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ABSTRACT 

In this thesis, a both method and a tool to enable efficient memory synthesis 
for real-time video processing systems on field programmable logic array are 
presented. In real-time video processing system (RTVPS), a set of operations are 
repetitively performed on every image frame in a video stream. These operations 
are usually computationally intensive and, depending on the video resolution, can 
also be very data transfer dominated. These operations, which often require data 
from several consecutive frames and many rows of data within each frame, must 
be performed accurately and under real-time constraints as the results greatly 
affect the accuracy of application. Application domains of these systems include 
object recognition, object tracking and surveillance. 

Developments in field programmable gate array (FPGA) have been the 
motivation for choosing them as the platform for implementing RTVPS. Essential 
logic resources required in RTVPS operation are currently available optimized and 
embedded in modern FPGAs. One such resource is the embedded memory used 
for data buffering during real-time video processing. Each data buffer corresponds 
to a row of pixels in a video frame, which is allocated using a synthesis tool that 
performs the mapping of buffers to embedded memories. This approach has been 
investigated and proven to be inefficient. An efficient alternative employing 
resource sharing and allocation width pipelining will be discussed in this thesis. 

A method for the optimal use of these embedded memories and, 
additionally, a tool supporting automatic generation of hardware descriptions 
language (HDL) codes for the synthesis of the memories according to the 
developed method are the main focus of this thesis. This method consists of the 
memory architecture, allocation and addressing. The central objective of this 
method is the optimal use of embedded memories in the process of buffering data 
on-chip for an RVTPS operation. The developed software tool is an environment 
for generating HDL codes implementing the memory sub-components.  

The tool integrates with the Interface and Memory Modelling (IMEM) tools 
in such a way that the IMEM’s output - the memory requirements of a RTVPS - is 
imported and processed in order to generate the HDL codes. IMEM is based on the 
philosophy that the memory requirements of an RTVPS can be modelled and 
synthesized separately from the development of the core RTVPS algorithm thus 
freeing the designer to focus on the development of the algorithm while relying on 
IMEM for the implementation of memory sub-components. 





v 

 

SAMMANDRAG 

I denna avhandling presenteras en metod och ett verktyg för möjliggörandet 
av effektiv minnessyntes för vidoebearbetande system i realtid på Field 
Programmable Gate Array (FPGA). I ett system som bearbetar video i realtid 
(RTVPS) upprepas en mängd processer i varje bildruta i en videosekvens. Dessa 
processer är ofta beräkningsintensiva och, beroende på videoupplösningen, kan de 
också vara mycket dataöverföringsstyrda. Processerna, som ofta kräver data från 
en mängd konsekutiva bildrutor och många dataserier inom varje ruta, måste 
genomföras exakt och under realtidsbegränsningar, då resultaten i hög grad 
påverkar tillämpningens exakthet. Tillämpningsområden för dessa system 
innefattar igenkänning av föremål, spårning av föremål samt övervakning. 

Utvecklade produkter inom FPGA har motiverat användandet av dessa som 
plattform för tillämpning av RTVPS. De nödvändiga logikresurser som krävs för 
RTVPS-processer är för tillfället tillgängliga, optimerade och inbyggda i modern 
FPGA. En sådan resurs är det inbyggda minne som används för datalagring under 
videoprocessning i realtid. Varje datalager motsvarar en rad pixlar i en videoruta 
som automatiskt allokeras på FPGAs. Denna metod har undersökts och visat sig 
vara effektiv. Ett effektivt alternativ som utnyttjar resursdelning och anslag vid 
rörledning diskuteras i denna avhandling. 

En metod för optimal användning av dessa inbäddade minnen och ett 
verktyg som stöder automatisk generering av HDL-koder för minnessyntes enligt 
den utvecklade metoden är fokus för denna avhandling. Denna metod består av 
minnesarkitektur, allokering och adressering. Metodens centrala mål är optimal 
användning av inbäddade minnen under lagring av data på chip för en RTVPS-
operation. Den utvecklade mjukvaran är en miljö för att generera HDL-koder, där 
minneskomponenter tillämpas. 

Verktyget integreras med IMEM-verktyg (Interface and Memory Modelling) 
på ett sådant sätt att IMEM:s utdata – minneskraven för ett RTVPS, importeras och 
behandlas för att generera HDL-koderna. IMEM baseras på filosofin att 
minneskraven för ett RTVPS kan modelleras och syntetiseras separat från 
utvecklandet av den ursprungliga huvudalgoritmen för RTVPS och därigenom ge 
designern frihet att fokusera på utvecklingen av algoritmen, medan IMEM 
används för tillämpning av minneskomponenter. 
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1 INTRODUCTION 

This thesis concerns the memory synthesis for the real-time implementation 
of video processing systems on FPGA. Real-Time Video Processing System 
(RTVPS) will first be introduced, followed by a brief introduction to Field 
Programmable Gate Array (FPGA), which will be compared to other 
implementation platforms. A justification for the choice of FPGA as the target 
platform for the work in this thesis will be given. The motivation for embarking on 
the research work presented in this thesis is also provided. In the later sections, 
related works and the contributions of this thesis are presented. 

 
 

1.1 REAL-TIME VIDEO PROCESSING SYSTEM (RTVPS) 

In an RTVPS the video signal is processed sufficiently quickly so that the 
rate of generating output pixels matches the rate of receiving input pixels. Hence 
there is a throughput of one pixel per clock cycle. Thus after an initial delay, the 
system enters a state during which a pixel is being received at the input side and, 
at the same time, a pixel is being produced at the output side. This does not, 
however, imply that this output pixel is the result of the newly received input pixel 
since there would be delays due to data buffering and pipelines in the 
computation.  

A common feature in RTVPS is that the majority of the operations are 
neighbourhood oriented and thus require buffers for the pixel data required in the 
neighbourhood [1]. A neighbourhood of pixels constitutes a set of pixel data from 
which an RTVPS operator in the processing algorithm calculates an output pixel 
corresponding to the neighbourhood's central pixel. The neighbourhood is built 
around each pixel in the input image to generate an output image. The 
consequence is that a large amount of data buffers (line- and frame-buffers) are 
required depending on the size of the video frame and the operation window to 
ensure that all the required pixel data for each operation are available. Line buffers 
are used to store rows of pixels in the spatial neighbourhood. A spatial 
neighbourhood normally has dimensions of M-by-N, where M and N are odd 
values such that the central pixel is symmetrical about any axis. N and M denote 
the height and width of the spatial neighbourhood and usually determine the 
number of line buffers and delay elements required by the spatial neighbourhood 
operator respectively. Frame buffers are used to store images in the temporal 
neighbourhood. A temporal neighbourhood normally has dimensions of L-by-M-
by-N, where M and N are defined as above and L, also an odd value, denotes the 
temporal depth of the neighbourhood. L determines the number of frame buffers 
in the temporal neighbourhood. Line buffers are usually allocated to on-chip 
memories while external memories are required for frame buffers. The size of each 
element in these buffers depends on the dynamic range of the video signal. Hence 
a 5-by-5 spatial neighbourhood requires four line buffers while two line buffers are 
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required by a 3-by-3 neighbourhood. In the temporal domain, a neighbourhood of 
seven frames will require six frame buffers. An efficient data management tool is 
required since memory accesses generally constitute major bottlenecks. 

 
 

1.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA) 

Reconfigurable computing involves the use of reprogrammable hardware- / 
software-based devices such as a custom-built computing machine in order to 
implement the current functional demands of the systems [2]. This means that as 
the system requirements increase, more modules can be added to extend the 
computational capability of the system to meet the new requirements. The obvious 
advantages are that new chips would not have to be built each time the system 
requirements change and also the opportunity to customize the device through 
Intellectual Property (IP) reuse for different functions. Hence, with a library of IP 
cores, different components can be glued together to meet the system 
requirements. The sacrifice is that the platform is required to accommodate a very 
wide range of possible implementation updates and application areas, which 
means there is no guarantee that the total capacity of the devices will always be 
used and hence there is rarely optimal usage of resources. When compared to 
ASIC and ASIP, reconfigurable devices tend have low performance since there are 
based on generic hardware architecture which has not been optimized for any 
specific application domain. 

Depending on the capacity and architecture of the constituent basic 
elements, reconfigurable hardware can be categorized as programmable logic 
devices (PLD), complex PLD (CPLD) and FPGA. An overview of technology, 
architecture and programming tools for programmable hardware devices is 
presented in [3]. FPGA programmability enables hardware designers to greatly 
reduce the overall product time-to-market as shown in Fig. 1.  

 

Relative Time 

FPGA 

ASIC 

0 100 

Significatnt FPGA Time Savings 

Test Vector Generation 

Production Ramp-up Simulation 

Sales

Sales

 

Fig. 1. Time-to-Market - FPGAs vs. ASIC [11] 
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Other advantages of a programmable solution include reduced development 
costs (little non-recurring engineering costs), the possibility of rapid prototyping 
and the ability to support field upgrades and remote downloads that will extend 
the longevity of the product in the market (time-in-market). These are depicted in 
Fig. 2. Hence according to Fig. 2, the sooner that hardware designers market their 
products, the greater their income. This is one of the major advantages of FPGAs 
and explains why many applications, which have historically been implemented in 
software and/or ASIC, are now being implemented on FPGAs [4], [5]. 

 

Start of Market Window End of Market Window

Potential
Market

Realized Market due to
time-to-market delays

 

Fig. 2. Product time-in-market [11] 

 
The implementation of computationally intensive and data transfer 

dominated applications, which are common in RTVPS, has previously been 
dominated by Digital Signal Processors (DSP) and dedicated applications specific 
integrated circuit (ASIC). However, developments in FPGA have made it possible 
to implement RTVPS applications using FPGA [4], [5]. Fig. 3 shows the 
implementation spectrum across computing devices. It should be noted that the 
different platforms in Fig. 3 are not isolated as depicted in the figure but are over-
lapping clouds. 

 

General-Purpose 
Processor 

Programmable 
DSP 

Reconfigurable
Hardware 

Specialization 

Programmability 

ASIC 

 

Fig. 3.  Signal processing implementation spectrum [12]. 
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FPGA has been compared to DSP and ASIC for many applications, domains 
[4] - [10]. [10] provides both quantitative and qualitative arguments for the 
performance advantages of FPGA. As shown in Fig. 3, FPGA offers specialization 
and performance which is close to ASIC, but it is not as easily programmable as 
DSP and processors. This limitation had led to the development of hardware 
description languages and tools to reduce the challenges of FPGA programming. 
The developed languages include the following, VHDL [13], Verilog [14], C/C++ 
[15], SystemC [16], MATLAB [17] and Java [18]. 

Because of its software re-configurability, hardware performance, IP reuse, 
time-to-market and increased number of optimised embedded resources, FPGA 
has been chosen as the target platform for the method developed in this thesis. 

 
 

1.3 MOTIVATION FOR EFFICIENT MEMORY SYNTHESIS 

If a simple RTVPS application is considered involving only spatial domain, 
for example a Sobel Operator for detecting edges in a video frame, then a 
neighbourhood (3-by-3) would be built around each pixel in the frame. Building 
such a neighbourhood requires the necessary pixel data to be stored. Fig. 4 depicts 
such a neighbourhood where, pij represents the pixel data at the i-th column and j-
th row in the neighbourhood, dpixel is the pixel data entering the neighbourhood as 
the processing window traverses all the pixels in the image and d is a clock delay. 
Line buffers are required to store these pixel data in order to create the 
neighbourhood. In Fig. 4b, these buffers are represented as line buffer. A line buffer 
can be thought of as a First-In-First-Out shift register (FIFO) - with predetermined 
constant length - that can be implemented as a circular buffer allocated to a set of 
memory locations. 

