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SUMMARY: In order to model the wood chipping process, the
primary process parameters have been identified and their first
order interaction studied. The model is analytical and incorpo-
rates, in particular, the influence of sliding friction between the
wood chipping tool and the log. To estimate the accuracy of the
analytical model, a Finite Element (FE) analysis of the problem
considered was also performed. The analytical model and the
FE analysis are both restricted to small deformations and linear
elastic orthotropic material behaviour. The most severe limita-
tion with both the analytical and the FE model is the assump-
tion of linearly elastic material. On the other hand, it is felt that
existing models of anisotropic plasticity in metals are lacking
too much of physical relevance, if applied to wood.

The analytical model predicts the normal and shear strain
distribution in the crack-plane prior to crack initiation. The ana-
lytical distributions are in reasonable agreement with the cor-
responding distribution of the FE analysis.

Based on experimental findings, it is suggested that the
stress field over the entire crack-plane, in conjunction with the
stress field close to the tip of the chipping tool, are critical for
chip creation, rather than just the latter.
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A common demand in the pulp and paper industry today
is the smallest possible variation of certain chip
population parameters, in particular the chip thickness
distribution. A narrow distribution promotes uniform
product properties, e.g. in chemical impregnation proces-
ses, and is generally recognized as a characteristic of a
high-quality product by consumers.

This means in practice that it is more important to
produce chips of constant thickness rather than of a
specific thickness and, in turn, that the chipping tool
retains its characteristics over a long time rather than a
pronounced sharpness. In order to predict the influence
of, for example, tool wear on chip thickness, it is
necessary to understand the underlying mechanisms of
chip formation in detail.

In a previous investigation (Hellström et al. 2008) it
was observed that the friction between the chipping tool
and the wood greatly influenced the wood chipping
process. Due to the inhomogeneous structure of wood,
the friction coefficient varies over the cross section of a

log and this might contribute to chip thickness scatter. To
investigate further (at least in a qualitative way) the
influence of pertinent parameters on the stress and strain
fields in the chip, a simple analytical model was deve-
loped, assuming small deformations and a linear elastic
orthotropic material. The model predicts the normal and
shear strain distribution in the crack-plane prior to crack
initiation and also the compressive force distribution on
the chip-end. In order to roughly check the accuracy of
the analytical model, a Finite Element (FE) analysis was
also performed and the results of the two models were
compared. It can be argued that more accurate results
should be obtained with the FE analysis, but the analyti-
cal model, in conjunction, is transparent and offers a
direct description of the relation between different para-
meters.

It was also found (Hellström et al. 2008) that just prior
to the chip formation, there is a concentration of strains
starting from the edge of the tool and extending along the
grain direction, and further that the chipping tool inden-
tion process is approximately self-similar.

In addition, the (in an average sense) constant length-
to-thickness ratio for a chip that has been experimentally
observed and reported in the literature (c.f. Uhmeier
1995; Kivimaa, Murto 1949; Twaddle 1997; Hartler
1986) is also discussed.

Analytical study
To obtain at least qualitative results regarding the influen-
ce of different parameters and in particular of friction, a
simple analytical model is considered. The model
assumes sliding friction between chip tool and the log
and is based on an assumed displacement field. The
solution method exploits the theorem of minimum poten-
tial energy.

Material model
For the analytical model small deformations, a plane
strain deformation and a linear elastic orthotropic materi-
al are assumed.

Elastic data (see Table 1) for wet spruce are taken from
Uhmeier, Persson (1997):

where E, G and ν are the Young’s modulus, the shear
modulus and the Poisson’s ratio respectively. The sub-
scripts L, R denote the principal material directions,
namely the longitudinal and radial directions relative to
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Table 1 Material properties (Uhmeier and Persson, 1997) 
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the original log. The L, R directions correspond to the
Cartesian x- and y- directions, respectively, of the model
(see Fig 1)

Analytical model
Fig 1 shows a single wood chip, assumed to be clamped
at the lower horizontal boundary. The cutting plane is at
an angle β to the horizontal plane and the knife tip is
occupying an angle α. The length and thickness of the
chip are L and t, respectively. The coordinate system is
such that the x-direction is parallel to the wood fibres and
the y-direction perpendicular to the fibres.

