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Abstract

Recent Low Power Wide Area Networks (LPWAN) protocols are receiving
increased attention from industry and academia to offer accessibility for Inter-
net of Things (IoT) connected remote sensors and actuators. In this work,
we present a formal study of LoRaWAN security, an increasingly popular
technology, which defines the structure and operation of LPWAN networks
based on the LoRa physical layer. There are previously known security vul-
nerabilities in LoRaWAN that lead to the proposal of several improvements,
some already incorporated into the latest protocol specification. Our anal-
ysis of LoRaWAN security uses Scyther, a formal security analysis tool and
focuses on the key exchange portion of versions 1.0 (released in 2015) and 1.1
(the latest, released in 2017). For version 1.0, which is still the most widely
deployed version of LoRaWAN, we show that our formal model allowed to
uncover weaknesses that can be related to previously reported vulnerabilities.
Our model did not find weaknesses in the latest version of the protocol (v1.1),
and we discuss what this means in practice for the security of LoRaWAN as
well as important aspects of our model and tools employed that should be
considered. The Scyther model developed provides realistic models for Lo-
RaWAN v1.0 and v1.1 that can be used and extended to formally analyze,
inspect, and explore the security features of the protocols. This, in turn,
can clarify the methodology for achieving secrecy, integrity, and authenti-
cation for designers and developers interested in these LPWAN standards.
We believe that our model and discussion of the protocols security proper-
ties are beneficial for both researchers and practitioners. To the best of our
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knowledge, this is the first work that presents a formal security analysis of
LoRaWAN.

Keywords:
LoRaWAN, IoT, Scyther Verification.

1. Introduction

The proliferation of Internet-connected sensor and actuator devices em-
bedded in everyday objects (called “things”) are shaping an ever-growing
Internet of Things (IoT). We can find IoT applications in many areas, from
home automation systems, industrial processes control, pollutant detection
or smart metering, just to name a few examples. To build these IoT appli-
cations, developers have many connectivity options, such as IEEE 802.15.4,
Bluetooth or IEEE 802.11 for short and medium range or LTE for long range.
Another increasingly attractive option for deploying IoT applications are Low
Power Wide Area Networks (LPWAN) protocols, as they can cover distances
of several kilometres with minimal infrastructure. In fact, the popularity of
LPWAN lead to the emergence of a number of competing technologies, such
as Sigfox, LoRa, and NB-IoT.

In this work, we focus on LoRa, which is a commonly accepted LPWAN
protocol, deployed all around the world. LoRa is particularly interesting
due to the openness of its higher layer specifications - LoRaWAN, and for
the wide availability of low-cost devices. LoRa is also the only technology
allowing to build private LPWAN networks, Vangelista et al. (2015).

LoRa is a proprietary physical layer protocol that facilitates low-power
and long-distance communication up to 20 Km by using Chirp Spread Spec-
trum (CSS) modulation technique. LoRaWAN is the upper layer protocol
based on LoRa in which the structure and operation of the entire system are
defined. LoRaWAN went through several iterations and refinements, and
the latest version of the specification (1.1) was recently released in October
2017 Alliance (2017). LoRaWAN v1.1 was a major step forward in the spec-
ification and introduced a number of security-related features and improve-
ments. Due to its recent release, the security of this version of LoRaWAN still
has very little scrutiny, while there are several known vulnerabilities in pre-
vious specifications of LoRaWAN (see Section II). These vulnerabilities were
found by inspection of the protocol, based on the researcher’s expertise. To
our knowledge, no formal verification of the protocol was made previously,
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so we set out to formally analyze LoRaWAN v1.0, which is still the most
widely deployed version of the protocol Delbruel et al. (2017) and also the
latest version (v1.1). We have reported some of our early findings in Butun
et al. (2018), however this paper presents all the detailed security analysis
and results along with comprehensive discussions.

To perform the protocol verification presented in this paper, we developed
a model of LoRaWAN for the Scyther automatic protocol verification tool.
Our model allows Scyther to show that v1.0 is vulnerable due to a lack of
synchronization between communicating parties. This vulnerability reported
by Scyther is related to attacks previously reported by researchers Tomasin
et al. (2017); Na et al. (2017), which is interesting as it illustrates that our
Scyther model can find practical vulnerabilities in LoRaWAN. We then build
a Scyther model for v1.1 and this model shows that the latest version of
LoRaWAN no longer suffers from this vulnerability. Furthermore, the model
shows that it can enforce several relevant security claims which we describe in
detail in Section III. We believe that these tools, models and the discussion of
the security properties of the several versions of LoRaWAN is interesting for
practitioners using the protocol and researchers trying to develop extensions
and improvements.

The remainder of this paper is organized follows. Section II overviews
the related background on LoRaWAN and protocol verification. Section III
presents our models for LoRaWAN and the security claims, as well discussing
their implications. In Section-IV, we discuss several security still open. Fi-
nally, conclusions and future work are presented in Section V.

2. Background

In this paper, we are interested in studying LoRaWAN. In this section,
we will start by providing some details of the protocol and later, we overview
some background related to automated protocol verification. The used no-
tations in this manuscript are summarized in Table 1

2.1. LoRaWAN

In LoRaWAN, the network is composed of end-devices (ED) that are
connected with a single hop to one or more Gateways which, in turn, forward
packets to the Network Server (NS) through a back-haul network using IP
protocols.
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Notations Description

ABP Activation By Personalization
AES Advanced Encryption Standard
Alive Aliveness claim (Scyther)
AppEUI Application Unique Identifier
AppKey Application Key
AS Application Server
EAP Extensible Authentication Protocol
ED End-Devices
FNwkSIntKey Forwarding Network Session Integrity Key
IoT Internet of Things
JoinEUI Join Server Unique Identifier
JoinNonce Join Server Nonce (random)
JS Join Server
LoRaWAN Long RangeWide Area Networks
LPWAN Low Power Wide Area Networks
MIC Message Integrity Code
MITM Man-In-The-Middle
NBIoT Narrowband-IoT
NETID Network Identifier
NwkSEncKey Network Session Encryption Key
Nisynch Non-injective Synchronization claim (Scyther)
Niagree Non-injective Agreement claim (Scyther)
NS Network Server
OTAA Over The Air Activation
PKI Public Kay Infrastructure
SKR Key Security claim (Scyther)
SNwkSIntKey Serving Network Session Integrity Key

