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Abstract. Advances in imaging and display engineering have given rise to new and improved image and video
applications that aim to maximize visual quality under given resource constraints (e.g., power, bandwidth).
Because the human visual system is an imperfect sensor, the images/videos can be represented in a math-
ematically lossy fashion but with enough fidelity that the losses are visually imperceptible—commonly termed
“visually lossless.” Although a great deal of research has focused on gaining a better understanding of
the limits of human vision when viewing natural images/video, a universally or even largely accepted definition
of visually lossless remains elusive. Differences in testing methodologies, research objectives, and target
applications have led to multiple ad-hoc definitions that are often difficult to compare to or otherwise employ in
other settings. We present a compendium of technical experiments relating to both vision science and visual
quality testing that together explore the research and business perspectives of visually lossless image quality,
as well as review recent scientific advances. Together, the studies presented in this paper suggest that a single
definition of visually lossless quality might not be appropriate; rather, a better goal would be to establish varying
levels of visually lossless quality that can be quantified in terms of the testing paradigm. © 2018 SPIE and IS&T[DOI: 10
.1117/1.JEI.27.5.053035]
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1 Introduction

Advances in imaging and display engineering have given rise
to improved and new image and video applications that aim
to maximize visual quality under given resource constraints
(e.g., power, bandwidth). Because the human visual system
is an imperfect sensor, images/videos can be represented in a
mathematically lossy fashion, but if they have enough fidel-
ity so that the losses are not visible, they can be regarded
as visually lossless. Although a great deal of research has
focused on gaining a better understanding of the limits of
human vision when viewing natural images/video, a largely
accepted definition of visually lossless remains elusive.
Differences in viewing distance and display characteristics
can influence the visibilities of compression distortions.
Similar arguments can be made in terms of ambient lighting;
presentation time; testing paradigm; and viewers’ familiarity
with the images, distortions, and task.

There are a number of related terms arising from the field
of compression that are now applied more broadly. For the
most part, they have been used loosely, such as in discussions
at conferences and standards meetings. These terms are
mathematically lossless, digitally lossless, physically loss-
less, visually lossless, perceptually lossless, functionally
lossless, and plausibly lossless.

*Address all correspondence to: Kjell Brunnstrém, E-mail: kjell.brunnstrom@ri
.se
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Of the six terms mentioned, mathematically lossless
refers to a comparison made directly on the code values
of two possibly differing images, having been made different
by one of the application processes mentioned. If there are
no differences in the code values, the resulting quality is
described as mathematically lossless. Digitally lossless
and bit-for-bit lossless are other terms used synonymously
with mathematically lossless. If the term lossless is used
in isolation, it is almost always being intended as mathemati-
cally lossless. Physically lossless refers to the state of the
image in the physical domain, that is, once transduced to
light. As a result of display precision limitations, differences
that are mathematically lossy in a digital image may still be
lossless once converted to light by the display. An example is
a 12 bit/color image having errors limited to the two least
significant bits, and being displayed on a display with
a 10-bit line driver. Other display limits include gamut limits,
spatial frequency, spatial resolution limits, frame rate limit,
and temporal response. Physically lossless quality can be
assessed by light instrumentation equipment, and sometimes
the term is used with the limitations of the measuring equip-
ment in mind. That is, physically lossless as good as can be
determined with some class of measuring instrument. The
terminology of physically lossless must depend on the dis-
play or a display characterized sufficiently by a model with

1017-9909/2018/$25.00 © 2018 SPIE and IS&T
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measurable parameters. That is, the term physically lossless
quality must also include the qualifier of which display or
class for which the quality is being assessed. Typically,
visually lossless is next in this hierarchy of descending accu-
racy. It means that there may be mathematical differences,
and even physical differences, but none of these are visible
to the viewer once displayed. The inability to perceive these
differences is due to the combined limits of the visual system
and the display system. Consideration of visibility of arti-
facts necessitates specification of viewing conditions such
as viewing distance and ambient light level. The viewing
conditions are often specified for the application, such as
the three-picture height viewing distance for HDTV, and
an ambient consisting of <10 cd/m? surround and no light
directly imping the display screen, such as for a Society of
Motion Picture Engineering grading suite. The viewing
distance is very important because there are many situations
where distortions at the intended (practical) viewing distance
are not visible, but can be seen if the viewer inspects the dis-
play more closely. Similar to physically moving closer to
the display, the act of digital zooming the image to see dis-
tortions is not intended to be described by the term visually
lossless. Windowing and leveling are tonescale operations
used to view a higher dynamic range image on a lower
dynamic range display, which is a terminology coming
from the medical image field. The term visually lossless
is also not intended to include such operations for most
applications, as these are considered expert operations that
the normal consumer viewer would not use, or even have
available in most cases. However, such contrast boosting
(via “windowing”) and mean level elevation (via “leveling”),
which would make an otherwise invisible low contrast
distortion in a dark portion visible,' could be incorporated
into the visually lossless criteria terminology, if sufficiently
described. So, in the most technical sense, the term “visually
lossless” would need to be qualified such as “visually loss-
less” quality at 1.5 picture heights for a UHDTYV resolution
standard dynamic range (SDR) (1000:1) display with a maxi-
mum luminance of 500 cd/m?, and using a maximum
contrast boosting of 2X and a mean level elevation of
20%,” as an example. But rather than carry that detailed
baggage, the term “visually lossless” is used more simply
with the domain of the application being understood by
those using the term, which is generally described in various
standards documents. While that is not currently possible,
when the displays’ characteristics were common enough,
such as in the cathode ray tube (CRT) display era, the
term was practically useful. However, now with display
capabilities varying so widely from the low dynamic
range displays like e-paper, to the SDR displays like fixed
backlight liquid crystal displays (LCDs), to the high dynamic
range (HDR) displays like dual modulation, dual panel, and
some organic light-emitting diodes (OLEDs), the assumption
of a given display cannot be made, and must be stated or
modeled. Fixed backlight is common term for a single uni-
form backlight that doesn’t have local dimming, nor global
dimming.

Perceptually lossless is often used interchangeably with
visually lossless,” but this should be avoided since there
are other perceptual dimensions, such as auditory, haptic,
etc., that may be relevant to the same product, which have
their own distortions for consideration.
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The last two terms mentioned, functionally lossless and
plausibly lossless, describe even lower levels of accuracy
and are less used than the previous three, but are becoming
more important with newer technologies and advanced
understanding of visual quality. Functionally lossless® was
coined to describe visible differences that do not affect
the functional use of the image. Originating from computer
graphics rendering, it initially referred to having lighting and
geometry errors that were beyond a viewer’s ability to know
the difference without having the reference image available
for comparison,* as opposed to many of the compression dis-
tortions that deviate substantially from natural image statis-
tics and can be discerned without a reference. But it can be
generalized to any case, where the visible distortions do not
impact the function of the image. As an example, a histology
image that contains distortions outside of the diagnostic
region, such as in an empty part of a petri dish, can still
be considered functionally lossless if the distortions do not
impact the diagnosis. Similar examples from the aerial sur-
veillance field are common. Last, plausibly lossless is similar
to functionally lossless but tends to include changes in color,
lighting, sharpness, contrast, and texture details that cannot
be visually determined to be a distortion without having the
reference image available.> A common phrase for this is that
“not every blade of grass has to be in place.” This concept is
very important with newer techniques of image synthesis,
such as generative adversarial networks,® but is also very
important in the well-established field of color rendering.
A character’s clothing may be rendered a different color,
but without extra information, the viewer would not be able
to viably determine the distortion (loss). The plausibly lossless
term is most often used when there is no task associated with
the image. Both the functionally lossless and plausibly
lossless criteria are often in conflict with artistic intent, and
that is a complex discussion that is out of scope of this paper,
so no further discussion of them will appear here.

The definition of terminology is only a first step toward
understanding the issues surrounding our understanding of
image quality and how best to quantify it. The goal of this
paper is to provide a deeper understanding of the challenges
facing the broader displays industry in their effort to provide
high quality visual imagery to an increasingly sophisticated
viewing public.

Human vision is important for both recognition of visual
objects and guidance of visuomotor responses. Conversely,
the recent emergence of diverse sizes, shapes, and aspect
ratios demands both vision for recognition [e.g., ultra-high
definition (HD) display resolution and HDR] and vision
for action [virtual/augmented reality (VR/AR) and stereo-
scopic 3-D gaming]. These use cases may necessitate
modification of the assessment method adopted by Video
Electronics Standards Association (VESA) that emphasizes
comparison of static images. VESA is an active industry
trade group in the video display industry (www.vesa.org).
This article reviews the applicability of such an approach
and introduces alternative testing paradigms to address the
multifaceted nature of display usage.

In this paper, we will give four different perspectives to
the problem of defining visually lossless, illustrating the
complexity of the problem, contributed by different authors,
to be able to give as broad account of the topic as possible.
The different sections are as follows:
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¢ Section 2: “Business perspectives on visually lossless
and lossy quality” by S. Daly.

¢ Section 3: “Detection of compression artifacts on lab-
oratory, consumer, and mobile displays” by Y. Zhang,
Y. Yaacob, and D. M. Chandler.

¢ Section 4: “Subjective assessment and the criteria for
visually lossless compression” by L. M. Wilcox, R. S.
Allison, and J. Goel.

¢ Section 5: “Usage perspectives on visually lossless and
lossy quality and assessment” by H. Colett, J. Long,
P. Corriveau, and S.-N. Yang.

Even with a very broad account of the problem, all issues
that could affect visually lossless cannot be covered in
a single article, so, for instance, aspect ratio distortions that
can occur when scaling images from one production aspect
ratio to fill a screen with a different aspect ratio, are not con-
sidered here. Also, any issue involving audio is outside the
scope of the current article.

Together, the studies presented in this paper suggest
that a single definition of visually lossless might not be
appropriate; rather, a better goal would be to establish
varying levels of visually lossless that can be quantified in
terms of the testing application.

1.1 Common Industrial Visual Quality Assessment

In general, applications of visual quality occur in the indus-
trial arena and have been directed toward a wide range of
quality. This includes both testing methodologies as well
as predictive models. For example, in the widely used
International Telecommunication Union (ITU) guidelines
for subjective video quality assessment, the Double Stimulus
Continuous Quality Scale (DSCQS) method ITU-R Rec
BT.500-13 (BT500)° or the Absolute Category Rating (ACR)
ITU-T Rec P9107 uses a five-grade quality scale with
subject input options of excellent, good, fair, poor, and bad,
as shown in Table 1, to left. Another scale listed in the
BT500° guidelines is the ITU impairment scale, which
uses the following options: imperceptible, perceptual but
not annoying, slightly annoying, annoying, and very annoy-
ing, see Table 1 (right column). Note that these scales were
intended for a single stimulus, but can also be paired with a
known reference, as in the above mentioned DSCQS, with an
explicit reference or in ACR with a hidden reference. Both
methods span a substantial range of visual quality, that is,
they include both subthreshold and suprathreshold visible

Table 1 The quality and impairment scales of BT500.°

Five-grade scale

Quality Impairment
5 Excellent 5 Imperceptible
4 Good 4 Perceptible, but not annoying
3 Fair 3 Slightly annoying
2 Poor 2 Annoying
1 Bad 1 Very annoying

Journal of Electronic Imaging

053035-3

Table 2 The comparison scale of BT500.°

-3 Much worse
-2 Worse

-1 Slightly worse
0 The same

+1 Slightly better
+2 Better

+3 Much better

differences. In applications where lower quality images/
videos are inevitable (e.g., streaming scenarios under limited
or fluctuating bandwidth, or real-time compression under
low-power constraints), such assessment of overall supra-
threshold visual quality is exactly what is needed.

