of all the addressable memory
locations available in all the instantiated FPGA on-chip memory before
instantiating another. The work in this thesis is part of the Mid Sweden University
interface and memory modelling (IMEM) design tool [58], [59]. IMEM is based on
the philosophy that the memory requirement of an RTVPS can be modelled and
synthesised independently to the synthesis of the RTVPS filters. Thus this thesis
presents the synthesis of the on-chip memory requirements specified by IMEM.

3.1 IMEM SYNTHESIS WORKFLOW

IMEM, an extension of SystemC, is a set of class libraries suitable for
capturing, modelling and simulating RTVPS without implementation details. The
IMEM synthesis workflow depicted in Fig. 10 demonstrates how research dealing
with modelling and high level synthesis fits into an RTVPS implementation
trajectory.

This workflow is defined at six different levels along the left-hand axis. The
video-processing algorithm is developed and simulated using IMEM at level 1.
This executable model can then be verified through functional simulation. Data
dependency information, frame sizes, composition of the 3-dimensional
neighbourhoods and colour space models are exported into an interface and
memory model at level 2. This information is the input for the memory synthesis
process at level 3. It is here that memory estimation, memory hierarchy
optimization, memory allocation and address generation are performed. The work
in this thesis is at this IMEM level.

Additionally, at level 2 the behavioural C++ description is separated from
the memory model. At level 3, the SystemC functional description together with
the interface template generated from the memory model is synthesized using a
SystemC based commercial high-level synthesis tool (for example Agility from
Celoxica). The VHDL codes from both the functional part and the optimized
interface and memory model are integrated at level 4 and synthesized at level 5.

18

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

1

2

3

4

5

6

Memory Hierarchy
Optimization

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

IMEM
Conceptual Modelling

Memory storage
estimation

IMEM Projector High-level Synthesis
Memory

Allocation
Address

Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Celoxia)

Functional mapping
of algorithm

Fig. 10. System synthesis workflow

3.2 MEMORY ARCHITECTURE

In a streamed hardware implementation only one operator can use the
memory objects (Fig. 4) and all the memory objects are used simultaneously in the
RTVPS. It is assumed that memory objects can be grouped together to form global
memory objects at the operator level. This grouping can be achieved through:

 plinesiR wnW ×=
 (1)

where WRi is the width of the global memory object at the operator, nlines is
the number of required line buffers for an operator and wp is the bit width
representing a pixel. The length of the global memory object is equal to those of the
memory objects that formed it, i.e. the image width [60]. This architecture is
preferable to that of direct mapping of memory objects to memory location. This
preference is because global memory objects require a minimal number of required
memory entities in comparison to direct mapping architecture. Consequently, the

19

number of memory accesses for an RTVPS operation is minimal for global memory
object.

To illustrate the formation of the global memory objects, consider an RTVPS
operator that requires a neighbourhood of a 5x5 window with 12-bit gray scale and
a 640 by 480 frame size as the input video stream. This would result in the creation
of four memory objects each of length L (=640) and width 12. The memory objects
would be combined to create a GMO Ri of width 48. Fig. 4 depicts this illustration
where op_id represents the operator requiring the GMO.

 L by 12

L by 12

L by 12

L by 12
L by 48

Ri

op_id = 1

Fig. 11 Global Memory Object formation

3.3 MEMORY ALLOCATION

Single port memory configuration or a dual-port in which one port is used
for writing and another for read usually leads to unused memory areas. Fig. 12
depicts an example of such an allocation. As shown, after the allocation of memory
objects 1 and 2 to memory areas A1 and A2 on Block RAMs 1 and 2 respectively,
the remaining memory areas B1 and B2 remain unused and subsequent memory
objects will be allocated to other Block RAMs. Hence these types of memory
allocation approaches can be very inefficient unless the allocated data is exactly the
size of the memory module which is, however, very rarely the case.

Memory Object 1

A1
B1

Block RAM 1

Memory Object 2
A2

B2

Block RAM 2

Memory Object
(width=13)

Memory Object
(width=13)

a

b Allocation datapath width = 16

Fig. 12. Traditional memory allocation.

20

Although, FPGA allows the allocation of memory objects of any datapath
widths, this allocation is, however, left to the designer. Traditionally, a higher
datapath width is used when the width of the memory object is not a member of
the datapath widths specified by the FPGA. Fig. 12b shows an attempt to allocate
an object of width 13 on Xilinx Spartan 3. Since a datapath width of 13 is not
specified by the FPGA and 16 is the next datapath width that is a member of Xilinx
Spartan 3 datapath widths, allocation of the memory object is made using a
datapath of 16. This will result in 3L bits being wasted, where L is the length of the
memory object. An alternative is to partition the memory objects into using the
supported widths.

These two stated sources of inefficient allocation are the reasons for
researching both allocation architecture and an algorithm based on the architecture
that makes optimal use of memories. To achieve efficient allocation, the advantage
of parallel accesses to Block RAMs through two independent ports is exploited.

3.3.1 Allocation algorithm

As presented by O’Nils et al. dual-port configuration of FPGA Block RAMs
and global memory object allocation for RTVPS provides an efficient use of Block
RAMs [60]. An algorithm taking advantage of such efficient memory allocation
techniques and the possibility of parallel accesses to Block RAMs through two
independent ports will be presented. Fig. 13 shows attempts at finding an optimal
use of the remaining memory resources identified in an FPGA Block RAM. If the
remaining memory space is a single rectangular block as shown in Fig. 13A,
allocation is made to it through the second data port. If the remaining memory
space is not a single rectangular block, it is divided into two rectangular blocks B
and C as shown in Fig. 13B. Allocation can be made to B or C through the second
data port. Because Block RAMs currently support a maximum of two data ports,
only one of block B or C can be allocated depending on its size and the sizes of the
memory objects awaiting allocation while the other block will never be used. As a
result, the developed algorithm seeks the allocation for which the unused memory
space is minimal by ensuring that, after allocation through port A, the remaining
memory space forms a rectangular block, and by finding the memory object that
uses as much of this block as possible. Hence, one of the indicators used in
measuring the efficiency of the algorithm is the size of the unused memory
resources.

21

Part of
object 2

Useable memory

Memory Bank 2

Part of
object 2

Memory Object 1

Memory Bank 1

Access via
Data Port A

Access via
Data Port B

Access via
Data Port A

Access via
Data Port B

 A

Memory Object 1

A Unused
memory1

Block RAM 1

Unused memory C

Memory Object 1
A

Unused
memory
B

B

Unused memory C

Memory Object 1
A

Unused
mem. B

Fig. 13. Proposed memory allocation.

3.3.2 Definitions

To find the optimal use of the Block RAM, the algorithm must observe some
definitions and constraints. These are listed as follows:

(i) M is the set of all available Block RAM Mk and K is the number of Block RAMs.

 { }KkMM k ,...,2,1== (2)

(ii) SMk is the size of the Block RAM Mk and is specified by the FPGA. For example,
in Xilinx Spartan 2E FPGA SMk is 4096 bits [61]. The memory objects allocated
to the Block RAM determine the length LMk and width WMk of Mk.

(iii) Wc is the set of all possible datapath widths Wn for Block RAMs on the FPGA.
For example, 1, 2, 4, 8, and 16 are allowed on Xilinx Spartan 2E FPGA [61].

 { }NnWW nc ,...,2,1== (3)

(iv) R is the set of all memory objects Ri to be allocated and I is the number of
memory objects.

 { }IiRR i ,...,2,1== (4)

(v) The size SRi of memory object Ri is defined as product of the length LRi and data
width WRi of the memory object Ri.

22

 RiRiRi WLS ×= (5)

(vi) Each global memory object is characterised by a quadruple of op_idRi, LRi, WRi

and xRi.

 Ri(op_idRi, LRi, WRi, xRi) (6)

where op_idRi is an identifier for the operator where the memory objects
making up the global memory object Ri are defined and xRi is the segment in which
a memory object is located on the global memory object after partitioning into
units of allowable data widths in Wc.

(vii) If WRi is not a member of Wc, Ri is partitioned into rj partitions such that the

width, wR, of each partition is a member of Wc where j = 1, 2, … J and J is the
number of partitions in object Ri.

{ }JjWwxwLidoprR cRRiRiRiRiji i ,...,2,1,),,,_(=∈= (7)

(viii) Memory object Ri may be allocated to as many Block RAMs as required.

 ∑
=

≤×
K

k
RiRiki SWL

1
, (8)

where Li,k is the part of length LRi allocated at Mk.
(ix) Block RAM only supports a maximum of two data ports.
(x) Di,k is the decision to allocate some or all of the memory objects Ri at Mk.

 ∑
=

2 ≤
I

i
kiD

1
, (9)

(xi) For all Ri in R and Mk in M that form part of the Di,k, the sum of the allocations
may not be more than the size of the Block RAM.

 ∑
=

≤×
I

ii
MkRiki SWL , (10)

(xii) For all Di,k, in the set of allocation decisions, AD, the unused memory space in
Mk is defined as UMk.

∑
=

×−=∈∀
I

ii
RikiMkkki WLSUMADD ,, , (11)

(xiii) The objective function of the algorithm is to minimize the sum of all UMk.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈∀ ∑

ki
kki UMADD

,
, min, (12)

23

To illustrate definitions (vi) and (vii), if the global memory object Ri of width
48 in Fig. 11 were to be allocated on Xilinx Spartan 2E, Ri would then be partitioned
into three rj each with a width of 16 since it is not possible to have a datapath width
of 48 on a Spartan 2E. xRi will be 1, 2 and 3 for the first, second and third partitions
indicating least, middle and most significant partitions on Ri. Fig. 14 depicts this
illustration.