Table 1: Notations used for this paper
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Figure 1: LoRaWAN v1.0 Over the Air Activation (OTAA) procedure

LoRaWAN defines that the secrecy and integrity of data payloads trans-
mitted in the network are secured by employing well-known symmetric key
cryptography (AES-128bits) Alliance (2017) for both encryption/decryption
and MAC operations. The specification defines two ways for a device to ob-
tain the keys necessary to take part in a LoRaWAN network (this is called
activation of the device):

• Over-The-Air Activation (OTAA)

• Activation By Personalization (ABP)

Put simply, OTAA refers to remote activation and ABP refers to manual
activation, where keys are pre-configured in the device. In both versions,
ABP is very similar (although the specific keys configured are different): the
ED is connected, for example, via JTAG or USB connector and all the keys
and related material (DevEUI, etc) are transferred to secure storage in the
device (hence, attacks to this procedure are very limited). In OTAA, the
ED asks permission to connect to the LoRaWAN network. This is achieved
by successful transmission and verification of join-request and join-accept
messages. The content of these messages differ in both versions and will be
described below in more detail.
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Figure 2: LoRaWAN v1.1 Over the Air Activation (OTAA) procedure

2.1.1. LoRaWAN v1.0

Figure 1 depicts the OTAA procedure for the version 1.0 of the Lo-
RaWAN. First, the ED gathers the AppEUI and the AppKey from the net-
work manager (this can happen through some manual configuration). Then,
when the ED is deployed, it communicates with the NS via a gateway to
initiate the OTAA Join Procedure. The session starts with the join-request
message sent from ED to NS. The NS checks the integrity of the message
and after validation, it forwards the join-request to the Application Server
(AS) which checks the entry for this specific ED in the Supported Devices
List, matching the DevEUI of the ED to its associated AppKey. After a
successful match, the AS responds with an AppNonce to the NS. Then, the
NS appends a NETID and also some radio and configuration parameters,
along with a Message Integrity Code (MIC) to send back to the ED in the
join-accept message. The ED validates the MIC and then decrypts the mes-
sage to obtain the AppNonce, NETID and parameters. Finally, AppNonce
and NETID are used to create session-long keys: AppSKey and NwkSKey.
These session keys are used for confidentiality and integrity of the messages
exchanged afterwards.

2.1.2. LoRaWAN v1.1

In the architectural layout of LoRaWAN v1.1 networks, a new server
called Join Server (JS) is introduced to manage the OTAA procedure. Fur-
thermore, instead of a single NS, there are three NS roles introduced: home,
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forwarding and serving. The logic behind these modifications is to make
roaming of the devices possible.

As in the case of v1.0, v1.1 also employs same two mechanisms for key
distribution, namely ABP and OTAA. There is no change in the ABP proce-
dure, however the OTAA is significantly changed in v1.1. Figure 2 depicts the
OTAA procedure for version 1.1 of the LoRaWAN. Here, the unique identifier
of the JS, the JoinEUI and the DevEUI (unique identifier of the ED) and
both are pre-configured in the ED during fabrication. The ED also needs
to be configured with the NwkKey and the AppKey (this can happen also
during fabrication). Then, when the ED is deployed, it communicates with
the Join Server (JS) via NS, through a gateway to initiate the OTAA Join
Procedure. The session starts with the join request message sent from the
ED. The receiving NS checks the message and forwards the request to the
JS which checks the entry for this specific ED in the Supported Devices List,
matching the DevEUI of the ED to its associated NwkKey and AppKey.
After a successful match, the JS responds with a JoinNonce. Then, the
NS appends a NETID and also some radio and configuration parameters,
along with a Message Integrity Code (MIC) to send back to the ED in the
join accept message. ED validates the MIC and then decrypts the message
to obtain the JoinNonce, NETID and parameters.

To finalize the OTAA procedure, the JoinNonce, JoinEUI, DevNonce
and NwkKey are used to create network session-long keys: NwkSEncKey,
FNwkSIntKey, SNwkSIntKey. The FNwkSIntKey - Forwarding Net-
work Session Integrity Key - is used for the message integrity code (MIC) of
uplink data messages. Whereas, the SNwkSIntKey - called Serving Net-
work Session Integrity Key - is used for the message integrity code (MIC) of
downlink data messages. NwkSEncKey and AppSKey keys (network and
application) are used for confidentiality and integrity of the messages ex-
changed afterwards. Finally, JoinNonce, JoinEUI, DevNonce and AppKey
are used to create application session-long key:AppSKey, the session key
shared between the ED and AS and used to encrypt/decrypt application
layer payloads.

Readers who are more interested in details of LoRaWAN v1.1 may refer
to Butun et al. (2018). There, a comprehensive comparison table is provided
to enlighten readers about what changes are introduced with the new version,
especially from the security point of view (new keys, nounces, frame counters,
etc.).
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2.2. Known Attacks to LoRaWAN
LoRaWAN was studied by many previous works which have investigated

its security and proposed enhancements to the specification. Some of these
enhancements were included in LoRaWAN v1.1, and, due to its recent release,
there is no work dedicated to analyzing its security yet. In this subsection,
we will review work on the previous version of LoRaWAN (v1.0) which might
no longer be applicable to the latest version (v1.1) due to the changes in-
troduced. This prior art is still useful to acknowledge the progress of the
specification and to have an overview of previous attacks and improvements
proposed. In Section 2.3, we provide a discussion about the limitations of
Scyther and of the presented model in view of the vulnerabilities described
in this section such that the reader can better grasp the security properties
that can be derived from the model and its limitations.