 



5 

Line buffer Line buffer

d d d d d d 

p11 p12 p13

p21 p23

p31

p22

p32 p33

p33 p32 p31 p23 p22 p21 p13 p12 p11 

a) 

b) 
dpixel 

dpixel 

 

Fig. 4 Basic architecture for the implementation of line buffers in neighbourhood 
oriented image processing operations. Part a) shows an example of a 3-by-3 

neighbourhood and b) its implementation. 

Managing the line-buffers (memory objects) identified in Fig. 4 is the focus 
of this work. The main goal is to develop an automatic memory synthesis tool that 
makes the most efficient use of the addressable memory locations available in all of 
the instantiated FPGA on-chip memory before instantiating another. 
 
 
1.4 PROBLEM DESCRIPTION 

The method of allocating the line buffers identified in Fig. 4 to FPGA on-chip 
memory greatly affects use of the memory depending on the size of the on-chip 
memory. In addition, the length of the line buffer and the bit-width of each of the 
elements in the line buffer also affect the efficiency of the allocation. Increasing the 
neighbourhood dimension, in terms of the number of frames, L, the width of the 
video frame, M and number of line buffers, N as well as the number of operators in 
the RTVPS application leads to increasing complexities in data management. In 
general, managing the data required in such a neighbourhood leads to three major 
problems namely: 
 

1. Data allocation problems due to pixel- and video-width (when the bit-
width of each element in a line buffer and its length are not directly 
supported for allocation) 

2. Data management problems caused by the increasing number of line 
buffers, N 

3. Data management problems caused by the increasing number of RTVPS 
operators and number of frames, L 
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These problems will be discussed at a later stage in the thesis (Section 3.3). 
 
 

1.5 MAIN CONTRIBUTIONS  

The main contribution of this research is to provide solutions to the 
problems identified above. The following solutions are offered to the problems: 

 
1. Memory architecture - organizing the data required by RTVPS operator. 
2. Memory allocations and accessing. 
3. Interfaces to frame data required by operators in temporal neighbourhood. 

 
These solutions will be discussed at a later stage together with the results 

obtained by their use. Tests on the performance of the solutions and comparisons 
with other works are also discussed.  

 
 

1.6 THESIS OUTLINE 

The next section presents the developments and trends within FPGA with 
focus on embedded memory and DSP cores. Earlier research works relating to on-
chip memory allocation and memory addressing are also presented. In Section 3, 
the contribution of this research work is presented. The connections between this 
work and others at Mid Sweden University are presented. Section 3 also presents 
the results of this work, the performance when increasing RTVPS complexity as 
well as FPGA technology and comparisons with other works. Section 4  
summarises the work covered by all the papers included in this thesis. The papers, 
which represent original contributions of this research work, are added as 
appendices. Section 5 summarises and concludes the contribution of this thesis. 
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2 RELATED WORKS 

In this section, FPGA features relevant to this research and earlier work in 
the field of memory optimization for FPGA are presented. 

 
 

2.1 WHY FPGA? 

FPGAs have been employed in implementing high-performance 
computations such as fuzzy logic controller, [19], complex Monte Carlos and 
percolation problem simulations [20]. In [4], an FPGA was used for face tracking in 
streaming video using an RBF neural network for real-time verification. The 
literature is exhaustive with regards to the use of FPGAs for network monitoring, 
audio/video signal processing and safety critical applications. These are the 
application areas previously earlier dominated by DSP. The attractions for 
implementing these applications on FPGAs can be traced to those features that 
distinguish them from other computing platforms. These features are listed as 
follows [21] 

 
1. On-chip RAM blocks and distributed memories 
2. Embedded processors 
3. Dedicated computational units (multipliers and DSP block) 
4. Programmable logic cells  
5. Programmable interconnect  
6. Programmable Input/Output cells 
7. Logic cells can implement combinational and/or sequential logic. 
 
Although specific implementation details vary among the vendors, the focus 

here is on Xilinx Spartan 3 [22] and additionally, the features common to the FPGA 
vendors are presented in detail. Fig. 5 shows the architectural overview of Xilinx 
Spartan 3. In the figure, DCM, IOB and CLB represent Digital Clock Manager, 
Input/Output Blocks and Configurable Logic Blocks respectively. The remaining 
part of this section will discuss the first four items in the above list. 

 
2.1.1 Programmable Logic Cells 

The programmable logic cell is the basic building block for implementing 
combinatorial and sequential logic. Logic cells are mostly categorized as either 
fine-grain or coarse-grain architectures, depending on the number of gates in them. 
Since the logic cell is the smallest unit available, it can be organized 
programmatically into complex units needed to perform functional requirement of 
the device. In an SRAM-based FPGA, a logic cell essentially consists of a lookup 
table (LUT) and a register to store the LUT value [23]. For example, LUTs provide 
the main resource for implementing logic functions. LUTs can be configured as 
Distributed RAM or a 16-bit shift register. The storage elements can be 
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programmed as either a D-type flip-flop or a level-sensitive latch to provide a 
means to synchronize data to a clock signal. Wide-function multiplexers effectively 
combine LUTs in order to permit more complex logic operations. The carry chain, 
together with various dedicated arithmetic logic gates, supports rapid and efficient 
implementations of mathematical operations. 

For Xilinx Spartan 3 FPGA, the logic cell is coarse-grain based and is referred 
to as the configurable logic block (CLB). Each CLB contains both combinatorial and 
sequential logics [24]. The function of a CLB is stored in a RAM-based look-up 
table (LUT) within the CLB. The programming on the LUT determines the use of a 
CLB for logical and data storage functions. Fig. 6 depicts the implementation of 
CLBs for Xilinx Spartan 3. Each CLB is organized into four interconnected slices. 
Each slice contains two logic function generators (LUTs), two storage elements, 
wide function multiplexers, carry logic and arithmetic gates in addition to other 
elements.  

 

Fig. 5 Overview of Xilinx Spartan 3 [22]  

 

 

Fig. 6 Xilinx Spartan 3 CLB [22] 
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2.1.2 On-chip RAM 
Access to data during signal processing greatly affects the performance of a 

system. Data fetches from external memory are subject to latency of the 
communicating devices and signal integrity due to cross-talk from neighbouring 
signals. The availability of on-chip RAM memory eliminates / reduces this latency. 
The random access memory (RAM) offers fast direct access to re-writeable memory 
locations making it appropriate for use with streaming data where buffering or 
caching of data is necessary. RAMs can be dynamic (DRAM) or static (SRAM). 
SRAMs are faster, larger (6 transistor core, Fig. 7) and require more power while 
DRAMs are slower, smaller (1 transistor core), requires less power, and requires 
that the data be periodically refreshed due to substrate leakage [23]. Although, 
SRAMs are bulkier than DRAMs they are used in fabricating FPGA basic logic cells 
and on-RAM due to speed and because they do not require data refresh. On-chip 
RAMs can be implemented as single-port, dual-port and multi-port [23]. Fig. 7 
shows the SRAM core circuit. The memory value is stored in the loop connected 
pair of inverters. The two extreme transistors connect the bits line to the inverters. 
When the select (powered by the RAM enable) signal is low, the inverters reinforce 
their values. When the select is high, a read is performed by driving the bit lines 
value (pre-charged to VDD) to the value of the closer inverter. With a high value on 
select, a write is performed by loading the bit lines appropriately and using their 
values to drive the inverters. This is possible since the bit lines have higher 
capacitances than the inverters [23]. The core in Fig. 7 implements a single port 
RAM, but a dual-port RAM can be achieved by the additional select and bit lines 
connected to transistors at the opposite ends of the inverters (in parallel with those 
presently linking the bit lines to the inverters). In a similar manner, multi-port RAM 
can be built by increasing the number of bit lines and the linking transistor pairs. 
Obviously the additional costs for select line, two bit lines and two transistors make 
it expensive to implement multi port RAMs. 

 

select 

bit bit'

+

 

Fig. 7 SRAM core cell [23] 
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Typical on-chip dual- and single-port RAMs have the necessary control 

signals and, data and address busses for independent memory access (reading and 
writing) at a port [22]. In addition, a RAM block can be asynchronous or 
synchronous depending on whether the read and write cycles can be triggered by 
control and/or address transitions asynchronous to a clock or synchronous to the 
system clock [24]. Fig. 8 shows data path of a full implementation of true dual-port 
on the Xilinx Spartan 3 FPGA. In the figure, data path 1 implements write to and 
read from Port A, data path 2 write to and read from Port B, data path 3 
implements data transfer from Port A to Port B, and data path 4 implements data 
transfer from Port B to Port A. Single port allocation can be achieved through data 
path 1 or 2 if implemented exclusively. Data paths 3 or 4 are used to implement 
dual port allocation. A true dual port allocation is achieved when data paths 1 and 
2 are implemented together on a single Block RAM. The problem of address 
contention in dual- and multi-port can be solved by specifying the order of 
execution for example, read first or write first. 
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Fig. 8. RAM data path [24]  

 
2.1.3 Embedded cores  

Different FPGA vendors provide embedded core for implementing signal 
processing tasks that are not easily achievable in hardware or which have a 
reduced real-time performance. In the Stratix Architecture these are called Digital 
Signal Processing (DSP) Blocks [25], Embedded Multipliers in Spartan 3 [22] and 
Embedded Computational Units in Eclipse II [26]. Thus, DSP functions such as FIR 
filters, IIR filters, fast Fourier transforms, direct cosine transforms, correlators and 
functions such as multiply-add and multiply-accumulate can be readily 
implemented using these embedded cores. Multipliers are implemented as 9-by-9, 
18-by-18 or 36-by-36 bits multipliers. However, they can be cascaded for higher 
multiplicands.  
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In addition to multipliers, FPGA often come with embedded processors for 
the implementation of control intense algorithms and divide functions that are 
better implemented via high level languages such as C/C++. It is also possible for 
a designer to implement micro-controller and processor core when the core is not 
embedded in the FPGA. Using the Xilinx Embedded Development Kit, a 32-bit 
RISC architecture-based soft processor that runs at 150 MHz to deliver up to 120 
DMIPs [27] can be implemented on a Xilinx Spartan 3 FPGA. Fig. 9 shows the 
functional parts of the Spartan 3 MicroBlaze embedded processor [27].  

IP cores optimized for different FPGAs are provided by the different FPGA 
vendors. In addition, glue logics for IP cores developed by third parties are 
provided. Hence FPGAs, which are primarily hardware platforms, provide a 
medium for implementing software algorithms which in turn, enable better 
implementation of complex function. When combined with on-chip RAM, soft 
cores reduce both latency, by means of their close proximity to the required data, 
and system costs through the elimination of external microcontrollers. 
Development suites for porting applications on this embedded processor or using 
the multipliers are usually provided by the FPGA vendors.  
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Fig. 9. Spartan 3 MicroBlaze embedded processor [27]. 

 
2.1.4 Challenges in system development on FPGA  

Although FPGAs offer many opportunities, there are a number of challenges 
to system development particularly in the field of video processing. Some of these 
challenges include abstraction level, design verification, resource usage and power 
consumption which are discussed in the following sections: 

 
Abstraction level 
A major challenge to implementing applications on FPGAs is the 

programming model, which is at a very low level of logic abstraction through 
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hardware description languages and thus requires a high level of expertise and 
time. Often designers familiar with software programming languages conceive 
algorithm executions in sequential order and thus try to program hardware in a 
similar manner. This leads to non-optimal implementations. They are many design 
tools whose aim is to translate software codes into hardware [15], [65] [66]-[67]. In 
this work, the abstraction level for implementing memory sub-component for an 
RTVPS by means of a memory allocation tool is raised. 