For paired comparisons, Likert scales are often used since
they have a bipolar structure that enables consideration of
the two stimuli, as shown in Table 2.° These are generally
arranged in a left-to-right orientation corresponding to
two images being shown side-by-side (SBS). However, in
some applications, the quality sought after is strictly visually
lossless. That is, all visible differences (distortions) are
designed to be below the human threshold and the intent
of testing is to determine if this goal has been achieved.
One can easily see that the five-grade quality scale in
Table 1 (left column) has no ability to determine whether
visually lossless quality occurs or not. The category “excel-
lent” may imply visually lossless in some applications, and
for some viewers, but this is generally not the case. On the
other hand, the impairment scale does have the ability to
assess visually lossless behavior, such as the boundary
between responses 5 and 4. Likewise, the thresholds
could possibly be determined from Likert scales using the
responses —1, 0, +1, although the adjectives given are not
as exact regarding threshold as does the ITU impairment
scale.

In most conceptions of visually lossless, two images (or
videos) are compared, with one being a reference and one
being a distorted version. The distortions may not mean
solely deviations from realism (artifacts, such as blocking
artifacts and ringing) but include any changes from the refer-
ence, even if plausible to realism (such as color shifts, tone
scale shifts, blur). Terms like original, source, and uncom-
pressed are also used for the reference, but the reference
may not always be the original version, or its source, and
the distortion may not involve compression so those terms
do not generalize. For example, in postproduction work-
flows, the term Mezzanine content is used to describe con-
tent that is compressed very lightly, but is subthreshold, and
is used at certain stages of the workflow. This Mezzanine
content is then further compressed for distribution. So, in
this case, both the reference and distorted would be com-
pressed video streams. Although there is not complete
agreement on all of the details, the terms visually lossless,
perceptually lossless, perceptually transparent, and visually
identical are all referring to the same thing.
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Fig. 1 (a) Psychometric function for an individual. (b) Psychometric functions for multiple subjects and
different methods to determine psychometric functions or thresholds for group behavior.

1.2 Thresholds and the Psychometric Function

Unfortunately, the visual threshold for most dimensions of
imagery is not a step function as might be implied from
the impairment table in Table 1. Rather, it is a gradual
transition. Rigorous psychophysical experiments (typically,
vision-science experiments as opposed to visual quality test-
ing) tend to focus more specifically on threshold perception
and ignore the distinctions above threshold. A psychometric
function is measured that finds the subject’s probability of
detection as a function of the strength of the parameter of
interest, as shown in Fig. 1(a). For example, this parameter
could be the contrast of the distortion or some other measure
of the image’s/video’s physical change.

For many stimuli, psychometric functions are generally of
the same shape across different individuals, but exhibit
varying sensitivity [causing horizontal shifts on the x-axis,
Fig. 1(b). For this example, a threshold may be assigned
to the stimulus intensity corresponding to 50% seen (~24,
pink arrow, left plot), but this is obviously just definitional,
and then the threshold is just a shorthand for the overall
position of the psychometric function. For this plot, stimuli
of strengths from 40 to 45 seem to give detectability of
~100% and are just surpassing the threshold region, which
may still be considered a very slight distortion. The methods
used to determine such psychometric functions do not have
the ability to differentiate stimuli of strengths >45, which is
the suprathreshold region, to which the majority of the scales
described above are allocated. To determine an average
threshold across varying individuals, the detections thresh-
olds from each are averaged and a new psychometric func-
tion can be derived, which describes the average subject
[green curve in Fig. 1(b)].

One common distinction between engineering-based vis-
ual quality testing versus more traditional vision science is
that the former often tests many more viewers in an attempt
to gain large-scale data (e.g., for training or verification of an
algorithm/design), whereas vision-science experiments typ-
ically test each viewer much more thoroughly in an attempt
gain insights into human vision. In most industrial testing,
there are far fewer trials per individual (sometimes just
one), as well as less stimuli allocated to the threshold region,
because the stimuli are needed to span a wider range of
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quality differences. As a result, in most visual quality testing,
a psychometric function cannot be constructed per individ-
ual. But visual quality testing does have much data available
as a result of testing more viewers, and attempts to determine
thresholds can be made by averaging all subject responses
(e.g., by looking at data for responses 4 and 5 in the ITU
scale) and averaging those to get a group psychometric
function.

In much visual quality testing, such as using the scales in
Table 1, attempts are occasionally made to determine thresh-
olds by averaging the responses across all observers. But
without first determining the thresholds for each viewer,
the overall psychometric function ends up being wider and
may result in a different threshold than the average threshold
determined when individual psychometric functions are
measured. As a result of these many factors, experiments
are generally designed to either assess the threshold or assess
the full range at the expense of loss of accuracy around
threshold. These design decisions involve both stimuli set
as well as experimental methodologies.

1.3 From Threshold to Just Noticeable Differences

In most terminology, just noticeable differences (JNDs) are
synonymous with the threshold corresponding to the 50%
response (after correction for guessing).® In industrial appli-
cations, JNDs tend to be used for grouped observer percep-
tion, as opposed to describing individuals. JNDs are often
added and used as a ruler to determine quality categories.
For example, it has been claimed that six JNDs correspond
to a difference across subjective quality categories,” such as
from “fair to good.” Another example of their usage is
that one JND is not considered an advertisable difference;
because it means only half the observers detect the differ-
ence. Notice that the 50% criterion is shifted from a single
subject’s probability of detection to the performance of
a group (e.g., corresponding to the red curve in Fig. 1).
Unfortunately, JND summation only works for small num-
bers, and saturation occurs for larger visible differences.
The visual system functioning as derived from JND summa-
tion is also known to deviate from that derived from
appearance estimates. For example, the luminance non-
linearity derived from thresholds deviates from one derived
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from suprathreshold appearance steps (e.g., partitioning
approaches). Various theories have been proposed and tested
for such deviations.'” Fortunately, for the goals of visually
lossless quality, neither describing nor understanding large
appearance differences is needed.

1.4 Subthreshold Explorations

In this century, research in quality assessment has been
directed to understanding subthreshold vision. Motivations
range from frustrations with the visual quality task interfer-
ing with the overall quality of experience to observations that
many viewers may not be aware of visual distortions that are
still considered important to the product. An example of the
former is that in determining quality of experience of differ-
ing display capabilities in conveying the emotions of a nar-
rative movie, natural viewing of the movie with audio from
beginning to end is required. However, such requirements
pose extreme difficulties to traditional psychophysical test-
ing methods. The common methods of viewing, comparing,
and rating video clips of 10 to 20 s duration put the viewer in
a completely different state of mind than when actually
watching and following the story. Examples of the latter
are numerous in cases, where those involved in the profes-
sional workflow of content notice far more details relating to
their craft than the consumer viewer. Rather than assuming
what the viewer does not notice is not important, the pre-
sumption is that the net total of experience with the craft
affects the viewer in a number of ways, e.g., honing their
attention to specific attributes. These highly trained observ-
ers may be unaware of the reasons for this impact. For exam-
ple, those in the craft readily use vertical camera angle
placement to show dynamics of character subordination/
dominance,'' but how many consumer viewers notice such
changes? Another example occurs for studies of discomfort,
such as for stereoscopic displays or virtual reality (VR),
where the viewer may not notice signs of impending discom-
fort until it is too late.

Rather than using traditional psychophysical testing
(whether industrial or academic), physiological measure-
ments can be used. They can allow for the studying natural-
istic viewing, as well as the subthreshold region. Turn-key
research equipment now enables eye-tracking, electroen-
cephalographic measurements, galvanic skin responses,
facial thermal emission imaging, and visible facial expres-
sion and reaction imaging. Such techniques are now cur-
rently being used to assess levels of emotional engagement
as a result of technical display difference'? or in causing
stress on the oculomotor visual system, see Sec. 5 by Colett
et al., below.

2 Business Perspectives on Visually Lossless and
Lossy Quality

One of the key factors in favoring an accurate visually loss-
less descriptor as opposed to a wider ranging quality descrip-
tor is the maturity of the technology used in the business.
Businesses with mature technologies have products that
are often extremely high quality, with no distortions notice-
able in their product. However, they still do not want to
waste effort or incur higher costs delivering a physical
quality higher than visually noticeable. On the other hand,
businesses with developing technologies have products,
where distortions are visible, but the customer accepts that
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due to other factors, such as convenience, expectation level,
cost, etc. In general, the developing businesses are continu-
ously improving their technology, including cost reduction
and ramping up their quality, and need to keep track of
quality improvements that are nevertheless still in the
visually lossy realm. As mentioned in the background, the
need for visually lossless assessment or wide-ranging quality
assessment will affect the distribution of stimuli, as well as
the methodology, such as two alternative forced choice,
paired comparisons, or comparative rating via scales. In
addition to those methodology choices, the way the imagery
is presented to the viewer for comparison is critical. For con-
venience of discussion, this section will use the term video to
include digital video, digital cinema, as well as still imagery.

2.1 Different Methods of Video Comparison

Three key video comparison methods are sequential
comparison, simultaneous comparison, and oscillation.
“Simultaneous” is more generally referred to as SBS, and
oscillation is more generally referred to as toggling (also
as flicker). For completeness in encompassing all the meth-
ods of quality assessment, a fourth could be included, which
is no comparison, that is, a single stimulus presentation (with
no reference). Visually lossless in the truest sense cannot be
done with single stimuli. Some distortions can indeed be
assessed in a single stimulus presentation if their appearance
looks entirely synthetic (e.g., blocking artifacts) or violate
laws of physics (e.g., contains scene lighting incongruences
due to image compositing*). These cases can be generalized
to where the distortions’ spatiotemporal statistics are incon-
sistent with the reference imagery statistics. However, many
other distortions that are consistent with the reference imagery
statistics cannot be assessed without a comparison. Examples
of these include blur, contrast, color, and texture. If someone’s
hat changes from cyan to green as a result of a tonescale
compression algorithm, the viewer would not be able to detect
that difference without a comparison image, since both colors
are plausible to a third-party viewer. A better term than vis-
ually lossless for the indistinguishable distortions as assessed
by single stimulus testing is plausibly lossless.

