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Abstract: Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function
98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM)
Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray
diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V
parts. The average α lath width decreases with the increase of the speed function at the fixed beam
current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function
98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 ◦C
at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and
hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen
sorption rate at 500 ◦C was in the sample with coarser microstructure manufactured at the beam
current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the
manufactured samples at 650 ◦C was insignificant. The shape of the kinetics curves of hydrogen
sorption indicates the phase transition αH + βH→βH.

Keywords: electron beam melting; additive manufacturing; titanium Ti-6Al-4V alloy; hydrogen

1. Introduction

Titanium and its alloys are widely used as structural materials mainly in aerospace industry due
to low density (light weight), corrosion and fatigue resistance, high-temperature strength, fracture
toughness, and low Young’s modulus [1–3]. Two-phase (α + β) titanium alloys are used to produce
such critical and loaded parts as discs, working and guide blades, compressor rings, and other
components. The operating temperatures of titanium alloys in aircraft engines vary from 120 to
580 ◦C [4,5]. During operation in aggressive environments containing hydrogen and oxygen at high
temperatures, the physical and mechanical properties of titanium alloys significantly deteriorate.
Hydrogen embrittlement is a serious problem for titanium alloy products because they are used
in corrosive environments and are subjected to hydrogenation during operation [6–10]. Hydrogen
absorbed by the products precipitates as a brittle hydride phase, leading to degradation of mechanical
properties of titanium-based alloys. The kinetics and rate of hydrogen embrittlement of metals depends
on many factors: type of crystal lattice, chemical composition, microstructure, defect state, temperature,
the pressure and hydrogen concentration, and others. The study of various factors that influence
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hydrogen absorption by titanium alloys is important for the protection of alloys against hydrogen
embrittlement and improvement of the mechanical properties by thermohydrogen processing [11,12].
The kinetic curves of hydrogen absorption and hydrogen desorption, the P–C isotherms [13,14], titanium
alloy-hydrogen phase diagrams [13,15,16], and changes in microstructure under the influence of
hydrogen are of special interest for investigation. The study of hydrogen absorption by metals and alloys
becomes more important with introduction of new advanced technologies for manufacturing metal
products. Additive manufacturing (AM) is actively introduced to the production of functional parts
made from metal materials such as steel, aluminum, Ni-based superalloys, and titanium alloys [17–20].
Additive manufacturing technologies present a promising direction for manufacturing metal products
directly from metal powder with minimal postprocessing [21–23]. The use of AM offers opportunities
to speed up the manufacturing process, save metal, and produce lighter structures with complex shapes
and geometries that cannot be achieved by traditional methods.