 
Design verification 
As FPGA capabilities and design complexities increase, verification and 

simulation become more complex. In order to satisfy the requirements of complex 
designs both Verilog and VHDL are often used to implement design sub-
components, often through IP cores. Co-simulation and synthesis of the sub-
components are both difficult and error prone. In addition access to simulation 
stimuli and responses are often complex and are provided by other tools written in 
other languages. This leads to coping with procedural language interfaces of the 
two languages within one design. Design considerations to overcome this problem 
are presented in [68] while [69] presented formal semantics for Verilog-VHDL co-
simulation.  

 
Resource usage 
The essential logic resources on FPGAs are arithmetic and logic resources, 

embedded memory and logic cells. They are available optimised but in limited 
amount. It is necessary to have a balanced usage of these resources in an 
application in order to avoid shortage of one type of resource while having excess 
of others. In this work we have achieved efficient use of embedded memories. In 
the future we would find efficient use of the arithmetic resources and logic cells 
through resource reuse within each operator in an RTVPS. This operator-based 
resource reuse will minimise routing network thus increase speed performance at 
reduced the active power to the routing network. 

 
Energy and power consumption 
In FPGA two major sources of energy consumption include active power 

and leakage current. Energy consumption based on leakage current depends on 
the process technology [RR] and can only be address by the FPGA vendors. A 
study of the leakage current on Xilinx Spartan 2E, 3 and Virtex 2 shows an 
increasing trend. Energy consumption based active power depends on activities at 
the I/O blocks, switching activities on the routing network and logic cells, and 
memory accesses. By using embedded memory to implement line buffers, we 
reduce data transfer to external memories [70] and thus reduce I/O block 
switching activities. Power consumption can be further reduced through efficient 
embedded memory accesses, compact routing network and efficient logic design. 
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2.2 EARLIER WORKS ON ON-CHIP MEMORY SYNTHESIS 

In this section, the focus is on memory allocation and addressing targeting 
FPGA on-chip memory. Works relating to memory estimations are not included 
since such works have been extensively studied and addressed while developing 
IMEM [58], [59]. In addition, allocation of external memories is not included in this 
thesis. 

 
2.2.1 Allocation algorithms 

There have been many algorithms for the optimal storage of a scalar 
variable. These approaches usually involve storing scalar variables with non-
overlapping lifetime in the same register or grouping the scalars together to form 
an array which would be allocated to a Block RAM. A common feature of these 
approaches is the necessity for scheduling and determining memory access 
pattern. These efficient and well researched approaches cannot be use for 
allocating large array variables which result from the line buffers (identified in Fig. 
4) because of the following: 

 
1. it is assumed that the elements in the line buffers have regular 

cyclical read-and-write access patterns relating to the video frame 
width typical of FIFOs,  

2. it is assumed that the size of the line buffers is large which often 
leads to allocating one line buffer to many Block RAMs hence 
grouping many line buffers into one Block RAM is not a feasible 
option 

3. the identical access pattern of all the line buffers and the 
requirement of throughput of one pixel per clock cycle eliminates 
access scheduling 

 
Because of the above concerns only related works which focus on allocation 

of array variable will be presented 
Diniz et al. [28] presented a C-compiler that can extract storage requirements 

and considers data reuse as registers and allocates Block RAMs together with 
datapath- and control structures. The compiler employs data access patterns in a 
loop nest to minimize memory access and uses registers to exploit data queues 
after loop unrolling. However, exactly how the memory allocation is performed is 
not addressed by Diniz et al. 

The MeSA algorithm [29] is based on the clustering of array variables to 
determine the memory configuration that will result in the minimum total memory 
area. The number of memory modules, the size of each module, the number of 
ports for each module and the cost of grouping a set of input array variables, are 
all computed. The number of ports is balanced for serialized memory accesses 
within a control and data flow graph. This algorithm cannot however be 
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considered for implementing RTVPS on FPGA. This is because large array 
variables cannot be distributed among a set of memory modules. 

A general approach to FPGA memory allocation and assignment was 
presented by Gokhale et al. [30]. This approach starts from C code, for which the 
presented method allocates both external and internal memories. Automatic 
partitioning of a single array among different memories is however not covered by 
this work.  

Baradaran et al. [31] presented a close algorithm but the focus was on the 
analysis and identification of data reuse and allocation on an FPGA embedded 
Block RAM in the presence of a limited number of registers.  

The work by Schmit and Thomas [32] performs array grouping (vertically 
and horizontally) and dimensional transformation (array widening and array 
narrowing). According to the authors, array widening is useful for read-only 
arrays and those accessed in loops with an unrolled number of iterations. Array 
narrowing slows the effective access time of the array. Vertical array grouping is 
similar to the global memory object architecture used in this thesis (details in 
Section 3) with the variation that the grouping is on memory objects required by 
one operation. Neither horizontal grouping nor the accompanying scheduling are 
considered in this work, however dual port mapping of two memory objects is 
implemented to achieve more efficient memory usage.  

Jha and Dutt [33] presented two algorithms for memory mapping. The first, 
linear memory mapping, approximates target memory word-count to the largest 
power-of-two that is less than or equal to the source memory word-count. The 
second, exhaustive memory mapping, assumes that a target memory module may 
have larger bit-width and word counts. These approaches lead to unused memory 
space on the target memories particularly in on-chip memories. The work did not 
address multiple parallel accesses to a memory module via a different port. 

 
2.2.2 Memory addressing 

Memory accesses are a major contributor to the power consumption 
especially in data transfer intensive applications such as RTVPS. Activities in the 
memory address buffers, address decoding circuitry and off-chip drivers of the 
address bus, are reflected in the power dissipations. There have been many works 
aimed at lowering the impact of memory access on power consumption. The 
majority, however, are tailored towards their memory architecture for efficiency 
purposes. The general approach is to use a counter to evaluate the value of the 
address bus of on-chip memories. These approaches are reviewed in this section. In 
addition, latency in memory accesses affects the system performance. Hence 
effective optimization can be achieved through efficient memory architecture and 
addressing procedure.  

In [46] it was noted that most behavioural synthesis tools do not support 
FPGA vendor specific external memory interfacing. The authors proposed an 
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approach which includes target architecture oriented timing requirements for 
accessing memory and application specific memory access pattern information. 

In [45] a technique exploiting regularity and spatial locality in memory 
access pattern in order to achieve low power mapping of arrays in behavioural 
specifications to physical memory was presented. 

The work presented by Doggett et al. is optimal in the case of large numbers 
of memory banks being used, as is typical in volume rendering in medical 
applications [34]. The work presented a cubic addressing scheme and used FIFO 
buffers to minimize the pipeline stalling effect of cache misses 

The address generation scheme by Grant el al. is an efficient option for 
accessing data with addresses within the power range of two [35]. The scheme uses 
a register and optionally an offset, to specify memory read/write addresses. 

The memory exploration algorithm in [36] implements memory allocation 
and array-mapping to RAMs through tight links to the scheduling effect and non-
uniform access speeds among the RAM ports to achieve near optimal memory area 
and efficient energy requirement. The algorithm is, however, complex and the 
execution time may slow down hardware design. Moreover the exploration targets 
SRAM and DRAM as opposed to the on-chip FPGA Block RAMs, which are the 
focus of this thesis.  

The address generation technique in [37] is based on address bit inversion to 
yield effective access time to memory at the cost of up to an extra 17.4% of used 
memory.  

In [38] and [47], various high-level optimizations were explored in order to 
reduce addressing overhead. Many efficient, often heuristics based, memory 
optimization algorithms have been developed similar to those in [39], [40], 
however, most of these are tailored to be efficient on DSP.  

 
2.2.3 Response to related works 

None of the allocation and addressing methods in Sections 2.2.1 and 2.2.2 
were considered to be appropriate for managing memory requirements of RTVPS 
while using the limited embedded FPGA memories. This is because these 
algorithms do not fully utilize the configurable data port widths supported by the 
FPGA and the true dual port capabilities of the Block RAMs. In addition, we 
consider the data memory architecture in [60] is considered to be more efficient for 
RTVPS data management hence allocation and addressing methods based on this 
architecture would be efficient. This is the motivation behind the development and 
implementing a new allocation algorithm designed to maximize the memory usage 
while minimizing the read/write accesses. In addition, two approaches to access 
the allocated memories have been developed.  

The work in this thesis achieves near optimal results in terms of the number 
of allocated memories, the amount of unused memories and the access speed by 
fully utilizing the combination of FPGA embedded memory capabilities and 
RTVPS regular data pattern. 
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3 MEMORY SYNTHESIS FOR REAL-TIME VIDEO PROCESSING SYSTEMS  

This section presents the scientific work covered in Papers I to V. Memory 
synthesis generally refers to data storage and management. The process involves 
memory architecture, allocation and addressing. These terms are discussed in the 
following subsections. Managing the line-buffers (memory objects) identified in 
Fig. 4 is the focus of this work. The main goal is to develop an automatic memory 
synthesis tool that makes the most efficient use of all the addressable memory 
locations available in all the instantiated FPGA on-chip memory before 
instantiating another. The work in this thesis is part of the Mid Sweden University 
interface and memory modelling (IMEM) design tool [58], [59]. IMEM is based on 
the philosophy that the memory requirement of an RTVPS can be modelled and 
synthesised independently to the synthesis of the RTVPS filters. Thus this thesis 
presents the synthesis of the on-chip memory requirements specified by IMEM. 

 
 

3.1 IMEM SYNTHESIS WORKFLOW 

IMEM, an extension of SystemC, is a set of class libraries suitable for 
capturing, modelling and simulating RTVPS without implementation details. The 
IMEM synthesis workflow depicted in Fig. 10 demonstrates how research dealing 
with modelling and high level synthesis fits into an RTVPS implementation 
trajectory.  

This workflow is defined at six different levels along the left-hand axis. The 
video-processing algorithm is developed and simulated using IMEM at level 1. 
This executable model can then be verified through functional simulation. Data 
dependency information, frame sizes, composition of the 3-dimensional 
neighbourhoods and colour space models are exported into an interface and 
memory model at level 2. This information is the input for the memory synthesis 
process at level 3. It is here that memory estimation, memory hierarchy 
optimization, memory allocation and address generation are performed. The work 
in this thesis is at this IMEM level. 

Additionally, at level 2 the behavioural C++ description is separated from 
the memory model. At level 3, the SystemC functional description together with 
the interface template generated from the memory model is synthesized using a 
SystemC based commercial high-level synthesis tool (for example Agility from 
Celoxica). The VHDL codes from both the functional part and the optimized 
interface and memory model are integrated at level 4 and synthesized at level 5. 
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Fig. 10. System synthesis workflow 

 
 

3.2 MEMORY ARCHITECTURE 

In a streamed hardware implementation only one operator can use the 
memory objects (Fig. 4) and all the memory objects are used simultaneously in the 
RTVPS. It is assumed that memory objects can be grouped together to form global 
memory objects at the operator level.  This grouping can be achieved through: 

 plinesiR wnW ×=
  (1) 

where WRi is the width of the global memory object at the operator, nlines is 
the number of required line buffers for an operator and wp is the bit width 
representing a pixel. The length of the global memory object is equal to those of the 
memory objects that formed it, i.e. the image width [60]. This architecture is 
preferable to that of direct mapping of memory objects to memory location. This 
preference is because global memory objects require a minimal number of required 
memory entities in comparison to direct mapping architecture. Consequently, the 
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number of memory accesses for an RTVPS operation is minimal for global memory 
object. 

To illustrate the formation of the global memory objects, consider an RTVPS 
operator that requires a neighbourhood of a 5x5 window with 12-bit gray scale and 
a 640 by 480 frame size as the input video stream. This would result in the creation 
of four memory objects each of length L (=640) and width 12. The memory objects 
would be combined to create a GMO Ri of width 48. Fig. 4 depicts this illustration 
where op_id represents the operator requiring the GMO. 