The authors of Antipolis and Girard (2015) have focused on a prob-
lem with LoRaWANs key management methodology. In the version 1.0
of LoRaWAN, the NS is responsible for generating both session keys: the
NwkSKey and AppSKey. This is vulnerable to attacks since NS possesses
the AppSKey, it can decrypt and read any message passing by. As a solution
to this problem, authors proposed a new LoRaWAN network architecture in
which PKI is employed as a trusted entity. Fortunately, this vulnerability
(lack of root keys separation) was already addressed in the new version of
LoRaWAN (v1.1) as the derivation of NwkSKey and AppSKey comes from
different root keys. In our presented model we examine the communication
between ED and NS, as the OTAA session is carried out by these two entities.
Although the connections between AS, JS, and NS are not covered by our
model, we assume insider server connections are less likely to be vulnerable
to cyberattacks, as mentioned in the protocol standard Alliance (2017).

Another related work Kim and Song (2017), proposed an improved scheme
using dual keys for ED activation to improve the separation of trust for the
management of session keys. Eventually, this proposal somewhat is accepted
and inherited by the latest version of LoRaWAN (v1.1), since a new root key
(NwkKey) is introduced to generate the NwkSKey. With the inclusion of
the new root key (NwkKey), the session keys of application and network
sessions are generated separately (each session key is generated by its’ own
root key) during the OTAA activation phase of LoRaWAN v1.1.Similar to
the previous paper of Antipolis and Girard (2015), this work tried to present
an improvement to v1.0 by employing root key separation, which was already
addressed in v1.1.
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The DevNonce required in LoRaWAN v1.0 is a random number created
by the EDs. It is used to circumvent replay attacks during the key generation
phase. Zulian has shown that with the DevNonce generation system of
LoRaWAN v1.0, after a certain period of time, the ED can be unavailable
with a certain probability Zulian (2016). To tackle this problem, author
proposed increasing the size of the DevNonce field up-to 24-32 bits.

The same problem was also topic of another research by Tomasin et al.
(2017). Authors stressed that, by using specific jamming techniques, the
DevNonce number pool can be finished in a short duration of time. Accord-
ingly, after a while, NS will start to drop all of the join-request messages
from that ED because the nonces it possess are simply used already. These
issues are related to the DevNonce randomization strength, which is not
an investigated property by the automated security verification tools (i.e.,
Scyther). Since Scyther assumes perfect randomization technique over ideal
cryptographic conditions, it could not identify this vulnerability in our model.
Luckily, this issue has been addressed in LoRAWAN v1.1 as well.

Some of the LoRaWAN v1.0’s security vulnerabilities and related reme-
dies are discussed in Miller (2016). This work reported several vulnerabilities
in the phases of key management, communications, and network connection.

Na et al. (2017) argued that the join-request message sent by the ED to
the NS during the OTAA procedure is not encrypted and therefore vulner-
able to replay attacks. They have even proposed a remedy to prevent this.
However, authors have missed the point that, NS is keeping the list of used
DevNonces and automatically protects the network from bad ramifications
of the replay attacks. This is a kind of replay attack, which has been re-
ported by our model for v1.0. The new version of LoRAWAN tackles this
vulnerability by sending back the received DevNonce contained within the
join-accept message.

Regardless of the version being used for LoRaWAN networks (either v1.0
or v1.1), owing to wireless communications technology, they are suscepti-
ble to not only inter-network interference but also jamming attacks. The
threat for LoRa is not as serious as in the other narrow-band wireless tech-
nologies. Hence, the CSS modulation of the LoRa spreads the use of the
communication channels to a wider band, the bad effects of these problems
are somewhat solved. However, more complicated jamming attacks, such
as a selective-jamming attack, cannot be detected easily and would result in
the decrease of the network performance. Jamming attacks are related to the
physical layer and Scyther can only check security issues within the logic of
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the protocol (cryptographically). Therefore, in our analysis, Scyther is not
able to identify this kind of attack.

Sanchez-Iborra et al. (2018) et al.’s work is the most recent paper to ad-
dress security issues of LoRaWAN v1.0 and to offer remediation by proposing
a lightweight and authenticated key management approach. The proposed
approach is based on the Ephemeral Diffie Hellman Over COSE (EDHOC)
and defined as a convenient solution due to its flexibility in the update of
session keys, its low computational cost and the limited message exchanges
needed. The paper includes a comparative conceptual analysis by consid-
ering the overhead of possible implementations of rival security schemes for
LoRaWAN v1.0. However, authors did not work with latest version of Lo-
RaWAN (v1.1). Therefore, their work needs to be expanded and revisited,
considering the significant security improvements included in v1.1.

2.3. Security Protocol Analysis and Scyther

Security protocol formal verification tools have received a great attention
in the last few years. These tools had a role in improving some security
protocols even after being adopted Dalal et al. (2010). Scyther by Cremers
(2006), ProVerif by Blanchet et al. (2001), and Avispa by Armando et al.
(2005) are some notable examples of formal verification tools, that, while
having a similar objective, they vary in their coding and validation method,
as mentioned in Dalal et al. (2010).

Dalal et al. (2010) also stresses that Scyther is be one of the most well-
known tools for security validation by offering a graphical analysis to demon-
strate security threats based on protocol models outlined using the Security
Protocol Description Language (or SPDL programming language). Scyther
evaluates the examined protocol against predefined security claims that are
also included in the model and allows validating the protocol for either an
unbounded or bounded number of sessions. It can also use a characterized
role to analyze the protocol by performing a complete execution that demon-
strates all traces of the protocol role.

The two pivotal claims in our evaluation are the non-injective synchro-
nization claim (or Nisynch) as well as the non-injective agreement claim (or
Niagree). Synchronization states that the exchanged messages are trans-
ferred exactly as set by the protocol description. However, agreement only
cares about the final variable values after a successful completion between two
communications parties regardless of what happens in between. Synchroniza-
tion can be show to be stronger than agreement in the typical intruder model.
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In other sense, according to Cremers et al. (2006); Lowe (1997), synchronized
protocols are not vulnerable to replay, suppress-replay, and pre-play attacks,
while agreeing protocols probably are.

It is worth mentioning that in the literature, Scyther verification tool has
already been useful in analyzing the security vulnerabilities of some com-
munication standards: It has shown by Dalal et al. (2010) that following
protocols need improvements for their security standardizations: WiMAX,
Extensible Authentication Protocol (EAP, which is a network access authen-
tication framework), and ISO/IEC 9798 (entity authentication protocol).