For the traditional test video clips of 10 to 15 s duration,
it is known that it is much easier to see differences when
the video clips are shown SBS than when they are shown
sequentially. A recent study verified this by directly compar-
ing the two methods.' The experiment was identical for both
cases, including display, stimuli, and task. The experiment
tested one parameter of display capability: maximum
luminance for HDR. In the sequential testing, one Dolby pro-
fessional reference display (pulsar) was used. For the SBS
testing, two pulsar displays were used. The resolution of
each was full HD (1920 x 1080), the diagonal was 42 in.,
the bit-depth was 12 bits red, green, blue (RGB), the
color gamut of the signal was 709, the black level remained
constant at 0.005, and the ambient was 20 lux. A hidden
upper anchor was used for each comparison. The viewer’s
task was to rate the quality (according to their own personal
preference) of each of the two stimuli shown using a Likert
scale. The maximum luminances tested were 100, 400, 1000,
and 4000 cd/m?. Six different HDR video clips were used,
where two different max luminances were compared in each
trial. The main conclusion of the results (shown in Fig. 2) is
that sequential comparisons are more difficult than the SBS.
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Fig. 2 Comparison between (a) sequential versus (b) side-by-side comparisons for the same stimuli,
displays, and subjective task (preference). Although this is not a quality scale, there exist well established
techniques to convert pair comparison preference data into quality score, such as MOS.'* The sequential
testing results were conducted by the EBU while the SBS were conducted by EPFL.

This shows up both in terms of the confidence intervals and
the shape of the curves. The confidence intervals are clearly
seen to be on average 2x larger for the sequential comparison
task, and the range of quality is reduced. For example,
there is not a significant distinction between the 400 and
1000 cd/m? versions in the sequential testing, while there
is a clear distinction across all four tested stimuli parameters
in the SBS methodology.

To better understand why the SBS comparisons give more
pronounced quality distinctions, it is worth noting that any
image comparison requiring a viewer’s response is a task
involving various stages of visual memory and mental map-
ping. Figure 3 shows some of the key processes for the rating
comparisons as used in the mentioned experiment. Both of
the compared stimuli cannot be foveated at the same time
and, thus, a reason to use the term SBS over the term
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Fig. 3 Key memory and mapping stages for (a) an SBS rating task, (b) a sequential rating task, and
(c) an SBS visually lossy detection task. Note: sequential is referring to viewing one entire test video
clip, followed by another one (the other half of a pair with differing parameters).
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simultaneous, so in the SBS method (leftmost plot), saccadic
eye movements are required to compare the left and the right
stimuli. Iconic memory is the term for the portion of visual
memory that integrates imagery across saccades and enables
us to build up a mental picture of the world having a wider
field-of-view (FoV) than the fovea’s mere 4 to 6 deg.ls’16
In the SBS methodology, the iconic memory is used for
an additional purpose than building up a mental image; it
is also used for comparing similar image regions. Regardless
of its end purpose, it is still limited to be less than 1 s. These
visible differences are registered in the visual short-term
memory (VSTM), and its duration limits come into play.'”-!3
These can be considered to hold the visible representations in
the range from about 1 to 30 s. This upper limit suggests why
video clips of duration less than 15 s are preferred in the test-
ing community. The visible differences, AV, are noted from
those in the VSTM. To go from these visible differences to
a subject’s numerical rating, these visible differences must be
mapped into that rating range.

This requires memory of previous stimuli being shown,
which would have occurred further back in time than the lim-
its of the VSTM. In addition, if upper or lower anchors are
not used (the experiment in Fig. 3 had only an upper anchor),
long-term memory of video quality over perhaps years or
decades may be involved. Further, individual preferences
on which image features are more important (contrast versus
color versus sharpness versus texture, etc.) act as biases on
the long-term memory. Last, from this internal range of mag-
nitude of visible differences, visual quality must be mapped
into a numerical scale. This involves higher level cognition
than the previous steps and is susceptible to even greater sub-
ject variability. To no surprise, the higher accuracy memory
functions have the shorter durations. So, in terms of
accuracy, the iconic is best, followed by VSTM, and then
long-term excluding rare eidetic individuals. The case for
sequential comparison is shown in the middle. The temporal
delta would be greater than 10 to 15 s for typical video qual-
ity testing. That methodology deprives the visual system of
the iconic memory being able to input localized visible com-
parisons to the VSTM, because many foveations to different
portions of the image would have occurred before the other
paired stimuli is seen. That is the most likely source of the
larger confidence intervals and range compression in Fig. 3
for the sequential method.

Let us now consider the binary task of assessing visual
fidelity (i.e., whether something is visually lossless or
lossy), as shown in Fig. 3(c) for a SBS comparison. Since
there is no rating required, a simple yes or no response can
be given. Thus, the task removes the inaccuracy and biases
of long-term memory, as well as individual variations in
mapping their visual memory to a rating scale. Fortunately,
for the businesses, where visually lossless is the most rel-
evant criterion, their use of experiments designed around
a visually lossless criterion is able to obtain much more
consistent and accurate data.

The third approach mentioned, toggling, reduces the
internal processing and memory load of the viewer even fur-
ther. Toggling has been used since digital imaging systems
with frame buffers were available in the late 70s. The term
comes from a toggle switch, and the technique is still com-
monly used by image processing algorithm developers to
look for differences in their resulting images. It is generally
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used for still images. It has also been used for video clips,
but with less success. The two images to be compared are
displayed in register (i.e., to the exact pixel position) on
the screen, and the viewer toggles as desired between the
two images . In current systems, left or right keyboard arrows
are often used to swap (or toggle) images being displayed, as
well as the space bar. The toggle switch traditionally had two
positions and allowed instantaneous swapping of its inputs,
and these features are preserved with the newer methods,
such as using a keyboard. Occasionally, toggling is referred
to as sequential when still images are toggled, but the major-
ity of work in this field does not use sequential to refer to the
rapid alternation used in oscillation or toggling. The change
occurs in-place and with no interstimulus interval or blank-
ing field, which might cause masking. Spatial and amplitude
differences thus pick up an additional temporal modulation.
Differences that would previously be below threshold using
just SBS comparisons often become visible. This occurs for
several reasons. One is that detecting visible differences in an
image requires a search over the two compared images for
differences. It can take a substantial amount of time to scan
and foveate an entire image, particularly for detailed imagery
that may be displayed with a FoV as large as 67 deg
(4 k display viewed at the specified distance of 1.5 picture
heights). The imposed temporal modulations caused by tog-
gling enables better detection in the periphery (which while
having poorer spatial resolution, has better temporal band-
width and sensitivity than the fovea), aiding the viewer to
find and then foveate regions formerly in the near or far
periphery. So, the toggling substantially aids the search task.
In addition, the lack of needed eye movements for SBS com-
parisons (once a region having difference is found) aids in
the detection of small spatial phase shifts that would be
lost across a saccade. A third reason is that even in the
fovea, the addition of temporal modulation at the right
frequency can improve detection. Figure 4 shows the spatio-
temporal contrast sensitivity function (CSF). The temporal
frequencies caused by toggling can shift the spatial frequen-
cies of the distortion to a more sensitive part of the CSF as
compared to what occurs with a static image comparison
(shown in general on the left). While the highest spatial
frequencies do not change that much between the two
cases, there is a noticeable change at the frequencies near
the peak, and a substantial change for spatial frequencies
that are lower.

While toggling was originally an ad hoc technique, it has
recently been made more rigorous'® by removing the view-
er’s control and having the images automatically oscillate in
place at a specific frequency. For the CSF at the light adap-
tation level shown in Fig. 4, it can be seen how an oscillation
of 5 Hz maximizes the sensitivity to all visible spatial
frequencies, as compared to a static, or still image compari-
son. Since the eye does not hold steady when foveating
aregion (there are always drift eye movements), the temporal
frequencies for a static image comparison are not at 0 Hz
(Hertz). An estimate of the temporal frequencies involved
for static image viewing is shown as around 0.11 Hz in
the diagram, although it is better to describe these drift
eye movements in terms of velocity. The difference between
the 5 and the 7.5 Hz, as suggested in Ref. 19, is relatively
minor and a change in CSF light adaptation level going
upward in cd/m? would likely put the 7.5 Hz value on
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Fig. 4 Spatiotemporal CSF (at ~light adaption level of 10 cd/m2) showing (a) the general effect in
a surface plot and (b) more specific changes in sensitivity in the contour plot for the oscillation techniques.
Contours deltas are 0.25 log10 in sensitivity task (preference).

the CSF peak and ridge. A related approach for imposing
motion on distortions to make them more salient has been
used for studying amplitude quantization by phase shifting
the quantization interval as a function of time.”” These
techniques result in the best ability of the visual system to
see differences, and can also speed up the search time, but
may not be relevant to the business application as will be
described later.

2.2 Calibration to the Display

Calibration is needed because, while it is possible to deter-
mine the contrast required for detection of a given frequency
component of a distortion, the contrast per code value
depends on the luminance calibration [generally referred to
as the display’s electro-optical transfer function (EOTF)].
Increasing a display’s contrast and using the same signal
quantization results in an increase in the contrast per code
value. If that increase is large enough, a previously sub-
threshold frequency will become visible. A recent example
of this is that the increased dynamic range of HDR displays
required an increase from the previously acceptable 8 bits/
color to 10 bits for consumer usage and 12 bits for
professionals. Similar phenomena also occur for the other
image and perceptual dimensions listed above. Of the various
visual behavior relating to thresholds, masking is the most
impervious to lack of calibration, since once it rises
above absolute threshold (i.e., no masking), it almost follows
a linear signal-to-noise ratio behavior. For systems where
color, dynamic range, resolution, frame rate, etc., are
approximately fixed, then prediction of masking can provide
a strong visual foundation for quality prediction, such as
shown by uncalibrated models.”'">* However, most display
ecosystems are moving away from that situation and are
trending toward more variability along these key display
capability dimensions. At present, current visual models
that can be calibrated to calibrated displays®*~>® have been
shown to perform better in cases where display capabilities
are not fixed, such as HDR."

While there were many businesses unable to design for
visually lossless quality, there were niche applications,
where it was indeed possible to quantify most of these
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parameters, or at least limit them to specific ranges. This
particularly occurred in closed systems, where the product
included the display, the proprietary image format, and the
encoding. Examples of these include some defense imaging
systems (e.g., aerial image analysis), some medical systems,
high-end graphic arts WYSIWYG (what you see is what you
get) systems, and cinematic postproduction. In other appli-
cations, while there were some unknown calibration dimen-
sions, visually lossless criteria could be used in the design by
assuming standardized specs and ideal or worst-case param-
eters (such as three-picture-height viewing distance and a
specified EOTF for HDTV?"). For handling the unknowns
of display reflectivity and ambient light, which have a strong
interaction on the black level, techniques like the picture
line-up generation equipment (PLUGE) were developed.
PLUGE signal is a greyscale test pattern that can be used
to adjust the black level and contrast of a picture monitor.