 
 L by 12 

L by 12 

L by 12 

L by 12 
L by 48 

 
 

Ri 
 
 

op_id = 1 

 

Fig. 11 Global Memory Object formation 

 
3.3 MEMORY ALLOCATION 

Single port memory configuration or a dual-port in which one port is used 
for writing and another for read usually leads to unused memory areas. Fig. 12 
depicts an example of such an allocation. As shown, after the allocation of memory 
objects 1 and 2 to memory areas A1 and A2 on Block RAMs 1 and 2 respectively, 
the remaining memory areas B1 and B2 remain unused and subsequent memory 
objects will be allocated to other Block RAMs. Hence these types of memory 
allocation approaches can be very inefficient unless the allocated data is exactly the 
size of the memory module which is, however, very rarely the case. 

 

 
Memory Object 1 

A1 
B1 

Block RAM 1 

Memory Object 2 
A2 

B2 

Block RAM 2 

Memory Object  
(width=13) 

Memory Object 
(width=13) 

a 

b   Allocation datapath width = 16  

Fig. 12. Traditional memory allocation. 
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Although, FPGA allows the allocation of memory objects of any datapath 
widths, this allocation is, however, left to the designer. Traditionally, a higher 
datapath width is used when the width of the memory object is not a member of 
the datapath widths specified by the FPGA. Fig. 12b shows an attempt to allocate 
an object of width 13 on Xilinx Spartan 3. Since a datapath width of 13 is not 
specified by the FPGA and 16 is the next datapath width that is a member of Xilinx 
Spartan 3 datapath widths, allocation of the memory object is made using a 
datapath of 16. This will result in 3L bits being wasted, where L is the length of the 
memory object. An alternative is to partition the memory objects into using the 
supported widths. 

These two stated sources of inefficient allocation are the reasons for 
researching both allocation architecture and an algorithm based on the architecture 
that makes optimal use of memories. To achieve efficient allocation, the advantage 
of parallel accesses to Block RAMs through two independent ports is exploited.  

 
3.3.1 Allocation algorithm 

As presented by O’Nils et al. dual-port configuration of FPGA Block RAMs 
and global memory object allocation for RTVPS provides an efficient use of Block 
RAMs [60]. An algorithm taking advantage of such efficient memory allocation 
techniques and the possibility of parallel accesses to Block RAMs through two 
independent ports will be presented. Fig. 13 shows attempts at finding an optimal 
use of the remaining memory resources identified in an FPGA Block RAM. If the 
remaining memory space is a single rectangular block as shown in Fig. 13A, 
allocation is made to it through the second data port. If the remaining memory 
space is not a single rectangular block, it is divided into two rectangular blocks B 
and C as shown in Fig. 13B. Allocation can be made to B or C through the second 
data port. Because Block RAMs currently support a maximum of two data ports, 
only one of block B or C can be allocated depending on its size and the sizes of the 
memory objects awaiting allocation while the other block will never be used. As a 
result, the developed algorithm seeks the allocation for which the unused memory 
space is minimal by ensuring that, after allocation through port A, the remaining 
memory space forms a rectangular block, and by finding the memory object that 
uses as much of this block as possible. Hence, one of the indicators used in 
measuring the efficiency of the algorithm is the size of the unused memory 
resources. 
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Fig. 13. Proposed memory allocation. 

 
3.3.2 Definitions 

To find the optimal use of the Block RAM, the algorithm must observe some 
definitions and constraints. These are listed as follows: 

 
(i) M is the set of all available Block RAM Mk and K is the number of Block RAMs.  

 { }KkMM k ,...,2,1==  (2) 

(ii) SMk is the size of the Block RAM Mk and is specified by the FPGA. For example, 
in Xilinx Spartan 2E FPGA SMk is 4096 bits [61]. The memory objects allocated 
to the Block RAM determine the length LMk and width WMk of Mk. 

(iii) Wc is the set of all possible datapath widths Wn for Block RAMs on the FPGA. 
For example, 1, 2, 4, 8, and 16 are allowed on Xilinx Spartan 2E FPGA [61]. 

 { }NnWW nc ,...,2,1==  (3) 

(iv) R is the set of all memory objects Ri to be allocated and I is the number of 
memory objects. 

 { }IiRR i ,...,2,1==  (4) 

(v) The size SRi of memory object Ri is defined as product of the length LRi and data 
width WRi of the memory object Ri. 
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 RiRiRi WLS ×=  (5) 

(vi) Each global memory object is characterised by a quadruple of op_idRi, LRi, WRi 

and xRi. 

 Ri(op_idRi, LRi, WRi, xRi )  (6) 

where op_idRi is an identifier for the operator where the memory objects 
making up the global memory object Ri are defined and xRi is the segment in which 
a memory object is located on the global memory object after partitioning into 
units of allowable data widths in Wc. 

 
(vii)  If WRi is not a member of Wc, Ri is partitioned into rj partitions such that the 

width, wR, of each partition is a member of Wc where j = 1, 2, … J and J is the 
number of partitions in object Ri. 

{ }JjWwxwLidoprR cRRiRiRiRiji i ,...,2,1,),,,_( =∈=  (7) 

(viii) Memory object Ri may be allocated to as many Block RAMs as required. 

 ∑
=

≤×
K

k
RiRiki SWL

1
,  (8) 

where Li,k is the part of length LRi allocated at Mk. 
(ix) Block RAM only supports a maximum of two data ports. 
(x) Di,k is the decision to  allocate some or all of the memory objects Ri at Mk. 

 ∑
=

2 ≤ 
I

i
kiD

1
,  (9) 

(xi) For all Ri in R and Mk in M that form part of the Di,k, the sum of the allocations 
may not be more than the size of the Block RAM. 

 ∑
=

≤×
I

ii
MkRiki SWL ,  (10) 

(xii) For all Di,k, in the set of allocation decisions, AD, the unused memory space in 
Mk is defined as UMk. 

∑
=

×−=∈∀
I

ii
RikiMkkki WLSUMADD ,, ,  (11) 

(xiii) The objective function of the algorithm is to minimize the sum of all UMk. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈∀ ∑

ki
kki UMADD

,
, min,  (12) 
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To illustrate definitions (vi) and (vii), if the global memory object Ri of width 
48 in Fig. 11 were to be allocated on Xilinx Spartan 2E, Ri would then be partitioned 
into three rj each with a width of 16 since it is not possible to have a datapath width 
of 48 on a Spartan 2E. xRi will be 1, 2 and 3 for the first, second and third partitions 
indicating least, middle and most significant partitions on Ri. Fig. 14 depicts this 
illustration. 
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Fig. 14. Partitioning global memory object. 

 
For every Block RAM available on the FPGA, attempts are made to allocate a 

global memory object to it. The amount of unused memory space UMk is estimated. 
If UMk is zero, the allocation decision is stored and the iteration continues to the 
next memory object or Block RAM. Other possibilities are then considered such 
that UMk is minimal. The final decision is based on the allocations offering the least 
amount of the sum of unused memory space on all Block RAM. Fig. 15 shows the 
allocation algorithm in relation to the definitions and constraints listed above 
before making the final decision. In the figure, any Ri is an allocation candidate to 
any Mk. Since Mk supports only two ports and in line with definition (x), only two 
Ris that minimize UMk are selected such that our objective function, definition (xiii) 
is achieved after all Ris are allocated. According to definitions (vii) and (viii), a 
global memory object may be partitioned into many smaller units exploiting FPGA 
parallel access to Block RAMs which enables the reconstruction of the object in 
order to achieve a throughput of one pixel per clock cycle. 
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M2 

R2 

Mk 

Ri 

MK 

RI 

M1 

R1 

…

…

…

…

K is number of available memory modules 

I is number of memory objects to be allocated

Di, k

Mk is defined by LMk, WMk and SMk. SMk = LMk * WMk 

Ri is defined by LRi, WRi and SRi. SRi = LRi * WRi

 

Fig. 15. Allocation model. 

 
3.3.3 Proposed algorithm 

The proposed allocation algorithm is presented in Fig. 16. A more detailed 
form of the algorithm in the form of pseudo-code is presented in Figure A.1 in 
Appendix A.  In step 1, the algorithm creates global memory objects according to 
Eq. (1). In step 2, the algorithm ensures that the global memory objects conform to 
the allowable port width configuration according to definition vii. This step is 
captured in a procedure, configure_global_memory_objects(R), presented at the lower 
part of Figure A. Steps 3, 6, 7 and 8 ensure that the algorithm iterates through all 
the memory objects starting with the first. In step 4 the global memory objects are 
allocated to the Block RAMs according to definitions (viii) to (xi) while optimal use 
of unallocated memory space in the Block RAM through the second port is 
implemented in step 5, which is also in accordance with definitions (viii) to (xi). 
Optimal allocation is that for which the unused memory space is a minimum, 
preferably zero using either one or two ports in the Block RAM. 
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 The Proposed Allocation Algorithm 
 
Algorithm:  Memory Allocation(R, M) 
Parameters: R[R

1
 … R

I
] set of I memory objects; 

            M[M
1
 … M

K
] set of K Block RAMs; 

Return:     M
A
[M

A1
 … M

AK
] set of K Allocated Block RAMs; 

 
1. Create global memory objects (GMO) 
2. Configure GMOs 
3. Starting with the first GMO and the first Block RAM 
4. Allocate GMO to Block RAM via port A. 
5. If Block RAM is not fully used find maximum use of 

remaining memory via port B using another GMO. 
6. Select the next GMO when the current has been fully 

allocated. 
7. Select the next Block RAM when all the memory space 

has been optimally used. 
8. Return the set of allocated Block RAMs after 

allocating all GMOs. 

 

Fig. 16. The proposed allocation algorithm. 

 
3.3.4 Complexity analysis 

In estimating the complexity of the algorithm, the number of available Block 
RAMs, K, and the number of memory objects, I, after partitioning with respect to 
their width, play major roles. Since the algorithm makes one iteration through the 
sets of Block RAMs and two iterations through the set of memory objects as shown 
in steps 3, 4 and 13 in Fig. 16 (see also Figure A in the Appendix), the allocation 
algorithm AA is a function of K and I and its complexity can be expressed as  

 ( ) ( )2, IKIKAA ⋅Ο=  (13) 

The algorithm is thus, at worst, of the third order of the larger of K and I. 
Implementation costs depend on the representations of the properties of the Block 
RAMs, memory objects and allocation objects, and the arithmetic and logic 
operations defined for them. 

 
 

3.4 MEMORY ACCESSING 

The allocation software ensures that each entry of a Block RAM data object 
stores information concerning the width and length of the GMO segment allocated 
to it, the port used for allocation and the hierarchy of its segment in the GMO. In 
addition, each partition stores information about the Block RAM to which it is 
allocated, the port of allocation and its start address on the Block RAM, the GMO 
and segment to which it belongs. 

The advantage of sequential accesses to memory for RTVPS applications can 
lead to improved memory performance by using pointers whose values increase 
whenever there are valid pixel values. Using the GMO architecture further reduces 
the number of such pointers to one for each RTVPS operator. The pointers may be 
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implemented by using a single register for each GMO, further referred to as the 
base pointer, or by using a register for each partition in a GMO, further referred to 
as the distributed pointers.  

To this end, the results from the memory allocation stage are imported into 
the address generation module. From these allocation results GMOs are 
reconstructed, and address spans for each partition in a Block RAM are generated. 
The start and end addresses for each partition are calculated. Offsets are 
considered where dual ports are used for the allocation on Block RAMs for 
different partitions in order to avoid memory overlap. The generated addresses are 
used to determine the location of each GMO element. The descriptions for 
accessing the GMO elements using two approaches, namely the base pointer 
approach and the distributed pointer approach are presented as follows. These two 
approaches are depicted in Fig. 17 while details of their implementations are 
presented in the following subsections. 
 