Scyther assumes ideal/perfect cryptographic conditions with unbreakable
encryption, in which the opponent can learn nothing from the encrypted mes-
sage without the decryption key(s). In Scyther there is no difference between,
for example, Data Encryption Standard (DES) and Advanced Encryption
Standard (AES), as both are considered perfect symmetric key encryption
ciphers. This presents one of the main Scyther limitations which is discussed
in more depth by Yang et al. (2016b,a).

In addition, Scyther only deals with the logical part of the security proto-
cols, in view of that, our model is not successful to detect some of the previous
illustrated shortcomings in Section 2.2: (i) nonce randomization weaknesses,
(ii) root keys separation in the derivation of NwkSKey and AppSKey, and
(iii) physical attacks in terms of radio jamming. On the contrary, the pre-
sented model successfully detected the replay attack vulnerability in v1.0, as
the lack of Nisynch (non-injective synchronization) directly leads to replay,
suppress-replay, and/or pre-play attacks Cremers (2006). The current ver-
sion of LoRAWAN covered this vulnerability by sending back the received
DevNonce to the ED. Scyther can only simulate cryptographic Hash func-
tions, random nonce generation and symmetric/asymmetric key encryption.
Other cryptographic functions are not directly supported by Scyther, such
as: (i) key agreement over discrete logarithm problem (DLP), (ii) integer fac-
torization problem (IFP), (iii) Chinese reminder theorem (CRT), (iv) time
stamping/synchronization, and (v) exclusive-or. To overcome this constraint,
analyzers/investigators need to manipulate the well-defined and supported
properties to simulate the missing functions. This kind of limitations have
been addressed by some other tools like ProVerif Küsters and Truderung
(2009).
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Listing 1: Pseudo-code for LoRaWAN-OTAA-v1.0 key agreement procedure

Color code:

red:operation, green:operand type, orange:actors, blue: variables, magenta: constants

declaration of LoRaWAN OTAA v1.0 protocol to be comprised of Server and ED

begin

declaration of ED role

begin

declaration of DevNonce,MHDRDev in type Nonce

declaration of MHDRSrv,SrvNonce,NetID,DevAddr,DLSettings,RxDelay,CFList in type Nonce

declaration of pad01, pad02,pad16 in type Padding

send from ED to Server the message (MHDRDev, EDe, Server, DevNonce) and the HMAC of the

message encrypted with the AppKey

receive from Server at ED the message (MHDRSrv) and the secret

message (SrvNonce, NetID, DevAddr, DLSettings, RxDelay, CFList) encrypted with the AppKey

decrypt the secret message (SrvNonce, NetID, DevAddr, DLSettings, RxDelay, CFList) with the AppKey

calculate AppSKey by encrypting the (pad01, SrvNonce, DevNonce, NetID, pad16) with the AppKey

calculate NwkSKey by encrypting the (pad02, SrvNonce, DevNonce, NetID, pad16) with the AppKey

check whether both parties (ED and Server) have the same value of DevNonce

check aliveleness of the ED

check the minimum agreement between the partees according to the ED

check the validity of the non-injective agreement according to the ED

check the validity of the non-injective synchronization according to ED

check the validity of the secrecy of AppSKey according to the ED

check the validity of the secrecy of NwkSKey according to the ED

end

declaration of Server role

begin

declare SrvNonce,MHDRSrv,NetID,DevAddr,DLSettings,RxDelay,CFList,NonceList in type Nonce

declare DevNonce,MHDRDev in type Nonce

receive from ED at Server the message (MHDRDev, ED, Server, DevNonce) and the HMAC of the

message encrypted with the AppKey

check whether DevNonce do not match the NonceList

send from Server to ED the message (MHDRSrv) and the secret

message (SrvNonce, NetID, DevAddr, DLSettings, RxDelay, CFList) encrypted with the AppKey

update the NonceList by adding DevNonce

check whether both parties (ED and Server) have the same value of SrvNonce

check aliveleness of the Server

check the minimum agreement between the partees according to the Server

check the validity of the non-injective agreement according to the Server

check the validity of the non-injective synchronization according to Server

check the validity of the secrecy of AppSKey according to the Server

check the validity of the secrecy of NwkSKey according to the Server

end

end

3. Security Analysis of LoRaWAN

As in every kind of security implementation, the security of LoRaWAN in-
cludes several dimensions, such as: protocol issues, user behavior, implemen-
tation aspects, weaknesses in the cryptography algorithms employed. In this
section, we will focus in the scope on automated security protocol verification
tools and develop a model to verify the security of LoRaWAN, particularly
the OTAA procedure.
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Figure 3: LoRaWAN v1.0 OTAA Scyther validation results: a sample output

3.1. LoRaWAN v1.0

In the LoRaWAN v1.0 OTAA, the ED sends a join-request message to
the NS to authenticate itself (to validate this request, the intervention of the
AS is needed, but for the purposes of our model, we treat the Network and
Application Servers as one entity). With a successful validation, the server
answers the ED with a unique response, named a join-accept message, that
carries shared key parameters, such as AppNonce and NetID. In order to
facilitate the understanding of the model, we present an English-readable
pseudo-code for the model in Listing 1. Listing 3 in the Appendix A section
provides the full SPDL code of our Scyther model for LoRaWAN v1.0 OTAA
session.

One can observe the two roles modeled: ED and Server. The ED com-
putes a key, JSIntKey and a MIC that are sent to the NS from whom we
then expect a reply (the join-accept). We can also see (Listing 1) several
security claims checked by the model. Our model of the Server is similar to
the ED, but the Server receives the join-request and then replies to it. The
Server also checks if the DevNonce was not previously used.