 L by 12

L by 12

L by 12

L by 12
L by 48

op_id = 1 xRi = 1

L by 16
 op_id = 1 xRi = 3

L by 16
op_id = 1 xRi = 1

L by 16
op_id = 1 xRi = 2

Fig. 14. Partitioning global memory object.

For every Block RAM available on the FPGA, attempts are made to allocate a

global memory object to it. The amount of unused memory space UMk is estimated.
If UMk is zero, the allocation decision is stored and the iteration continues to the
next memory object or Block RAM. Other possibilities are then considered such
that UMk is minimal. The final decision is based on the allocations offering the least
amount of the sum of unused memory space on all Block RAM. Fig. 15 shows the
allocation algorithm in relation to the definitions and constraints listed above
before making the final decision. In the figure, any Ri is an allocation candidate to
any Mk. Since Mk supports only two ports and in line with definition (x), only two
Ris that minimize UMk are selected such that our objective function, definition (xiii)
is achieved after all Ris are allocated. According to definitions (vii) and (viii), a
global memory object may be partitioned into many smaller units exploiting FPGA
parallel access to Block RAMs which enables the reconstruction of the object in
order to achieve a throughput of one pixel per clock cycle.

24

M2

R2

Mk

Ri

MK

RI

M1

R1

…

…

…

…

K is number of available memory modules

I is number of memory objects to be allocated

Di, k

Mk is defined by LMk, WMk and SMk. SMk = LMk * WMk

Ri is defined by LRi, WRi and SRi. SRi = LRi * WRi

Fig. 15. Allocation model.

3.3.3 Proposed algorithm

The proposed allocation algorithm is presented in Fig. 16. A more detailed
form of the algorithm in the form of pseudo-code is presented in Figure A.1 in
Appendix A. In step 1, the algorithm creates global memory objects according to
Eq. (1). In step 2, the algorithm ensures that the global memory objects conform to
the allowable port width configuration according to definition vii. This step is
captured in a procedure, configure_global_memory_objects(R), presented at the lower
part of Figure A. Steps 3, 6, 7 and 8 ensure that the algorithm iterates through all
the memory objects starting with the first. In step 4 the global memory objects are
allocated to the Block RAMs according to definitions (viii) to (xi) while optimal use
of unallocated memory space in the Block RAM through the second port is
implemented in step 5, which is also in accordance with definitions (viii) to (xi).
Optimal allocation is that for which the unused memory space is a minimum,
preferably zero using either one or two ports in the Block RAM.

25

 The Proposed Allocation Algorithm

Algorithm: Memory Allocation(R, M)
Parameters: R[R

1
 … R

I
] set of I memory objects;

 M[M
1
 … M

K
] set of K Block RAMs;

Return: M
A
[M

A1
 … M

AK
] set of K Allocated Block RAMs;

1. Create global memory objects (GMO)
2. Configure GMOs
3. Starting with the first GMO and the first Block RAM
4. Allocate GMO to Block RAM via port A.
5. If Block RAM is not fully used find maximum use of

remaining memory via port B using another GMO.
6. Select the next GMO when the current has been fully

allocated.
7. Select the next Block RAM when all the memory space

has been optimally used.
8. Return the set of allocated Block RAMs after

allocating all GMOs.

Fig. 16. The proposed allocation algorithm.

3.3.4 Complexity analysis

In estimating the complexity of the algorithm, the number of available Block
RAMs, K, and the number of memory objects, I, after partitioning with respect to
their width, play major roles. Since the algorithm makes one iteration through the
sets of Block RAMs and two iterations through the set of memory objects as shown
in steps 3, 4 and 13 in Fig. 16 (see also Figure A in the Appendix), the allocation
algorithm AA is a function of K and I and its complexity can be expressed as

 () ()2, IKIKAA ⋅Ο= (13)

The algorithm is thus, at worst, of the third order of the larger of K and I.
Implementation costs depend on the representations of the properties of the Block
RAMs, memory objects and allocation objects, and the arithmetic and logic
operations defined for them.

3.4 MEMORY ACCESSING

The allocation software ensures that each entry of a Block RAM data object
stores information concerning the width and length of the GMO segment allocated
to it, the port used for allocation and the hierarchy of its segment in the GMO. In
addition, each partition stores information about the Block RAM to which it is
allocated, the port of allocation and its start address on the Block RAM, the GMO
and segment to which it belongs.

The advantage of sequential accesses to memory for RTVPS applications can
lead to improved memory performance by using pointers whose values increase
whenever there are valid pixel values. Using the GMO architecture further reduces
the number of such pointers to one for each RTVPS operator. The pointers may be

26

implemented by using a single register for each GMO, further referred to as the
base pointer, or by using a register for each partition in a GMO, further referred to
as the distributed pointers.

To this end, the results from the memory allocation stage are imported into
the address generation module. From these allocation results GMOs are
reconstructed, and address spans for each partition in a Block RAM are generated.
The start and end addresses for each partition are calculated. Offsets are
considered where dual ports are used for the allocation on Block RAMs for
different partitions in order to avoid memory overlap. The generated addresses are
used to determine the location of each GMO element. The descriptions for
accessing the GMO elements using two approaches, namely the base pointer
approach and the distributed pointer approach are presented as follows. These two
approaches are depicted in Fig. 17 while details of their implementations are
presented in the following subsections.

 GMO 1
 Length = L
 L = p1 + p2

Partition 1
Length = p1

Partition 2
Length = p2

Base Pointer
base = 0 – L - 1

 0 p1 - 1 0 p2 - 1

BR1 BR2

if base < p1
 access BR1
else
 access BR2

offset

(a)

(b)

 GMO 1
 Length = L
 L = p1 + p2

Partition 1
Length = p1

Partition 2
Length = p2

 0 p1 - 1 0 p2 - 1

BR1 BR2

offset

Fig. 17 Two memory accessing approaches

3.4.1 Base Pointer Approach

In this approach, a single pointer is used to track the location of the element
to be accessed in the GMO. The pointer starts at zero and increases to one less than
the length of the GMO and then resets to zero. Since the memory accesses are
clocked, the value of the pointer increases with clocked access to the Block RAM
when there are valid data. Address spans for each partition of the GMO are used to
determine the relevant Block RAM relating to the element accessed, depending on

27

the value of the pointer. Hence, only the relevant Block RAMs are enabled while
the other related Block RAMs are disabled. Fig. 17a depicts this approach for a
simplified case in which a GMO consists of a single segment with two partitions.

In the figure, partitions p1 and p2 are allocated to Block RAMs BR1 and BR2.
From Fig. 17a, when the value of the counter base is within the span of p1, the
appropriate port on BR1 is enabled and accessed while the relevant port on BR2 is
disabled. The reverse is the case when base is no longer within the span of p1, i.e.
within the span of p2. This simple example could be extended to cases in which
more than one segment makes up a GMO and each segment has more than 2
partitions. A formal description of this approach is shown in Fig. 18a.

Fig. 18b depicts the base pointer implementation of the GMO shown in Fig.
14. In the figure, BR1_EN_A, BR2_EN_A and BR2_EN_B represent the enable
signals on port A of BR1, port A of BR2, and port B of BR2 respectively. Likewise,
BR1_A_Adr, BR2_A_Adr and BR2_B_Adr are the address signals on port A of BR1,
port A of BR2, and port B of BR2 respectively. A Block RAM is enabled or disabled
by assigning ‘1’ or ‘0’ to its enable signal.

 (a)

 For each GMO:
• create Address Table from segments and partitions that make up the

GMO to determine when to enable Block RAMs among related
partitions

• create an incrementable pointer of length ()⎡ ⎤L2log which increases
when there are valid pixel values

• using Address Table and pointer value enable appropriate Block
RAMs and set the values of address signals.

(b)

512 by 32

op = 1
seg = 1
par = 1

BR1 Port A

128 by 32

op = 1
seg = 1
par = 2

640 by 16
op = 1 seg = 2 par = 1

BR2 Port B Port A

offset=320

0 ≤ bp ≤ 639
 BR2_EN_A = 1
 BR2_A_Adr = bp

512 ≤ bp ≤ 639
 BR2_EN_B = 1
 BR2_EN_B = 0
 BR2_B_Adr = offset + bp - 512

0 ≤ bp ≤ 511
 BR1_EN_A = 1
 BR2_EN_B = 0
 BR1_A_Adr = bp

Base Pointer bp = 0 - 639

Fig. 18. Base Pointer Approach.