On the left boundary, a shear stress τ (for the time being
left unspecified) is assumed to be acting. To simplify
matters, coordinates ξ and η are used, and from Fig 2 the
coordinate transformation:

is obtained.
In the following, derivatives with respect to x and y are

obtained from Eq 1. For some arbitrary function f (ξ, η) it
follows that:

The boundary conditions to be satisfied are a) vanishing dis-
placements ux, uy in the x- and y- directions respectively on
the boundary η = 0, i.e. ux and uy equals zero on this bounda-
ry and b) a point on the cutting plane ξ = 0 is confined to
move along a plane making the angle α + β with the x-axis.

From Fig 3 it is directly obtained that:

α is assumed a small angle, consistent with the assump-
tion of small deformations. Series expansion of the func-
tion tan(α + β) around β and ignoring higher order terms
turns Eq 3 into:

Assuming for ux(ξ, η) and uy (ξ, η) that:

where f and g are functions to be determined, then one
will have together with Eq 4 that:

The normal strains εx, εy and the shear strain γxy are found
from the definitions of linear strains together with Eq 2:

where a prime denotes differentiation with respect to ξ
and c = cosβ and s = sinβ has been introduced for brevity.
Note that the displacements given in Eq 5 satisfies the
requirement that the boundary η = 0 is clamped.

Since the only external load is the shear stress τ(η) on
the boundary ξ = 0, the potential energy U is given by:

where σx, σy and τxy are the normal and shear stresses,
respectively, S is the domain in the (x-y) plane, occupied
by the chip and Γ denotes the boundary ξ = 0. An
orthotropic linear elastic material, is defined by the
following relation:

where C11, C12 … C66 are elastic constants. Substitution of
Eq 9 into Eq 8 yields:

Fig 1. An idealised situation.

Fig 2. Coordinate transformation.
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The variation of U with respect to the strains, result in:

Now, substitution of the strains given by Eq 7 into Eq 11
gives an expression involving the functions f, f ′, g, g′ and
their variations. Performing integration by parts on all
terms involving δf ′ and δg′ with respect to ξ and further
integration with respect to η results in:

where I1, I2... and J1, J2... are defined in Appendix. For
Eq 12 to hold for arbitrary variations δf and δg in the
open interval 0 < ξ < L, the following must hold:

Also, at ξ= L:

Now it is timely to specify τ(η). Since the ambition is to
include sliding friction in a consistent way and since it is a
simple matter to show that the stresses and hence the con-
tact pressure will be linear in η, it is assumed for τ(η):

where kτ and mτ are constants to be determined. With τ(η)
given by Eq 17 the line integral in Eq 12 will become:

K1 and K2 both depend linearly on kτ and mτ and are given
in Appendix. When ξ = 0, δf and δg are not independent
but subjected to Eq 6 so that at ξ = 0 (note again, that for
brevity s = sinβ and c = cosβ):

In addition, Eq 6 has to be satisfied i.e.:

The solution to Eqs 13 and 14 can easily be shown to be:

where A to D are constants, determined through the
conditions in Eqs 6, 15, 16 and 19 and λ1, λ2, γ1 and γ2 are
defined in Appendix.

Having obtained f and g, these are substituted into Eq 7
to obtain the strains, which together with Eq 9 will give
the stresses and in particular, the contact pressure p on
the boundary ξ = 0 is given in terms of the stresses on
this boundary by:

Now, since Coulomb sliding friction is assumed one will
have:

where µ ≥ 0 is the coefficient of friction.
Because linear conditions are assumed, the contact

pressure must depend linearly on the loading parameters,
i.e. on α, so that (remembering that p is linear in η):

where aα, ak ….. bm are influence coefficients. These can
easily be determined by assigning nonzero values to one
of α, kτ and mτ, while keeping the others equal to zero. It
should be pointed out that kτ = mτ= 0 i.e. τ = 0 is consis-
tent with µ = 0 in Eq 23. No closed form expressions for
these coefficients are derived but they are determined
numerically. Now, to get, for a given value of α, a
consistent model for sliding friction, one must have with
Eq 17 and Eq 24 that:

This will give two equations, from which kτ and mτ can
be determined, and having done so, K1 and K2 can be
calculated and inserted into Eq 19 and an approximate
solution for a case of sliding friction is obtained.