3.1.1. Security Verification Results

After execution of the model, the results generated by Scyther can be
obtained (in an output windows such as in Figure 3). For example, Figure 3
shows a sample output of Scyther results for the analysis of LoRaWAN v1.0
OTAA. Accordingly, Scyther provided results for each claim we have created
by showing the security implications related to them. In the cases of “Fail, the
possible attack scenarios detected by Scyther can be manually inspected. A
click-able button in the “Patterns column (button with the name “1 attack in
Figure 3) opens a new window in which a possible attack scenario is plotted.
For the sake of simplicity, this attack scenario is not shown here. More
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interested readers can run the Scyther code provided in Listing 3 to observe
the attack scenarios in detail. For convenience, we have summarized all the
results of the Scyther analysis in Table 2. In this table, N.A. refers to “Not
Applicable”. Hence we have merged the results from both versions (v1.0 and
v1.1) in a single table, some claims are not valid for the specific version while
they are valid for the other. All those claims are indicated with N.A. label.

The results summarized in Table 2 show that two security claims - Nisynch
and Niagree - are not satisfied, and at least one attack can be performed.
In practical terms, what this means is that LoRaWAN v1.0 OTAA does not
provide strong ties between the two communicating parties (i.e., the ED and
the NS/AS). In other sense, there is a weak relation between the join-request
and join-accept messages for the same ED; the two communicating parties
cannot be assured that they possess the same keying credentials, in the sense
that if there are multiple join requests, the replies do not have information
about which request they relate to.

The consequences of missing agreement and synchronization properties
between the communicating parties can be, for example, when the system
loses the send 1 request of a first join attempt, it will count the future send 1
request of the third run instead. This, in turn, will lead the two parties to
agree on dissimilar keying materials as they will have different nonce values.

Other claims / checks such as; i. SKR refers to the secrecy of certain
attributes, preferred to be utilized for session keys, ii. Alive assures the
liveliness of all partners. iii. Weakagree tends to a weak agreement, in
which the communication partners need to assure that they are actually
communicating with each other to prevent an attacker from impersonating
one of them. More details can be found in Lowe (1997).

3.1.2. Discussion

Scyther results are based on an abstract model of the protocol, but it is
interesting to verify that similar attack scenarios have been disclosed pre-
viously by Tomasin et al. (2017); Na et al. (2017), where authors reported
jamming and replay attacks to the LoRaWAN join procedure. To address
this problem, a strong tie between the two parties must be established. That
is, the ED needs to be confident that the NS/AS is obtaining the same
DevNonce that is sent over the join-request message.

To address this issue, the server has to include the received DevNonce
to its join-accept message and send it back to the device in a ciphered for-
mat. This could be solved as follows; In the join request message, MIC is

14



Figure 4: LoRaWAN v1.1 Scyther characterize role

Figure 5: LoRaWAN v1.0 Scyther characterize role

replaced by an AES Encryption to help the server to extract a DevNonce
image. Subsequently, in the join-accept response, the server integrates an
XOR(DevNonce, SrvNonce) to allow the ED to check that the server is
really obtaining the corresponding DevNonce. In the next subsection, we
will see how LoRaWAN v1.1 remedies this problem.

3.2. LoRaWAN v1.1

In this subsection, we examine LoRaWAN v1.1. In an earlier section
(Section 2.1.2) the key agreement process (OTAA) of LoRaWAN v1.1 was
shown in details (for an illustration, see Figure 2). Again, to analyze security
of this newer version, we start by modeling LoRaWAN v1.1 OTAA using
Scyther.

3.2.1. Security Verification Results

The Scyther validation shows that all claims are verified and with no
attacks including the two security claims Nisynch and Niagree, as presented
in Table 2. For the reader’s convenience, Listing 2 presents the pseudo code
of the Scyther model. Whereas Listing 4 presents the full SPDL code of the
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Listing 2: Pseudo-code for LoRaWAN-OTAA-v1.1 key agreement procedure

1 Color code:

2 red:operation, green:operand type, orange:actors, blue: variables, magenta: constants

3

4 declaration of LoRaWAN OTAA v1.1 protocol to be comprised of ED and Join-Server

5 begin

6 declaration of the role of ED

7 begin

8 declaration of DevNonce and MHDRDev in type Nonce

9 declaration of MHDRSrv, JoinNonce, NetID, DevAddr in type Nonce

10 declaration of DLSettings, RxDelay, CFList, JoinReqType in type Nonce

11 declaration of JSIntKey, MIC, AppSKey, JSEncKey in type Key

12 declaration of FNwkSIntKey, SNwkSIntKey,NwkSEncKey in type Key

13 declaration of pad01,pad02,pad03,pad04,pad05,pad06,pad16 in type Padding

14

15 calculate JSIntKey as (pad06,ED,pad16) encrypted with the secret-key between ED and Join-Server

16 calculate MIC as (JoinReqType,Join-Server,DevNonce, MHDRSrv, JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList)

encrypted with the JSIntKey

17 send from ED to Join-Server the message (MHDRDev, ED, Join-Server, DevNonce) and the HMAC of the

message encrypted with the secret-key between ED and Join-Server

18 receive from Join-Server at ED the message (MHDRSrv, MIC, (JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC)

encrypted via decrypt

option with the secret-key between ED and Join-Server)

19 calculate FNwkSIntKey as (pad01,JoinNonce,Join-Server,DevNonce,pad16) encrypted with the secret-key between ED

and Join-Server

20 calculate SNwkSIntKey as (pad03,JoinNonce,Join-Server,DevNonce,pad16) encrypted with the secret-key between ED

and Join-Server

21 calculate NwkSEncKey as (pad04,JoinNonce,Join-Server,DevNonce,pad16) encrypted with the secret-key between ED and

Join-Server

22

calculate AppSKey as (pad02,JoinNonce,Join-Server,DevNonce,pad16) encrypted with the public-key of the Application

Server (Appkey)

23 calculate JSEncKey as (pad05,ED,pad16) encrypted with the secret-key between ED and Join-Server

24

25 check whether both parties (ED and Join-Server) have the same value of DevNonce

