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Abstract. This paper analyzes how an experimenter can balance errors in subjective video quality tests between
the statistical power of finding an effect if it is there and not claiming that an effect is there if the effect is not there,
i.e., balancing Type | and Type Il errors. The risk of committing Type | errors increases with the number of
comparisons that are performed in statistical tests. We will show that when controlling for this and at the
same time keeping the power of the experiment at a reasonably high level, it is unlikely that the number of
test subjects that are normally used and recommended by the International Telecommunication Union (ITU),
i.e., 15 is sufficient but the number used by the Video Quality Experts Group (VQEG), i.e., 24 is more likely
to be sufficient. Examples will also be given for the influence of Type | error on the statistical significance of
comparing objective metrics by correlation. We also present a comparison between parametric and nonpara-
metric statistics. The comparison targets the question whether we would reach different conclusions on the stat-
istical difference between the video quality ratings of different video clips in a subjective test, based on the
comparison between the student T-test and the Mann-Whitney U-test. We found that there was hardly a differ-
ence when few comparisons are compensated for, i.e., then almost the same conclusions are reached. When
the number of comparisons is increased, then larger and larger differences between the two methods are
revealed. In these cases, the parametric T-test gives clearly more significant cases, than the nonparametric
test, which makes it more important to investigate whether the assumptions are met for performing a certain
test. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.5.053013]
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1 Introduction

Currently, subjective experiments are the best way to inves-
tigate the user’s Quality of Experience (QoE) for video.
Typically, in such experiments, panels of observers rate
the quality of video clips that have been degraded in various
ways. When analyzing the results, the experimenter often
computes the mean over the experimental observations,
a.k.a. the Mean Opinion Scores (MOS) and applies statistical
hypothesis tests to draw statistical conclusions. A statistical
hypothesis test is done by forming a null hypothesis (H,)"
and an alternative hypothesis (H) that can be tested against
each other. For example, it could be interesting to know
whether a new compression algorithm is better than an
older one. A way to resolve this question would be to devise
a subjective test where two compression algorithms would
encode different source video contents at some different
bitrates; then, the test subjects could rate the video quality
of each video clip, i.e., each combination of source video,
algorithm, and bit rate. We will then get for each source con-
tent and bitrate two MOS scores that we can compare
whether they are statistically different or not. The usual
way is to assign the case that the MOS are the same to
null hypothesis H, and the case that they are differ to the
alternative hypothesis H;. If we find that we can reject
H,, we can then conclude that there is a statistically
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significant difference between the algorithms at that particu-
lar bitrate and source content. Of course, this is just one way
this type of test can be used in the analysis of a subjec-
tive test.

As in the example above, often, in video quality assess-
ment, the hypothesis test will have the null hypothesis, Hy,
that the two underlying MOS values are the same and the
alternative hypothesis, H, that they are different. If the result
is significant, the experimenter knows with high probability
(typically 95%) that H, is true and thus the MOS values are
different. However, there is still a small risk (5% in this case)
that this observation is only by chance. If this happens, it is
a Type I error—to incorrectly conclude that H; is true when
in reality Hj is true.

When there are more pairs of MOS values to compare,
each comparison has the above-mentioned small risk of
error. An example is trying to roll the dice and get the num-
ber six. If the dice is rolled once, there will be a probability of
one-sixth to get the desired number six, and each time the
dice is rolled the probability will be the same. However,
the overall chance will increase with the number of times
the dice is rolled. The same applies to risk of an error,
which increases with the number of comparisons and can
be estimated by 1 — (1 — )", where a is the risk to have an
error at a certain confidence level per comparison and n is the
number of comparisons." For 100 comparisons at a 95%
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confidence level, this equals >99% risk of at least one Type
I error.

The other type of error that can be committed in a stat-
istical inference is to fail to reject the null hypothesis while
there is an effect, i.e., not to discover a significant effect. This
type of error is referred to as Type II error and usually, has the
associated parameter f, but more common is to talk about
power, which is the probability of rejecting H, when H,
is true and power = 1 — ." A common value for f is 0.2,
which is closely connected to the common significance
level 0.05. This gives a 4-to-1 relationship between the
risk of missing an effect and finding one that is not there;
a p of 0.2 gives a power of 0.8 that is an 80% probability
of finding an effect if it is there. The power will depend
on the chosen significance level, the magnitude of the effect
of interest, and the sample size. It is most often used for plan-
ning the experiments and is not recommended for posthoc
analysis, i.e., analysis of the data after the experiments
have been done.>?

In subjective video quality assessment based on standard-
ized procedures,*> category scales such as absolute category
rating (ACR) is one of the most commonly used scales and
especially its five-level version: excellent, good, fair, poor,
and bad. The most common approach to analyze the data
from an ACR-experiment is to use a parametric approach.
That is to translate the categories to numbers using 5 for
excellent, 4 for good, 3 for fair, 2 for poor, and 1 for bad.
Then, the MOSs are calculated by taking the mean over
the test subjects. The corresponding analysis then assumes
that the distribution of votes follows a normal distribution.
However, this normality assumption in categorical data for
subjective assessments has already motivated Thurstone®
to state “The normal probability curve has been so generally
abused in psychological and educational measurement that
one has reason to be fearful of criticism from the very
start in even mentioning it.”® There is reason to question
this assumption if only the category levels have been pre-
sented to the test subjects because then the scale is only
an ordinal scale.” There is a clear ordering of the categories,
but there may be different distances. When calculating the
mean, we assume that the scale has equal distance between
scale values, i.e., that it has the properties of an interval scale.
There are ways to partly assure this by presenting the num-
bers on a line equally spaced and instructing the test subjects
that they should assume equal distances. However, this is not
always done and since these labels have an ordinary meaning
to people it might not be possible to achieve. Some studies
are showing the difficulty in achieving equal distances, espe-
cially when also comparing across languages.®'° Huynh-
Thu et al."" made a thorough comparison of different scales
but assumed that the ACR scale was an interval scale in their
analysis. It is, therefore, of interest to compare a nonparamet-
ric approach with parametric analysis, to see how often do
we reach different conclusions depending on the analysis
performed, which we have done in this paper.