28

3.4.2 Distributed Pointer Approach
In this approach, each partition is handled separately, starting with the first

partition in a segment. Local pointers equal in length to that of each partition are
created. As long as the enable signal of Block RAM for a partition is high, memory
access is initiated at its first position using its pointer and continues incrementally,
if valid data are available until its full length is achieved. During this period, the
partition ensures its enable signal is re-asserted while the enable signals of the
neighbouring partitions of the same segment are kept low. Controls are transferred
to the next partition of a similar segment when the upper limit of the partition is
reached. If however, the partition is the last in the segment, controls are transferred
to the first partition. Since the address buses of partitions on Block RAMs provide
appropriate bit vectors to cover their entire lengths, they are used as the local
pointer. In this approach, the enable signals of all the first partitions are set to high
at start-up to ensure that memory accesses start with the first partitions. Fig. 17b
depicts this approach. A simplified case of a GMO consisting of a single segment
with two partitions p1 and p2 allocated on Block RAMs BR1 and BR2 respectively
is considered in Fig. 17b. Fig. 19a and Fig. 19b show formal descriptions and
implementations of the GMO depicted in Fig. 14 using this approach. Signals in
Fig. 19b have similar meanings to those in Fig. 18b. Since the 640-by-16 partition is
the only one in its segment, it is always enabled and the address is reset to 0 when
it reaches its upper limit.

29

For each segment in each GMO:
• create Address Table for each partition in the segment
• create an incrementable pointer of length ()⎡ ⎤p2log which increases

when there are valid pixel data for partitions in the segment
• start memory access with the first partition with start address of 0
• enable Block RAM of currently active partition and disable Block

RAMs of related partitions while pointer is less than partition’s length
• if pointer of active equals partition’s length less one, reset it to 0,

disable it and enable next (or first partition if this is the last partition).

(a)

(b) 512 by 32

op = 1
seg = 1
par = 1

BR1 Port A

128 by 32

op = 1
seg = 1
par = 2

640 by 16
op = 1 seg = 2 par = 1

BR2 Port B Port A

offset=320

BR2_EN_A = 1 & BR2_A_Adr
< 639

 BR2_A_Adr = BR2_A_Adr + 1

BR2_EN_A = 1 & BR2_A_Adr
= 639

 BR2_A_Adr = 0

BR2_EN_A = 1

BR2_EN_B = 1 &
BR2_B_Adr < offset + 127
 BR2_EN_B = 1
 BR2_EN_B = 0
 BR2_B_Adr =
BR2_B_Adr + 1

BR2_EN_B = 1 &
BR2_B_Adr = offset + 127
 BR2_EN_B = 0
 BR2_EN_B = 1
 BR2_B_Adr = offset

BR1_EN_A = 1 & BR1_A_Adr < 511
 BR1_EN_A = 1
 BR2_EN_B = 0
 BR1_A_Adr = BR1_A_Adr + 1

BR1_EN_A = 1 & BR1_A_Adr = 511
 BR1_EN_A = 0
 BR2_EN_B = 1
 BR1_A_Adr = 0

Fig. 19. Distributed Approach.

3.5 RESULTS

In this section the results obtained after the implementing the algorithm and
the analysis of its performance are presented as follows. Section 3.5.1 presents the
performance of the algorithm under real-time video processing design. Section
3.5.3 presents its performance, under two test scenarios modelled upon one of the
real-time design cases. Performance of the memory synthesis with varying
memory requirements is presented in Section 3.5.4. Section 3.5.5 presents the
performance analysis for eleven video processing systems published by other
researchers. Section 3.5.6 compares the performance of the two memory addressing
schemes presented in Section 3.4.

3.5.1 Real-time video processing design cases

The algorithm has been implemented in C++ using the object-oriented
approach. The implementation was simulated using the memory requirements of

30

real-time video processing design cases [60]. The first design case was a spatio-
temporal median filter with a neighbourhood of seven frames and two line buffers.
Two instances of this design case were considered. The first, (1-1), being a VGA
frame with 24-bit RGB pixels and a 640 frame length while the second, (1-2), was a
PAL frame with an 8-bit gray scale pixel and a 708 frame length. The second design
case was a machine vision system with a median filter, segmentation and three 1-
bit morphological operations. For this design case two instances were also
considered. The first, (2-1), being an 8-bit gray scale with VGA resolution as the
input video stream while the second, (2-2), had a 12-bit gray scale with 1.3 MPixel
resolution as its input video stream. Table 1 shows the summary of the memory
requirements for the design cases considered. In the table column 2 shows the
number of video processing filters in the design case while column 3 shows the
number of line buffers required by each filter. For design cases 1-1 and 1-2 seven
3x3 filters were used, each requiring two line buffers while for design cases 2-1 and
2-2, one 5x5 median filter, one segmentation operation and three 17-by-17
morphological filters requiring four, one and sixteen line buffers respectively were
used. Columns four, five and six represent pixel resolution, length of the line
buffer and memory requirement for each filter respectively.

Table 1. Memory requirement of considered design cases.

3.5.2 Allocation Results

Table 2 and Table 3 show the results obtained using the implementation of
the algorithm for allocating the design cases considered on Xilinx Spartan 2E and
Spartan 3 FPGA respectively.

Table 2. Allocation result of the algorithm on Spartan 2E.

Design Case # Rows Width Length Size (Kbit)
Case 1-1 7 2 24 640 210
Case 1-2 7 2 8 708 77.4
Case 2-1 1

1
3

4
1

16

8
19
1

640
256
640

20.0
4.75
30.0

Case 2-2 1
1
3

4
1

16

12
21
1

1300
4096
1300

60.94
84.0
60.94

Design Case minima Block RAM % minima

Case 1-1 53 53 100
Case 1-2 20 20 100
Case 2-1 14 14 100
Case 2-2 52 52 100

31

Table 3. Allocation result of the algorithm on Spartan 3.

In the tables the theoretical minima Block RAM required for allocation were

estimated from equation (14) [60].

()⎥⎥

⎤
⎢
⎢

⎡
=

BRAM
Sizeminimal

size
 (14)

where Size is the number of bits required by the design case, given in
column 6 of Table 1, and the size of BRAM is the numbers of bits in one block
RAM, 4 Kbit for a Xilinx Spartan 2E and 16kbit (without parity) for Spartan 3 [61],
[24]. Table 2 shows that the algorithm requires no more than the minimum value
for the allocation of each of the design cases on Spartan 2E. Hence, it is in total
agreement with the minimum requirements for Spartan 2E. On Spartan 3,
allocation requirements were equal to the minimum values except for two of the
design cases. The minimum value is calculated for allocation on a Block RAM with
an infinite number of ports. The minimum value, however, only indicates the
effectiveness of the allocation but not its feasibility, since it is not possible to have
Block RAMs with an infinite number of ports. The implementation for Spartan 3
did not consider parity. The parity feature on Xilinx Spartan 3 FPGA increases the
available Block RAM size by providing an additional bit for every 8 bits [24]. When
the parity bit is taken into consideration it makes it possible to have width
configurations that are multiples of 9-bit on the Block RAM. In this manner,
18Kbits of Block RAM size can be achieved instead of 16Kbits. This parity feature
was not considered since it is only specific to only some of the Xilinx FPGA
families and not all FPGAs have this feature. From Table 3, the non-minimum
result of the algorithm in design cases 1-2 and 2-1 is because, if a design case has
many operators in relation to the total storage requirement and/or the size of each
Block RAM, the number of ports on each Block RAM will limit the allocation.

Fig. 20 shows the mapping of the memory objects to the Block RAMs for the
design Case 2-1 on Xilinx Spartan 2E. The identifiers of the global memory objects
and the Blocks RAMs are shown. In addition, the figure shows that memory
objects were allocated to as many Block RAMs as required. This is a case of
dynamic partitioning with respect to the length. In the figure, each block is
annotated by “WxL” and “op_id: y” where W, L and y represent the width,
memory depth and operator id of the allocated partition respectively. BRAMs 7
and 8 in the figure exploit the independence of the data path width and memory

Design Cases Minima Block RAM % minima

Case 1-1 14 14 100
Case 1-2 5 6 120
Case 2-1 4 5 125
Case 2-2 13 13 100

32

depth for the two ports on a dual-ported RAM. In BRAM 7, Port A is allocated
with a partition which has a data path width of 2 and a depth of 256 while Port B is
allocated with a partition with a data path width of 16 and a depth of 224.

Fig. 20. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA.

In Fig. 20 memory object 1 of width 32 bits and length 640 was firstly

partitioned width-wise into two partitions each of width 16 bits and length 640.
Then the first partition was allocated to Block RAMs 1, 2 and 3, by partitioning it
length-wise and allocating partitions of lengths 256, 256 and 128 respectively,
completely filling the Block RAMs 1 and 2 using only one port. The second
partition of memory object 1 was also partitioned length-wise and allocated to
Block RAMs 3, 4 and 5. This width-wise and length-wise partitioning of the
memory object makes it possible to allocate a memory object to many Block RAMs
and to configure the memory object with widths feasible in the FPGA. In the
figure, the lower and upper allocations were through ports A and B respectively.
The figure also indicates the width and length of the memory objects allocated at

33

each Block RAM. In addition, unused memory space is specified on Block RAM 14
where it occurred. This memory space can be used through the second port.

3.5.3 Performance analysis with varying length and width

To test the performance of the algorithm, the memory requirements for
allocation were varied under two scenarios such that they are similar to design
case 1-1. The two test scenarios are presented as follows.

3.5.3.1 First test scenario

In this test scenario, four frame lengths L (320, 640, 1280 and 2560) were used
while the widths W were determined by the memory requirement, which was
allowed to vary from 100kbit to 2000kbit. This test scenario was simulated for
XILINX Spartan 2E and 3 FPGA. The minimum Block RAM allocation was plotted
along with the estimated Block RAMs for the four values L. On Spartan 2E, the
minima were equal to those estimated for all values of L while on Spartan 3, the
minima differed from the values obtained for L = 320 and the estimated values
obtained for other values of L equalled the minima for most of the memory
requirements. Fig. 21 shows the performance of the algorithm for this test scenario.