26 check aliveleness of the ED

27 check the minimum agreement between the partees according to the ED

28 check the validity of the non-injective agreement according to the ED

29 check the validity of the non-injective synchronization according to ED

30 check the validity of the secrecy of FNwkSIntKey according to the ED

31 check the validity of the secrecy of SNwkSIntKey according to the ED

32 check the validity of the secrecy of NwkSEncKey according to the ED

33 check the validity of the secrecy of AppSKey according to the ED

34 check the validity of the secrecy of JSEncKey according to the ED

35 check the validity of the secrecy of JSIntKey according to the ED

36 end

37

38 declaration of the role of Join-Server

39 begin

40 declaration of JoinNonce, MHDRSrv, NetID, DevAddr, DLSettings in type Nonce

41 declaration of RxDelay, CFList,NonceList,JoinReqType, in type Nonce

42 declaration of DevNonce, MHDRDev in type Nonce

43

44 receive from ED at Join-Server the message (MHDRDev, ED, Join-Server, DevNonce) and the HMAC of the

message encrypted with the secret-key between ED and Join-Server

45 send from Join-Server at ED the message (MHDRSrv, MIC, (JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC)

encrypted via decrypt

option with the secret-key between ED and Join-Server)

46

47 check whether DevNonce do not match the NonceList

48 update the NonceList by adding DevNonce

49 check whether both parties (Join-Server and ED) have the same value of JoinNonce

50 check aliveleness of the Join-Server

51 check the minimum agreement between the partees according to the Join-Server

52 check the validity of the non-injective agreement according to the Join-Server

53 check the validity of the non-injective synchronization according to Join-Server

54 check the validity of the secrecy of FNwkSIntKey according to the Join-Server

55 check the validity of the secrecy of SNwkSIntKey according to the Join-Server

56 check the validity of the secrecy of NwkSEncKey according to the Join-Server

57 check the validity of the secrecy of AppSKey according to the Join-Server

58 check the validity of the secrecy of JSEncKey according to the Join-Server

59 check the validity of the secrecy of JSIntKey according to the Join-Server

60 end

61 end
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Table 2: LoRaWAN v1.0 and v1.1 OTAA Scyther validation results

LoRaWAN v1.0 LoRaWAN v1.1

Claim Status Attack pat-
terns

Status Attack pat-
terns

Reference: End Device

Alive Ok No attacks Ok No attacks

Weakagree Ok No attacks Ok No attacks

Niagree Fail 1+ attacks Ok No attacks

Nisynch Fail 1+ attacks Ok No attacks

SKR{AppSKey} Ok No attacks Ok No attacks

SKR{NwkSKey} Ok No attacks N.A. N.A.

SKR{SNwkSIntKey} N.A. N.A. Ok No attacks

SKR{NwkSEncKey} N.A. N.A. Ok No attacks

SKR{JSEncKey} N.A. N.A. Ok No attacks

SKR{JSIntKey} N.A. N.A. Ok No attacks

Reference: Server

Alive Ok No attacks Ok No attacks

Weakagree Ok No attacks Ok No attacks

Niagree Ok No attacks Ok No attacks

Nisynch Ok No attacks Ok No attacks

SKR{AppSKey} Ok No attacks Ok No attacks

SKR{NwkSKey} Ok No attacks N.A. N.A.

SKR{SNwkSIntKey} N.A. N.A. Ok No attacks

SKR{NwkSEncKey} N.A. N.A. Ok No attacks

SKR{JSEncKey} N.A. N.A. Ok No attacks

SKR{JSIntKey} N.A. N.A. Ok No attacks
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Scyther model for LoRaWAN v1.1 OTAA procedure. In our Scyther model
for LoRaWAN v1.1 (Listing 2), one can observe that the message sent from
Server to ED, (send in line 45 and receive in line 18) includes a MIC that
is computed with the DevNonce. As we can observe, a small change in
the protocol addresses the weaknesses previously found for LoRaWAN v1.0.
Including the DevNonce in the MIC of the join-accept message results in
an unequivocal correspondence between pairs of join request/accept messages
and ensures that both communicating parties end up having the same keying
materials.

3.2.2. Discussion

Executing Scyther validation tool against the defined claims is still not
sufficient to give a precise examination of the inspected protocol. As protocol
designers, who are trying to protect their protocol against illegal access, may,
accidentally, block the protocol for the authorized access as well. The Scyther
characterize role carries out the responsibility of checking the reachability of
each partner in the network to assure that the protocol can be run smoothly
and efficiently between its legitimate users during the execution phase. We
examined the characterize role against LoRaWAN v1.1 to extract a related
window, shown in Figure 4, to prove that the communications’ partners
are reachable to each other over a single (authentic) trace pattern. Usually
multiple traces reflect potential vulnerabilities. The characterize role for
LoRaWAN v1.0, shown in Figure 5, states that the Dev entity can be
reached over (two) different traces. One of these traces covers the legitimate
access and the other trace presents a related weakness, for more details please
check Section 3.1

While our model does not report issues with version 1.1 of LoRaWAN,
this does not mean that the protocol is free from security vulnerabilities, but
if does give strong indications, particularly in regards to the claims made in
the model.

4. Open Security Challenges with LoRaWAN v1.1

The Scyther models presented allow to derive some important security
properties. There are however still some concerns and open challenges for
further research. In this section, we highlight some important open security
challenges.
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4.1. Cryptographic primitives

As discussed earlier, one major limitation of automatic protocol verifica-
tion is that it generally considers the cryptographic primitives to be ideal.
In practice, there might be weaknesses in the cryptographic primitives that
would impact on the security of the protocol. As an example, researchers
have previously described some fundamental flaws in AES using the elec-
tronic codebook (ECB) mode Rogaway (2011), used to encrypt the join-
accept message of LoRaWAN v1.1.

4.2. Key Preloading

In the key agreement context, the (joint) key-control property prevents
any party in the network from selecting a predefined value for the shared
session key. Doing this stops one party from having any kind of benefits over
the other party Mitchell et al. (1998). The preloading of the root keys in
LoRaWAN v1.1 (NwkKey and AppKey) into the ED violates this expected
key-control property. The main advantage of the key-control property is to
guarantee the independence in the key agreement process for the concerned
parties Eldefrawy et al. (2011). In addition to that, key preloading requires
extra resources in terms of separate and secure means for the loading process.