Electron beam melting (EBM) is an additive manufacturing method, where successive layers
of metal powder are melted by high-power scanning electron beam [17,21]. The process takes place
in high vacuum at elevated temperatures, which helps to significantly minimize thermally induced
residual stresses. The structure and properties of the produced part depend on powder composition,
thickness of the part, beam current, beam speed, scanning strategies (including line offset), energy
input, and others. For example, in the Arcam EBM systems used in this study, the actual beam scanning
speed can be controlled by the speed function (SF). Thus, the regularities of structure formation and
evolution, which depend on the additive manufacturing parameters, are of great practical importance
for creating products with a unique set of physical and mechanical properties. A large number of
works have been devoted to investigating the influence of the electron beam melting parameters on
the structure of titanium Ti-6Al-4V parts produced by EBM. It is known that the formation of the
structural-phase state of Ti-6Al-4V alloy occurs as the result of powder melting at the temperature of
1900 ◦C and subsequent rapid cooling to the temperature of ~700 ◦C, followed by cooling to room
temperature. If the titanium product is maintained above 700 ◦C in the EBM manufacturing process,
a rather fine annealed α + β-structure has been observed [24]. The authors noted that the β-grains
originated nonuniformly from the boundary layers either on the built plate or on the surfaces of the
parts during the EBM process. They have been found to be formed from a partially molten powder in
the surrounding layer on the surfaces of the parts. Safdar et al. [25] showed that the prior β phase, in
the form of columnar grains, grows along the build direction and Widmanstätten α platelets are present
in the structure of EBM Ti-6Al-4V alloy. The microstructure and porosity formed in Ti-6Al-4V samples
produced by EBM over a range of melt scan speeds, from 100 mm/s to 1000 mm/s, were investigated
in [26]. It has been shown that the increase in the melt scan rate during the EBM process of oriented
Ti-6Al-4V cylinders reduces the cooling (solidification) rate, which leads to the decreasing α phase
acicular grain width, as well as to the increase of proportion of α’-martensite plate. This refinement of
microstructure improves the microhardness (HV) for the horizontal built cylinders. Correspondingly,
with the increase of the melt scan rate due to the formation of unmelted powder volumes within
the layers, the porosity increases. Al-Bermani [27] and Murr et al. [28] also showed the formation of
martensitic phase in the samples during the EBM process. Juechter et al. [29] investigated the influence
of scanning velocity on the EBM process and showed that the scanning speed up to 6.4 m/s−1 resulted
in dense samples. Hrabe and Quinn demonstrated the effect of the distance from substrate, part size,
energy input, orientation and location on the microstructure, and mechanical properties of Ti-6Al-4V
fabricated by EBM [30]. Guo et al. studied the influence of beam current, scanning velocity, and
scanning line in the range 2–18 mA, 250–2000 mm/s, and 2–50 mm, respectively. The authors found
that there is α‘-martensite within the top region in samples of two types, which indicates that the
primary β phase is first transformed into α‘-martensite and then decomposes into α/β phase [31].
The beam current and scanning velocity strongly influence the energy density and solidification rate.
At the high-energy density, the liquid flows and spreads easier, filling in the pores and leading to a
dense surface free of agglomerates. Tammas-Williams et al. [32] investigated the influence of the filling
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strategy on the formation of defects during EBM. It has been conclusively shown that the pores/defects
are not randomly distributed, as strong correlation has been found with the process parameters and
strategies used to outline (contouring) and infill (hatching) a part section. With the standard built
parameters, it has been found that the vast majority of voids were small spherical gas pores. Wang [33]
studied the impact of scanning velocity (speed function 20, 36, 50, and 65) on the microstructural
variations and orientation. The authors found that the samples produced at SF50 have the highest
Vickers hardness and elastic modulus, which results from its finest microstructure and the weakest
texture. Antonysamy et al. investigated the effect of built geometry on the grain structure and texture
in the EBM Ti-6Al-4V samples [24]. Thus, the structure evolution and properties of titanium alloys
significantly depend on the manufacturing parameters. At the same time, the microstructure and phase
composition make the main contribution to the metal–hydrogen interaction. The effect of hydrogen
treatment on the structure and mechanical properties of the samples made from Ti-6Al-4V powder by
selective laser melting method were reported in [11]. However, hydrogen sorption behavior of SLM
Ti-6Al-4V has not been studied by the authors. Moreover, there is no data about hydrogen sorption
by additively manufactured titanium alloys, nor about the influence of manufacturing parameters
on hydrogen interaction with AM Ti-6Al-4V. The purpose of this work is to study the influence of
manufacturing parameters of electron beam melting on microstructure and hydrogen sorption behavior
of EBM Ti-6Al-4V parts.

2. Materials and Methods

2.1. Samples Preparation

Titanium Ti-6Al-4V parts produced by the method of electron beam melting were investigated in
this work. The parts were produced with ARCAM A2 EBM (Arcam AB, Mölndal, Sweden) machine
using powder of titanium Ti-6Al-4V alloy (Ti6Al4V ELI) [34]. The powder was purchased from Arcam
AB and has an average grain size distribution from 50 to 150 µm. The samples were coin-shaped with
the diameter 8 mm and height 2 mm. All used samples were manufactured in the same batch with the
build direction parallel to the round surface. Powder layer thickness was 70 µm. The manufacturing
parameters are shown in Table 1. All the samples were carefully blasted in the Arcam powder recovery
system using the same precursor powder. Then, all the samples were mechanically grinded to obtain
homogeneous surface.