Fig. 21a. First test scenario on Spartan 2E.

34

Fig. 21b. First test scenario on Spartan 3.

3.5.3.2 Second test scenario
In this test scenario, four values of width W (3, 6, 12 and 24) were used while

the length L was determined by the memory requirement, which also ranged from
100 to 2000 Kbits. The test scenario was simulated for Spartan 2E and 3. The results
obtained for the theoretical minima and the estimated Block RAMs for the different
values of W were equal when Spartan 2E was used but differed when memory
requirements less than 200kbit on Spartan 3 was used. Fig. 22 shows the
performance of the algorithm for this test scenario.

Fig. 22a. Second test scenario on Spartan 2E.

35

Fig. 22b. Second test scenario on Spartan 3.

As shown in Fig. 21 and Fig. 22, allocations on Spartan 2E equalled the
theoretical minima while those on Spartan 3 differed slightly. This is because the
Block RAM sizes are smaller in Spartan 2E and were more easily managed. In Fig.
21b, allocations with L=320 required I excess of the theoretical minima due to the
small sizes of the memory objects with respect to the sizes of the Block RAMs. The
average variation of the number of Block RAMs from the theoretical minima is 6%.
In Fig. 22b, the first allocation with using W=3 had a variation of 14% from
theoretical minima also due to the small sizes of the memory objects. Configuring
the global memory objects width-wise to only data-path widths allowed by the
FPGA technology leads to efficient utilization of the Block RAMs. This enables the
allocation results to be close to theoretical minima.

By definition, the theoretical minimum assumes a Block RAM with infinite
number of ports making it possible to allocate to the Block RAM until it is fully
used. It is not a practical value but rather a metric used to measure the optimality
of the algorithm. Consequently, the higher the number of ports on Block RAMs the
closer the algorithm result is to theoretical minimum.

3.5.4 Performance analysis with varying length and Block RAM sizes
The performance of the memory synthesis has been investigated in this

thesis using varying memory requirements with respect to the frame resolutions of
RTVPS design cases in Table 1. The analysis is performed such that the design
cases are allocated onto different existing and extrapolated FPGA memory
architectures. Fig. 23 shows the results obtained for high (twice), medium (normal)

36

and low (half) frame resolutions of the design cases in Table 1. In the figure the
columns represent the frame resolutions. The upper and the lower rows represent
the number of Block RAMs used for allocating the memory objects and the
percentage of unused memories respectively. In the upper row Block RAM sizes
were presented in increasing order from left to right but in decreasing order in the
lower row.

The results reveal that for a given resolution, the amount of unused memory
increases with Block RAM size. Also for high frame resolutions the amount of
unused memory in the allocated Block RAMs is small when compared to the
medium and low frame resolutions. This result is to be expected since the
allocation of large memory objects onto small Block RAMs is more efficient than
the allocation of small memories onto large Block RAMs. Hence, the use of un-
multiplexed memory architecture will lead to more costly implementations. To
avoid this, the FPGAs should support multiple RAMs sizes and wider data-paths.
Alternatively, efficient use of current large RAMs can be achieved through the
time-multiplexed architecture. However, this will degrade the performance and
possibly increase the power consumption, which will make the FPGA architecture
less attractive for video processing systems. These results can guide both RTVPS
designers and the development of new FPGA architectures.

4
16

32
64

128
256

0

10

20

30

40

Design Cases

Low Resolution

RAM size

of

 R
A

M
 u

se
d

1 1
1 2

2 1
2 2

4
16

32
64

128
256

0

20

40

60

Design Cases

Medium Resolution

RAM size

of

 R
A

M
 u

se
d

1 1
1 2

2 1
2 2

4
16

32
64

128
256

0

50

100

150

Design Case

High Resolution

RAM size

of

 R
A

M
 u

se
d

1 1
1 2

2 1
2 2

256
128

64
32

16
4

0

20

40

60

80

100

Design Cases
RAM size

%
 o

f R
A

M
 u

nu
se

d

1 1
1 2

2 1
2 2

256
128

64
32

16
4

0

20

40

60

80

100

Design Cases
RAM size

%
 o

f R
A

M
 u

nu
se

d

1 1
1 2

2 1
2 2

256
128

64
32

16
4

0

20

40

60

80

100

Design Case
RAM size

%
 o

f R
A

M
 u

nu
se

d

Fig. 23. Block RAM usage with varying memory requirements

37

3.5.5 Performance Analysis for video processing systems
In this section, the performance test of the allocation algorithm on video

processing systems published in the literature [48]-[57] is presented. The tests are
still in manuscript form and are to be sent for publication after further extensive
testing. The algorithm was implemented using Block RAM sizes of 2, 4, 8, 16 and
32Kbits, each with data path width configurations of 2, 4, 8, 16, 32 bits.

The average results for the allocation of the test designs [48]-[57] are shown
in Table 4. The results for all design cases were combined together in order to
observe the memory sets producing the best allocation results. The most
satisfactory allocation results were acquired using a RAM size of 4Kbits and a data
path width of 16 or 32 bits, and this achieved an average allocation efficiency of
91.8%. However, larger memory sets, up to 16Kbit, also generated satisfactory
results when combined with wide data path widths.

Table 4. Average allocation results for all cases

Average allocation efficiency
 2 bit 4 bit 8 bit 16 bit 32 bit

2Kb 74,1% 88,2% 89,3% 91,5% 91,5%
4Kb 55,5% 82,4% 90,5% 91,8% 91,8%
8Kb 45,0% 62,4% 86,4% 92,5% 92,5%

16Kb 35,8% 52,9% 68,4% 88,1% 90,9%
32Kb 31,2% 44,0% 60,1% 73,2% 82,5%

The use of large memory sets, as predicted, proved to be inferior to that for

small sets in the majority of cases which is in agreement with the allocation results
for the architecture initially produced by O’Nils in [60]. The allocation efficiencies
of the algorithm on RAMs with a size corresponding to the configuration of a
Xilinx Spartan-2 and Spartan-3 are presented in Table 5 and Table 6. On both
Spartan-2 and Spartan-3, the algorithm achieves a 100% allocation efficiency in 9
out of 11 cases.

Table 5. Allocation on Spartan II

Allocation result of the algorithm on Spartan 2

Design case
Min. req.
BRAM

Block
RAM

Allocation
efficiency

Case A [48] 3 5 60%
Case B [49] 5 5 100%
Case C [50] 1 1 100%
Case D [51] 2 2 100%
Case E [51] 3 3 100%
Case F [52] 1 1 100%
Case G [53] 5 10 50%
Case H [54] 7 7 100%
Case I [55] 1 1 100%
Case J [56] 21 21 100%
Case K [57] 51 51 100%

38

Table 6. Allocation on Spartan III

Allocation result of the algorithm on Spartan 3

Design case
Min. req.
BRAM

Block
RAM

Allocation
efficiency

Case A [48] 1 2 50%
Case B [49] 2 2 100%
Case C [50] 1 1 100%
Case D [51] 1 1 100%
Case E [51] 1 1 100%
Case F [52] 1 1 100%
Case G [53] 2 4 50%
Case H [54] 2 2 100%
Case I [55] 1 1 100%
Case J [56] 6 6 100%
Case K [57] 13 13 100%

3.5.6 Results of the addressing
Table 7 shows the resources required to access the allocated memory objects

for the design cases in Table 1, the number of Block RAMs required for the
allocations and the hardware operating frequency for the two approaches. Xilinx
Spartan 3 FPGA was the target platform for implementing both approaches.

Table 7. Comparison of the two approaches.

Case 1-1 Case 1-2 Case 2-1 Case 2-2
 BP Dist BP Dist BP Dist BP Dist
No. of 4 input LUTs: 653 994 334 356 155 191 560 804
No. of BRAMs: 14 14 6 6 5 5 13 13
Max. Frequency (MHz): 116 186 106 183 140 214 91 173
Frequency Comparison (%): 100 160 100 173 100 153 100 190

Depending on the number of partitions relating to a GMO, address look-up

tables are required to set the enable signals and the values of the address signals to
the appropriate Block RAMs on which the element of the GMO currently being
pointed at is allocated, while also disabling related Block RAMs. In the Base
Pointer Approach, these accesses to the Block RAMs are centrally controlled at the
GMO level using a pointer. Hence, only one set of address look-up tables is
required for each GMO. By contrast, in the Distributed Approach, each partition
has its separate address look-up table, unrelated to those of related partitions. The
use of a partition’s address look-up table depends on the value of its enable signal.
Hence the total number of address look-up tables for one GMO depends on the

39

number of partitions making up the GMO. This is evident by comparing Fig. 18c
and Fig. 19c. The first row of Table 7 confirms this. Thus the Base Pointer
Approach yields more efficient use of hardware resources than does the
Distributed Approach. The differences in resource requirements are however
marginal, amounting to less than 3% of the available resources, for example, Xilinx
Spartan 3 XC3S400 series [22].

Delays associated with large counter values in single based pointers and the
distribution of the pointer values are eliminated in the Distributed Pointer
Approach since each Block RAM partition has one local pointer. The use of small
counters to evaluate addresses for each partition in the Distributed Pointer
Approach increases the speed of memory accesses and consequently, increases
operating frequency. This is because all signals required for memory accesses are
calculated simultaneously at the clock edge. As the third and fourth rows in Table
7 show, the Distributed Approach yields more rapid access to data than does the
Base Pointer Approach.