  GMO 1 
  Length = L 
  L = p1 + p2 

Partition 1 
Length = p1 

Partition 2 
Length = p2 

Base Pointer 
base = 0 – L - 1 

   0                           p1 - 1    0          p2 - 1 

BR1 BR2 

if  base < p1  
    access BR1 
else  
   access BR2 

offset 

(a) 

(b) 

 GMO 1 
  Length = L 
  L = p1 + p2 

Partition 1 
Length = p1 

Partition 2 
Length = p2 

   0                          p1 - 1   0          p2 - 1 

BR1 BR2 

offset 

 

Fig. 17 Two memory accessing approaches 

 
3.4.1 Base Pointer Approach 

In this approach, a single pointer is used to track the location of the element 
to be accessed in the GMO. The pointer starts at zero and increases to one less than 
the length of the GMO and then resets to zero. Since the memory accesses are 
clocked, the value of the pointer increases with clocked access to the Block RAM 
when there are valid data. Address spans for each partition of the GMO are used to 
determine the relevant Block RAM relating to the element accessed, depending on 
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the value of the pointer. Hence, only the relevant Block RAMs are enabled while 
the other related Block RAMs are disabled. Fig. 17a depicts this approach for a 
simplified case in which a GMO consists of a single segment with two partitions. 

In the figure, partitions p1 and p2 are allocated to Block RAMs BR1 and BR2. 
From Fig. 17a, when the value of the counter base is within the span of p1, the 
appropriate port on BR1 is enabled and accessed while the relevant port on BR2 is 
disabled. The reverse is the case when base is no longer within the span of p1, i.e. 
within the span of p2. This simple example could be extended to cases in which 
more than one segment makes up a GMO and each segment has more than 2 
partitions. A formal description of this approach is shown in Fig. 18a.  

Fig. 18b depicts the base pointer implementation of the GMO shown in Fig. 
14. In the figure, BR1_EN_A, BR2_EN_A and BR2_EN_B represent the enable 
signals on port A of BR1, port A of BR2, and port B of BR2 respectively. Likewise, 
BR1_A_Adr, BR2_A_Adr and BR2_B_Adr are the address signals on port A of BR1, 
port A of BR2, and port B of BR2 respectively. A Block RAM is enabled or disabled 
by assigning ‘1’ or ‘0’ to its enable signal. 

 
 (a) 

 For each GMO:  
• create Address Table from segments and partitions that make up the 

GMO to determine when to enable Block RAMs among related 
partitions 

• create an incrementable pointer of length ( )⎡ ⎤L2log  which increases 
when there are valid pixel values 

• using Address Table and pointer value enable appropriate Block 
RAMs and set the values of address signals.  

(b) 

512 by 32 
 

op  = 1          
seg = 1 
par = 1 

BR1 Port A 

128 by 32 
 

op  = 1          
seg = 1 
par = 2 

640 by 16 
op = 1    seg = 2    par = 1 

BR2 Port B Port A 

offset=320 

0  ≤   bp  ≤   639 
    BR2_EN_A = 1 
    BR2_A_Adr     = bp 

512  ≤  bp  ≤   639 
    BR2_EN_B = 1 
    BR2_EN_B = 0 
    BR2_B_Adr     = offset + bp - 512 

0  ≤  bp  ≤   511 
    BR1_EN_A = 1 
    BR2_EN_B = 0 
    BR1_A_Adr     = bp 

Base Pointer bp = 0 - 639 

 

Fig. 18. Base Pointer Approach. 
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3.4.2 Distributed Pointer Approach 
In this approach, each partition is handled separately, starting with the first 

partition in a segment. Local pointers equal in length to that of each partition are 
created. As long as the enable signal of Block RAM for a partition is high, memory 
access is initiated at its first position using its pointer and continues incrementally, 
if valid data are available until its full length is achieved. During this period, the 
partition ensures its enable signal is re-asserted while the enable signals of the 
neighbouring partitions of the same segment are kept low. Controls are transferred 
to the next partition of a similar segment when the upper limit of the partition is 
reached. If however, the partition is the last in the segment, controls are transferred 
to the first partition. Since the address buses of partitions on Block RAMs provide 
appropriate bit vectors to cover their entire lengths, they are used as the local 
pointer. In this approach, the enable signals of all the first partitions are set to high 
at start-up to ensure that memory accesses start with the first partitions. Fig. 17b 
depicts this approach. A simplified case of a GMO consisting of a single segment 
with two partitions p1 and p2 allocated on Block RAMs BR1 and BR2 respectively 
is considered in Fig. 17b. Fig. 19a and Fig. 19b show formal descriptions and 
implementations of the GMO depicted in Fig. 14 using this approach. Signals in 
Fig. 19b have similar meanings to those in Fig. 18b. Since the 640-by-16 partition is 
the only one in its segment, it is always enabled and the address is reset to 0 when 
it reaches its upper limit. 
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For each segment in each GMO: 
• create Address Table for each partition in the segment 
• create an incrementable pointer of length ( )⎡ ⎤p2log  which increases 

when there are valid pixel data for partitions in the segment 
• start memory access with the first partition with start address of 0 
• enable Block RAM of currently active partition and disable Block 

RAMs of related partitions while pointer is less than partition’s length  
• if pointer of active equals partition’s length less one, reset it to 0, 

disable it and enable next (or first partition if this is the last partition). 

(a) 

(b) 512 by 32 
 

op  = 1          
seg = 1 
par = 1 

BR1 Port A 

128 by 32
 

op  = 1          
seg = 1 
par = 2 

640 by 16
op = 1    seg = 2    par = 1 

BR2 Port B Port A 

offset=320 

BR2_EN_A = 1 & BR2_A_Adr
< 639

    BR2_A_Adr = BR2_A_Adr + 1
 

BR2_EN_A = 1 & BR2_A_Adr
= 639

    BR2_A_Adr = 0 
 
BR2_EN_A = 1  
 

BR2_EN_B = 1 & 
BR2_B_Adr < offset + 127 
    BR2_EN_B = 1 
    BR2_EN_B = 0 
    BR2_B_Adr     = 
BR2_B_Adr + 1 
 
BR2_EN_B = 1 & 
BR2_B_Adr = offset + 127 
    BR2_EN_B = 0 
    BR2_EN_B = 1 
    BR2_B_Adr  = offset  

BR1_EN_A = 1 & BR1_A_Adr < 511
    BR1_EN_A = 1 
    BR2_EN_B = 0 
    BR1_A_Adr     = BR1_A_Adr + 1 
 
BR1_EN_A = 1 & BR1_A_Adr  =  511 
    BR1_EN_A = 0 
    BR2_EN_B = 1 
    BR1_A_Adr = 0 

 

Fig. 19. Distributed Approach. 

 
 

3.5 RESULTS 

In this section the results obtained after the implementing the algorithm and 
the analysis of its performance are presented as follows. Section 3.5.1 presents the 
performance of the algorithm under real-time video processing design. Section 
3.5.3 presents its performance, under two test scenarios modelled upon one of the 
real-time design cases. Performance of the memory synthesis with varying 
memory requirements is presented in Section 3.5.4. Section 3.5.5 presents the 
performance analysis for eleven video processing systems published by other 
researchers. Section 3.5.6 compares the performance of the two memory addressing 
schemes presented in Section 3.4. 

 
3.5.1 Real-time video processing design cases 

The algorithm has been implemented in C++ using the object-oriented 
approach. The implementation was simulated using the memory requirements of 
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real-time video processing design cases [60]. The first design case was a spatio-
temporal median filter with a neighbourhood of seven frames and two line buffers. 
Two instances of this design case were considered. The first, (1-1), being a VGA 
frame with 24-bit RGB pixels and a 640 frame length while the second, (1-2), was a 
PAL frame with an 8-bit gray scale pixel and a 708 frame length. The second design 
case was a machine vision system with a median filter, segmentation and three 1-
bit morphological operations. For this design case two instances were also 
considered. The first, (2-1), being an 8-bit gray scale with VGA resolution as the 
input video stream while the second, (2-2), had a 12-bit gray scale with 1.3 MPixel 
resolution as its input video stream. Table 1 shows the summary of the memory 
requirements for the design cases considered. In the table column 2 shows the 
number of video processing filters in the design case while column 3 shows the 
number of line buffers required by each filter. For design cases 1-1 and 1-2 seven 
3x3 filters were used, each requiring two line buffers while for design cases 2-1 and 
2-2, one 5x5 median filter, one segmentation operation and three 17-by-17 
morphological filters requiring four, one and sixteen line buffers respectively were 
used. Columns four, five and six represent pixel resolution, length of the line 
buffer and memory requirement for each filter respectively. 

 

Table 1. Memory requirement of considered design cases. 

 
 
 
 
 
 
 
 
 

 
3.5.2 Allocation Results 

Table 2 and Table 3 show the results obtained using the implementation of 
the algorithm for allocating the design cases considered on Xilinx Spartan 2E and 
Spartan 3 FPGA respectively.  

 

Table 2. Allocation result of the algorithm on Spartan 2E. 

 

 

 

 

Design Case # Rows Width Length Size (Kbit) 
Case 1-1 7 2 24 640 210 
Case 1-2 7 2 8 708 77.4 
Case 2-1 1 

1 
3 

4 
1 

16 

8 
19 
1 

640 
256 
640 

20.0 
4.75 
30.0 

Case 2-2 1 
1 
3 

4 
1 

16 

12 
21 
1 

1300 
4096 
1300 

60.94 
84.0 
60.94 

Design Case minima  Block RAM  % minima 

Case 1-1 53 53 100 
Case 1-2 20 20 100 
Case 2-1 14 14 100 
Case 2-2 52 52 100 
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Table 3. Allocation result of the algorithm on Spartan 3. 

 

 

 

 
 

 
 
In the tables the theoretical minima Block RAM required for allocation were 

estimated from equation (14) [60].  

 
( )⎥⎥

⎤
⎢
⎢

⎡
=

BRAM
Sizeminimal

size
 (14) 

where Size is the number of bits required by the design case, given in 
column 6 of Table 1, and the size of BRAM is the numbers of bits in one block 
RAM, 4 Kbit for a Xilinx Spartan 2E and 16kbit (without parity) for Spartan 3 [61], 
[24]. Table 2 shows that the algorithm requires no more than the minimum value 
for the allocation of each of the design cases on Spartan 2E. Hence, it is in total 
agreement with the minimum requirements for Spartan 2E. On Spartan 3, 
allocation requirements were equal to the minimum values except for two of the 
design cases. The minimum value is calculated for allocation on a Block RAM with 
an infinite number of ports. The minimum value, however, only indicates the 
effectiveness of the allocation but not its feasibility, since it is not possible to have 
Block RAMs with an infinite number of ports. The implementation for Spartan 3 
did not consider parity. The parity feature on Xilinx Spartan 3 FPGA increases the 
available Block RAM size by providing an additional bit for every 8 bits [24]. When 
the parity bit is taken into consideration it makes it possible to have width 
configurations that are multiples of 9-bit on the Block RAM. In this manner, 
18Kbits of Block RAM size can be achieved instead of 16Kbits. This parity feature 
was not considered since it is only specific to only some of the Xilinx FPGA 
families and not all FPGAs have this feature. From Table 3, the non-minimum 
result of the algorithm in design cases 1-2 and 2-1 is because, if a design case has 
many operators in relation to the total storage requirement and/or the size of each 
Block RAM, the number of ports on each Block RAM will limit the allocation. 