Table 1. Electron beam melting parameters.

Sample Beam Current (BC), mA Speed Function (SF) Beam Speed, mm/s

S1 17 85 3227.7
S2 15 85 2797.6
S3 13 85 2797.6
S4 17 98 3218.8

2.2. Experimental Procedure

The gas-phase hydrogenation of the samples was performed using gas reaction controller (AMC,
Pittsburgh, Pennsylvania, PA, USA) equipment at the temperatures 500–650 ◦C at constant pressure
1 atm. The special software (AMC, Pittsburgh, Pennsylvania, PA, USA) for the gas reaction controller
equipment was used to control and analyze the process of hydrogen sorption and reveal the specifics
of hydrogen interaction with materials [35]. After hydrogenation, the samples were incubated in an
inert gas atmosphere at the temperature of 650 ◦C and pressure 2 atm for 2 h in order to achieve
uniform distribution of hydrogen in the volume. The heating and cooling rates were 6 ◦C/s and 1 ◦C/s,
respectively. The hydrogen concentration in the samples was measured by the method of melting
in inert gas media (argon) using a hydrogen analyzer RHEN602 (LECO, Saint Joseph, Michigan, MI,
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USA). Hydrogen concentration in the samples before hydrogenation was 0.008 wt %. The measured
hydrogen concentrations in the samples after hydrogenation were 0.3 wt %.

Microstructure of the samples was analyzed by optical microscopy (OM) using
AXIOVERT-200MAT (Zeiss, Göttingen, Germany) in the center of collective usage “Nanotech”, ISPMS
SB RAS. Additionally, the detailed microstructure analysis was performed by scanning electron
microscopy using S-4800 (Hitachi, Tokyo, Japan). The samples were etched out by Kroll’s reagent
(2 mL HF, 6 mL HNO3 and 92 mL H2O) to reveal the structure of the samples after mechanical
polishing. The phase identification and structural investigations were performed by X-ray diffraction
(XRD). X-ray diffraction studies were performed with CuKα radiation (1.5410 Å wavelength) using
XRD-7000S diffractometer (Shimadzu, Kyoto, Japan) in Bragg-Brentano geometry from 30◦ to 80◦ with
the scan speed of 10.0◦/min, the sampling pitch of 0.0143◦, and the preset time of 42.972 s at 40 kV and
30 mA. The diffraction patterns were collected using OneSight wide-range array high speed detector
with 1280 channels.

3. Results

3.1. Microstructure of EBM Ti-6Al-4V Samples

Figure 1 shows the optical images of the samples structure. A lamellar microstructure with fine
α laths, which formed as a result of rapid cooling from the high-temperature β phase, is observed
in all the EBM Ti-6Al-4V samples. The microstructure is characterized by the presence of relatively
large prior β-grains (width varies from 40 to 100 µm). The internal volume of β-grains is separated
by α-plates collected in colonies. The formation of colonies is attributed to the fact that the β→α

transformation begins independently in several sections of the prior β phase grains.
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Figure 1. Optical microscopy images of microstructures of sample: (a) S1; (b) S2; (c) S3; (d) S4. 

The detailed structure analysis along with the distribution of α lath width, obtained using 
scanning electron microscopy, is shown in Figure 2. The body-centered cubic structure of β phase in 
EBM-built Ti-6Al-4V formed as discrete flat rods embedded in the continuous α phase with 
hexagonal close-packed structure (Figure 2). The thicker α lath is observed in the samples prepared 