3.6 COMPARISON WITH DSP

The work in this thesis has been compared with digital signal processor. The
objective of the comparison is to find the relationship between power
consumption, performance and resource usage on FPGA and DSP and size of
neighbourhood window required in RTVPS. The comparisons were conducted by
means of three scenarios, namely, 1-bit morphology erosion, 8-bit average filter
and 8-bit convolution filter. These filters are representative of different operations
in neighbourhood oriented RTVPS - logical operation, addition and multiplication.
For the convolution filters, 8-bit mask values were assumed. For these comparisons
three neighbourhood sizes (3x3, 5x5 and 7x7) were used. For simplicity,
neighbourhoods with square dimensions were chosen. Input video streams with
640-by-480 frame resolution were used.

3.6.1 DSP Implementation

The Texas Instrument, TMS320C64x DSP [64] was selected to implement the
functions on a DSP. The C64x central processing unit (CPU) capable of operating at
500, 600 and 700 MHz consists of eight functional units (two of which are
multipliers), two register files, and two data paths. The C64x multiplier has been
enhanced so that it is capable of performing two 16-bit x 16-bit (or four 8-bit x 8-bit)
multiplies every clock cycle.

To achieve the best performance, the simple approach to handling boundary
conditions in neighbourhood oriented video processing system was adopted. The
image size was simply increased in order to ensure that the boundary pixels are
accurately filtered. This approach was motivated by the Texas Instruments
implementation of a 3x3 convolution filter included in the IMGLIB [62], [63]. With
this approach, the filter complexity is minimal with regards to the cost of speed

40

due to extra rows and columns required for the boundary pixels. This approach is
close to bench mark performance figures in [62].

The experiment set-up for DSP is as follows, the TMS320C6418 DSP is
assumed to runs at 600MHz and that the input data stream is assumed at 10
MPixels/s thus lowering the CPU utilization and power consumption. Since this
implementation avoids boundary conditions by increasing the image size, perfect
cache hits are assumed as are local memory allocations for all the line-buffers.
Additionally, one data read for the newest neighbourhood pixel and one memory
write for the newly computed data corresponding to the centre pixel in the output
image are also assumed. Using the Texas Instrument Code Composer Studio
software version 2.10, it was possible to profile and achieve performances closer to
the benchmarks values [63].

3.6.2 FPGA Implementation

The experiment set-up for FPGA took advantage of the memory architecture
in this thesis. Fig. 24 depicts the implementation RTVPS filters. It was assumed that
the input video stream is limited by the FPGA performance rather than the camera.
The implementation was synthesised using Xilinx Integrated Software
Environment software version 8.1i to obtain the post-place and route resource
usage and performance. The Xilinx XPower software was used to calculate the
power consumption per clock cycle.

 Linebuffers

Window
ctrl

Pixel
switch

SLWC

...

VIP Algorithm

Sync.

a11 a12 a13

a21 a22 a23

a31 a32 a33

In
data

Neighbourhood
data

Neighbourhood
output

Out
data

a)

b)

Fig. 24 Boundary conditions implementation architecture

The architecture in Fig. 24 handles data storage and boundary conditions for

the spatial pixel neighbourhood in Fig. 4. In this figure the video/image processing
(VIP) algorithm is the neighbourhood oriented RTVPS filter. It is glued to the
architecture through the port interfaces for all the pixels data required in the
neighbourhood. The sliding window controller (SLWC) monitors the central pixel
in a spatial neighbourhood and using the position information provides valid data

41

for all the pixels in the spatial neighbourhood through the Linebuffers, Window ctrl
and Pixel Switch. The Linebuffers implement the line buffers in Fig. 4.

Window control (Window ctrl) provides the control signal used by the Pixel
switch to build a spatial neighbourhood around the current pixel. The Pixel switch
replaces all pixels in a spatial neighbourhood affected by the boundary condition,
using predefined default values if the central pixel is at the image boundary. The
output sync is required to realign the pixels with other streaming video signals
since the generated output pixel corresponding to the central pixel of a
neighbourhood oriented video processing system is usually skewed with respect to
other image signals by an amount dependent on the neighbourhood size.

3.6.3 Comparison Results

Fig. 25 - Fig. 28 show the results obtained. It should be noted for the
performance figures, that as long as there are available recourses on the FPGA, the
performance for the system will be the same regardless of the number of active
operators. For the DSP the performance (samples per second) will decrease when
additional functionality is added to the system. Thus, the performance numbers
are somewhat biased towards the DSP. The energy figures are also fairer in a
comparison between the two architectures.

The results show that for this class of operations, with optimized memory
allocation and the accessing method presented in this thesis, and full parallel and
pipeline operations, FPGA achieves a better performances in between 2.0 to 8.7 in
terms of throughput and an average reduced energy consumption of 80 times per
sample.

R e so u r c e U sa g e
(# o f S l i c e s)

0

500

1000

1500

2000

2500

3000

8bi t A r i t h. Fi l t er 1bi t M or phol ogy 8bi t FI R

3x3

5x5

7x7

Fig. 25 Resource usage on FPGA

42

R e so u r c e U sa g e
(C o d e S i z e)

34400

34500

34600

34700

34800

34900

35000

35100

35200

8bi t A r i t h. Fi l t er 1bi t M or phol ogy 8bi t FI R

3x3

5x5

7x7

Fig. 26 Resource usage on DSP

T hr o ug hp ut (M Pix/ s)

0

20

40

60

80

100

120

140

FPGA DSP FPGA DSP FPGA DSP

8bi t Ar i th. Fi l ter 1bi t Mor phology 8bi t FIR

3x3

5x5

7x7

Fig. 27 Performance

Energy (µJ)

0.10

1.00

10.00

100.00

1000.00

3x3 5x5 7x7

8bit Arith. FPGA
8bit Arith. DSP
1bit Morph. FPGA
1bit Morph. DSP
8bit FIR FPGA
8bit FIR DSP

Fig. 28. Power consumption

43

3.7 INTEGRATION WITH IMEM

Fig. 29 depicts the integration of the tools used in IMEM and the steps
required in the system synthesis and verification. The results from the memory
requirement description from IMEM are accepted by into memory synthesis in
order to generate a memory management module in VHDL and a SystemC
wrapper module that contains a black-box reference to a memory management
module implemented in VHDL. The SystemC wrapper also implements the
C/C++ RTVPS filter function as a standalone clock sensitive thread.

C/C++
Filter function

Mem
Req.

SystemC
Simulator

SystemC
Compilation

VHDL
Compilation

Memory
Synthesis

VHDL
Simulator

FPGA

SystemC
Module

VHDL
Module

Memory
Management

VHDL Module

Netlist

Impulse

Response

Behavioral Specification

IMEM

Fig. 29 System integration and verification

SystemC compilation iteratively refines the filter function embedded

through simulation until a synthesizable module which satisfies the expected
behavioural specifications of the RTVPS is achieved. This module is then
synthesized into the VHDL module using the Agility Compiler. The SystemC
simulator is also used to provide video signal impulse data to the VHDL simulator
test-bench and to write its video response, which is used to verify that the VHDL
module produces the expected result.

VHDL compilation instantiates the memory management module and the
synthesizable filter function, implements the timing relation of the system data-
flow and verifies the behaviour of the system through simulation. The final VHDL
module is synthesized and downloaded into the FPGA.

44

45

4 PAPERS SUMMARY

Using the IMEM workflow as a guideline, the relationship between the four
main papers in this thesis is shown in Fig. 30. The papers can be grouped as
memory synthesis (allocation and addressing) and performance analysis. The
papers are summarised as follows.

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

Memory Hierarchy
Optimization

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

IMEM
Conceptual Modelling

Memory storage
estimation

IMEM Projector High-level Synthesis
Memory

Allocation
Address

Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Celoxia)

Functional mapping
of algorithm

Paper I

Paper II

Papers III & IV
Paper V

Fig. 30 Relationship between thesis papers.

4.1 MEMORY SYNTHESIS

4.1.1 Paper I

This paper proposed and developed the allocation algorithm for allocating
the estimated on-chip memory requirements. The algorithm is based on heuristics
and near optimally allocates memories based on previously proposed memory
architecture which was concluded to be efficient for real-time video processing
systems. Optimal allocations is one in which the amount of unused memory
location on instantiated memories is minimal, preferably zero.

46

4.1.2 Paper II
This paper proposed and developed two memory accessing approaches for

allocated memories. The two approaches were compared and it was shown that
one approach was more area efficient while the other was more speed efficient.
Automatic generation of VHDL modules for managing (allocating and addressing)
memories was implemented in order to access the efficiency of the two accessing
approaches. The works this paper in conjunction with Paper I, provide a more
efficient means of allocating on-chip memories than current practices in automatic
synthesis tools.

4.2 PERFORMANCE ANALYSIS

4.2.1 Paper III

This paper presented an analysis of a variety of memory requirements of
video processing systems allocated using these embedded memory resources. The
analysis was performed using the memory architecture, allocation and addressing
approaches in this thesis over a wide range of possible on-chip memory capacities
and video resolutions. The analysis shows that should FPGAs support multiple
memory sizes, greater use of on-chip memories would be achieved because
according to the results obtained the amount of unused memory increases with
Block RAM size for a given resolution. The paper also shows that the amount of
unused memory reduces as video frame resolutions increases.