FE- model
In order to estimate the accuracy of the analytical model,
a FE analysis was also performed.

The problem considered was analyzed by using a 2D
finite element code, implemented in the Matlab (2007)
software, with conventional four-node iso-parametric
elements of two degrees of freedom, translation in the x-
and y-directions. A full description of the element
properties and the implementation procedure can be
found in Bathe (1982).

An iterative technique has been employed to solve the
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equilibrium equations. The crack surfaces contact
algorithm employed uses constraint functions to enforce
all contact conditions of the Coulomb-friction contact at
the contact nodes (cf. Adina, 1995). The result obtained
after each iteration then corresponds to estimates of the
incremental displacements from which the current stress
is computed. All deformations are assumed small so that
linear relations for equilibrium and kinematics are appli-
cable and all derivatives and integrals are evaluated with
respect to the initial topology of the considered geometry.

Results
With elastic data taken from Table 1, the stresses σy and
τxy are calculated along the crack-plane for α = 10º, L =25
mm, t = 5 mm, µ = 0,2 and β = 60º and β = 70º for both
models and are shown versus ξ/t and normalized with
respect to ER in Figs 4 and 5.

Comparison of results
Selected results of the analytical model were compared to
the corresponding results of the FE analysis (Figs 4 and 5).
The analytical stresses σy and τxy along the crack-plane
agree reasonably well with the FE stresses. The agreements
of the shape of the curves are relatively good, but the mag-
nitudes differ more in the region close to the chipping tool.
Further, the agreement is better for stresses calculated for
larger values of β. For smaller values of β, the assumption
made regarding the displacement becomes insufficient.

Discussion
It has been reported in the literature (c.f. Uhmeier 1995;

Kivimaa, Murto 1949; Twaddle 1997; Hartler 1986) that
for the same process parameters and geometry of the
chipping tool, the ratio between length and thickness of
the chip is (in some average sense) constant. Some con-
sequences of this observation will now be discussed.
Consider Fig 6 below:

If it is assumed that there are no intrinsic length scales
associated with the material, then the stress and strain
fields in the left geometry i.e. σij(x, y) and εij(x, y) will be
related to the same fields in the scaled geometry accor-
ding to:

This is often referred to as self-similarity. Obviously, the
assumption that there are no intrinsic length scales
associated with wood, is not true since wood does indeed
possess a structure. On a macroscopic length scale an
annual ring structure can be identified and on a smaller
length scale, a fibre structure can be seen etc. However,
in spite of this, it is shown in Hellström et al. (2008), in
agreement with the previous reports, that the wood
chipping process is approximately (at least for the cases
considered) self-similar.

Assuming that self-similarity holds, then the stresses
along the horizontal plane indicated in Fig 6, will be
identical in the normalised x- coordinate ψ = x/(φL), for
all values of φ. In the same way, the stresses along the left
inclined plane will be the same in the normalised coordi-
nates υ = y/(φt).

Let F be the cutting force, i.e., the force in the
direction of the chipping tool. For a tool with a knife
angle α > 0 the force F initially increases with the depth
of penetration of the tool, because of the wedging action.
The horizontal component of F, here denoted FH, is
carried by the wood piece ligament, i.e., the remaining,
uncut cross section of the wood piece, ahead of and in the
plane of the cutting tool. The load carrying capacity of
the ligament decreases however with the depth of
penetration.

The two extreme points above taken together imply
that the cutting force attains a maximum at some critical
depth of penetration, depending on the relation between
the tool contact stress and strength of the ligament.