In this paper, we will investigate and discuss statistical
methods used for QoE assessment, especially targeting the
planning of the sample size for subjective experiments,
i.e., the number of test subjects, before the actual experiment
is executed. We will show that with applying traditional stat-
istical methods, strong inferences can be obtained of the
planned sample size. The purpose of the paper is not to
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improve the statistical analysis per se but to demonstrate
its usage and typical consequences when conducting subjec-
tive experiments for QoE analysis. Furthermore, we believe
that this type of paper is lacking within the scientific domain
of QoE. Many articles and reports address the problem partly
but in most cases, they use the statistical methods as a tool to
solve their primary goal of the paper, for example performance
evaluation of objective metrics or compression algorithms. It
has been part of Video Quality Experts Group (VQEG)
reports, e.g., Refs. 12-15 and International Telecommunica-
tion Union (ITU) recommendations, e.g., Refs. 5, 16, and
17 but also part of scientific papers, e.g., Refs. 18 and 19.
Although, Bayesian statistical analysis has been brought for-
ward as a more powerful alternative to traditional hypothesis
testing,”® we have concentrated on the former in this work as
this is still by far the dominating way of statistical analysis in
QOE. It is partly based on previous material,>"*? but this paper
goes deeper into the analysis and is substantially extended.

2 Method

There are various statistical methods to safeguard against
Type I errors. Here, it is important to distinguish between
planned comparison and posthoc testing. If some multiple
comparisons are planned before the data are collected, then
this number is what is used to safeguard against Type I
errors. Then, of course, only these multiple comparisons
should be performed when the data are collected.'
Otherwise, all possible comparisons should be considered.
An intuitive argument for that is that when observing the
actual MOS values and then decides on what comparisons
to perform, implicitly all of the comparisons have already
been made when picking out the cases to compare.

A common way to compare a set of means is to perform
an analysis of variance (ANOVA) followed by a posthoc test.
This is a two-step approach where first ANOVA indicates
whether there is an overall effect, then a more refined test
[such as Tukey honestly significant difference (HSD)] ana-
lyzes whether there are any significant pairwise differences.
However, it is quite difficult to estimate the influence of
a particular number of comparisons on the efficiency of
the statistical test. Fortunately, there is also a rather straight-
forward method, suggested by Bonferroni,! where the con-
sidered significance level (a) is divided by the number of
comparisons (n) so that the significance level for each com-
parison will be a/n. The advantage here is that it can be com-
bined with simple tests, such as the Student’s T-test. The
disadvantage is that it can be overly conservative. For exam-
ple, if there are 10 comparisons and the overall a = 0.05,
then each comparison should have a significance level
of 0.05/10 = 0.005.

We will study the statistical significance level o at three
different cases.

C1. 95% confidence level, i.e., a = 0.05.

C2. Compensating for Type I error based on the number
of the videos involved in the test, using Bonferroni
method a/n (n = number of comparisons).

C3. Compensating for Type I error, using Bonferroni,
when the full posthoc pairwise comparison is per-
formed per experiment.
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These three cases are considered for the following rea-
sons: C1 represents the no-control case—i.e., the occurrence
of Type I errors is accepted to be on a comparison-by-com-
parison basis and conclusions based on multiple compari-
sons would exceed the 5% error margin. This is what
most experimenters within the QoE community have used
in the past. C2 is the typical case for technical studies on
performance gains, such as old versus new video coding
algorithms. For the same set of source videos (SRC), any
two hypothetical reference circuits (HRC) get compared,
i.e., a specific bitrate or coding quality setting. In this
case, the error control needs to extend over each HRC sep-
arately, but it is assumed that the experimenter is not inter-
ested in comparing two distinct individual SRC. C3 provides
this full control, i.e., any combination of SRC and HRC can
be compared with any other combination. This is typically
the case for training, verifying, and validating objective mea-
sures in which each processed video sequences (PVS) is
checked separately and put in relation to any other PVS
by pooling measures, such as Pearson or Spearman rank
order correlation or root mean square error. Furthermore,
C3 represents the case when no preplanning of comparisons
has been made, but the data are explored for possible inter-
esting differences and then all possible comparisons need to
be compensated for.

For the test design, there are two important cases to dis-
tinguish, which in turn affects the statistical analysis. The
two cases are whether it is a between-group design or
within-subject design. The first means that the same test sub-
ject has just been used once or giving their ratings once, but
in the other case, the same test subject has provided answers
more than once.

The within-subject design is very common for video qual-
ity experiments. Usually, different degraded versions of
video clips are presented to the same observer that is
asked to give a quality score for each of them. For the analy-
sis, as there are dependencies between the scores, we need to
use the dependent T-test for paired samples.”

The pure between-group case is not that common because
it would usually require quite a few test subjects but could
occur, for instance, when experiments have been repeated by
different labs or repeated by different panels of observers in
the same lab. For instance, when comparing two experiments
using the same distorted videos. The experimenter might
want to test whether there are differences in MOS between
the two panels for the same video clips. For the analysis, the
different scores are independent, and we can use the indepen-
dent two-sample T-test.

The cases C1-3 can be applied to the analysis regardless
whether the study is within-subject design or between-group
design.