4.2.2 Paper IV

This paper presented a comparison of memory usage (based on the memory
architecture, allocation and addressing developed in Papers I - III) in FPGA and a
digital signal processor in neighbourhood oriented real-time video processing
systems. The paper showed that this approach to memory management achieves
better performances than DSP for different classes of operation.

4.2.3 Paper V

This paper presented a platform that automatically and optimally
implements memory requirements for spatial and temporal real-time video
processing systems targeting FPGAs. The platform is built on the works in this
thesis in order to provide data interfaces to a filter core. The work manages
boundary conditions to provide accurate data at image boundaries. The work in
this paper relieves the video processing designer the burden of managing on
memory requirements. It provides and instantiates a wrapper module for the filter
such that the designer is only required to implement the filter algorithm in the
wrapper.

47

4.3 AUTHORS CONTRIBUTIONS

The exact contributions of the authors of the four central papers in thesis are
summarized in Table 8. In the table M and C represent the main author and co-
author respectively.

Table 8. Authors’ Contributions

Paper

NL MO HN BT Contributions

I M C C C NL: Developed and implemented the allocation
algorithm
MO: Supervisor
HN: Analysis and discussion on algorithm
feasibility
BT: Analysed the algorithm results from formal
modelling viewpoint.

II M C C NL: Developed and implemented the addressing
approaches
MO: Supervisor
BT: Writing of introduction

III M C NL: Implemented the experimental analyses
MO: Supervisor

IV M C C NL: Implemented the comparison filters and test
vehicles analyses
MO: Supervisor
HN: Provided the Module for managing the
boundary conditions

V C C M NL: Implemented spatial memories and, spatial
and spatio-temporal filters to test the implemented
architecture
MO: Supervisor
HN: Provided the Module for managing the
boundary conditions and provision of interface to
background memory for temporal neighbourhood

1. Najeem Lawal (NL)
2. Mattias O’Nils (MO)
3. Håkan Norrel (HN)
4. Benny Thörnberg (BT)

48

49

5 THESIS SUMMARY

Algorithms for allocating and accessing the memory requirements of
neighbourhood oriented RTVPS operations have been presented in this thesis. The
work in this thesis has been inspired by the efforts involved in finding best
practices in memory allocation to FPGA embedded memory and IMEM’s
philosophy of memory modelling and synthesis independence of the synthesis of
core RTVPS filters. This has led to demands for accurate memory estimations and
efficient synthesis other than those currently available.

An introduction to the research area addressed in this thesis has been
presented in Section 1. Section 2 summarised the FPGA resources relevant to this
research and reviews of the previous works on memory allocation and addressing.
In Section 3, the work achieved with referenced to finding automatic and efficient
memory synthesis is presented. Section 4 provides brief summaries of the original
papers covered by this thesis and the contributions of the authors to the papers.

This section presents the conclusion of the research work in this thesis and
possible future works.

5.1 DISCUSSIONS

5.1.1 Memory architecture

For each neighbourhood oriented operation in an RTVPS, the developed
memory architecture groups all the required memory objects (line buffers) to form
a global memory object. This approach offers the advantage of reducing the
number of memory object to be managed by the design. The architecture is based
on the fact that all the memory objects required by an operator will be accessed
simultaneously. This architecture leads to approximate savings of 50% with
regards to the number of allocated memories for an operator. This is verified by
observing that four memories would have been required to allocate the four line
buffers identified in Fig. 11 if the conventional allocation approach has been
followed as against the two allocated memories in Fig. 18 and Fig. 19.

5.1.2 Memory allocation

An allocation algorithm has been developed and implemented to the
optimal use of allocated memories. This is based on the fact that inefficient
allocations are performed by the current synthesis tools in which memory objects
are allocated using high datapath widths whenever the memory object width is not
supported. The approach in this algorithm is to partition such unsupported
widths. The advantage of true dual-port memory allocations with the capability of
writing and reading at both ports in one clock cycle was adopted in order to
achieve optimal results. By this means, up to four memory-accessing operations
could be performed in one clock cycle on one memory. The performance of the
algorithm has been investigated using various on-chip memory sizes and video

50

frame resolutions. It has been shown that efficient memory utilization increases are
possible with smaller memories and larger memory requirements (as depicted in
Fig. 23).

5.1.3 Memory addressing

Two addressing approaches for accessing memory have been proposed. The
approaches are based on the regular pattern of data availability and production
typical in video processing. One of the approaches tends to be implementation cost
efficient giving about 3% savings in resources usage while the other produces
higher access speed with about 50% higher speed performance. These two
approaches give the designer possibility of choosing between resource and speed
optimisation.

5.1.4 Boundary conditions management

The memory allocation and addressing algorithms have been implemented
in order to provide all the pixel data in the first column in a pixel neighbourhood.
Local register are required to delay pixel data for other locations in the
neighbourhood (See Fig. 4). However, in order to ensure valid data are used at the
image boundaries, an architecture has been developed and implemented, which
replaces those neighbourhood pixels not within the image with a predetermined
default value depending on the operation performed.

5.1.5 IMEM interfaces

The work in this research is part of the IMEM tool. It interfaces with IMEM
to accept the description of the on-chip memory to be implemented as input and
produces VHDL modules to manage the memory requirements. At the top level,
data and control interfaces are provided for the core video processing algorithm
(Fig. 24). This work allows the video processing designer to focus on the
development of the processing algorithm while relying on IMEM to manage the
memory requirements.

5.2 CONCLUSIONS

This thesis presents memory architecture and synthesis optimized for
neighbourhood oriented real-time video processing systems in which memory
write and read accesses exhibit a regular pattern.

The architecture considers the memory requirements of each operator in the
video processing system in order to create one memory object. This memory object
is synthesised using embedded memories in order to minimise external memory
accesses. The synthesis and addressing of the memory requirements has been
automated into a tool that accepts the description of the spatial memory
requirements for all the operators in the video processing system to generate
hardware description language (HDL) modules implementing the memories.

51

The work in this thesis has been integrated with other modelling and
synthesis tools in order to create an environment for modelling, estimating,
optimising and implementing both on-chip and off-chip memory requirements of
neighbourhood-oriented video processing systems in addition to the boundary
conditions of the algorithm. Within this environment, video processing engineers
are only required to describe the memory requirements of the operators in terms of
the number of frames, frame resolution, pixel resolutions and neighbourhood
dimensions. The tools are able to implement all the memory requirements and thus
enable the engineer to focus on the core algorithm for the system.

This work has been tested using many video processing systems with a
variety of frame and pixel resolutions, neighbourhood dimensions and different
sizes of embedded memories. The results were found to be very close to theoretical
minima and still with high memory access speed performances.

FPGAs have been chosen as the target platform for the video processing
systems studied in this thesis. This choice was made despite the challenges of
programmability due to possibilities of reduced time-to-market, low non-recurring
engineering cost and increasing embedded resources in comparison to ASICs, and
efficiency of hardware implementation and high performance of embedded
systems in comparison to DSPs. The contributions of this work reduce the
challenges of system implementation on FPGA by reducing design time through
efficient automated memory synthesis.

5.3 FUTURE WORKS

In the future, research works would focus on increasing the efficiency of
allocating temporal data required in RTVPS, integrating algorithm compilers (as
depicted in Fig. 24) and other IMEM tools (as depicted in Fig. 10). The goal is to
provide a complete modelling, simulation and synthesis CAD-tool that follows the
IMEM workflow to optimally implement both on- and off-chip memory for
RTVPS. The tasks which are required to be carried out are described below.

5.3.1 Video data interface

The neighbourhood oriented operations in RTVPS require data from both
even and odd rows. This sequence of data is not available in the current interlace
video data streams. At Mid Sweden University, a video format has been developed
to address this problem. In future works, interfaces will be provided for this video
format both at the video input and at the output to video graphics adapter.

5.3.2 Tools interfacing

There are currently three tools in the IMEM workflow namely, IMEM
modelling tool, IMAPPER tool and the memory allocation tool presented in this
thesis. The modelling tool optimizes the temporal and spatial memory requirement
of an RTVPS and provides the description of the requirement. The IMAPPER tool

52

implements the temporal memory and boundary conditions of the RTVPS while
the work in this thesis deals with the implementation of the spatial memory. In the
future, these tools will be interfaced into a single CAD tool.

5.3.3 Prototyping environment

In accordance with the architecture in Fig. 24, an environment that accepts
video processing algorithms in the form of VHDL modules (written manually or
generated form C/C++/SystemC through for example, the Agility compiler) and
manages all the memory requirements for the algorithms in addition to
implementing video data input and VGA output will be developed. To use this
environment the RTVPS engineer only requires to specify the video input format,
the video and pixel resolutions and the memory requirements of the RTVPS
algorithm. The environment will implement all the memory related issues
required, data capture and VGA controller while the algorithm will be
implemented by the engineer. The complete RTVPS will be synthesised and
downloaded to a prototyping board. The Digilent Virtex II Pro Development
System board equipped with a Digilent VDEC video decoder board and a
256Mbytes of fast DDR DRAM is currently being used for this work

5.3.4 Neighbourhood oriented operations

The memory objects managed in this thesis considered only data along rows
in a video frame, although it is possible to extend this approach to columns of data.
In future works, investigations into how this work can be extended to pixel blocks
or tiles organised within a frame will take place. In this case, comparison will be
made with regards to the effect of allocating smaller memories for image tiles in
terms of the number of allocated memories, speed and area cost of addressing the
allocated memories with those already developed in this thesis.