It has been observed in the experiments that short

Fig 6. Quarter infinite geometries.

Fig 4. Normalized stresses σy /ER and τxy /ER along the crack-plane for the case β
= 60° and µ = 0,2.
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Fig 5. Normalized stresses σy /ER and τxy /ER along the crack-plane for the case β
= 70° and µ = 0,2.
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cracks, with a fairly regular distribution, are formed
along the cut surfaces as the chipping tool penetrates a
wood piece. The length of the cracks does, however, not
increase with depth of penetration. A further observation
is that a chip is formed at a critical relative, not absolute,
penetration depth.

Now, if the intensity of the stress state at the tip of the
cutting tool increases with the depth of penetration and
chip formation is governed solely by a local criterion,
then a chip would always form at an absolute tool pene-
tration depth, which means that the chip thickness would
be constant, or nearly so. In view of reported results and
the experimental observations, it thus seems unlikely that
chip formation is governed by a local criterion only.   

The horizontal force FH is related to the cutting force
and thereby to the depth of penetration, it being propor-
tional to the depth of penetration, or very nearly so.

For example, a uniformly expanding friction free and
flat elliptical tool in a very wide plate is accompanied
by a constant contact normal stress perpendicular to the
major axis of the ellipse, i.e. the length of the tool. As
the contact stress is constant along the tool, the corres-
ponding resultant force is exactly proportional to the
tool length.

It is reasonable to assume that to any given cutting
geometry there exists a corresponding ideal tool shape
for which the horizontal force is exactly proportional to
the depth of penetration. A wedge with straight sides, as
in the present case, is not likely of ideal shape and there-
fore no stronger assumption than the horizontal force be
only nearly proportional to the penetration depth, seems
justified.

Now, wood is a highly non-isotropic material and a
crack propagates much more easily along the fibres than
in other directions. Consider, therefore, the prospective
horizontal crack plane passing through the tip of the
chipping tool. From equilibrium, the resultant force on
this plane amounts to FH.

Recall that, at least initially, FH increases with penetra-
tion depth. It is reasonable to assume that failure along
this plane occurs as FH attains a critical value, whether
failure occurs through crack extension from the tool tip
and onwards or through a global mechanism of instability
involving the entire crack plane.

Further, it is assumed that the critical value for failure
is related to the length of the crack plane. Derivation of
an accurate relationship requires a detailed study, but the
very simple assumption that that the critical value just
increases with the length of the crack plane seems
justified and is sufficient at present.

Thus the stress state at the tip of the tool, in
conjunction with the stress field over the entire crack
plane, is critical for chip formation, rather than the
former stress field solely. As the horizontal force FH

increases with penetration depth and the corresponding
critical value with crack plane length, it follows that the
chip thickness to length ratio is constant, or that the two-
criteria condition for chip formation is consistent with
self-similarity.

This situation is very much unlike what is seen in e.g.

fracture mechanics where the crack length has critical
influence on strength. Another example is the strength of
an infinite plate with a circular hole, of a composite
material, where the diameter of the hole influences the
strength.

Conclusions
To start with, it must be mentioned when performing the
calculations involving both the analytical and the FE-
model the fact that β has an influence on the thickness
was ignored i.e. the same chip thickness was assumed for
different β:s.

The analytical model indicates a large influence of β
on the magnitude of τxy i.e. a small value of β will give a
more pronounced opening mode compared to a large
value of β. The model also predicts a decreasing contact
pressure with a decreasing β.

It was also observed that the model indicated contact
stresses being tensile in a region close to the tip of the
chipping tool. This is due to that the assumed displace-
ments in Eq 5 are too simple. However and in spite of
this, the model predicts a decreasing contact pressure
with a decreasing β.

Due to lack of experimental data, the stresses could not
be verified experimentally. 

However, the analytical model predicts the normal and
shear stress distribution in the crack-plane, which is in
reasonable agreement the FE analysis.

Finally it is concluded that it is not only the stress field
close to the tip of the tool that determines the creation of
a chip, but it is the stress field over the entire crack-plane
that is critical.
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