Fig. 20 shows the mapping of the memory objects to the Block RAMs for the 
design Case 2-1 on Xilinx Spartan 2E. The identifiers of the global memory objects 
and the Blocks RAMs are shown. In addition, the figure shows that memory 
objects were allocated to as many Block RAMs as required. This is a case of 
dynamic partitioning with respect to the length. In the figure, each block is 
annotated by “WxL” and “op_id: y” where W, L and y represent the width, 
memory depth and operator id of the allocated partition respectively. BRAMs 7 
and 8 in the figure exploit the independence of the data path width and memory 

Design Cases Minima Block RAM  % minima 

Case 1-1 14 14 100 
Case 1-2 5 6 120 
Case 2-1 4 5 125 
Case 2-2 13 13 100 
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depth for the two ports on a dual-ported RAM. In BRAM 7, Port A is allocated 
with a partition which has a data path width of 2 and a depth of 256 while Port B is 
allocated with a partition with a data path width of 16 and a depth of 224. 

 

 

Fig. 20. Memory allocation of Case 2-1 on Xilinx Spartan 2E FPGA. 

 
In Fig. 20 memory object 1 of width 32 bits and length 640 was firstly 

partitioned width-wise into two partitions each of width 16 bits and length 640. 
Then the first partition was allocated to Block RAMs 1, 2 and 3, by partitioning it 
length-wise and allocating partitions of lengths 256, 256 and 128 respectively, 
completely filling the Block RAMs 1 and 2 using only one port. The second 
partition of memory object 1 was also partitioned length-wise and allocated to 
Block RAMs 3, 4 and 5. This width-wise and length-wise partitioning of the 
memory object makes it possible to allocate a memory object to many Block RAMs 
and to configure the memory object with widths feasible in the FPGA. In the 
figure, the lower and upper allocations were through ports A and B respectively. 
The figure also indicates the width and length of the memory objects allocated at 
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each Block RAM. In addition, unused memory space is specified on Block RAM 14 
where it occurred. This memory space can be used through the second port. 

 
3.5.3 Performance analysis with varying length and width 

To test the performance of the algorithm, the memory requirements for 
allocation were varied under two scenarios such that they are similar to design 
case 1-1. The two test scenarios are presented as follows. 

 
3.5.3.1 First test scenario  

In this test scenario, four frame lengths L (320, 640, 1280 and 2560) were used 
while the widths W were determined by the memory requirement, which was 
allowed to vary from 100kbit to 2000kbit. This test scenario was simulated for 
XILINX Spartan 2E and 3 FPGA. The minimum Block RAM allocation was plotted 
along with the estimated Block RAMs for the four values L. On Spartan 2E, the 
minima were equal to those estimated for all values of L while on Spartan 3, the 
minima differed from the values obtained for L = 320 and the estimated values 
obtained for other values of L equalled the minima for most of the memory 
requirements. Fig. 21 shows the performance of the algorithm for this test scenario. 

 

Fig. 21a. First test scenario on Spartan 2E. 
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Fig. 21b. First test scenario on Spartan 3. 

3.5.3.2 Second test scenario 
In this test scenario, four values of width W (3, 6, 12 and 24) were used while 

the length L was determined by the memory requirement, which also ranged from 
100 to 2000 Kbits. The test scenario was simulated for Spartan 2E and 3. The results 
obtained for the theoretical minima and the estimated Block RAMs for the different 
values of W were equal when Spartan 2E was used but differed when memory 
requirements less than 200kbit on Spartan 3 was used. Fig. 22 shows the 
performance of the algorithm for this test scenario. 

 

Fig. 22a. Second test scenario on Spartan 2E. 
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Fig. 22b. Second test scenario on Spartan 3. 

 

As shown in Fig. 21 and Fig. 22, allocations on Spartan 2E equalled the 
theoretical minima while those on Spartan 3 differed slightly. This is because the 
Block RAM sizes are smaller in Spartan 2E and were more easily managed.  In Fig. 
21b, allocations with L=320 required I excess of the theoretical minima due to the 
small sizes of the memory objects with respect to the sizes of the Block RAMs. The 
average variation of the number of Block RAMs from the theoretical minima is 6%. 
In Fig. 22b, the first allocation with using W=3 had a variation of 14% from 
theoretical minima also due to the small sizes of the memory objects. Configuring 
the global memory objects width-wise to only data-path widths allowed by the 
FPGA technology leads to efficient utilization of the Block RAMs. This enables the 
allocation results to be close to theoretical minima.  

By definition, the theoretical minimum assumes a Block RAM with infinite 
number of ports making it possible to allocate to the Block RAM until it is fully 
used. It is not a practical value but rather a metric used to measure the optimality 
of the algorithm. Consequently, the higher the number of ports on Block RAMs the 
closer the algorithm result is to theoretical minimum. 

 
 

3.5.4 Performance analysis with varying length and Block RAM sizes 
The performance of the memory synthesis has been investigated in this 

thesis using varying memory requirements with respect to the frame resolutions of 
RTVPS design cases in Table 1. The analysis is performed such that the design 
cases are allocated onto different existing and extrapolated FPGA memory 
architectures. Fig. 23 shows the results obtained for high (twice), medium (normal) 
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and low (half) frame resolutions of the design cases in Table 1. In the figure the 
columns represent the frame resolutions. The upper and the lower rows represent 
the number of Block RAMs used for allocating the memory objects and the 
percentage of unused memories respectively. In the upper row Block RAM sizes 
were presented in increasing order from left to right but in decreasing order in the 
lower row. 

The results reveal that for a given resolution, the amount of unused memory 
increases with Block RAM size. Also for high frame resolutions the amount of 
unused memory in the allocated Block RAMs is small when compared to the 
medium and low frame resolutions. This result is to be expected since the 
allocation of large memory objects onto small Block RAMs is more efficient than 
the allocation of small memories onto large Block RAMs. Hence, the use of un-
multiplexed memory architecture will lead to more costly implementations. To 
avoid this, the FPGAs should support multiple RAMs sizes and wider data-paths. 
Alternatively, efficient use of current large RAMs can be achieved through the 
time-multiplexed architecture. However, this will degrade the performance and 
possibly increase the power consumption, which will make the FPGA architecture 
less attractive for video processing systems. These results can guide both RTVPS 
designers and the development of new FPGA architectures. 
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Fig. 23. Block RAM usage with varying memory requirements 
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3.5.5 Performance Analysis for video processing systems 
In this section, the performance test of the allocation algorithm on video 

processing systems published in the literature [48]-[57] is presented. The tests are 
still in manuscript form and are to be sent for publication after further extensive 
testing.  The algorithm was implemented using Block RAM sizes of 2, 4, 8, 16 and 
32Kbits, each with data path width configurations of 2, 4, 8, 16, 32 bits.  

The average results for the allocation of the test designs [48]-[57] are shown 
in Table 4. The results for all design cases were combined together in order to 
observe the memory sets producing the best allocation results. The most 
satisfactory allocation results were acquired using a RAM size of 4Kbits and a data 
path width of 16 or 32 bits, and this achieved an average allocation efficiency of 
91.8%. However, larger memory sets, up to 16Kbit, also generated satisfactory 
results when combined with wide data path widths. 

Table 4. Average allocation results for all cases 

Average allocation efficiency 
 2 bit 4 bit 8 bit 16 bit 32 bit 

2Kb 74,1% 88,2% 89,3% 91,5% 91,5% 
4Kb 55,5% 82,4% 90,5% 91,8% 91,8% 
8Kb 45,0% 62,4% 86,4% 92,5% 92,5% 

16Kb 35,8% 52,9% 68,4% 88,1% 90,9% 
32Kb 31,2% 44,0% 60,1% 73,2% 82,5% 

 
The use of large memory sets, as predicted, proved to be inferior to that for 

small sets in the majority of cases which is in agreement with the allocation results 
for the architecture initially produced by O’Nils in [60]. The allocation efficiencies 
of the algorithm on RAMs with a size corresponding to the configuration of a 
Xilinx Spartan-2 and Spartan-3 are presented in Table 5 and Table 6. On both 
Spartan-2 and Spartan-3, the algorithm achieves a 100% allocation efficiency in 9 
out of 11 cases. 

Table 5.  Allocation on Spartan II 

Allocation result of the algorithm on Spartan 2 

Design case 
Min. req. 
BRAM 

Block 
RAM 

Allocation 
efficiency 

Case A [48] 3 5 60% 
Case B [49] 5 5 100% 
Case C [50] 1 1 100% 
Case D [51] 2 2 100% 
Case E [51] 3 3 100% 
Case F [52] 1 1 100% 
Case G [53] 5 10 50% 
Case H [54] 7 7 100% 
Case I [55] 1 1 100% 
Case J [56] 21 21 100% 
Case K [57] 51 51 100% 
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Table 6.  Allocation on Spartan III 

Allocation result of the algorithm on Spartan 3 

Design case 
Min. req. 
BRAM 

Block 
RAM 

Allocation 
efficiency 

Case A [48] 1 2 50% 
Case B [49] 2 2 100% 
Case C [50] 1 1 100% 
Case D [51] 1 1 100% 
Case E [51] 1 1 100% 
Case F [52] 1 1 100% 
Case G [53] 2 4 50% 
Case H [54] 2 2 100% 
Case I [55] 1 1 100% 
Case J [56] 6 6 100% 
Case K [57] 13 13 100% 

 
 

3.5.6 Results of the addressing 
Table 7 shows the resources required to access the allocated memory objects 

for the design cases in Table 1, the number of Block RAMs required for the 
allocations and the hardware operating frequency for the two approaches. Xilinx 
Spartan 3 FPGA was the target platform for implementing both approaches. 

 

Table 7. Comparison of the two approaches. 

Case 1-1 Case 1-2 Case 2-1 Case 2-2 
 BP Dist BP Dist BP Dist BP Dist 
No. of 4 input LUTs: 653 994 334 356 155 191 560 804 
No. of BRAMs: 14 14 6 6 5 5 13 13 
Max. Frequency (MHz): 116 186 106 183 140 214 91 173 
Frequency Comparison (%): 100 160 100 173 100 153 100 190 

 
Depending on the number of partitions relating to a GMO, address look-up 

tables are required to set the enable signals and the values of the address signals to 
the appropriate Block RAMs on which the element of the GMO currently being 
pointed at is allocated, while also disabling related Block RAMs. In the Base 
Pointer Approach, these accesses to the Block RAMs are centrally controlled at the 
GMO level using a pointer. Hence, only one set of address look-up tables is 
required for each GMO. By contrast, in the Distributed Approach, each partition 
has its separate address look-up table, unrelated to those of related partitions. The 
use of a partition’s address look-up table depends on the value of its enable signal. 
Hence the total number of address look-up tables for one GMO depends on the 
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number of partitions making up the GMO. This is evident by comparing Fig. 18c 
and Fig. 19c. The first row of Table 7 confirms this. Thus the Base Pointer 
Approach yields more efficient use of hardware resources than does the 
Distributed Approach. The differences in resource requirements are however 
marginal,  amounting to less than 3% of the available resources, for example, Xilinx 
Spartan 3 XC3S400 series [22]. 

Delays associated with large counter values in single based pointers and the 
distribution of the pointer values are eliminated in the Distributed Pointer 
Approach since each Block RAM partition has one local pointer. The use of small 
counters to evaluate addresses for each partition in the Distributed Pointer 
Approach increases the speed of memory accesses and consequently, increases 
operating frequency. This is because all signals required for memory accesses are 
calculated simultaneously at the clock edge. As the third and fourth rows in Table 
7 show, the Distributed Approach yields more rapid access to data than does the 
Base Pointer Approach. 