5.3.5 Central Controller State Machine

In the future, the number of pipelining stages involved for each operator in
the video processing system and the number of frame and column/row buffers
will be modelled and implemented into a central state-machine to control the
sequence of operations in the system. This is necessary for power management and
data synchronization among operators. An obvious advantage of this state
machine is the elimination of data synchronisation buffers required in between
video processing operators.

5.3.6 Power models

In the future, the difference in power consumptions between this work and
traditional memory synthesis will be investigated. A means of achieving lower
power consumption through efficient memory and power models will also be
sought.

53

6 REFERENCE

[1] Gonzalez, R., and R. Woods, Digital Image Processing, 2nd edition,
Addison-Wesley Pub., 2002.

[2] Bhatia, D., “Reconfigurable Computing”, In Proc. of IEEE 10th Intl. Conf. on
VLSI Design, pp. 356-359, I997

[3] Brown, S. J., “An overview of technology, architecture and CAD tools for
programmable logic devices”, In Proc. of IEEE on Custom Integrated Circuits
Conf., pp. 69-76, 1994.

[4] F. Yang and M. Paindavoine, “Implementation of an RBF Neural Network on
Embedded Systems: Real-Time Face Tracking and Identity Verification”,
IEEE Trans. on Neural Networks, Sept. 2003, pp. 1162 - 1175.

[5] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross and M. Chawathe,
“Accelerated image processing on FPGAs”, IEEE Trans. on Image
Processing, Dec. 2003, pp. 1543 - 1551.

[6] R. B. Lazarus and F. M. Meyer, “Realization of a dynamically reconfigurable
preprocessor”, IEEE Nat. Aerospace Electron Conf., 1993, pp 74-80.

[7] J. Jiang, W. Luk. and D. Rueckert, “FPGA-based computation of free-form
deformations in medical image registration”, In Proc IEEE Intl. Conf. on
Field-Programmable Technology (FPT), 2003, pp. 234 - 241

[8] A. S. Dawood, S. J. Visser and J. A. Williams, “Reconfigurable FPGAS for
real time image processing in space”, In Proc. IEEE Intl Conf. on DSP, July
2002, pp. 845 - 848.

[9] P. McCurry, F. Morgan and L. Kilmartin, “Xilinx FPGA implementation of an
image classifier for object detection applications”, In Proc. of the IEEE Intl
Conf. on Image Processing, Oct. 2001, pp. 346 - 349.

[10] Z. Guo, W. Najjar, F. Vahid and K. Vissers, “A quantitative analysis of the
speedup factors of FPGAs over processors”, In Proc. of ACM/SIGDA 12th
Intl Symp. On FPGA, 2004, pp. 162 - 170.

[11] Xilinx, Spartan FPGAs - Gate Array solutions, www.xilinx.com
[12] Tessier, R. and Burleson, W., “Reconfigurable Computing for Digital Signal

Processing: A Survey”, Journal of VLSI Signal Processing, Kluwer Academic
Publishers, 2001.

[13] Standard VHDL Language Reference Manual http://www.eda.org/vhdl-200x/
[14] Verilog, http://www.eda.org/sv/
[15] De Micheli, G., “Hardware synthesis from C/C++ models”, Proc. of IEEE

Design, Auto & Test in Europe Conf & Exhibition, pp. 382-383, Mar 1999.
[16] Open SystemC Initiative, “SystemC User’s Guide”, version 2.0.1,

www.systemc.org
[17] Haldar, M., Nayak, A., Choudhary, A., and Banerjee, P., “A system for

synthesizing optimized FPGA hardware from MATLAB”, IEEE/ACM Inter.
Conf. on CAD, pp. 314-319, Nov 2001.

[18] Kuhn, T. and Rosenstiel, W. “Java based object oriented hardware
specification and synthesis” In Proc. of ASP-DAC pp. 579-581, Jan 2000.

[19] Kim, D., “An Implementation of Fuzzy Logic Controller on the Reconfigurable
FPGA System”, IEEE Trans. on Industrial Electronics, Jun 2000, pp 703-715

[20] Cowen, C.P. and Monaghan, S., “A reconfigurable Monte-Carlo clustering
processor (MCCP)”, In Proc. of IEEE Wksp on FPGAs for Custom
Computing Machines, pp. 59 – 65, Apr. 1994.

54

[21] Smith, M. J. S., Application Specific Integrated Circuits, Addison Wesley
[22] Xilinx, “Spartan-3 FPGA Family: Complete Data Sheet”, www.xilinx.com
[23] Wolf, W., FPGA-Based System Design, Prentice Hall, 2004
[24] Xilinx. “Using Block RAM in Spartan-3 FPGAs”, www.xilinx.com
[25] Altera, “Stratix II Architecture”, www.altera.com
[26] QuickLogic, “Eclipse II Family Data Sheet”, www.quicklogic.com
[27] Xilinx, “MicroBlaze Microcontroller Reference Design User Guide”,

www.xilinx.com
[28] P. Diniz, and J. Park, “Automatic synthesis of data storage and control

structure for FPGA-based computing engines.” In Proc FCCM’00, 2000,
IEEE Computer Society Press, pp. 91 - 100.

[29] L. Ramachandran, D. D. Gajski, and V. Chaiyakul, “An Algorithm for Array
Variable Clustering”, In Proc. Europ. Des. Test. Conf., Feb.1994, pp. 262 -
266.

[30] M. Gokhale and J. Stone “Automatic Allocation of Arrays to Memories in
FPGA Processors with Multiple Memory Banks”, in Proc. of the IEEE Symp.
on Field-Programmable Custom Machines, 1999, pp. 63-69.

[31] N. Baradaran, J. Park, and P.C. Diniz, “Compiler reuse analysis for the
mapping of data in FPGAs with RAM blocks”, In Proc. IEEE Intl. Conf. on
Field-Programmable Technology, pp. 145-152, 2004.

[32] H. Schmit and D.E. Thomas, “Synthesis of application-specific memory
designs”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, pp. 101 - 111, March 1997.

[33] P.K. Jha, and N.D. Dutt, “High-level library mapping for memories”, ACM
Transactions on Design Automation of Electronic Systems (TODAES), pp.
566 - 603, July 2000.

[34] M. Doggett, and M. Meissner, “A Memory Addressing And Access Design for
Real Time Volume Rendering”, In Proc of IEEE Int. Symp. on Circuits and
Systems, pp. 344 - 347, June 1999.

[35] D. Grant, P.B. Denyer, and I. Finlay, “Synthesis of Address Generators”,
Digest of Tech. Papers of IEEE Int. Conf on Computer-Aided Design, pp
116-119, Nov 1989.

[36] J. Seo, T. Kim, and P.R. Panda, “Memory Allocation and Mapping in High-
Level Synthesis - An Integrated Approach”, IEEE Trans. on VLSI Syst., pp.
928 - 938, Oct. 2003.

[37] H. Schmit and D. E. Thomas, “Address generation for memories containing
multiple arrays”, IEEE Trans. on CAD of Integ. Cct. and Sys., pp. 377 – 385,
May 1998.

[38] M. Miranda, F. Catthoor, M. Janssen and H. De Man, “High-level address
optimization and synthesis techniques for data-transfer-intensive
applications”, IEEE Trans. on VLSI Systems, pp. 677-686, Dec 1998.

[39] R. Leupers, and P. Marwedel, “Algorithms for Address Assignment in DSP
Code Generation”, Digest of Tech. Papers of IEEE/ACM Int. Conf. on
Computer-Aided Design, pp. 109 - 112, Nov. 1996.

[40] N. Sugino, H. Miyazaki, S. Iimuro, and A. Nishihara, "Improved Code
Optimization Method Utilizing Memory Addressing Operation and its
Application to DSP Compiler", IEEE International Symposium on Circuits
and Systems, pp. 249 - 252, May 1996.

55

[41] Vitabile, S., Gentile, A., Siniscalchi, S.M. and Sorbello, F., “Efficient Rapid
Prototyping of Image and Video Processing Algorithms”, In Proc. of
EUROMICRO Systems on Digital System Design, 2004

[42] Drayer, H.T., and Araman, P.A., “A development System for Creating Real-
Time Machine Vision Hardware Using Field Programmable Gate Arrays”,
Proc. of 32n Hawaii Inter. Conf. on System Sciences, 1999.

[43] Bariamis, D. G., Iakovidis, D. K., Maroulis, D. E. and Karkanis, S.A., “An
FPGA-Based Architecture for Real Time Image Feature Extraction”, Int’l
Conf. on Pattern Recognition (ICPR'04), pp. 801-804

[44] Longfei, R. and Songyu, S. “Real-time duplex digital video surveillance
system and its implementation with FPGA”, In Proc. of IEEE Int’l Conf. on
ASIC, 2001, pp 471-473.

[45] Panda, P.R. and Dutt, N.D., “Reducing Address Bus Transitions for Low
Power Memory Mapping”, IEEE 1996, pp. 63 - 67.