In video quality experiments, there are different options
for the experimental methods that can be used. Some of
them are standardized by the ITU (ITU-R Rec. BT.500-
13; ITU-T Rec. P.910, ITU-T Rec. P.913).*3** The method
could be single stimulus as in the absolute category rating
(ACR) method or double stimulus as in the double stimulus
continuous quality scale (DSCQS). Central to the methods
are the rating scales that could be discrete in, e.g., five levels
as in the ACR method or continuous as in the DSCQS meth-
ods. Here, we will assume a quality scale that can be mapped
to the range of 1 to 5, where the discrete levels correspond to
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poor, bad, fair, good, and excellent. Furthermore, we will
assume that it has been statistically confirmed that parametric
statistics can be applied and the underlying distribution is
essentially normal. These two assumptions can be ques-
tioned in the sense that the ACR scale is a discrete ordinal
scale and therefore should be analyzed with nonparametric
methods. However, the parametric analysis is still very com-
monly applied and what is recommended by the ITU,
although strictly speaking this is not statistically correct.

In this study, we look at the interesting cases of MOS
differences of 0.5 and 1.0 on a five-level scale. A MOS dif-
ference of 0.5 and 1 was chosen in the following as they re-
present typical targets. They may be motivated in two
distinct ways. First, due to the quantization of the ACR
scale, the observers are forced to vote for an integer value
even if their opinion is in between two attributes. A single
observer who decides one way or the other changes the MOS
score by 1/m (m being the number of observers). To obtain
a MOS difference of 0.5, half the observers need to change
their opinion and all need to change their opinion to get
a MOS difference of 1. The smaller the MOS difference,
the more likely it is that the result is due to quantization
noise, a MOS difference >1 is unlikely to satisfy the accu-
racy goals of a study. The second way to motivate the choice
is based on the distribution of the observers as a Gaussian
distribution with a given sigma value, typically 0.8. If we
could achieve a significant MOS difference close to 0, the
Gaussian distribution for the two stimuli would overlap
and the preference result for a single observer would be ran-
dom. The larger the difference, the more of the population
agrees on the ordering; according to the cumulative
Gaussian distribution function with a sigma of 0.8, 73%
agree at a MOS difference of 0.5, and 8§9% at 1.6

A different view is from a macroscopic perspective. When
voting, the test subjects are forced to select a level even if he/
she consider the quality to be between those values. Then,
MOS values between these levels mean that some test sub-
jects have selected a higher level and some have gone for
a lower level. When we get MOS difference of 0.5, it is
the half way between these levels and the MOS difference
of 1.0 is a whole level, e.g., in one lab a video is rated as
“good,” but at another, it is just rated “fair.” These five qual-
ity labels are used in other constructions of quality scales,
where test subjects are able to give values between the labels,
e.g., DSCQS* or the nine-point ACR? scale, but will still
anchor the voting. Other differences can of course be of inter-
est depending on the particular focus of a study, but we
believe that the chosen cases have practical usage in them-
selves and are good cases to discuss around.

We then consider the influence of multiple comparisons
on the number of test subjects required and on the differences
between MOS that are statistically significant. The cases that
are analyzed are single comparison, a fixed number of pre-
planned number of comparison, and all possible pairwise
comparisons.

An area where statistical significance testing is often
neglected is when the performance of objective metrics is
analyzed. This is often done by comparing the output
of the objective metrics with MOS from one or more subjec-
tive experiments using Pearson correlation (PCC). The
Recommendation ITU-T Rec. P.1401'" gives guidelines
how this analysis can be done in a statistically better way, but
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it does not consider multiple comparison and we have, there-
fore, analyzed that in this article. Nuutinen et al.”> proposed
an interesting performance evaluation method of objective
metrics for video and image quality assessments, by devel-
oping the subjective root-mean-square error (SRMSE),
which ties the performance metrics to the variance of subjec-
tive data and gives its output in the number of average
observers and can predict whether an algorithm is likely
to be able to replace a subjective experiment. However,
they did not consider multiple comparisons in their analysis.

2.1 Within-Subject Design

The Student T-test for a within-subject design is a dependent
T-test for paired samples. The equation is

Hp — H
Tobs :u\/ﬁs (1
op

for calculating the observed #-value for the paired samples.
Where pp, is the difference between the paired samples or rat-
ings from the same test subject and op is the standard
deviation of the paired samples. n is the number of paired sam-
ples. p is used if the comparison is done against another value
than zero. We will assume in our analysis this value to be zero.
The degrees of freedom are (n — 1). For any given values of
the difference mean up between two means (¢; to p,), the
number of data points (n), and the standard deviations
(op), we can calculate the probability of significance, p.

For the power analysis we have used the pwr-package,”®
in R*" and for the within-subject design case, we specified
the “paired” keyword for the “type” parameter in the
function “pwr.t.test.”?®

2.2 Between-Group Design

To analyze an effect in the between-group design case, we
assume the Student’s T-test with equal standard deviations
and the same number of data points in the two mean values,
based on independent data samples. This gives the simplified
equation:

fope = 12 /. 2)
206

The degree of freedom is in this case (2n — 2). We can, in
the same way as above, analyze the requirements for getting
statistical significance by calculating the probability p for
different input values.

For the power analysis, we have also here used the pwr-
package®® in R?’ and for the between-group design case we
specified the “two.sample” keyword for the “type” parameter
in the function “pwr.t.test.””®

2.3 Pearson Correlation

The PCC is usually calculated between human subjects and
predicted scores from objective measures. For estimating the
probability significance for the PCC, we follow ITU-T Rec.
P.1401."7 The PCC is defined as follows:

YL X-X)- (4= T)
VE KX /SR

where 7 is the total number MOS scores that are compared
to the same number of predicted MOS scores. X; is the

PCC 3
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subjective MOS scores and X is their mean. Y; is the pre-
dicted MOS scores and Y is their mean.

The PCC is not normally distributed, but if the Fisher z
transformation is applied we can get a normally distributed
variable:

1+ PC 1
z:o.s-ln(+ C)

i-—pcc) V-3 @
We can see that the standard deviation only depends on
the number of points used in the correlation, i.e., the number
of subjective and predicted MOS scores that are compared.
We can then form a test statistic to evaluate against for a
two-tailed Student’s T-distribution:

A1~ 2

V2

with the degrees of freedom of: 2n — 2 if we are comparing
PCC with the same number of involved subjective and pre-
dicted MOS scores.