Fortunately, the current trends are that the display is
becoming more knowable and quantifiable, and thus enabling
closer adherence to visually lossless goals. For one, the dis-
plays are much more stable than they have been in the past,
especially TVs (televisions), which had much thermal drift
causing color and convergence errors in the CRT era. More
importantly, there are standardized pathways for the display
to communicate its capability to the delivery system. As an
example, extended display identification data metadata that
are exchanged from a display to a graphics card [and advanced
services that deliver media over the Internet directly to the
consumers without using a broadcast, a cable or a IPTV net-
work, so-called advanced over-the-top (OTT) services] con-
tain information about the display’s primaries, its tonescale
EOTE?® of which gamma is a legacy example,”” and its
pixel resolution. More advanced metadata are now being
used in a number of applications, where these values are aug-
mented by the minimum and maximum luminances, bit-depth,
and other parameters of the content.*® Further, dynamic meta-
data are being used to pass essential signal information to the
display in order to aid tone-mapping and gamut mapping algo-
rithms, motivated because the color volume of displays can
now vary so substantially.’! Ambient light sensors are becom-
ing more advanced, having V,; sensitivity to match the eye,
and can be used for display’s internal algorithms to tailor
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the signal to the resulting black level changes. Even the key
weakness in spatial calibration, i.e., the viewing distance, has a
pathway to be solved with presence detectors (motivated by
energy conservation) and depth sensors (motivated by inter-
activity), which are making continual headway into display
products. Finally, the burgeoning head-mounted displays
for VR have the fortunate advantages that the viewing dis-
tances are exactly known (as designed for in the optics) and
the ambience can be easily controlled (generally kept dark).
Thus, the video content delivery system can tailor the signal
sent to the display so that the advanced visual model
approaches aiming for visually lossless quality, which
require such calibration, can finally be used to their theoreti-
cal intention.

2.3 Business Considerations

A famous sign in many service businesses is “cheap, fast,
good—pick any two.” It is likely obvious to any reader
that increasing quality comes with a cost. In display hard-
ware, there is a general struggle against physics to increase
quality, offered initially at a higher cost, and then gradually
the manufacturing efficiencies and scale of production can
bring the costs down. Similar constraints are involved in
the compression and video chip business. Rarely does one
see a quality improvement and a cost reduction being intro-
duced at the same time. For those wanting both, they must
wait and essentially be late adopters. In this section, we will
start with an anecdotal example so that concrete details can
be discussed, and then, we will describe some general issues.

The plot in Fig. 2 was from an experiment'? to provide
data on whether the TV industry should develop a new
ecosystem for HDR. There are a number of key attributes
involved in HDR, including bit-depth, black level, local
contrast, mid-tone contrast, compression technique, average
luminance level, and maximum luminance. While HDR
includes increasing the range at the dark end as well as
the bright end, one of the unique attributes of HDR is more
accurate rendering of highlights than traditional video. Such
highlights include both specular reflections as well as emis-
sive objects (visible light sources) and can require very high
maximum luminance.*” A study was designed to specifically
probe this aspect in comparison to existing TV standards,
known as SDR, and standardized in ITU-R Rec BT.709,%
with an EOTF subsequently defined in ITU-R Rec
BT.1886.>” Most viewers watching SDR see only 8 bits/
color video that is compressed. One aspect of HDR is that
it requires a higher bit-depth than SDR, and details of
whether 10 or 12 bits/color are needed depend on viewing
conditions. Currently, in television systems, HDR is gener-
ally bundled with an increase in spatial resolution and
color gamut as well, for example, to going from the
BT.709 (sRGB) color gamut to the DCI P3 (Digital
Cinema Initiative) gamut or even wider with the ITU-R
Rec. BT.2020 gamut.** But in order to focus solely on the
parameter of maximum luminance, the study used uncom-
pressed videos at 12 bits, all with a BT.709 color gamut
and an HDTV pixel dimensions (1920 x 1080). Four
maximum luminance values were studied. They were placed
approximately on a logarithmic luminance scale based on
general visual system properties. The four luminances were
100, 400, 1000, and 4000 cd/mz. Deviations from strict
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logarithmic spacing were motivated by practical existing
television systems and displays.

The existing SDR TV system was designed for
~100 cd/m? as the maximum. In many systems, reference
white, which is generally the diffuse white maximum
luminance is set to 100 cd/m? and the peak luminance (the
maximum luminances) is set to 120 c¢d/m? and in calibrated
studios, the reference monitors are set very close to this
value. This is true for both episodic and live broadcast
video content, and is the maximum luminance that is seen
by individuals involved in the approval process (cinematog-
rapher, colorist, director, producer for episodic content, and
the video shader and producer for live content) before dis-
tribution occurs. The ambient lighting followed the industry
production specs of producing a surround of 5 to 10 cd/m?.
The next value, 400 cd/m?, was selected as a typical higher-
end consumer TV max luminance at the time of the study.
As a reminder, the content seen at 100 cd/m’> by the
approvers is generally stretched upward in most TVs. The
value of 1000 cd/m? was selected to represent the capability
of the first generation of consumer HDR TVs. Last, the
4000 cd/m? value was selected because that was the maxi-
mum luminance capability of the professional HDR displays
used in the experiment.

Initial attempts at using the BT500 five-point rating scale
(excellent, good, fair, poor, bad) in pilot studies were
inconclusive because a majority of viewers rated the lowest
capability value (100 cd/m?) as excellent, and there was
no headroom on the scale to indicate higher quality than
that. This was partially due to their inexperience seeing
uncompressed 12-bit video, as well as a reference display
(such as having lower noise, better uniformity, etc.). As
a result of lack of useful guidance from the BT500 docu-
ment, it was decided the experiment needed to explore test-
ing options as well as the maximum luminance parameter.
Two key comparison methodologies were agreed upon,
a sequential and a SBS comparison. Video clips of 10to 15 s
were used based on common video testing, so the sequential
method meant that one version of a video clip was shown,
followed by a version with a different max luminance,
all being shown on a single HDR reference display, and
then followed by the viewer’s rating. For the SBS testing,
two identical calibrated displays were arranged so that view-
ers could compare both at the same time and arranged so
each was seen with an approximately orthogonal viewing
angle to the display screen. This approach has traditionally
been avoided for rigorous studies in the past due to difficul-
ties in getting two displays to have the same color, tone scale,
and black level. However, modern digitally driven reference
displays with internal light sensors, thermal regulation, and
compensatory image processing can enable such displays
to appear identical. Randomization of various contents
with known parameters was used, in case there might be
a small physical bias, despite being physically immeasur-
able. After presentation of the video test pair, the viewer
was asked for a preference rating comparison. For the SBS
testing, the relative quality rating scale shown below was
used. For the sequential testing, it was modified to replace
L and R with A and B, where A was explained to be the
first instance of the sequentially shown pair, see Fig. 5.

The results have been discussed earlier in this section
with the SBS having better confidence intervals than the
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Fig. 5 An example of the Likert scale used for SBS testing, in place of the BT500 5-point rating scale,

as described in the text.

sequential, as well as having a larger range of preference.
What visual memory and cognitive processes are involved
in each methodology have also been discussed. Let us
now discuss some key business aspects. For a new television
ecosystem, both the televisions and the video signals need to
be updated. These involve two key different industries: the
television set manufacturers and the broadcasters. For tele-
vision makers’ customers, the majority of TV sales involve
SBS viewing of competing TV products arranged in a store
at the time of the purchasing decision. Some customers may
be influenced by written ratings, descriptions, and recom-
mendations in either mainstream or more technical press,
but most of the time, a SBS viewing is involved. The broad-
casters have a different situation since it is generally not pos-
sible for their consumers to view their service compared to
a competitor’s (e.g., a different network) in a SBS manner.
Rather, comparison is made by the consumer in a sequential
manner by changing the channel.

The plot in Fig. 2 shows that the viewers using sequential
comparisons were not able to show preference differences for
the 400 and 1000 cd/m? parameters confidently. This is very
important for business considerations in 2015 to 2017,
as HDR TVs are being introduced. SDR TVs are typically
300 to 500 cd/mz, and the first generation of HDR TVs
is typically around 1000 cd/m?. The sequential testing
does not give any confidence to the preference of the new
1000 cd/m? HDR TVs over the current SDR TVs, while
the SBS testing does give substantial confidence. The
sequential results directly relevant to the broadcasting busi-
ness would not be able to indicate with confidence that
a change to a 1000 cd/m? system would be worthwhile,
whereas the SBS results that are directly relevant to the
TV set makers does conclude with confidence that change
would be preferred to the viewer. However, both businesses
involved in the ecosystem need the other business to agree
to a similar upgrade. Assuming the trend of increasing
maximum luminance can continue and ranges closer to
4000 cd/m? will eventually be reached, a future-oriented
decision might be for both business segments to agree to
move forward with HDR. Another way to look at the results,
however, is that the SBS gets closer to the true perceptual
experience of the viewer, whether or not they can see the
comparisons directly in actual application. Of course, a criti-
cal customer of many broadcasters is the advertising indus-
try, and their professional viewers would likely be able to
see SBS comparisons in a production suite. As a result of
these many factors, the broadcasting industry in several
key regions decided to go ahead with HDR transmission.
It is not clear if it was the future capability considerations
or the benevolence to the viewer that was the dominating
factor.
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General business considerations regarding visually loss-
less or lossy quality are specific to the business. For example,
visually lossless criteria are relevant for mature businesses
already delivering a high quality, with examples being
those that have a six-sigma defect strategy.* Visually loss-
less is also relevant for businesses with high-end products
and high cost ranges. Examples in printing and video include
most of the production workflow. An example of visually
lossless compression includes what is known as mezzanine
compression, having low compression ratios, below 2-3:1,
and yet still use advanced techniques like wavelet or discrete
cosine transform based compression. Businesses, where vis-
ually lossy quality ratings are more relevant, include newly
developing businesses, developing products offering new
features and conveniences, and businesses specializing in
lower-cost products. For example, new businesses arising
to compete with mature businesses usually begin with a
lower quality and increase it as they expand their market.
Streaming is a good example of a service business that
initially had very low quality (circa 2006), whose quality
weaknesses included not only the customers’ bandwidth but
also color and tone miscalibration. Now, however, there are
streaming services of the highest quality, with 4k resolution
at 10 bits/color and visually lossless performance for three-
picture-height viewing distance.

For the businesses where visually lossless is the most rel-
evant, each of the three comparison methods is suited toward
different applications. Toggling (in particular, the automatic
alternation techniques known as flicker) is most suited to
imaging applications that are information-task based, where
small features and minute phase shifts may be important, and
the localization shortcut aspect of toggling can be a surrogate
for a strenuous search process, in particular when it is
unknown which elements of the imagery are most critical
to the task. Examples include products and services for
forensic, histology, aerial imaging, scientific visualization,
medical, etc. A special case is for products within the
video path, where the customer is a technical person that
uses such a toggling technique for assessment, even if the
end customer of the entire video path is a nonexpert con-
sumer. Applications where results from SBS testing are
most relevant include products that are generally purchased
in stores, and competitor products are available. Televisions
fall in this category as well as mobile displays to a lesser
degree. Last, applications where sequential testing method-
ology is most suited include most consumer services, such as
broadcast, cable, and internet delivery (i.e., OTT) of video.
However, particular companies aiming for the highest levels
of quality may decide on one of the other methods if their
philosophy is to deliver the best quality to their customer
(even if the typical customer does not notice it; see
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physiological testing discussion in the background for such
motivations).