 
 

3.6 COMPARISON WITH DSP 

The work in this thesis has been compared with digital signal processor. The 
objective of the comparison is to find the relationship between power 
consumption, performance and resource usage on FPGA and DSP and size of 
neighbourhood window required in RTVPS. The comparisons were conducted by 
means of three scenarios, namely, 1-bit morphology erosion, 8-bit average filter 
and 8-bit convolution filter. These filters are representative of different operations 
in neighbourhood oriented RTVPS - logical operation, addition and multiplication. 
For the convolution filters, 8-bit mask values were assumed. For these comparisons 
three neighbourhood sizes (3x3, 5x5 and 7x7) were used. For simplicity, 
neighbourhoods with square dimensions were chosen. Input video streams with 
640-by-480 frame resolution were used.  

 
3.6.1 DSP Implementation 

The Texas Instrument, TMS320C64x DSP [64] was selected to implement the 
functions on a DSP. The C64x central processing unit (CPU) capable of operating at 
500, 600 and 700 MHz consists of eight functional units (two of which are 
multipliers), two register files, and two data paths. The C64x multiplier has been 
enhanced so that it is capable of performing two 16-bit x 16-bit (or four 8-bit x 8-bit) 
multiplies every clock cycle.  

To achieve the best performance, the simple approach to handling boundary 
conditions in neighbourhood oriented video processing system was adopted. The 
image size was simply increased in order to ensure that the boundary pixels are 
accurately filtered. This approach was motivated by the Texas Instruments 
implementation of a 3x3 convolution filter included in the IMGLIB [62], [63]. With 
this approach, the filter complexity is minimal with regards to the cost of speed 
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due to extra rows and columns required for the boundary pixels. This approach is 
close to bench mark performance figures in [62]. 

The experiment set-up for DSP is as follows, the TMS320C6418 DSP is 
assumed to runs at 600MHz and that the input data stream is assumed at 10 
MPixels/s thus lowering the CPU utilization and power consumption. Since this 
implementation avoids boundary conditions by increasing the image size, perfect 
cache hits are assumed as are local memory allocations for all the line-buffers. 
Additionally, one data read for the newest neighbourhood pixel and one memory 
write for the newly computed data corresponding to the centre pixel in the output 
image are also assumed. Using the Texas Instrument Code Composer Studio 
software version 2.10, it was possible to profile and achieve performances closer to 
the benchmarks values [63]. 

 
3.6.2 FPGA Implementation 

The experiment set-up for FPGA took advantage of the memory architecture 
in this thesis. Fig. 24 depicts the implementation RTVPS filters. It was assumed that 
the input video stream is limited by the FPGA performance rather than the camera. 
The implementation was synthesised using Xilinx Integrated Software 
Environment software version 8.1i to obtain the post-place and route resource 
usage and performance. The Xilinx XPower software was used to calculate the 
power consumption per clock cycle. 
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Fig. 24 Boundary conditions implementation architecture 

 
The architecture in Fig. 24 handles data storage and boundary conditions for 

the spatial pixel neighbourhood in Fig. 4. In this figure the video/image processing 
(VIP) algorithm is the neighbourhood oriented RTVPS filter. It is glued to the 
architecture through the port interfaces for all the pixels data required in the 
neighbourhood. The sliding window controller (SLWC) monitors the central pixel 
in a spatial neighbourhood and using the position information provides valid data 
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for all the pixels in the spatial neighbourhood through the Linebuffers, Window ctrl 
and Pixel Switch. The Linebuffers implement the line buffers in Fig. 4. 

Window control (Window ctrl) provides the control signal used by the Pixel 
switch to build a spatial neighbourhood around the current pixel. The Pixel switch 
replaces all pixels in a spatial neighbourhood affected by the boundary condition, 
using predefined default values if the central pixel is at the image boundary. The 
output sync is required to realign the pixels with other streaming video signals 
since the generated output pixel corresponding to the central pixel of a 
neighbourhood oriented video processing system is usually skewed with respect to 
other image signals by an amount dependent on the neighbourhood size. 

 
3.6.3 Comparison Results 

Fig. 25 - Fig. 28 show the results obtained. It should be noted for the 
performance figures, that as long as there are available recourses on the FPGA, the 
performance for the system will be the same regardless of the number of active 
operators. For the DSP the performance (samples per second) will decrease when 
additional functionality is added to the system. Thus, the performance numbers 
are somewhat biased towards the DSP. The energy figures are also fairer in a 
comparison between the two architectures.  

The results show that for this class of operations, with optimized memory 
allocation and the accessing method presented in this thesis, and full parallel and 
pipeline operations, FPGA achieves a better performances in between 2.0 to 8.7 in 
terms of throughput and an average reduced energy consumption of 80 times per 
sample. 
 

R e so u r c e  U sa g e
( #  o f  S l i c e s)

0

500

1000

1500

2000

2500

3000

8bi t  A r i t h.  Fi l t er 1bi t  M or phol ogy 8bi t  FI R

3x3

5x5

7x7

  

Fig. 25 Resource usage on FPGA 
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Fig. 26  Resource usage on DSP 
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Fig. 27  Performance 
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Fig. 28. Power consumption 
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3.7 INTEGRATION WITH IMEM 

Fig. 29 depicts the integration of the tools used in IMEM and the steps 
required in the system synthesis and verification. The results from the memory 
requirement description from IMEM are accepted by into memory synthesis in 
order to generate a memory management module in VHDL and a SystemC 
wrapper module that contains a black-box reference to a memory management 
module implemented in VHDL. The SystemC wrapper also implements the 
C/C++ RTVPS filter function as a standalone clock sensitive thread. 
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Fig. 29 System integration and verification 

 
SystemC compilation iteratively refines the filter function embedded 

through simulation until a synthesizable module which satisfies the expected 
behavioural specifications of the RTVPS is achieved. This module is then 
synthesized into the VHDL module using the Agility Compiler. The SystemC 
simulator is also used to provide video signal impulse data to the VHDL simulator 
test-bench and to write its video response, which is used to verify that the VHDL 
module produces the expected result. 

VHDL compilation instantiates the memory management module and the 
synthesizable filter function, implements the timing relation of the system data-
flow and verifies the behaviour of the system through simulation. The final VHDL 
module is synthesized and downloaded into the FPGA.  
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4 PAPERS SUMMARY 

Using the IMEM workflow as a guideline, the relationship between the four 
main papers in this thesis is shown in Fig. 30. The papers can be grouped as 
memory synthesis (allocation and addressing) and performance analysis. The 
papers are summarised as follows. 
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Fig. 30 Relationship between thesis papers. 

4.1 MEMORY SYNTHESIS 

 
4.1.1 Paper I 

This paper proposed and developed the allocation algorithm for allocating 
the estimated on-chip memory requirements. The algorithm is based on heuristics 
and near optimally allocates memories based on previously proposed memory 
architecture which was concluded to be efficient for real-time video processing 
systems. Optimal allocations is one in which the amount of unused memory 
location on instantiated memories is minimal, preferably zero. 
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4.1.2 Paper II 
This paper proposed and developed two memory accessing approaches for 

allocated memories. The two approaches were compared and it was shown that 
one approach was more area efficient while the other was more speed efficient. 
Automatic generation of VHDL modules for managing (allocating and addressing) 
memories was implemented in order to access the efficiency of the two accessing 
approaches. The works this paper in conjunction with Paper I, provide a more 
efficient means of allocating on-chip memories than current practices in automatic 
synthesis tools. 

 
 
4.2 PERFORMANCE ANALYSIS 

 
4.2.1 Paper III 

This paper presented an analysis of a variety of memory requirements of 
video processing systems allocated using these embedded memory resources. The 
analysis was performed using the memory architecture, allocation and addressing 
approaches in this thesis over a wide range of possible on-chip memory capacities 
and video resolutions. The analysis shows that should FPGAs support multiple 
memory sizes, greater use of on-chip memories would be achieved because 
according to the results obtained the amount of unused memory increases with 
Block RAM size for a given resolution. The paper also shows that the amount of 
unused memory reduces as video frame resolutions increases. 
 
4.2.2 Paper IV 

This paper presented a comparison of memory usage (based on the memory 
architecture, allocation and addressing developed in Papers I - III) in FPGA and a 
digital signal processor in neighbourhood oriented real-time video processing 
systems. The paper showed that this approach to memory management achieves 
better performances than DSP for different classes of operation. 

 
4.2.3 Paper V 

This paper presented a platform that automatically and optimally 
implements memory requirements for spatial and temporal real-time video 
processing systems targeting FPGAs. The platform is built on the works in this 
thesis in order to provide data interfaces to a filter core. The work manages 
boundary conditions to provide accurate data at image boundaries. The work in 
this paper relieves the video processing designer the burden of managing on 
memory requirements. It provides and instantiates a wrapper module for the filter 
such that the designer is only required to implement the filter algorithm in the 
wrapper. 
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4.3 AUTHORS CONTRIBUTIONS 

The exact contributions of the authors of the four central papers in thesis are 
summarized in Table 8. In the table M and C represent the main author and co-
author respectively. 

Table 8. Authors’ Contributions 

Paper 
# 

NL MO HN BT Contributions 

I M C C C NL: Developed and implemented the allocation 
algorithm 
MO: Supervisor 
HN: Analysis and discussion on algorithm 
feasibility  
BT: Analysed the algorithm results from formal 
modelling viewpoint. 
 

II M C  C NL: Developed and implemented the addressing 
approaches 
MO: Supervisor 
BT: Writing of introduction 
 

III M C   NL: Implemented the experimental analyses 
MO: Supervisor 
 

IV M C C  NL: Implemented the comparison filters and test 
vehicles analyses 
MO: Supervisor 
HN: Provided the Module for managing the 
boundary conditions 
 

V C C M  NL: Implemented spatial memories and, spatial 
and spatio-temporal filters to test the implemented 
architecture 
MO: Supervisor 
HN: Provided the Module for managing the 
boundary conditions and provision of interface to 
background memory for temporal neighbourhood 
 

 
1. Najeem Lawal (NL) 
2. Mattias O’Nils (MO) 
3. Håkan Norrel (HN) 
4. Benny Thörnberg (BT) 
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5 THESIS SUMMARY 

Algorithms for allocating and accessing the memory requirements of 
neighbourhood oriented RTVPS operations have been presented in this thesis. The 
work in this thesis has been inspired by the efforts involved in finding best 
practices in memory allocation to FPGA embedded memory and IMEM’s 
philosophy of memory modelling and synthesis independence of the synthesis of 
core RTVPS filters. This has led to demands for accurate memory estimations and 
efficient synthesis other than those currently available. 

An introduction to the research area addressed in this thesis has been 
presented in Section 1. Section 2 summarised the FPGA resources relevant to this 
research and reviews of the previous works on memory allocation and addressing. 
In Section 3, the work achieved with referenced to finding automatic and efficient 
memory synthesis is presented. Section 4 provides brief summaries of the original 
papers covered by this thesis and the contributions of the authors to the papers. 

This section presents the conclusion of the research work in this thesis and 
possible future works. 

 
5.1 DISCUSSIONS 

 
5.1.1 Memory architecture 

For each neighbourhood oriented operation in an RTVPS, the developed 
memory architecture groups all the required memory objects (line buffers) to form 
a global memory object. This approach offers the advantage of reducing the 
number of memory object to be managed by the design. The architecture is based 
on the fact that all the memory objects required by an operator will be accessed 
simultaneously. This architecture leads to approximate savings of 50% with 
regards to the number of allocated memories for an operator. This is verified by 
observing that four memories would have been required to allocate the four line 
buffers identified in Fig. 11 if the conventional allocation approach has been 
followed as against the two allocated memories in Fig. 18 and Fig. 19. 