(n—3), ®)

Zn

2.4 Parametric versus Nonparametric

For parametric statistics when comparing two mean values,
the Student’s T-test can be used. For between-group design
the different scores are independent, and we can use the in-
dependent two-sample T-test (ITT), and in the other case
there is a dependency between the scores, and we need to
use the dependent T-test (DTT) for paired samples.'

For the nonparametric statistics, we have chosen to use
the Mann—Whitney U-test, which is usually put forward
as the nonparametric counterpart of the T-test." It has an in-
dependent (IMW) and dependent variant as well (DMW).

We have compared the outcome of the statistical testing
parametric and nonparametric from two large video quality
investigations. One was the HDTV phase I test'* by VQEG
and an adaptive streaming investigation based on three dif-
ferent subjective experiments. Here all the videos were the
same each time, but the experimental conditions were differ-
ent in the three cases.”

2.4.1 Normality analysis

When deciding on whether to use a parametric or a nonpara-
metric analysis, it is important to investigate whether the data
are normally distributed. We have, therefore, applied a few
statistical tests for normality to the subjective video quality
datasets presented below and the result is presented in
Sec. 3.4.1.

2.4.2 VQEG HDTV phase I-test

In VQEG HDTV phase I investigation,'* there were six sub-
jective experiments performed in different labs in the various
countries. It contained a common set, consisting of of 24
PVS in total, formed from four SRCs crossed with six treat-
ments or HRC. These PVSs were the same in all the subjec-
tive tests allowing to compare the ratings given across
experiments. This is particularly interesting as here the test
subjects have had their category scale levels given in differ-
ent languages, which based on the earlier investigations®'°
would give different distances in quality between the scale
values and, therefore, it could be argued that a nonparametric
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analysis would be preferable. Each video clip across experi-
ments and labs have been scored by different panels of
observers and can, therefore, be analyzed with an indepen-
dent hypothesis test. Each PVS can then be tested pairwise
between all experiments (case C2), i.e., 6 X 5/2 = 15 times,
which gives in total 15 X 24 = 360 hypothesis test compar-
isons. The a levels used here are 0.05 (C1) and 0.05/360 =
0.00014 (C2).

Then, each experiment also contained PVSs unique for
each experiment. There were in total 168 PVS including
the common set. These have been scored with a within-sub-
ject design, so when comparing these with each other, we
must use hypothesis test for dependent samples. If we per-
form all pairwise comparisons within each experiment, we
will get 168 x 167/2 = 14,028 pairwise comparisons and
in total 6 X 168 X 167/2 = 84,168 hypothesis test compar-
isons. The « levels used here are: 0.05 (C1), 0.05/168 =
0.002 (C2), and 0.05/14,028 = 3.6 - 107 (C3). There
were 24 test subjects used in each of the six experiments.

2.4.3 Adaptive streaming investigation

The adaptive streaming investigation consisted of three
experiments, where the same PVSs were presented in a dif-
ferent way and rated with test subjects partly from various
countries and then different mother tongue. It could, there-
fore, be possible that scales have not been experienced in the
same way and that the scale distances have not been the
same. As in the HDTV test above, we can analyze the results
in two ways: across the three experiments and then compare
each PVS with each other using independent tests and within
each experiment with dependent tests. There were 132 PVSs
used, and they were rated by 21 test subjects in two experi-
ments and 20 in one.

For the independent hypothesis tests comparison,
this gives 3 X 132 =396 hypothesis test comparisons
(@ =0.05/396 = 0.00013)(C2), and for the dependent test
comparison, there were 3 X 132 x 131/2 = 25,938 hypothe-
sis test comparisons (o = 0.05/25,938 = 1.9 - 1076)(C3).

3 Results

3.1 Within-Subject Design

Figure 1 shows curves for simulated MOS differences, for
experiments using within-subject design, ranging from 0.2
to 1.4 along the x-axis. The standard deviation used was
motivated by actual experiments: VQEG HDTV test,'*
where the average standard deviation was about 0.8, which
included six different subjective tests. We observed similar or
slightly lower average standard deviations in our previous
adaptive streaming quality experiment.”’ Along the y-axis
are the p-values. The plotted curves are for 20 (black
curve), 30 (medium gray curve), and 40 (light gray curve)
test subjects. Different a levels have been indicated with
horizontal lines. Dotted line shows a = 0.05 (C1), short
dashed line shows a = 0.05/100 = 0.0005 (C2), corre-
sponding to 100 comparisons and dashed line all pairwise
comparisons among 100 cases, i.e., 4950 comparisons
(@ = 0.05/4950 = 0.00001) (C3). The different curves
must be below the a threshold for the Student’s T-test to
detect a difference in MOS at the 95% confidence level.
As an example, test case, we assume that we are planning
the number of subjects for a study in which we use only 1
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Fig. 1 Probability of significance as a function of the difference
between compared simulated MOS values for subjective experiments
using within-subject design. The different curves show the probability
for significance for 20 (black curve), 30 (medium gray curve), and 40
(light gray curve) test subjects and with an assumed standard
deviation of 0.8 estimated for the VQEG HDTV test.

comparison (C1), a set of comparison such as a codec com-
parison with 100 preplanned comparisons (C2), and the full
set of all 4950 possible comparison as for the validation of
objective measures (C3). The corresponding a values are
0.05 (C1), 0.0005 (C2), and 0.00001 (C3), respectively.
We plan for a significance at two MOS differences, 0.5
and 1.0 as explained earlier. We have calculated the proba-
bility of significance for different number of test subjects
which is in the range of what is typically used, as shown
in Fig. 1: 20 subjects (black curve), 30 (medium gray),
and 40 (light gray). It can be noted from the curves that
20 subjects will not be completely sufficient to reliably dis-
cover a statistical difference of 1.0 MOS when all pairwise
comparisons are considered but 30 and 40 test subjects will.
For 100 comparisons, all the calculated numbers of test sub-
jects will be able to show a difference of 1.0, but for a differ-
ence of 0.5 we need to use about 40 test subjects or more, as
shown in Fig. 1, neither 20 or 30 test subjects will be sufficient.
We have tabulated the minimum number of subjects for each
test condition in Table 1. Please keep in mind that the ITU
recommends a minimum of 15, and VQEG used 24 subjects.