4.3. Infrastructure Trust

Yang (2017) presented many security vulnerabilities of LoRaWAN v1.0.
Especially, the work mentioned a specific version of man-in-the-middle(MITM)
attack called bit-flipping attack, in which an adversary (or a rogue NS)
changes the content of the messages in between NS and AS. This attack
is still valid for v1.1 as mentioned in the specification document, Alliance
(2017): “Application payloads are end-to-end encrypted between the ED
and the AS, but they are integrity protected only in a hop-by-hop fashion;
one hop between the ED and the NS, and the other hop between the NS
and the AS. That means, a malicious NS may be able to alter the con-
tent of the data messages in transit, which may even help the NS to infer
some information about the data by observing the reaction of the application
end-points to the altered data. ” Therefore, as stressed by the specification
document, NSs are considered as trusted servers by default. However, enti-
ties are recommended to use additional end-to-end security solutions if they
are wishing to implement end-to-end confidentiality and integrity protection
against MITM attacks.
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4.4. Roaming

Roaming support is one of the major aspects introduced in LoRaWAN
v1.1. Our model does not include security aspects related to roaming opera-
tions, which is left as a future work. However, here we will briefly state and
summarize two related considerations: (i) As mentioned previously, v1.1 of
LoRaWAN is susceptible to bit-flipping attacks happening in between servers
as much as the v1.0. The inclusion of handover-roaming in v1.1 makes the
situation worse. As discussed in Dönmez and Nigussie (2018), handover-
roaming enables more possibilities for a MITM attack, as the unprotected
FRMPayload ’s are first transported from the sNS (serving-NS) to the hNS
(homing-NS), and from there to the AS; (ii) As stressed by Dönmez and
Nigussie (2018), handover-roaming can cause a fall-back when the back-end
(sNS) that serves the roaming ED runs an older version of LoRaWAN, i.e.
v1.0. On contrary to this thought, handover-roaming is itself a v1.1 feature
and is not presented in v1.0. Henceforth, handover-roaming from LoRaWAN
v1.1 network into a v1.0 network is simply not allowed. Handover-roaming
depends on the trust of only the network session keys. As far as the net-
work operators entrust the network root keys delivered to them by the other
operators they have roaming agreements with, handover-roaming should not
introduce extra security implications in regards to join procedure commis-
sioning.

5. Conclusion and Future Work

LoRaWAN, with its very desirable features such as low-cost and long-
range communications, is increasingly being considered as an option to deploy
IoT networks. In this article, using the Scyther verification tool, we show that
LoRaWAN’s release v1.0 suffers from a lack of synchronization between the
communicating parties, which in its turn, makes it vulnerable to a known
family of attacks: replay attacks. Interestingly, the vulnerabilities found
using an abstract model of the protocol are practical, as previously reported
independently Tomasin et al. (2017); Na et al. (2017). On the other hand, the
latest version of LoRaWAN (v1.1) has passed all the security claims/checks of
our model. However, due to the limitations of the model, it is not possible to
discover all the potential vulnerabilities of a protocol using tools like Scyther.
In fact, we also have discussed some security challenges of LoRaWAN 1.1 that
need of further discussion.

20



These results are relevant several ways: (i) LoRaWAN v1.0 is still widely
used and our discussion shows that it possible to address the weaknesses in
this v1.0 of the protocol whereas an upgrade to v1.1 might require changes
in the infrastructure and more time; (ii) they show how a formal model can
successfully find practical protocol weaknesses (iii) they provide a discus-
sion on the security of the protocol and on the usefulness and limitations of
automated protocol verification.

Scyther acts as a microscope to security protocols; it allows examining
their security properties with great detail. Not only that, but also it can help
designing and checking solutions to security issues found. We note that the
SPDL code presented in this work provides realistic models for LoRaWAN
v1.0 and v1.1, and we believe that this work lays a foundation to check the
security of LoRaWAN, including adding other features of the protocol to the
model as well as modifying them to model future updates or releases of the
protocol.
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Appendix A. Scyther SPDL code

The Appendix section consists of following:

• The Listing 3 provides the Scyther code for the OTAA procedure of
LoRAWAN v1.0

• The Listing 4 provides the Scyther code for the OTAA procedure of
LoRAWAN v1.1
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Listing 3: Scyther SPDL code for LoRaWAN-OTAA-v1.0

// The protocol is running between End Device (Dev) and NS/AS (Srv)

// The predefined shared key AppKey between Dev and Srv is k(Dev,Srv)

// dec models a decryption function that is invertible by an encryption function (enc)

// Declaration of padding strings (pad01, pad02, ...) omitted

protocol LoRaWAN-OTAA-v1(Dev,Srv)

{

role Dev {

fresh DevNonce: Nonce;

fresh MHDRDev: Nonce;

var MHDRSrv: Nonce;

var SrvNonce: Nonce;

var NetID: Nonce;

var DevAddr: Nonce;

var DLSettings: Nonce;

var RxDelay: Nonce;

var CFList: Nonce;

send_1(Dev,Srv,(MHDRDev, Dev,Srv,DevNonce),{MHDRDev,Dev,Srv,DevNonce}k(Dev,Srv));

recv_2(Srv,Dev,(MHDRSrv), {{SrvNonce,NetID,DevAddr,DLSettings,RxDelay,CFList}dec}k(Dev,Srv),

{SrvNonce,MHDRSrv,NetID,DevAddr,DLSettings,RxDelay,CFList}k(Dev,Srv));

macro AppSKey={pad01,SrvNonce,DevNonce,NetID,pad16}k(Dev,Srv);

macro NwkSKey={pad02,SrvNonce,DevNonce,NetID,pad16}k(Dev,Srv);

claim(Dev,Running,Srv,DevNonce); //checks that Dev agrees with Srv on DevNonce

claim(Dev,Alive); //assures the Aliveness of Dev

claim(Dev,Weakagree); //minimum agreement check between partners according to Dev

claim(Dev,Niagree); //validates the non-injective agreement according to Dev

claim(Dev,Nisynch); //validates the non-injective synchronization according to Dev

claim (Dev,SKR,AppSKey); //validate the secrecy of AppSKey according to Dev

claim (Dev,SKR,NwkSKey); //validate the secrecy of NwkSKey according to Dev

}

role Srv {

fresh SrvNonce:Nonce;

fresh MHDRSrv:Nonce;

fresh NetID:Nonce;

fresh DevAddr:Nonce;

fresh DLSettings:Nonce;

fresh RxDelay:Nonce;

fresh CFList:Nonce;

fresh NonceList:Nonce;

var DevNonce:Nonce;

var MHDRDev:Nonce;

recv_1 (Dev,Srv,(MHDRDev,Dev,Srv,DevNonce), {MHDRDev,Dev,Srv,DevNonce }k(Dev,Srv));

not match (DevNonce, NonceList);

send_2 (Srv,Dev,(MHDRSrv ),{{SrvNonce,NetID,DevAddr,DLSettings,RxDelay,CFList}dec}k(Dev,Srv),