3 Detection of Compression Artifacts on
Laboratory, Consumer, and Mobile Displays

As outlined in Secs. 1 and 2, a range of parameters have
been evaluated in threshold-based approaches to quality
assessment (using forced-choice procedures and calibrated
displays). However, practitioners often find that such thresh-
olds are much lower than commonly visible in many appli-
cations, particularly when display characterization is not
performed (see Wilcox et al. later in this paper). In addition
to the impact of the task demands, three candidates for such
discrepancy are: (1) the display, (2) the signal, and (3) the
viewing distance/angle. In the case of the display, factors
such as contrast loss due to tonescale variations, ambient
light, and display reflectivity, motion blur due to temporal
response, loss of high frequencies due to spatial modulation
transfer function (MTF) and dynamic range variations
are considered the most likely to influence thresholds.
Regarding the signal, the content noise level and texture
are the primary suspects in elevating thresholds due to mask-
ing. Last, because psychophysical thresholds have a strong
frequency dependence, viewing distance underestimation
can shift expected frequencies to higher values, where
the thresholds are generally higher. Off-angle viewing can
also significantly lower the contrast displayed with LCD
technologies, thus lowering the contrast of the distortion
from that expected using optimal threshold data.

Consequently, it remains unclear whether such thresholds
are valid when measured for true broadband compression
distortions in actual images/videos presented on mobile and
consumer-grade displays. In this section, we discuss our
explorations of the display portion of the issue. Specifically,
we asked the following:

1. Can thresholds measured on mobile devices yield
the same results as those measured on laboratory and
desktop displays when viewing conditions and display
EOTFs are kept constant?

2. How are the thresholds affected when EOTFs change
on mobile displays, and do such changes agree with
model predictions?

3. How do the variabilities in thresholds due to (1) and
(2) compare to the variability across subjects, content,
and gaze location?

Here, we present some preliminary findings of a pilot
experiment designed to shed light on these issues. We mea-
sured contrast detection thresholds for high efficiency video
coding (HEVC)* distortions in small images using a mobile
device (Apple iPad), and a forced-choice procedure. We dis-
cuss how these thresholds compare to similar thresholds
measured on other displays, on the same display but with
different display settings.

3.1 Quantifying HEVC Distortion Visibility via
Contrast Detection Thresholds

As we mentioned in Sec. 1.2, one candidate definition of vis-

ual losslessness is the inability of a human subject to visually

detect the changes (distortions) resulting from compression.

If the compression distortions are indeed below the threshold
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of visual detection, then the viewer would not be able to dis-
tinguish the distorted image/video from the original image/
video. In terms of image quality, the distorted image would
be of equivalent visual quality to the original. (Indeed, it is
possible to achieve equivalent quality even if the distortions
are visible; see, e.g., Ref. 37. Nonetheless, detection
thresholds can represent conservative estimates of quality
equivalence.)

An important question when defining such detection
thresholds is how to quantify the physical magnitude of
the distortion. Early threshold measurements were made
in terms of quantization step sizes or peak-signal-to-noise
ratio (PSNR);*® however, these are digital rather than physi-
cal measurements, and particularly for quantization step
sizes, the resulting physical distortion for a given image
can change significantly depending on the image and
display.

To overcome this limitation, other researchers have quan-
tified the distortion in terms of its physical contrast, follow-
ing from classical contrast detection studies from the visual
psychophysics literature (see Ref. 39 for a review). In such
classical studies, there is a target of detection, and there is
possibly a masking pattern (commonly referred to simply
as a mask) upon which that target is presented. Numerous
studies have measured contrast thresholds for visual
detection of targets consisting of sine-wave gratings, Gabor
patches, bandlimited noise, or other simple patterns. These
experiments have been conducted both in the unmasked
paradigm in which the target is placed against a blank back-
ground; and in the masked paradigm using masks consisting
of sine-wave gratings, Gabor patterns, noise, and some
natural images.

For compressed images, the compression distortions are
considered to be the target of detection, and the undistorted
image is considered to be the mask upon which the distor-
tions are placed. Figure 6 illustrates this mask + target para-
digm. The compressed image, which is shown in Fig. 6(a),
consists of two components: (1) the compression distortions
which serve as the target of detection, as shown in Fig. 6(b)
and (2) the original (uncompressed) image which serves as
the mask upon which the distortions are presented, as shown
in Fig. 6(c).

Previous studies employing distortion-type targets have
used root mean square (RMS) contrast as the contrast metric,
which is defined as follows for (mean-offset) target t pre-
sented against mask m:

1 (%EN:[L@) _”“’”2)% _ o

KL (m) =1 HL(m)

C(tjm) =

where i, and py () are the mean luminances of the target
and mask, respectively; where L(#;) is the luminance of
the i’th pixel of the target and where N is the total number
of pixels in the target. The RMS contrast is the standard
deviation of the target’s luminances normalized by the
mean luminance of the mask. Note that when measuring
the RMS contrast of the distortions within a distorted
image (d), the target t is computed from the distorted
and original images via t =d — m + y,,, where pu,, is the
mean pixel value of the original image, followed by clipping
to the 8-bit pixel-value range, if necessary. Thus, as shown in
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(a) Original image (mask)

(b) Distortedimage

(c) Distortions (target)

Fig. 6 Animage compressed with JPEG compression (b) can be envisaged as an original image (a) to
which distortions (c) have been added. The goal is to detect the target (distortions) in the presence of

the mask (image).

Fig. 6(c), the target is actually a mean-offset version of
the distortions.

3.2 Effect of Display Type: Mobile vs. Desktop vs.
Laboratory

Contrast detection thresholds for HEVC* compression dis-
tortions were measured for crops from two images from the
CSIQ masking database;** images Shroom and SunsetColor
(see Fig. 7). The compressed images were generated by
using the reference HEVC encoder and by adjusting the
quantization parameter value from 1 to 51.

The thresholds were measured on three displays:

¢ a display++ LCD monitor from Cambridge Research
Systems,

¢ a consumer-grade LCD monitor from I-O Data, and

¢ an Apple iPad Air 2 (a tablet small enough to be con-
sidered a mobile device).

All three displays were adjusted to have similar EOTFs.
The EOTFs were measured by using a DataColor Spyder5 in
a darkened room. Figure 8 shows the measured EOTFs. The
solid lines denote fits of the function L:

L=a+ (b+kV)y
to the measured data. Here, L denotes luminance, and V

denotes 8-bit pixel value; the measured parameters are
shown in the legend of Fig. 8 for each display.

" " m

Shroom

The contrast thresholds were measured by following the
same procedures as used in Alam et al.;>° a three-alternative
forced-choice procedure guided by a Quest staircase with
a fixed 48 trials, a 10-ms time-limit per stimuli presentation,
and audio feedback (see Ref. 39 for additional details). The
RMS contrast of the distortions as defined in Sec. 3.1 and as
used in Ref. 37 was used as the contrast measure. The mean
luminance of the solid background upon which the three
stimuli choices were placed was fixed at 2 cd/m?, which
is darker than used in Ref. 39, but required in order to obtain
the same mean luminance across all display/brightness-set-
ting/lighting variations. The viewing distance was adjusted
for each display such that the image always subtended
4 x4 deg of visual angle. Three trained male adults with
normal or corrected-to-normal vision (YZ, YY, and DC,
the three authors of this section) served as subjects in the
experiment.

Figure 9 shows the resulting contrast detection thresholds.
We performed a two-way, repeated-measures analysis of
variance (ANOVA) with contrast threshold (in dB) as the
dependent variable, and with display (Display++, I-O Data,
iPad) and image (Shroom, SunsetColor) as the within-subject
(repeated) factors. For this analysis, we used the thresholds
averaged across trials from each subject, resulting in
18 average thresholds (3 displays X 2 images X 3 subjects).
The analysis revealed that there was no significant main
effect of display on threshold (F,4 = 0.68, p = 0.557).
There was also no significant main effect of image on thresh-
old (Fy, = 9.71, p = 0.089). There was a significant inter-
action effect (F,4 = 8.12, p = 0.039), indicating that the

SunsetColor

Original QP=30

0¥=dO @ suonioisig

QP=40

Fig. 7 Stimuli used in the study—original and HEVC-compressed image segments from the CSIQ image

quality and masking databases."
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Fig. 8 EOTFs of the three displays on (a) linear and (b) logarithmic luminance scales.
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Fig. 9 Contrast detection thresholds on different displays. Each error bar denotes +1 standard deviation
of the respective mean. Note that the vertical axis is reversed, and thus, taller bars represent lower

thresholds. (a) Shroom and (b) SunsetColor.

display has a different effect on the threshold, depending on
the image.

Figure 10 shows plots of the marginal mean thresholds for
each image (horizontal axis), with separate lines representing
the different monitors. As shown in this figure, the fact that
the three lines are not parallel indicates the interaction, which
results from the I-O data monitor. Specifically, for Shroom,
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=@—Display++ -33.43 -35.09
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O—iPad -33.13 -34.97

Fig. 10 Profile plots of the marginal mean thresholds showing the
interaction between display and image. Each error bar denotes +1
standard error of the respective mean.

the I-O data display yielded the highest average threshold
(=30.7 dB), whereas the CRS and iPad displays yielded
lower thresholds (—33.5 dB and —33.0 dB). However, for
SunsetColor, the I-O data display yielded the lowest average
threshold (—35.8 dB), whereas the Display++ and iPad dis-
plays yielded higher thresholds (—35.1 dB and —34.7 dB).
However, Bonferroni-corrected posthoc analyses on the
results for each separate image showed no significant simple
effect of display on threshold (F,4 = 5.71, p = 0.067 for
Shroom; F;4 = 0.47, p = 0.657 for SunsetColor).

Although only three subjects were tested, some prelimi-
nary comparisons can be made between the variations in
thresholds due to display versus due to subjects. For
image Shroom, the standard deviation across displays was
~1.5 dB (averaged across subjects), whereas the standard
deviation across subjects was ~3 dB (averaged across dis-
plays). For image SunsetColor, the standard deviation across
displays was ~2 dB (averaged across subjects), whereas the
standard deviation across subjects was ~1 dB (averaged
across displays).

Although only two images were tested, these results
would seem to suggest that thresholds measured in the
laboratory setting (by using a specialized display such as
Display++, and to a lesser extent, a consumer-grade monitor)
can yield thresholds, which are valid when the content is
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viewed on an iPad. Similarly, for the stimuli used in this
study, thresholds can be measured directly on a mobile dis-
play. Interesting, the profiles in Fig. 10 would seem to sug-
gest that the iPad did a better job at yielding marginal means
similar to those obtained on the Display++ monitor as com-
pared to the I-O data monitor. These suggestions, of course,
assume that viewing conditions and EOTFs remain similar.
A further discussion on differences between the three dis-
plays is provided in Sec. 3.4.

3.3 Effect of Display Setting

The ability to measure thresholds directly on a widely used
mobile device, such as the iPad, enables the possibility of
measuring thresholds via crowdsourcing. However, subjects
might erroneously adjust the iOS “brightness” setting,
thereby affecting the EOTF and ultimately affecting the
thresholds. Similarly, subjects might mistakenly perform
the experiment in a nondarkened room, thereby affecting
the thresholds.

Thus, in a follow-up pilot experiment, we measured
thresholds on the iPad under three iOS “brightness” settings:
0%, 50%, and 100%; and at 50% in a room lit by daylight
(as opposed to a darkened room). The stimuli and proce-
dures were identical to the previous experiment. Only
the third author of this section (D.C.) participated in this
pilot experiment.