In Fig. 2, we have plotted the curves for the probability of
significance for simulated MOS differences of 1.0 (medium
gray curve) and 0.5 (black curve) as a function of the number
of test subjects. We have also indicated with vertical lines the
minimum number of test subjects recommended by ITU, i.e.,
15 (long dashed line)* and what has been used by VQEG,
i.e., 24 (dot dashed line) see, e.g., (VQEG, 2008, 2010)."*
For a simulated MOS difference of 1.0, we can see that
15 test subjects would not be sufficient to conclude signifi-
cance with an overall significance level of 95% with all pair-
wise comparisons compensated for, but for preplanned 100
comparisons or just one comparison it would work just fine.
Twenty-four test subjects would be good in all the three ana-
lyzed cases. For a simulated MOS difference of 0.5, only one
comparison will be significant for both 15 and 24 test sub-
jects, but the other cases will not.

Furthermore, Fig. 2 shows a view that may be more prac-
tical for preplanning: first, the number of preplanned
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Table 1 The number of required test subjects (sample size) for
obtaining a power of 0.8 and for different significance levels a and
effect sizes (simulated MOS differences). Two samples sizes are
shown in the two rightmost columns, based on two different estimated
standard deviations in the experiment, 0.8 and 1.0.

Simulated Sample Sample

Design # MOS size Std size Std
type comparisons a difference dev 0.8 dev 1.0
Within 1 0.05 0.5 23 34
1.0 8 10
100 0.0005 0.5 54 81
1.0 18 25
4950 0.00001 0.5 81 121
1.0 27 37
Between 1 0.05 0.5 42 64
1.0 12 17
100 0.0005 0.5 99 153
1.0 27 41
4950 0.00001 0.5 147 227
1.0 41 61

Number of subjects
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Fig. 2 Probability of significance as a function of the number of test
subjects for subjective experiments using within-subject design. The
different curves show the probability for significance for a simulated
MOS difference of 1.0 (medium gray curve), and an MOS difference of
0.5 (black curve) and with an assumed standard deviation of 0.8 esti-
mated for the VQEG HDTV test. The vertical lines indicate 15 (long
dashed line) and 24 (dot dashed line) test subjects. The secondary y-
axis to the right shows the corresponding number of comparison,
when using Bonferroni to safeguard the Type | error to « = 0.05.

comparisons according to the specific setup (C1, C2, and C3)
is used to calculate the a value that forms a horizontal line
parallel to the x-axis. Then, the interception point of the
MOS difference curves with that line is searched for and
the minimum number of subjects on the x-axis can be deter-
mined graphically.

In Fig. 3, we have drawn the sample size, i.e., the number
of the subjects as a function of effect size, i.e., the difference
in the simulated MOS that would be planned to be resolved
for a power of 0.8. The different graphs in Fig. 3 are drawn
for different significance levels a: [a@ = 0.05, solid curves
(C1)], 100 comparisons [a = 0.0005, dashed curves (C2)],
and 4950 comparisons [a = 0.00001, dotted curves (C3)].
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We have marked the specific cases of simulated MOS differ-
ence of 1.0 [Fig. 3(a)] and 0.5 [Fig. 3(b)]. The calculated
numbers are summarized in Table 1.

For the preplanned case of 100 comparisons, we would
need 18 test subjects, which is lower than what VQEG is
normally using, i.e., 24, but more than what is recommended
by ITU-R BT.500-13,* which is 15. It is only without com-
pensating for multiple comparisons we can get by with less
than what is recommended in ITU-R BT.500-13,* and here
we get 8. For a simulated MOS difference of 0.5, we need at
least 23 test subjects for just one comparison and then even
higher numbers for the other cases, see Table 1.

3.2 Between-Group Design

In a similar way as before, Fig. 4 shows curves for simulated
MOS differences, for experiments using between-group
design, ranging from 0.2 to 1.4 along the x-axis. The stan-
dard deviation used here was 0.8, which is the same as
before. Along the y-axis are the p-values. The plotted curves
are for 20 (black curve), 30 (medium gray curve), and 40
(light gray curve) test subjects. Different a levels have
been indicated with horizontal lines. The dotted line
shows a = 0.05 (C1), short dashed line a = 0.0005 (C2),
corresponding to 100 comparisons and finally, the dashed
line shows all pairwise comparisons among 100 cases,
i.e., 4950 comparisons (@ = 0.00001) (C3). The different
curves must be below the a threshold for the Student’s
T-test to detect a difference in MOS at the 95% confidence
level. We can see that 30 test subjects will be just about suf-
ficient to reliably discover a statistical difference of 1.0 MOS
when all pairwise comparisons are considered. For 100 com-
parisons, 20 test subjects will be needed for a MOS differ-
ence of 1.0 to be significant. However, for a MOS difference
of 0.5 we only get significance if they do not compensate for
multiple comparisons as in C1, with the considered number
of test subjects. Furthermore, for 20 test subjects we only
have borderline significance.