 
5.1.2 Memory allocation 

An allocation algorithm has been developed and implemented to the 
optimal use of allocated memories. This is based on the fact that inefficient 
allocations are performed by the current synthesis tools in which memory objects 
are allocated using high datapath widths whenever the memory object width is not 
supported. The approach in this algorithm is to partition such unsupported 
widths. The advantage of true dual-port memory allocations with the capability of 
writing and reading at both ports in one clock cycle was adopted in order to 
achieve optimal results. By this means, up to four memory-accessing operations 
could be performed in one clock cycle on one memory. The performance of the 
algorithm has been investigated using various on-chip memory sizes and video 
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frame resolutions. It has been shown that efficient memory utilization increases are 
possible with smaller memories and larger memory requirements (as depicted in 
Fig. 23).  

 
5.1.3 Memory addressing 

Two addressing approaches for accessing memory have been proposed. The 
approaches are based on the regular pattern of data availability and production 
typical in video processing. One of the approaches tends to be implementation cost 
efficient giving about 3% savings in resources usage while the other produces 
higher access speed with about 50% higher speed performance. These two 
approaches give the designer possibility of choosing between resource and speed 
optimisation.  

 
5.1.4 Boundary conditions management 

The memory allocation and addressing algorithms have been implemented 
in order to provide all the pixel data in the first column in a pixel neighbourhood. 
Local register are required to delay pixel data for other locations in the 
neighbourhood (See Fig. 4). However, in order to ensure valid data are used at the 
image boundaries, an architecture has been developed and implemented, which 
replaces those neighbourhood pixels not within the image with a predetermined 
default value depending on the operation performed. 

 
5.1.5 IMEM interfaces 

The work in this research is part of the IMEM tool. It interfaces with IMEM 
to accept the description of the on-chip memory to be implemented as input and 
produces VHDL modules to manage the memory requirements. At the top level, 
data and control interfaces are provided for the core video processing algorithm 
(Fig. 24). This work allows the video processing designer to focus on the 
development of the processing algorithm while relying on IMEM to manage the 
memory requirements. 

 
 

5.2 CONCLUSIONS 

This thesis presents memory architecture and synthesis optimized for 
neighbourhood oriented real-time video processing systems in which memory 
write and read accesses exhibit a regular pattern. 

The architecture considers the memory requirements of each operator in the 
video processing system in order to create one memory object. This memory object 
is synthesised using embedded memories in order to minimise external memory 
accesses. The synthesis and addressing of the memory requirements has been 
automated into a tool that accepts the description of the spatial memory 
requirements for all the operators in the video processing system to generate 
hardware description language (HDL) modules implementing the memories.  
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The work in this thesis has been integrated with other modelling and 
synthesis tools in order to create an environment for modelling, estimating, 
optimising and implementing both on-chip and off-chip memory requirements of 
neighbourhood-oriented video processing systems in addition to the boundary 
conditions of the algorithm. Within this environment, video processing engineers 
are only required to describe the memory requirements of the operators in terms of 
the number of frames, frame resolution, pixel resolutions and neighbourhood 
dimensions. The tools are able to implement all the memory requirements and thus 
enable the engineer to focus on the core algorithm for the system. 

This work has been tested using many video processing systems with a 
variety of frame and pixel resolutions, neighbourhood dimensions and different 
sizes of embedded memories. The results were found to be very close to theoretical 
minima and still with high memory access speed performances. 

FPGAs have been chosen as the target platform for the video processing 
systems studied in this thesis. This choice was made despite the challenges of 
programmability due to possibilities of reduced time-to-market, low non-recurring 
engineering cost and increasing embedded resources in comparison to ASICs, and 
efficiency of hardware implementation and high performance of embedded 
systems in comparison to DSPs. The contributions of this work reduce the 
challenges of system implementation on FPGA by reducing design time through 
efficient automated memory synthesis.  

 
 

5.3 FUTURE WORKS 

In the future, research works would focus on increasing the efficiency of 
allocating temporal data required in RTVPS, integrating algorithm compilers (as 
depicted in Fig. 24) and other IMEM tools (as depicted in Fig. 10). The goal is to 
provide a complete modelling, simulation and synthesis CAD-tool that follows the 
IMEM workflow to optimally implement both on- and off-chip memory for 
RTVPS. The tasks which are required to be carried out are described below. 

 
5.3.1 Video data interface 

The neighbourhood oriented operations in RTVPS require data from both 
even and odd rows. This sequence of data is not available in the current interlace 
video data streams. At Mid Sweden University, a video format has been developed 
to address this problem. In future works, interfaces will be provided for this video 
format both at the video input and at the output to video graphics adapter. 

 
5.3.2 Tools interfacing 

There are currently three tools in the IMEM workflow namely, IMEM 
modelling tool, IMAPPER tool and the memory allocation tool presented in this 
thesis. The modelling tool optimizes the temporal and spatial memory requirement 
of an RTVPS and provides the description of the requirement. The IMAPPER tool 
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implements the temporal memory and boundary conditions of the RTVPS while 
the work in this thesis deals with the implementation of the spatial memory. In the 
future, these tools will be interfaced into a single CAD tool. 

 
5.3.3 Prototyping environment 

In accordance with the architecture in Fig. 24, an environment that accepts 
video processing algorithms in the form of VHDL modules (written manually or 
generated form C/C++/SystemC through for example, the Agility compiler) and 
manages all the memory requirements for the algorithms in addition to 
implementing video data input and VGA output will be developed. To use this 
environment the RTVPS engineer only requires to specify the video input format, 
the video and pixel resolutions and the memory requirements of the RTVPS 
algorithm. The environment will implement all the memory related issues 
required, data capture and VGA controller while the algorithm will be 
implemented by the engineer. The complete RTVPS will be synthesised and 
downloaded to a prototyping board. The Digilent Virtex II Pro Development 
System board equipped with a Digilent VDEC video decoder board and a 
256Mbytes of fast DDR DRAM is currently being used for this work 

 
5.3.4 Neighbourhood oriented operations 

The memory objects managed in this thesis considered only data along rows 
in a video frame, although it is possible to extend this approach to columns of data. 
In future works, investigations into how this work can be extended to pixel blocks 
or tiles organised within a frame will take place. In this case, comparison will be 
made with regards to the effect of allocating smaller memories for image tiles in 
terms of the number of allocated memories, speed and area cost of addressing the 
allocated memories with those already developed in this thesis. 

 
5.3.5 Central Controller State Machine 

In the future, the number of pipelining stages involved for each operator in 
the video processing system and the number of frame and column/row buffers 
will be modelled and implemented into a central state-machine to control the 
sequence of operations in the system. This is necessary for power management and 
data synchronization among operators. An obvious advantage of this state 
machine is the elimination of data synchronisation buffers required in between 
video processing operators. 

 
5.3.6 Power models 

In the future, the difference in power consumptions between this work and 
traditional memory synthesis will be investigated. A means of achieving lower 
power consumption through efficient memory and power models will also be 
sought. 
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APPENDIX A 

The proposed allocation algorithm is presented in Figure A in pseudo-code. 
In step 1, the algorithm creates global memory objects according to Eq. (1). In step 
2, the algorithm ensures that they conform to the allowable port width 
configuration according to definition vii. This step is captured in a procedure, 
configure_global_memory_objects(R), presented below the algorithm in Figure A.1. In 
steps 3 through to 10, the global memory objects are allocated to the Block RAMs 
according to definitions viii to xi. In steps 11 through to 20, the algorithm finds the 
optimal use of unallocated memory space in the Block RAM through the second 
port. This allocation is also in accordance with definitions viii to xi. Steps 5 and 14 
handle the partitioning of the global memory objects with respect to length by 
allocating part of the length of the memory object to the Block RAM until the 
memory object has been completely allocated. In steps 7 to 9 and 15 to 17, the 
algorithm estimates the amount of the memory object possible for allocation to the 
available space on a Block RAM. This amount is used to update the memory object 
and the Block RAM if the allocation decision is made. In steps 18 to 20, the 
algorithm finds the memory object which, when allocated to the remaining space 
on the current Block RAM through port B, yields the optimal use of the Block 
RAM. The optimal allocation is that for which the unused memory space is 
minimum, preferably zero. 

The procedure for configuring the width of the global memory objects, 
configure_global_memory_objects(R), is based on definitions (iii) and (vii). In step 1 of 
the procedure, a container for the set of global memory objects is created. In this 
procedure, as the global memory objects are configured they are placed in this 
container. The container is returned in step 17 as the output of the procedure. As 
the procedure loops through the set of global memory objects in step 2, the width 
of each global memory object, WRi, is obtained in step 3 and compared in step 4 
with Wn. If WRi is not supported by the FPGA, the segment identifier is created in 
step 5. In steps 6 to 14, Wc is looped through and its members, Wn, are compared 
with the WRi. This comparison starts from the largest Wn down to the smallest. An 
appropriate number of times by which WRi is greater than Wn is used in creating 
segments according to definition vii. WRi is updated and reused until it is reduced 
to zero. If the FPGA supports WRi, in steps 15 and 16, the object is left un-
partitioned and placed in the returned container. 
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 The Proposed Allocation Algorithm 
 
Algorithm:  Memory Allocation(R, M) 
Parameters: R[R

1
 … R

I
] set of I memory objects; 

            M[M
1
 … M

K
] set of K Block RAMs; 

Return:     M[M
1
 … M

K
] set of K Allocated Block RAMs; 

 
{ 
1. create global memory object; 
2. R := configure_global_memory_objects(R); 
3. for M

k
 := M

1
 upto M

K
 

4. { for R
i
 := R

1
 upto R

I
 

5.   { determine length of R
i
 to be allocated; 

6.     determine port on M
k
 for allocation; 

7. Allocate R
i 
to M

k
; 

8. update M
k
;

 

9. update R
i
; 

10. if M
k
 has been completely used  

 { take next M
k
; 

} 
11.    else 
12. { if no_of_ports on M

k
 = 1 

13.   { pair(R
i
,M

k
.unused) best_alloc; 

14.     flag := TRUE; 
15.     for R

j
 := R

1
 upto R

I
 

16.        { determine length of R
j
 to be allocated 

17.       temporarily Allocate R
j 
to M

k
; 

18.       temporarily update M
k
;

 

17.       temporarily update R
j
; 

19.       if M
k
 is completely used 

      { Allocate R
j
to M

k
;  

  flag = FALSE; 
 take next M

k
; 

      }  
20.       pair(R

j
,M

k
.unused) temp_alloc; 

21.       if temp_alloc.second < best_alloc.second 
       { best_alloc := temp_alloc; 
       } 
     } 
22.     if flag = TRUE 

    { R
i
 := best_alloc.first; 

      Allocate R
i 
to M

k
; 

      update M
k
;

 

      update R
i
; 

    } 
  } 
} 

     } 
   } 
} 
 
Procedure:  configure_global_memory_objects(R) 
Parameters: R[R

1
 … R

I
] set of I memory objects; 

Return:     R[R
1
 … R

I
] set of I memory objects; 

 
{ 
1.  create new set of memory objects New_R; 
2.  for R

i
 := R

1
 upto R

I
 

3.  { width := R
i
.width; 

4.    if width ∉ W
c
 

5.    { segment_id := 1; 
6.      foreach W

i
 in W

c
 

7.      { if width ≥ W
i
 

8.    { count_max := width / W
i
; // integer division 

9.      width := width – (W
i 

× count_max); 
10.      for count := 1 upto count_max 
11.      { Mem_Obj temp(W

i
, R

i
.length, R

i
.operator_id); 

12.  temp.set_segment(segment_id); 
13.  add temp to new_R; 
14.  segment_id := segment_id + 1; 
      } 
    } 
  } 
      }  
15. else 
16. { add R

i
 to new_R; 

} 
    } 
17. return new_R; 
} 

 

Figure A.1. The proposed allocation algorithm. 