Figure 11 shows the EOTFs of the iPad under these
different settings. Observe that the iOS “brightness” setting
primarily affects the slope on a linear luminance scale (ver-
tical offset on a logarithmic scale); this is captured in the fits
by the parameter k. However, the “brightness” setting also
has a small effect on the minimum brightness (parameter
a). Similarly, changing the room illumination from a dark-
ened room to a room lit by daylight primarily raises the low
end of the curve with negligible effects for larger luminances;
this is captured by changes to parameters and a and b.

The resulting thresholds are shown in Fig. 12. To evaluate
the effect of the “brightness” setting, we performed a two-
way ANOVA with contrast threshold (in dB) as the dependent
variable, and with “brightness” setting (0%, 50%, 100%)

and image (Shroom and SunsetColor) as the factors. For
this analysis, we used the per-trial data from the single
subject, resulting in 24 thresholds (3 “brightness” settings X
2 images X 4 trials). The analysis revealed that there
was a significant main effect of “brightness” on threshold
(Fy15 = 4.84, p =0.021). There was no significant main
effect of image on threshold (¥ ;3 = 0.01, p = 0.914), nor
was there a significant interaction between “brightness” and
image (F 5 = 2.17, p = 0.143).

A Bonferroni-corrected posthoc analysis revealed a sig-
nificant difference between the 0% and 50% “brightness”
(p = 0.035). As shown in Fig. 12, lowering the “brightness”
to 0% raised the thresholds for both images (+3.45 dB and
+2.65 dB for Shroom and SunsetColor, respectively). We
suspect that this threshold elevation is attributable to a reduc-
tion in contrast sensitivity due to noise masking (increased
variance of the internal decision variable): The reduced
luminance range of the display made it difficult to see both
the distortions and image.*’ The average luminance of the
images under this setting was 1.4 and 1.2 c¢d/m? for Shroom
and SunsetColor, respectively, presented against a fixed
2 cd/m? background. As recently measured by Kim et al.,*!
and as modeled by both the Daly CSF model** and the
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Fig. 12 Contrast detection thresholds on the iPad under different
settings/room illuminations. Each error bar denotes +1 standard
deviation of the respective mean. Note that the vertical axis is
reversed, and thus taller bars represent lower thresholds.
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Fig. 11 EOTFs of the iPad with different iOS “brightness” settings and in darkened versus daylight room
settings on (a) linear and (b) logarithmic luminance scales.
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Barten CSF model,* for spatial frequencies greater than
1 cycle/deg, contrast sensitivity drops markedly at low lumi-
nance levels (2 cd/ m?), whereas as measured in Kim et al., ¥
sensitivity is nearly equal for the 20 and 150 cd/m?.
Although the reduced visibility of the image may very
well have reduced the amount of luminance and contrast
masking, for correlated distortions, oftentimes the mask
(image) and target (distortions) are visually captured as a sin-
gle percept, and therefore, subjects often look for mangled
content rather than for separate distortions.*** The reduction
to 0% possibly inhibited the ability to see the mangled
features, potentially giving rise to greater noise (internal)
masking.’

The posthoc analysis also revealed that there was no
significant difference between the 0% and 100% settings
(p = 0.058) nor between the 50% and 100% settings
(p = 1.0). This lack of change between 0% and 100%
might be attributable to an increase in sensitivity due to
a reduction in noise masking, countered by a decrease in
sensitivity due to luminance masking. Furthermore, the
similarities between the thresholds for the 50% and 100%
conditions are as expected. At 50% “brightness,” the images
had average luminances of 45 and 39 c¢d/m?, for Shroom
and SunsetColor, respectively. At 100% “brightness,” the
averages luminances were 127 and 110 cd/m?, for Shroom
and SunsetColor, respectively. Assuming the adapting
luminance was within the 20 to 150 cd/m? range, the CSFs
for these two “brightness” settings should be the same.
Furthermore, the RMS contrasts of the images were nearly
identical under both the 50% and 100% settings (0.9 for
Shroom and 1.1 for SunsetColor), suggesting the same
amount of contrast masking under both settings.

Finally, to compare the 50% “brightness” setting under
the two room-lighting conditions, we performed a two-
way ANOVA with contrast threshold (in dB) as the depen-
dent variable, and with lighting (daylight, dark) and image
(Shroom and SunsetColor) as the factors. For this analysis,
we used the per-trial data from the single subject, resulting in
12 thresholds (2 lighting conditions X 2 images X 4 trials).
The analysis revealed no significant main effect of lighting
(Fy1p =275, p=0.123), no significant main effect of
image (F'| ;, = 0.39, p = 0.546), and no significant interac-
tion between the two (F 1, = 4.25, p = 0.062).

Based on the EOTFs for the 50% dark and 50% daylight
conditions (see Fig. 11), the main difference is in the lower-
pixel-value range, where the EOTF for the daylight condition
is elevated. This relative inability to produce low luminances
should result in images of lower contrast, which was indeed
the case (0.9 versus 0.8 for Shroom and 1.1 versus 1.0 for
SunsetColor). Lower mask contrasts would suggest lower
contrast masking, and thus reduced thresholds. Indeed,
a slight (though not significant) change of —0.5 dB was
observed in the thresholds for image SunsetColor, which
contains very dark mountains in the lower half of the
image. For image Shroom, on the other hand, the key loca-
tions for detecting the distortions were: (1) mangling of the
very low-contrast ribs in the mushroom’s cap and (2) blurring
of the low-contrast texture in the top of the mushroom’s cap.
Because these areas serve as cues, any reduction in the con-
trasts of these areas would inhibit the ability to detect these
mangled features and should thus raise thresholds. Indeed,
for Shroom, a (albeit not significant) change of +3.0 dB
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was observed. A follow-up study with more images and
subjects could provide more insights.

3.4 Discussion and Summary

A longstanding unknown in regard to quantifying visual
losslessness in compressed images and videos is the appli-
cability and reliability of such measurements, especially in
regard to mobile displays. In this preliminary work, we
have shown that contrast detection thresholds for HEVC dis-
tortions in 8-bit images can be similar when measured (via a
forced-choice procedure) on an iPad Air 2 as compared to
when measured on desktop and laboratory displays if the
EOTFs and ambient lighting conditions are controlled,
and if luminance contrast (e.g., RMS contrast) is used to
quantify the distortions. Some significant differences in
thresholds between the displays were observed; however,
whether a particular display would raise or lower thresholds
was found to be image-dependent. For the limited conditions
tested in this study, the variation in thresholds across mon-
itors was roughly as large as the variation in the thresholds
across subjects.

In regard to the iPad, for the limited stimuli used in this
study, the thresholds were surprisingly robust to reasonable
variations in the iOS “brightness” setting and/or room illu-
mination. Lowering the “brightness” setting from 50% to 0%
raised thresholds, possibly attributable to a reduction of con-
trast sensitivity due to the low stimulus luminances. Raising
the “brightness” setting from 50% to 100% did not signifi-
cantly change the thresholds, again possibly attributable to
the no change in contrast sensitivity and no overall change
in the masks’ RMS contrasts (due to the 100% “brightness”
setting’s increase of both high and low luminances). At 50%
“brightness,” thresholds measured in a dark room were not
significantly different from those measured in a daylit room.

It is important to note that our findings do not imply that
the display used in psychophysical studies does not matter.
Different types of studies may certainly require bit-depths,
ranges, and other properties, which are not possible on
mobile or consumer-level desktop displays. Likewise, our
findings do not imply that one can forgo characterization/
calibration of the display and instead measure distortions
in terms of code values (pixel values and quantization
step sizes).

Given that the three displays were approximately matched
in EOTFs, it is reasonable to expect that the thresholds
measured on the three displays to show no significant
differences. However, LCD displays can differ in other
aspects, which were not measured in the current study,
nor for which corrections were made. In particular, the dis-
plays likely differed in terms of the dependence of luminance
on viewing angle (a problem with all LCDs), the spatial vari-
ability of luminance, and the extent to which the luminance
at one position of the screen is influenced by the luminances
at other positions. As reported in Ref. 46, although the
Display++ display is robust to small viewing-angle changes
(up to at least 15 deg), and although luminances remain
largely uninfluenced by simultaneous luminances at other
positions (<1 cd/m? change), the spatial uniformity was
reported to vary up 18%. These aspects have not been mea-
sured for the I-O data or iPad displays used in the present
study. It remains unclear whether these aspects affected
our results.
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Another difference between the three displays was the
viewing distance, which was adjusted for each display to
ensure that the degrees of visual angle subtended by the
stimuli on all displays were the same, thus ensuring the
same spatial frequencies of the targets and masks on all dis-
plays. For the Display++ monitor (the largest physical dis-
play), a viewing distance of 86 cm was used such that each
image subtended ~4 deg of visual angle. For the iPad,
a viewing distance of 22 cm was used to achieve the
same 4 deg of visual angle. This large change in viewing
distance necessitated different levels of accommodation,
convergence, and pupil constriction from the subjects,*’
which could have influenced the perception of the target,
mask, and/or their interaction. On the other hand, the
large change in viewing distance also seemed to influence
the quality-of-experience: All subjects reported that the
experience on the iPad seemed more immersive, and
thus gave the impression of greater detectability. Again,
it remains unclear whether these aspects affected our
results.

One other difference between the three displays was the
coatings of the screens. The I-O data display had a matte
antireflective coating, whereas the iPad and Display++
had glossy coatings. The iPad’s glossy coating is reported
to be antireflective, yet it was much more reflective than
the matte [-O data display’s screen. The properties of the
glossy coating of the Display++ are unknown. Although
we did not measure the MTF of each monitor, subjects
reported that the images appeared slightly sharper on the
iPad and Display++ screens as compared to the I-O data
screen. In addition, although reflections were largely elimi-
nated via the use of a black curtain, some reflections
were particularly present on the iPad due to light from the
display reflecting off of the subject’s face and back onto
the screen as a result of the close viewing distance.
Again, it remains unclear whether these aspects affected
our results.

Another important unanswered question is how thresh-
olds for detecting compression distortions might change
when using naive versus expert subjects. In the present
study, all three subjects were familiar with the purpose of
the experiment, and all subjects performed a several practice
sessions on each image before the start of each experimental
session. Two of the subjects (Y.Z. and D.M.C.) had extensive
prior experience with forced-choice detection experiments.
We do not expect knowledge of the purpose of the experi-
ment to have a marked effect on the thresholds. One of the
advantages of forced-choice detection experiments as com-
pared to subjective rating experiments is that the former is
much more objective because it requires a simple choice
rather than an opinion score, and response bias can be con-
trolled by randomization of target choice location or interval.
Furthermore, with a 3AFC procedure as opposed to a 2AFC
procedure, the subjects do not need to know what changes to
look for, they need only choose the odd one out. Knowing
that the experiment is testing distortion visibility could
inform the subject of where the distortions are likely to
appear (e.g., those familiar with compression could look
for blurring and/or ringing around edges), however, these
locations are quickly learned within the first few practice
sessions. Thus, training is important (granting familiarity
with the mask and how it might change; a signal-known-
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exactly condition), but specific knowledge of the purpose
of the experiment would likely not affect the results.