The vertical lines in Fig. 5 indicate 15 (long dashed line)
and 24 (dot dashed line) test subjects. For 15 test subjects, it
is only possible to show significance for one comparison and
with a MOS difference of 1.0 (intersection of the medium
gray curve and long dashed line). It can be observed, on
the other hand, that for 24 subjects and one comparison,
we get significance for both simulated MOS differences
of 0.5 and 1.0 (the intersection of both curves and the dot
dashed line). With 100 comparisons, only a simulated
MOS difference of 1.0 is significant (intersection of the
medium curve and dot dashed line). With all 4950 pairwise
comparisons, 24 test subjects cannot detect a simulated MOS
difference of 1.0.

In the same way as for Fig. 2, Fig. 5 could also be used for
preplanning as described above.

In Fig. 6 we have drawn the sample size, i.e., the number
of the subjects as a function of effect size, i.e., the differ-
ence in the simulated MOS that would be planned to be
resolved for a power of 0.8. The different graphs in
Figs. 6(a) and 6(b) are drawn for different significance lev-
els a: 0.05 (C1), 0.0005 (C2), and 0.00001 (C3). We have
marked the specific cases of simulated MOS difference of
1.0 [Fig. 6(a)] and 0.5 [Fig. 6(b)], respectively. The calcu-
lated numbers are summarized in Table 1 for these cases as
well. We can then see that if we want to make the trade-off

Sep/Oct 2018 « Vol. 27(5)



Brunnstrém and Barkowsky: Statistical quality of experience analysis: on planning the sample size and statistical. . .

150 200
! !

Sample size (n)
100
|

50

|
/I

!

)
!
]
|
[
)

[
0.3 0.4 0.5 0.6 0.7
MOS difference

(b)

Fig. 3 The sample size, i.e., the number of test subjects required for a within-subject designed video
quality experiment with a power of 0.8 as a function MOS difference for three different significance levels
a. (C1) a = 0.05 (solid curve). (C2) a = 0.0005 (dashed curve) (C3) a = 0.00001 (dotted curve). (a) The
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Fig. 4 Probability of significance as a function of the difference
between compared simulated MOS values for subjective experiments
using between-group design. The different curves show the probabil-
ity for significance for 20 (black curve), 30 (medium gray curve), and
40 (light gray curve) test subjects and with an assumed standard
deviation of 0.8 estimated for the VQEG HDTYV test.

and reach a power of 0.8 and at the same time compensate
for all possible comparisons of 100 PVSs, we would need
41 test subjects for finding a simulated MOS difference
of 1.0. For the preplanned case of 100 comparisons, we
would need 27 test subjects. It is only without compensat-
ing for multiple comparisons we can get by with about the
same as what is recommended in ITU-R BT.500-13,* which
is 15, and here we get 12. For a simulated MOS difference
of 0.5, we need at least 42 test subjects for just one
comparison and then even higher numbers for the other
cases.
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Fig. 5 Probability of significance as a function of the number of test
subjects for subjective experiments using between-group design. The
different curves show the probability for significance for an MOS differ-
ence of 1.0 (medium gray curve), and a MOS difference of 0.5 (black
gray curve) and with an assumed standard deviation of 0.8 estimated
for the VQEG HDTV test. The vertical lines indicate 15 (long dashed
line) and 24 (dot dashed line) test subjects. The secondary y-axis to
the right shows the corresponding number of comparison, when using
Bonferroni to safeguard the Type | error to a = 0.05.

3.3 Pearson Correlation

Let us now consider the impact of multiple comparisons
when evaluating objective metrics with PCC.> Figure 7
shows the probability of significance for two correlation
coefficients PCC1 and PCC2 when the difference between
the correlation coefficients is PCC1 — PCC2 = 0.05 (for
example, a difference between correlations of PCC1 = 0.90
and PCC2 = 0.85). The y-axis shows PCC2. The different
curves represent different numbers of data points (10,
100, and 1000). 100 data points (i.e., video sequences)
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Fig. 6 The sample size, i.e., the number of test subjects required for a between-group designed video
quality experiment with a power of 0.8 as function MOS difference for three different significance levels a.
(C1) a = 0.05 (solid curve). (C2) a = 0.0005 (dashed curve) (C3) a = 0.00001 (dotted curve). (a) The
sample sizes required (gray lines) to be able to find an MOS difference of 1.0 and (b) the same for a MOS

difference of 0.5.

are a common number in a single video quality experiment.
We assume that we like to compare in total the prediction
performance of 10 different objective measures, we indicate
the significance level of 1 comparison (o = 0.05) with a dot-
ted horizontal line (one measure to one other measure), 9
comparisons (a = 0.0056) with a short dashed line (one
measure to all others), and 45 comparisons (¢ = 0.0011)
with a dashed line (all measures to all measures, the case
most often claimed). Looking at the intersection of the
medium gray curve with the dotted line, we see that
the significant differences can be expected first when the cor-
relation is about PCC2 = 0.92 (PCC1 = 0.97) and then only
when we are doing just one comparison. When doing multi-
ple comparisons, no significance can be detected from 100
data points, even if we get perfect correlation of 1.0 for one
measure. With more data points the situation improves, so
for 1000 data points, which is rare to have in a subjective

Pearson correlations (PCC2)
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Fig. 7 Probability of significance for PCCs with a difference of 0.05,

where N is the number of data points. The y-axis shows PCC2, which
is compared with PCC1, which is then PCC1 = PCC2 + 0.05.
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test, we can expect significance for difference of 0.05
from 0.8 correlation and for all comparisons among 10 dif-
ferent models.

3.4 Parametric versus Nonparametric
3.4.1 Normality analysis

As mentioned in Sec. 1, parametric tests require the under-
lying data to follow a normal distribution. Therefore, 10 dif-
ferent statistical tests for normality with their default
parameters have been calculated using the statistics package
R on the votes of each PVS.**3! The statistical tests differ in
sensitivity—while the Hegazy—Green goodness-of-fit test
using order statistics alerts on 2% (27 out of 1406 PVS),
Cramer—von-Mises test for the composite hypothesis of nor-
mality did not find a single case. However, it can be noted
from Table 2, which shows the confusion matrix that the stat-
istical tests refuse the same sets of votes.