{ SrvNonce,MHDRSrv,NetID,DevAddr,DLSettings,RxDelay,CFList}k(Dev,Srv));

macro NonceList = (NonceList, DevNonce);

claim(Srv,Running,Dev,SrvNonce); //checks that Srv agrees with Dev on SrvNonce

claim(Srv,Alive); //assures the Aliveness of Srv

claim(Srv,Weakagree); //minimum agreement check between partners according to Srv

claim(Srv,Niagree); //validates the non-injective agreement according to Srv

claim(Srv,Nisynch); //validates the non-injective synchronization according to Srv

claim (Srv,SKR,AppSKey); //validate the secrecy of AppSKey according to Srv

claim (Srv,SKR,NwkSKey); //validate the secrecy of NwkSKey according to Srv

}

}
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Listing 4: Scyther SPDL code for LoRaWAN-OTAA-v1.1

// The protocol is running between End Device (Dev) and Network Server/Join Server (Join).

// The predefined shared key (NwkKey) between End Device and Server is k(Dev,Join).

// dec models a decryption function that is invertible by an encryption function (enc)

// Declaration of padding strings (pad01, pad02, ...) omitted

// Declaration of Appkey and NonceList as secrets omitted

protocol LoRaWAN-OTAA-v1point1 (Dev,Join)

{ role Dev {

fresh DevNonce: Nonce;

fresh MHDRDev: Nonce;

var MHDRSrv: Nonce;

var JoinNonce: Nonce;

var NetID: Nonce;

var DevAddr: Nonce;

var DLSettings: Nonce;

var RxDelay: Nonce;

var CFList: Nonce;

var JoinReqType: Nonce;

macro JSIntKey={pad06,Dev,pad16 }k(Dev,Join);

macro MIC={JoinReqType,Join,DevNonce,MHDRSrv,JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList}JSIntKey;

send_1(Dev,Join,(MHDRDev,Dev,Join,DevNonce),{MHDRDev,Dev,Join,DevNonce}k(Dev,Join));

recv_2 (Join,Dev, (MHDRSrv),{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec} k(Dev,Join),MIC);

macro FNwkSIntKey={pad01,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);

macro SNwkSIntKey={pad03,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);

macro NwkSEncKey={pad04,JoinNonce,Join,DevNonce,pad16}k(Dev,Join);

macro AppSKey={pad02,JoinNonce,Join,DevNonce, pad16 }Appkey;

macro JSEncKey={pad05,Dev,pad16}k(Dev,Join);

claim(Dev,Running,Join,DevNonce); //checks that Dev agrees with Join on SrvNonce

claim(Dev,Alive); //assures the Aliveness of Dev

claim(Dev,Weakagree); //minimum agreement check between partners according to Dev

claim(Dev,Niagree); //validates the non-injective agreement according to Dev

claim(Dev,Nisynch); //validates the non-injective synchronization according to Dev

claim (Dev,SKR,FNwkSIntKey); //validates the secrecy of FNwkSIntKey according to Dev

claim (Dev,SKR,SNwkSIntKey); //validates the secrecy of SNwkSIntKey according to Dev

claim (Dev,SKR,NwkSEncKey); //validates the secrecy of NwkSEncKey according to Dev

claim (Dev,SKR,AppSKey); //validates the secrecy of AppSKey according to Dev

claim (Dev,SKR,JSEncKey); //validates the secrecy of JSEncKey according to Dev

claim (Dev,SKR,JSIntKey); //validates the secrecy of JSIntKey according to Dev

} role Join {

fresh JoinNonce: Nonce;

fresh MHDRSrv: Nonce;

fresh NetID: Nonce;

fresh DevAddr: Nonce;

fresh DLSettings: Nonce;

fresh RxDelay: Nonce;

fresh CFList: Nonce;

fresh NonceList: Nonce;

fresh JoinReqType: Nonce;

var DevNonce: Nonce;

var MHDRDev: Nonce;

recv_1 (Dev,Join,(MHDRDev,Dev,Join,DevNonce),{MHDRDev,Dev,Join,DevNonce}k(Dev,Join));

send_2 (Join,Dev,(MHDRSrv),{{JoinNonce,NetID,DevAddr,DLSettings,RxDelay,CFList,MIC}dec}k(Dev,Join),MIC);

not match (DevNonce, NonceList);

macro NonceList=(NonceList, DevNonce);

claim(Join,Running,Dev,JoinNonce); //checks that Join agrees with Dev on JoinNonce

claim(Join,Alive); //assures the Aliveness of Join

claim(Join,Weakagree); //minimum agreement check between partners according to Join

claim(Join,Niagree); //validates the non-injective agreement according to Join

claim(Join,Nisynch); //validates the non-injective synchronization according to Join

claim(Join, SKR, FNwkSIntKey); //validates the secrecy of FNwkSIntKey according to Join

claim(Join, SKR, SNwkSIntKey); //validates the secrecy of SNwkSIntKey according to Join

claim(Join, SKR, NwkSEncKey); //validates the secrecy of NwkSEncKey according to Join

claim(Join, SKR, AppSKey); //validates the secrecy of AppSKey according to Join

claim(Join, SKR, JSEncKey); //validates the secrecy of JSEncKey according to Join

claim(Join, SKR, JSIntKey); //validates the secrecy of JSIntKey according to Join

}

}
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