4 Subjective Assessment and the Criteria for
Visually Lossless Compression

Objective metrics of image quality have the advantage
of repeatability and are suitable for automatic assessment
and monitoring of image quality. Such metrics are in high
demand, given the increasing requirements for real-time
image compression needed to deal with the bandwidth
requirements of high-resolution image transmission.?>*
However, it is clear that while subjective testing is labor
intensive and costly, it remains the only reliable means of
evaluating the impact of image compression and the visibility
of artifact. As described in Secs. 1-3, a wide range of
qualitative methodologies are available: both threshold and
suprathreshold methods have been widely employed to
assess image quality (and the success of compression algo-
rithms). Forced-choice threshold methods are often used to
establish if a compression algorithm is visually lossless as
they are sensitive measures of the visibility that are less
impacted by bias and amenable to statistical analysis.

In 2015, International Organization for Standardization
and the International Electrotechnical Commission (ISO/
IEC) jointly published evaluation protocols based on
forced-choice procedures that could be used to evaluate
images across display platforms. Their protocol*’ describes
two variants: one normative (Annex A) and the other (Annex
B) based on a flicker paradigm proposed by Hoffman and
Stolitzka.'” In the normative approach, the original image
is presented as a reference and, in another part of the display,
the observer is presented both the reference image and the
processed image SBS (randomly ordered) and required to
choose which of these pair matches the reference image.
This is a classical forced-choice procedure intended to
measure sensitivity to artifacts in the processed image.

However, there are several issues that suggest that other
procedures might be more appropriate. First, while there may
be salient artifacts in the image, observers may not know
where to look. Until attention is brought upon these areas,
the literature suggests that even large changes in the image
are often not seen.’®! This issue is partly addressed in the
ISO/TIEC protocol because instead of using large full screen
images, the stimuli are crops of a predefined size that can
be selected to include potentially problematic subregions.
Techniques to highlight the changes could make for more
sensitive and efficient detection (see Sec. 5 below). Other
important use cases involve dynamic detection of visibility.
For instance, in video or interactive content, frame-to-frame
differences in quality might be noticeable. The second vari-
ant described in ISO/IEC 29170-2:2015 (Annex B)* uses
direct temporal comparison in a flicker/toggle paradigm
(see also Sec. 5). In this procedure, two image sequences
are shown SBS, as illustrated in Fig. 13. On one side of the
display, the reference image is shown alternating with the
processed image (at a rate of 5 Hz), while on the other
side, the reference image alternates with itself (i.e., does
not change).

In this procedure, the reference is presented sequentially
in the same location as the processed image; the image
differences should be extremely salient due to sensitive
motion and change detectors in the visual system. The flicker
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Compressed image Reference image
alternates with reference alternates with reference

4sec trial
With
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‘Which image is flickering?’
Left or Right?
(a) (b) (c)

Fig. 13 lllustration of the ISO/IEC 29170-2:2015 flicker protocol (Annex B).*° (a) The observer's view of
the stimuli and (b) illustration of the image alternation (5 Hz). The reference location is randomized on

each trial, viewers have 4 s to view the image sequences and are given feedback.

paradigm is also relevant to cases where transient image
artifacts may occur such as video and interactive content.
Extensions of this approach have recently been proposed to
assess the quality of compression for HDR imagery and for
comparison of still, panning images, and moving images.>

In a large-scale, trial (N = 120) conducted at York
University, we implemented the ISO/IEC 29170-2:2015
flicker protocol® to assess the qualitative effectiveness of
the Video Electronics Standards Association (VESA) display
stream compression standard (DSC1.2) using a wide range of
image content, including known challenges to the algorithm
(see Fig. 14).

As specified by the ISO/IEC protocol, in addition to the
test conditions of interest, a number of obviously degraded
control conditions were evaluated. These “control” condi-
tions provided encouragement to participants and who
otherwise were performing at threshold most of the time.
In addition, performance on these trials was used to exclude
observers who were not paying attention; observer data
were only included if an individual scored >95% on control
trials. Each condition was tested multiple times to arrive
at a detection probability for each stimulus condition. For
each observer, and each condition, the proportion correct
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detection was calculated. The ISO/IEC standard recom-
mends reporting of summary graphs in the format shown in
Fig. 15. Here, the mean proportion correct is plotted across
observers with 1 standard deviation and symbols indicating
the best and worst performing observers (downward and
upward oriented triangles, respectively).

As discussed above, the criterion used to define visually
lossless is critical and is under debate. Given that the
ISO/IEC 29170-2:2015% standard is based upon detection,
a detection threshold approach is used. Following psycho-
physical convention, a 75% correct criterion (midway
between guessing and perfect responses in the two-alterna-
tive task) is recommended. Specifically, the standard pro-
poses that lossless performance occurs when no observer
detects the compressed reference on greater than 75% of
the trials (although the standard allows for modification of
the criterion). In our study, the large majority of test condi-
tions met these strict criteria for visually lossless (see
Fig. 15). However, in some instances, this criterion may
result miscategorization of reference conditions as lossy.
The results shown in Fig. 16 illustrate this phenomenon.
In this graph, under all compression conditions, average
observer performance is clearly at chance (50% for this

andproper thatwe:

Fig. 14 Thumbnails of images used in the assessment of VESA DSC1.2. A wide range of compression
parameters were applied to each image (chroma subsampling, lines per slice, bits per channel).
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Fig. 15 The graph shows the proportion correct for a given image (thumbnail to left) under different com-
pression conditions (coded as numbers 1 to 5). Open squares represent the group average, error bars
indicate +1 standard deviation, and downward and upward triangle symbols indicate the best and worst
performance. Each dataset represents a different level of compression.
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Fig. 16 As shown in Fig. 15, results are shown for here for six compression conditions for the image
shown in the inset. Open squares represent the group average, error bars indicate +1 standard deviation,
and downward and upward triangle symbols indicate the best and worst performance.

two-alternative task); however, in condition 3, one observer
detected the flicker on more than 75% of the trials.

It is clear that this criterion places considerable emphasis
on potential outliers in the dataset. In their original imple-
mentation of the flicker protocol, Hoffman and Stolitzka'”
identified and selectively tested a set of 19 (out of 35) highly
sensitive observers in their dataset. They suggest that given
the potential impact of such observers that the criterion for
lossless could be increased to 93%, but just for these sensi-
tive individuals. However, this approach introduces a poten-
tial bias to the test protocol: it is left to the experimenter to
define the sensitive observers, who will be held to a different
standard. Another approach would be to consider the results
of all observers, but to adopt a visually lossless criterion
based on their average performance and the associated
standard deviation (for example, using the estimated 95th
percentile rather than the sample maximum). Statistical
techniques based on the variance could be used to identify
highly sensitive observers or outliers, and, if appropriate for
the use-case, remove them from the dataset.”>

Another factor that contributes to the sensitivity of the
ISO/IEC protocol is the extent to which practice on a limited
image set can, over time, contribute to the creation of highly
trained observers. Such observers could learn to attend to
specific image regions, and as a result be able to better detect
artifact-related flicker. As noted in previous sections, SBS
presentation allows observers to directly compare reference
and original image regions, improving detection rates.
Furthermore, in the paradigm implemented here, cropped
rather than full screen, image regions are viewed. At the
recommended viewing distance, each image is within highly
sensitive foveal vision, which further enhances the probabil-
ity of detecting the flicker created by alternating the refer-
ence and original images. These factors, combined with
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the sensitivity of the human visual system to spatiotemporal
variation within this range, will draw attention to compres-
sion-related distortions. Over time and trials viewers may
become attuned to specific regions and artifacts that would
otherwise remain undetected. These training effects could be
reduced by using a large pool of observers on a limited set of
conditions, but reduction of test content will in turn reduce
the generalizability of the evaluation.

The results of our evaluation of VESA DSC1.2 using the
ISO/TEC 29170-2015 flicker protocol show that this forced-
choice paradigm is a highly effective means of evaluating
sensitivity to image differences.*’ The design of this test pro-
tocol and the visually lossless criterion applied is extremely
sensitive, and in particular, emphasizes the most sensitive
viewers. It is arguable that this protocol is too sensitive,
and that the results of the SBS flicker task highlight artifacts
that would not ever be visible under “normal” viewing con-
ditions. As outlined elsewhere in this paper, there are other
candidate approaches to the assessment of image quality.
We argue that the appropriate methodology depends on the
objectives and the use case. For example, if the goal is to
conservatively evaluate the possibility that a compression
artifact might be visible under any situation, then the flicker
paradigm is a viable approach as it highlights differences
between images regardless of whether they are noticeable
in the absence of a reference.

5 Usage Perspectives on Visually Lossless and
Lossy Quality and Assessment

The display industry today struggles to distinguish between
visually lossy and lossless encoding, as visual experiences
are determined by various factors, such as usages, form fac-
tor, and content. The debate becomes even further entangled
when one tries to define and quantify visually lossless based
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on empirical measurements, when the chosen measurement
protocol and stimuli can critically impact the outcomes.

As outlined in the previous section, Wilcox et al., VESA
has presently adopted a testing protocol and procedure
for evaluating visually lossless encoding. From a practical
perspective, this is only one particular way to investigate
whether a process or algorithm can potentially produce a
result that is truly visually lossless. Such a specific approach
was reasonable when research first started on this topic, as
the problem space in which we needed to investigate was
clear, and the usages and context for the definition could
be clearly carved out. However, the increasingly complex
ecosystem in electronic displays warrants a reinvestigation
and redefinition.

Innovations in testing methods and their underlying the-
ories open up the possibility of using different techniques,
such as gaze tracking, to potentially augment and improve
existing methodologies by emphasizing the visual functions
in specific usages.

The proposed research emphasizes the need of refining
the definition of visually lossless and delineating the testing
procedure based on the usages and viewing context.

Classical visually lossless compression of display content
is defined as the loss of image quality induced by the com-
pression algorithm that cannot be perceived by a user.”* This
definition by its nature is very vague, as the quality of per-
ceived image can be affected by individual visual character-
istics, viewing conditions, and display apparatus. Thus, there
is no unified position on what the definition of visually loss-
less truly is. Conversely, in the display industry, it has been
deemed that each company, organization, or institution can
set thresholds based on their products and desired experien-
tial delivery. What this means at its core is that the statistical
requirements for user studies can be set at different levels and
different means of detection. It is the suggestion of the
authors that we use a more traditional definition of visually
lossless with tighter statistical constraints. To develop a com-
monly accepted definition of visually lossless, it becomes
necessary to provide a unified principle of assessing these
outcomes that takes into considerations the above factors,
using a 5% criterion for loss detection.

In 2014, VESA published a new standard that uses vis-
ually lossless image compression to increase the rate of data
transmission carried by a display interface data rate, thus sav-
ing power while maintaining viewer’s experiences.*’ As part
of the new standard, visually lossless with regard to visual
psychophysics requires that any content distortion caused by
compression be below the threshold of conscious detection.
Therefore, visually lossless compression should be defined
as providing for as any loss of data due to file compression
that is not detectable to a “typical” user on a “typical” display
under “typical” viewing conditions. This has been imple-
mented as a SBS comparison of control (original to original)
and target (original to compressed) images alternating
(flickering) at 2.5 Hz. A user is asked to discern the target
image from the control image within 30 s of viewing.
Outcomes of such method can be affected by factors, such
as viewing distance, screen luminance, pixel density, viewer’s
visual acuity, etc.