To illustrate the difficulty, a border case for the Hegazy—
Green normality test is shown in Fig. 8 as a quartile—quartile
plot. It may be interpreted either as a normal distribution with
a standard deviation that is larger than the one-to-five scale or
as a uniform distribution with some random accumulation
region in the center. As this is a typical border case and
<2% of the data are concerned, parametric tests may be jus-
tified. On the other hand, the example shows that with only
five choices for only 24 subjects, typical statistical analysis
methods such as the quartile-quartile plot reach their limits
and nonparametric tests may stabilize the analysis.

3.4.2 VQEG HDTV phase | test

For the HDTV experiment, we got statistical significance for
C1 148 times using ITT and 142 times using IMW out of
360, which is a difference of about 1.7%. For C2 we got
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Table 2 Confusion matrix of the number of PVS (out of a total of 1406
PVS) that are identified as being nonnormally distributed for 10 fre-
quently used normality tests implemented in the statistics package
R. The confusion matrix shows that the same PVS get identified,
but the sensitivity is different. The methods used are: M1, Hegazy—
Green2; M2, Weisberg-Bingham; M3, Shapiro-Francia; M4, Shapiro—
Wilk; M5, Lilliefors; M6, Hegazy-Green1; M7, Anderson-Darling;
M8, Frosini; M9, Cramer-von-Mises; and M10, Pearson chi-squared
test for the composite hypothesis of normality.

M1 M2 M3 M4 M5 M6 M7 M8 M9 MI10

M1 27 13 12 8 2 2 1 1 0 0

M2 13 13 12 8 2 2 1 1 0 0

M3 12 12 12 8 2 2 1 1 0 0

M4 8 8 8 8 2 2 1 1 0 0

M5 2 2 2 2 2 0 0 0 0 0

M6 2 2 2 2 0 2 1 1 0 0

M7 1 1 1 1 0 1 1 1 0 0

M8 1 1 1 1 0 1 1 1 0 0

M9 0 0 0 0 0 0 0 0 0 0
M10 0O 0 0 0 0 0 0 0 0 0

Normal Q-Q Plot

Sample quantiles
20 25 30 35 40 45 50

Theoretical quantiles

Fig. 8 Quartile-Quartile plot of the vote distribution for a borderline
case of normality: due to the coarseness of the ACR scale and the
few observers, the distribution may be interpreted either as a normal
distribution or as uniform distribution (VQEG HD4, PVS 72).

18 for ITT and 14 IMW, which is a difference of 1%, also
out of 360 comparisons.

For dependent case C1 (see Fig. 9 gray bars), we got
14,389 for DTT and 14,267 for DMW out of 84,168,
which is a difference of 0.1%. For C2, we had 11,556 for
DTT and 10,189 for DMW, which is a difference of about
2%. And finally, for C3 we got 9592 for DTT and 20 for
DMW, which is a difference of about 11%. We can observe
an increased difference of significant cases when the number
of comparisons increases. The reason is that for increased
differences between the compared MOS values in the com-
parisons, the p-values based on the T-test will continue to
decrease, but the p-values based on values of Mann—
Whitney U-test will level out and stop decreasing at some
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Fig. 9 The relative increase in statistically significant cases for the
parametric T-test as compared with the nonparametric Mann-
Whitney U-test.

point. Minimum p-value in the HDTV test for the T-test
was as low as 1073!, whereas the lowest p-value for Mann—
Whitney U-test found here was about 107°.

3.4.3 Adaptive streaming investigation

For the adaptive streaming investigation, we got for C1 68
ITT and 64 IMW out of 396, which is difference of about 1%.
For C2 we got 4 for ITT and 4 IMW, which is no difference.

For dependent case C1 (see Fig. 9 black bars), we got
17,543 for DTT and 17,951 for DMW out of 25,938, which
is a difference of 2%. For C2 we had 5188 for DTT and 3704
for DMW, which is a difference of 21%. And finally, for C3
we got 5192 for DTT and 0 for DMW, which is a difference
of almost 18%. In this case, we do not see the same increase
in difference between C2 and C3, which is due to the dis-
tribution of qualities in this test that are more compressed
than in the HDTV test and very large differences between
the MOS do not occur in the same way as for the HDTV
test. Min p-value for the T-test was 107!¢ and for the
Mann—-Whitney U-test was 107.

4 Discussion

In this paper, we have been using the Bonferroni' method for
the simplicity to illustrate the different cases described in
the paper. This model is simple to compute, but very
conservative. To broaden the discussion, we have performed
a comparison to some other methods. Closely related to
Bonferroni method is Holm-Bonferroni.> It was named
in the original paper “sequentially rejective Bonferroni
test”, and this is a good description of the procedure. The
p-values are sorted from the lowest to the largest. Then
the smallest p-value is compared against the Bonferroni
a-level, i.e., a/n. If this is smaller it is considered significant.
The next p-value in the list is compared with an updated a-
level, i.e., &/ (n — 1) and so on until there is a p-value that is
larger than the recomputed a-level. The method has as good
protection against Type I errors as the Bonferroni method,
but is more efficient. We have analyzed what this could
mean in our video quality tests, by comparing the number
of significant cases on our datasets, see Table 3. To compare
we have also computed Tukey HSD.! Tukey HSD was com-
puted using Statistica 64 10. The significant values for the
case C2 were picked out of the full posthoc comparison
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Table 3 The ratio of significant cases to the total number of comparisons for the VQEG HDTV' test and the Adaptive streaming investigation®® as
defined in Sec. 2. The case C2 is the preplanned number of comparisons corresponding to the number of PVS involved in the experiment and the
case C3 is the full posthoc pairwise comparison, see also Sec. 2. The a-level used is 0.05 and the false discovery rate 0.1. The number in paren-

theses is the actual number and is given for some close cases.