[46] Park, J. and Diniz, P.C., “Synthesis of Pipelined Memory Access Controllers
for Streamed Data Applications on FPGA-based Computing Engines”, ISSS,
Oct. 2001, pp 221 - 226.

[47] Herz, M., Hartenstein, R., Miranda, M., Brockmeyer, E. and Catthoor, F.,
“Memory Addressing Organization for Stream-Based Reconfigurable
Computing”, IEEE 2002, pp 813 – 817.

[48] J. Pan, S. Li, and Y. Zhang, “Automatic extraction of moving objects using
multiple features and multiple frames”, In Proc. Of IEEE International
Symposium on Circuits and Systems, Emerging Technologies for the 21st
Century, May 2000.

[49] A. Smith, and M. Teal, “Identification and tracking of maritime objects in
near-infrared image sequences or collision avoidance”, 7th International
Conference on Image Processing and Its Applications (Conf. Publ. No.465),
pp.250-4 vol.1, July 1999.

[50] J. Jang, D. Yu, and Z. Sun, “Real-time image processing system based on
FPGA for electronic endoscope”, In Proc. of IEEE Asia-Pacific Conference
on Circuits and Systems. Electronic Communication Systems. (Cat.
No.00EX394), pp. 682-5, Dec. 2000.

[51] I. Andreadis, and G. Louverdis, “Real-time adaptive image impulse noise
suppression”, IEEE Trans. Instrum. Measurements, pp. 798-806, June 2004.

[52] T. Zhang, and C. Suen, “A fast thinning algorithm for thinning digital
patterns”, Commun. ACM, vol.27, no.3, pp. 236-239, Mar. 1984.

[53] R. Rad, and M. Jamzad, “Real-time classification and tracking of multiple
vehicles in highways”, Pattern Recognition Letters, Vol. 26, July 2005.

[54] A. Bosco, M Mancuso, S. Battiato, and G. Spampinato, “Temporal noise
reduction of bayer matrixed video data”, In Proc. of IEEE International
Conference on Multimedia and Expo (Cat. No.02TH8604), pp.681-4 vol.1,
Aug. 2002.

[55] J. Zheng, D. Feng, Y. Zhang, W. Siu, and R. Zhao, “An algorithm for video
monitoring under a slow moving background”, In Proc. of the First Intl Conf.
on Machine Learning and Cybernetics, Beijing, 4-5 Nov 2002.

[56] D. Zheng, Y. Zhao, and J. Wang, “An efficient method of licence plate
location”, Pattern Recognition Letters, pp. 2431-2438, Vol. 26, Issue 15,
June 2005.

56

[57] A. Abouelela, H. Abbas, H. Eldeeb, A. Wahdan, and S. Nassar, “Automated
vision system for localizing structural defects in textile fabrics”, Pattern
Recognition Letters, 26 pp. 1435-1443, 15 July 2005.

[58] Thörnberg, B., Norell, N. and O'Nils, M., ”IMEM: An object-oriented memory-
and interface modelling approach for real-time video systems”, In Proc. of
the Forum on specification & Design Languages, Marseille, September 2002

[59] Thörnberg, B., Norell, N. and O'Nils, M., ”Conceptual Interface and Memory-
Modeling for Real-Time Image Processing Systems. IMEM: A tool for
Modeling, Simulation and Design Parameter Extraction”, In Proc. of IEEE
Workshop on Multimedia Signal Processing, Dec. 2002.

[60] M. O’Nils, B. Thörnberg and H. Norell, “A Comparison between Local and
Global Memory Allocation for FPGA Implementation of Real-Time Video
Processing Systems”, In Proc of IEEE Int.Conf. on Signals and Electronics
Systems, Sept 2004.

[61] XILINX, Using Block SelectRAM+ Memory in Spartan-II FPGAs, XAPP173
(v1.1), Dec 2000.

[62] Texas Instruments, TMS320C64x Image/Video Processing Library,
http://www.ti.com

[63] Texas Instruments, TMS320C6000 Programmer’s Guide, http://www.ti.com
[64] Texas Instruments, TMS320C64x Technical Overview, http://www.ti.com
[65] Sanguinetti, J. and Pursley, D., “High-Level Modeling and Hardware

Implementation with General-Purpose Languages and High-level Synthesis”,
April 2002.

[66] Synopsys, C2HDL Compiler, www.synopsys.com
[67] Agility Compiler, www.celoxica.com/agility
[68] Martinolle, F. and Parvathy, U., "Mixed language design data access:

procedural interface design considerations", In Proc. of VHDL Intl Users
Forum Fall Workshop, 2000, pp. 95 - 99.

[69] Sasaki, H., "A formal semantics for Verilog-VHDL simulation interoperability
by abstract state machine", In Proc. of DATE Conference and Exhibition
1999, pp. 353 – 357

[70] Catthoor, F. et al., Custom Memory Management Methodology. Kluwer
Academic Publishers, 1998, ISBN 0-7923-8288-9.

57

APPENDIX A

The proposed allocation algorithm is presented in Figure A in pseudo-code.
In step 1, the algorithm creates global memory objects according to Eq. (1). In step
2, the algorithm ensures that they conform to the allowable port width
configuration according to definition vii. This step is captured in a procedure,
configure_global_memory_objects(R), presented below the algorithm in Figure A.1. In
steps 3 through to 10, the global memory objects are allocated to the Block RAMs
according to definitions viii to xi. In steps 11 through to 20, the algorithm finds the
optimal use of unallocated memory space in the Block RAM through the second
port. This allocation is also in accordance with definitions viii to xi. Steps 5 and 14
handle the partitioning of the global memory objects with respect to length by
allocating part of the length of the memory object to the Block RAM until the
memory object has been completely allocated. In steps 7 to 9 and 15 to 17, the
algorithm estimates the amount of the memory object possible for allocation to the
available space on a Block RAM. This amount is used to update the memory object
and the Block RAM if the allocation decision is made. In steps 18 to 20, the
algorithm finds the memory object which, when allocated to the remaining space
on the current Block RAM through port B, yields the optimal use of the Block
RAM. The optimal allocation is that for which the unused memory space is
minimum, preferably zero.

The procedure for configuring the width of the global memory objects,
configure_global_memory_objects(R), is based on definitions (iii) and (vii). In step 1 of
the procedure, a container for the set of global memory objects is created. In this
procedure, as the global memory objects are configured they are placed in this
container. The container is returned in step 17 as the output of the procedure. As
the procedure loops through the set of global memory objects in step 2, the width
of each global memory object, WRi, is obtained in step 3 and compared in step 4
with Wn. If WRi is not supported by the FPGA, the segment identifier is created in
step 5. In steps 6 to 14, Wc is looped through and its members, Wn, are compared
with the WRi. This comparison starts from the largest Wn down to the smallest. An
appropriate number of times by which WRi is greater than Wn is used in creating
segments according to definition vii. WRi is updated and reused until it is reduced
to zero. If the FPGA supports WRi, in steps 15 and 16, the object is left un-
partitioned and placed in the returned container.

58

 The Proposed Allocation Algorithm

Algorithm: Memory Allocation(R, M)
Parameters: R[R

1
 … R

I
] set of I memory objects;

 M[M
1
 … M

K
] set of K Block RAMs;

Return: M[M
1
 … M

K
] set of K Allocated Block RAMs;

{
1. create global memory object;
2. R := configure_global_memory_objects(R);
3. for M

k
 := M

1
 upto M

K

4. { for R
i
 := R

1
 upto R

I

5. { determine length of R
i
 to be allocated;

6. determine port on M
k
 for allocation;

7. Allocate R
i
to M

k
;

8. update M
k
;

9. update R
i
;

10. if M
k
 has been completely used

 { take next M
k
;

}
11. else
12. { if no_of_ports on M

k
 = 1

13. { pair(R
i
,M

k
.unused) best_alloc;

14. flag := TRUE;
15. for R

j
 := R

1
 upto R

I

16. { determine length of R
j
 to be allocated

17. temporarily Allocate R
j
to M

k
;

18. temporarily update M
k
;

17. temporarily update R
j
;

19. if M
k
 is completely used

 { Allocate R
j
to M

k
;

 flag = FALSE;
 take next M

k
;

 }
20. pair(R

j
,M

k
.unused) temp_alloc;

21. if temp_alloc.second < best_alloc.second
 { best_alloc := temp_alloc;
 }
 }
22. if flag = TRUE

 { R
i
 := best_alloc.first;

 Allocate R
i
to M

k
;

 update M
k
;

 update R
i
;

 }
 }
}

 }
 }
}

Procedure: configure_global_memory_objects(R)
Parameters: R[R

1
 … R

I
] set of I memory objects;

Return: R[R
1
 … R

I
] set of I memory objects;

{
1. create new set of memory objects New_R;
2. for R

i
 := R

1
 upto R

I

3. { width := R
i
.width;

4. if width ∉ W
c

5. { segment_id := 1;
6. foreach W

i
 in W

c

7. { if width ≥ W
i

8. { count_max := width / W
i
; // integer division

9. width := width – (W
i

× count_max);
10. for count := 1 upto count_max
11. { Mem_Obj temp(W

i
, R

i
.length, R

i
.operator_id);

12. temp.set_segment(segment_id);
13. add temp to new_R;
14. segment_id := segment_id + 1;
 }
 }
 }
 }
15. else
16. { add R

i
 to new_R;

}
 }
17. return new_R;
}

Figure A.1. The proposed allocation algorithm.