Not surprisingly, the use of the ambiguous term “typical”
has been proven problematic when it comes to verification
testing. The definition and assessing methods of visually
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lossless compression have been guided by the ecology of dis-
play industry. When the first discussions of visually lossless
compression began, the ecosystem of media was relatively
simple as the usage did not vary and the form factor uniform.
With the pervasiveness of media content in the world today,
the fundamental definition of visually lossless or “lossy”
needs to be examined at a contextual level. When one
moves from consumption of content on a phone to a large
format TV or to new VR and AR environments, the nature
of the changed viewing environments dictates that the def-
inition of visually lossless will need to be expanded from
less immersive traditional visual environments to account for
more fully immersive nontraditional environments.

With the adoption and deployment of VR devices, the
issue becomes even more complex due to the artificial bin-
ocular delivery of the stimuli to the visual system. With it,
vision is not just the result of stimulus-derived representa-
tions, but also that of interaction between visuomotor proc-
esses. Many feel that this will cause the visual experiences to
be different under different usages, and the definition of loss-
less vision to be bifurcated between monocular and binocular
devices. These would suggest a need of different methodol-
ogies for testing visually lossless compression according to
involved visual imagery as well as underlying visuomotor
functions.

In the previous section, it is mentioned that the definition
of visually lossless has been left to the manufacturer of the
devices, which opens an interesting competitive angle in
determining, who has the best performance and who will
or will not claim performance based on any given standard
implementation. The authors feel that as the definition of vis-
ual experiences has evolved, there is a large gray area that
needs to be explored around performance in order to have
contextually correct definitions. There is still room for debate
around what could be standardized versus not and whether
there are more generalized testing methods based on not
specific devices but utilized human visuomotor processes.

Copious research has demonstrated that human vision is
not a replica of the visual world, but an outcome of interac-
tive visuomotor processes.> Scientists have commonly iden-
tified two types of human vision: featural and spatial. >’
Features, such as shape, color, and complex object catego-
ries, are encoded in the ventral aspect of human cerebral
brain,”® whereas different spatial representations, such as
retina- and body-centric ones are encoded in the dorsal
aspect. Featural perception dominates the conscious vision
and is generated as much by bottom-up visual stimuli as
by top-down insertion and creation of visual imagery. The
spatial information is utilized by the brain for forming per-
ception and guiding complex actions but is not directly
accessible to the perception.’”% When viewers process dis-
played visual content, much information is utilized by the
brain but not consciously identified. Visual attention serves
to combine the two types of vision and makes some aspect of
it available to visual consciousness.’*°' Hence, functionally
lossless vision should be defined as providing for unimpeded
visuomotor processes in maintaining such interactive repre-
sentations of visual world. The purpose of the visual tasks,
the predominant context (static or in motion), and the level of
focused attention determine the threshold of lossy vision.

We suggest it is useful but insufficient to simply compare
compressed images to uncompressed ones for determining
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lossless vision. Such outcomes need to be obtained in a real-
istic task consistent with the form factor and usage, in which
the task goals determine what should be attended and at
which conscious level. Visually lossy should then be defined
as either the detection of visual degradation or impeded
execution of visual tasks.

To discern lossy vision, we propose to utilize a well-
recognized method of gaze-contingent image degradation
(GCID). GCID is achieved by switching between an original
image and degraded image during eye fixations or saccadic
eye movements. The perception of stable visual world is the
result of visuomotor integration across eye fixations, where
relevant visual percepts are maintained and unrelated fea-
tures discarded. Instead of comparing SBS flickering images,
in GCID, the original image was switched to the compressed
ones during the critical part of eye fixation, e.g., 150 ms after
fixation onset. The visuomotor performance and eye behav-
iors during selected eye fixations with control (original-to-
original) and target (original to compressed) images are com-
pared. This allows the effect of difference in visual imagery
to be separated from artificial stimulation, such as by persis-
tent image flickering. The GCID does not require the viewer
to direct the foveal vision toward a specific area in juxta-
posed images and yet the image switch is always available
to the foveal vision, the viewing behavior is minimally
altered, and the allocation of visual attention is guided by
the content of the image. Furthermore, as the eye movements
in GCID are guided by internal processes to search for and
utilize necessary visual information, impeded vision is
readily identified with a change in eye movement pattern,
as documented in previous studies.*’ Lossy vision is present
when the visuomotor process is slowed or altered, as deter-
mined by increased eye fixation duration, reduced saccade
length, and higher frequency refixation when the original
image was substituted with the compressed image during
eye fixation.

Our preliminary data have demonstrated the effectiveness
of such a paradigm. In the study, the subject was asked to
indicate the location of image degradation with a mouse
clicking at the end of 15 s viewing and was not informed
of the image switch taking place during eye fixations. The
data were obtained with a single switch between original
and degraded (blurred) image at 100 ms after the onset of
eye fixation; Fig. 17 shows that the location of degraded
image (subtle blur) was detected at a level beyond chance
(93%). In addition, the fixation duration (or latency of sac-
cadic eye movements) within the blurred areas was signifi-
cantly increased (250 to 269 ms) and saccade amplitude
decreased (3.05 to 2.71 deg). Figure 18 shows that saccade
initiation probability (as calculated from saccade hazard
level®) was reduced when a blur was present, suggesting
impeded visuomotor processing. Such eye movements and
eye behaviors are tightly linked to the task on hand and
the stimulus being processed. Therefore, this method can
be useful to assess lossless images by measuring the proper
baseline responses and changes in them caused by lossy
images. An algorithm can be regarded as producing lossless
image if the rate of detection and the parameters of eye
movements are not significantly above change and deviating
from the viewing of a static, unaltered image; an algorithm
producing lossy images can be identified by the above-
change detection of image degradation and altered eye
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Fig. 17 Example original (left) and degraded images (right, subtle
blur). Human subjects were asked to survey the image and reported
the degraded area of the image. The degraded image was made
available by switching from the original image to the blurred image
at 100 ms after fixation onset. Human subjects were also to detect
the blur in despite of the subtle change (93%).
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Fig. 18 Saccade probability calculated from the change in fixation
duration using hazard function analysis. For fixations with degraded
(blurred) images, a large proportion of saccades were delayed. The
detection of blurred image (subtle blur, square symbols) has a latency
of 200 ms (i.e., 100 ms after image switch), when the saccade prob-
ability began to be reduced compared to without image degradation
(same image, triangle symbols).

movements. Such a paradigm can be utilized to evaluate
lossy vision involving different ocular demands (e.g., per-
forming a visual task at a close distance) or methods of
image rendering (e.g., VR/AR displays).

Further empirical results based on the GCID paradigm
have been published recently and have shown the great
sensitivity of eye movement parameters to the appearance of
degraded images regardless of whether the viewers were con-
sciously aware of it; in contrast, the existence of constantly
flickering images led to a significant rate of false alarm,
likely due to heightened visual attention.*’” Thus, the pres-
ently adopted flickering paradigm could be unnecessarily
strict and reject algorithms that would be perceived as
lossless in many form factors and applications. Conversely,
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the gaze-tracking method can permit greater lossless band-
width compression where it is required.

To conclude, the authors propose that there is a need for at
least two types of complementary methods in assessing
lossless compressions: vision-for-perception and vision-for-
action. These should be chosen based on the specific nature
of display usage. For VR/AR and gaming displays, GCID
and eye movement measures allow the rate of image and
audio update to be optimal while permitting more forgiving
compression algorithm. For home theater TV and high-
resolution displays, detection of flickering image would
allow better assessment of lossless algorithms when image
degradation is more easily discerned. Therefore, the gaze-
tracking paradigm can be a very useful tool for many display
applications although it is harder to utilize due to its require-
ment of specialized equipment.

6 Conclusions

In this paper, we have attempted to bring together a variety
of academic and industrial studies/use-cases that rely on
the notion of visually lossless image quality.

In Sec. 2, Daly describes a variety of business perspec-
tives on visual losslessness. The main conclusion from
this section is that the appropriate method of video compari-
son (simultaneous versus sequential versus oscillation), the
required level of display calibration, and the criteria (visually
lossless versus visually lossy) depend on the business.
Visually lossless criteria are relevant for mature businesses
already delivering a high quality, whereas businesses for
which visually lossy quality ratings are more relevant include
newly developing businesses, developing products offering
new features and conveniences, and businesses specializing
in lower-cost products.

In Sec. 3, Zhang et al. have investigated visual lossless-
ness in the context of HEVC compression of 8-bit images via
a visual detection (of artifacts) experiment employing a
three-alternative forced-choice paradigm. The main conclu-
sion from this section is the suggestion that contrast detection
thresholds for HEVC distortions can be similar on mobile,
desktop, and laboratory displays if the EOTFs are similar.
Thus, it may be possible to measure thresholds on one
type of display, and still use those thresholds to predict
whether distortions will be visible on another type of display.

In Sec. 4, Wilcox et al. have described the results of
a study to assess the effectiveness of the VESA DSC 1.2 dis-
play stream compression standard using the ISO/IEC 29170-
2015% flicker protocol (a forced-choice paradigm). The
main conclusion from this section is that VESA’s forced-
choice paradigm is a highly effective means of evaluating
sensitivity to image differences, and in particular, empha-
sizes the most sensitive viewers. If the goal is to conserva-
tively evaluate the possibility that a compression artifact
might be visible under any situation, then the flicker para-
digm is a viable approach.

In Sec. 5, Colett et al. have described the need for at least
two types of complementary methods in assessing lossless
compression (vision-for-perception and vision-for-action),
which should be chosen based on the specific nature of
display usage. The authors feel that there is a need for at
least two contrasting methodologies that focus on different
display usage when evaluating visually lossless compres-
sions. For usages focusing on the sense of immersion and
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authenticity, such as picture and movie viewing, the assess-
ment of lossless image quality should require a realistic task
for detecting visual anomaly, such as flickering between
original and compressed images. SBS comparison of
flickering images is artificial and can impose overly strict
standards that cause issues in image rendering for display
usages, such as VR and AR. For usages demanding active
user interaction, a method utilizing eye tracking is useful
for assessing visual quality for both conscious recognition
and unconscious response guidance.

Together, the studies presented in this paper suggest that
a single definition of visually lossless is not appropriate.
Instead, a better goal might be to establish varying levels
of visually lossless (similar in spirit to p-value used in
statistical tests), which can be quantified in terms of the
testing paradigm. For example, one could define visually
lossless under the oscillation paradigm for vision-for-
perception” as perhaps the most sensitive, whereas visually
lossless under the sequential paradigm for vision-for-action”
as perhaps the least sensitive. In most industry applications,
the display parameters and viewing conditions are either
implied from common usage or specified in standards
documents. Actual specification is obviously the preferred
approach for many of the reasons described in this article.
Furthermore, still images would need a different level
as compared to moving images in videos. By establishing
such a list of varying levels of visually lossless, one could
choose the most appropriate level depending on the applica-
tion (target audience, imagery, business). For example,
medical applications might choose the most sensitive level,
whereas mobile video applications might choose the least
sensitive level. Thus, rather than converging on a single
definition of visually losslessness, industry can instead select
the level (or propose a new level) that best suit their use cases
and objectives. The expansion of display usages demands
distinct assessment methods for image compression that is
deployed across products and platforms.
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