Method/experiment No control (%) Bonferroni (%) Holm (%) Tukey HSD (%) Benjamini-Hochberg (%) Benjamini-Yekutieli (%)
VQEG HDTV C2 41 5 (18) 5(19) 6 (21) 31 11

VQEG HDTV C3 82 50 52 60 80 70

Adaptive streaming C2 17 14) 1(4) 0 2 0(1)
Adaptive streaming C3 69 20 21 29 66 50

table, which means the compensation for Type I was higher
than necessary for C2 and gives Tukey HSD a slightly unfair
advantage in this comparison. However, this is a common
implementation of Tukey HSD found in, e.g., both Statistica
and R.

It is possible to take a different view, which has recently
become popular especially in data mining, machine, and
deep learning. There will potentially become a huge number
of comparison and controlling the Type I errors in the tradi-
tional way, will have a very low power. It was the introduced
by Benjamini and Hochberg,*® that instead of trying to con-
trol the risk for Type I errors, the false discovery rate (FDR)
should be controlled. Meaning that we know that some sta-
tistically significant cases may be wrong, but we control the
amount of it to some prescribed level, e.g., 10%. This has led
to much more powerful methods, which we also have com-
pared with Benjamini and Hochberg® and Benjamini and
Yekutieli.** One view that has been put forward is that
one experiment is not performed in isolation, but rather in
a series and then the significant cases can be candidates
for further studies. An example in QoE could be that one
experiment is performed by ACR and a second is followed
using pair comparison to separate the close but significant
cases from the first study.

What we can see from the comparison in Table 3 is that
the traditional posthoc methods give almost the same number
of significant cases, whereas the FDR-based ones give sub-
stantially more significant cases.

The expected standard deviation also has a substantial
impact on the sample size, as shown in the rightmost column
of Table 3. It shows the impact on the sample size if the
expected standard deviation becomes 1.0. For instance,
the number of test subjects needed for C2 for the within
case and MOS difference of 1.0 will increase from 18 to 25.

Not all scales allow for a parametric evaluation and
should be analyzed with nonparametric methods. However,
the parametric test will in most cases have greater power than
the nonparametric tests and would, therefore, act as the limit-
ing case, i.e., at least these number of test subjects would be
required. On the other hand, we have used the Bonferroni
model for compensating, which is perhaps a bit too safe.
In the case where a parametric model can be used the current
simulation may give too conservative numbers, but, for the
nonparametric method, they may be a better match to what is
required. This needs to be further investigated, though, but
has been out of scope in the current investigation.

Our investigation shows that in most cases, the number of
test subjects should increase in comparison with what is

Journal of Electronic Imaging

053013-10

traditionally recommended. That does not mean the experi-
ments cannot be performed using this lower number of test
subjects. If a statistically significant effect is found in a par-
ticular study, it can be reported as existing within the local
context of this study with the safe guards against Type I errors
used, regardless whether the effect can be globally observed
or reproduced. However, there is an obvious risk that signifi-
cant effects will be missed if the number of test subjects are
not preplanned to find effects of a certain size.

In articles about comparisons of performances between
different objective video quality measurement methods, cor-
relations coefficients are often reported with four decimal
digits. The analysis in this paper shows that we could expect
at most two decimal digits to be significant. Furthermore,
comparisons are also reported without supporting statistical
significance tests, and current analysis indicates that many
reported differences in performance have been nonsignifi-
cant unless the number of fitted data points has been
large. If PCC is used as the performance criteria, then this
analysis gives indications of the number of sample videos
that are needed to find reasonably significant differences
between the objective metrics. Similar type of analysis
should also be performed on other performance metrics,
e.g., the root mean squared error and the outlier ratio,
which we intend to do in future work, which then could
be partly based on the work by Nuutinen et al.”

There was hardly any difference when the significance
level was about 0.05, so if just a few pairs are compared
then almost the same conclusions are reached. However, if
the number of comparisons is increased and the significance
level is lowered based on, e.g., Bonferroni to compensate for
Type I errors, then larger and larger differences between the
two methods are revealed. Then, the parametric T-test gives
clearly more significant cases, than nonparametric test.

The consequence of this is that when claiming signifi-
cance based on the T-test based on very low p-values,
where the nonparametric test does not give a significant
value, it becomes much more important to have checked
that the assumptions for a parametric analysis have been met.

5 Conclusion

In this paper, we investigated how to balance the trade-off
between compensating for multiple comparisons and still
have large power, i.e., probability of finding an effect if it
is there, in subjective video quality experiments. The conclu-
sion is that we need to use, in most cases, a larger number of
test subjects, than current recommendations. For studies
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using within-subject design, when preplanning the number
of comparisons to perform and the standard deviation can
be kept sufficiently low, it comes down to the number of
test subjects usually used by VQEG, i.e., 24, or even below.

For objective metric comparisons using correlation coef-
ficients, it is difficult to find any significance with few data
points and correlations below 0.9. In this case, multiple com-
parisons have a large impact on the final conclusions that can
be drawn.

We have also analyzed the difference between parametric
and nonparametric analysis when it comes to taking the deci-
sions whether there is a statistically significant difference in
video quality between two video clips.

We found that there was hardly no difference when few
comparisons are compensated for, i.e., then almost the same
conclusions are reached. When the number of comparisons is
increased, then larger and larger differences between the two
methods are revealed. In these cases, the parametric T-test
gives clearly more significant cases, than the nonparametric
test, which makes it more important to investigate whether
the assumptions are met for performing a certain test.

To provide practical guidance, we have proposed a simple
method to estimate the number of required observers in func-
tion of the planned comparisons and the targeted significant
MOS difference for typical values of subjective evaluations
in video quality.
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