Figure 1. Optical microscopy images of microstructures of sample: (a) S1; (b) S2; (c) S3; (d) S4.
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The detailed structure analysis along with the distribution of α lath width, obtained using
scanning electron microscopy, is shown in Figure 2. The body-centered cubic structure of β phase in
EBM-built Ti-6Al-4V formed as discrete flat rods embedded in the continuous α phase with hexagonal
close-packed structure (Figure 2). The thicker α lath is observed in the samples prepared at beam
current 17 mA and speed function 85 (Figure 2a). In this case, besides the width of α laths in
the structure is mainly 0.4–0.6 µm, larger α plates with the width of 1.4–1.6 µm are also observed
(Figure 2a,c). The thinner α plates are observed in the sample prepared at the beam current 17 mA
and speed function 98 (Figure 3b,d). The structure of this sample comprises plates predominantly
with a width of 0.2–0.5 µm (Figure 3b,d). It was found that the average size of α plates decreases with
increasing speed function with a constant value of beam current (17 mA) (Figure 2a–c). Reduction
of the beam current from 17 to 13 mA at the fixed SF85 leads to the decrease in the dimensions of
the α plates, but this effect is less noticeable in comparison with the effect of the increase of the
speed function.
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Figure 2. SEM images of the samples (a,b) and histogram (c,d) of the thickness distribution of α plates,
respectively: (a,c)—S1; (b,d)—S2.

Figure 4 shows the results of X-ray diffraction analysis of electron beam melted Ti-6Al-4V parts
at different manufacturing parameters (see Table 1). The phase content and lattice parameters are
presented in Table 2. According to XRD analysis, the α-Ti (α′-Ti) phase with hexagonal close-packed
(hcp) lattice and β-Ti phase with body-centered cubic (bcc) lattice were observed in all the samples. It
is impossible to perceive the differences between α-Ti and α′-Ti in the EBM samples using XRD [35,36].
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The change in electron beam melting parameters does not significantly affect the structure and phase
composition of the additively manufactured Ti-6Al-4V samples. The content of β phase in the samples
varies from 2.4 to 3.1 vol %. The accuracy of XRD analysis does not allow revealing of the peculiarities
of the EBM parameters’ effect on the formed β titanium phase content. It is assumed that within the
indicated range, the change in the parameters does not significantly influence the phase composition
of the EBM samples. It is known that the α-Ti to β-Ti ratio can be controlled by different heat treatment
temperatures and cooling rates [37]. In this investigation, the cooling rates of the electron beam melted
samples were the same.
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Table 2. Phase composition and lattice parameters in the electron beam melting (EBM) samples.

Sample Phase Phase Content, vol % Lattice Parameters, Å c/a

S1
Ti_hexagonal 96.9 A = 2.9253 c = 4.6709 1.597

Ti_cubic 3.1 A = 3.1954 -

S2
Ti_hexagonal 97.1 A = 2.9248 c = 4.6717 1.597

Ti_cubic 2.9 A = 3.1905 -

S3
Ti_hexagonal 97.6 a = 2.9253 c = 4.6720 1.597

Ti_cubic 2.4 a = 3.1926 -

S4
Ti_hexagonal 97.1 a = 2.9245 c = 4.6710 1.597

Ti_cubic 2.9 a = 3.1911 -
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manufacturing parameters.

3.2. Hydrogen Sorption

Figure 5a,b show the hydrogen sorption curves by the samples at temperatures of 500 and 650 ◦C,
respectively. The intensity of the hydrogen sorption process is characterized by the angle of inclination
of the kinetic curves “hydrogen concentration–hydrogenation time”. There are changes in the slope on
the sorption curves at 500 ◦C that were caused by the change of hydrogen diffusion rate in the material
due to phase transitions. It is possible to determine the boundaries of single-phase and two-phase
regions of the system by changing the slope of the curves [13]. Thus, the changes in slope and plateaus
on the kinetic curves of hydrogen sorption are associated with phase transitions. This transition occurs
as follows: αH +βH→βH, which in accordance with the (Ti-6Al-4V)-H phase diagram and literature
data under the experimental conditions [13]. Thus, the formation of hydrogen solid solution in the
α and β phases occurs at the initial stage. Then, the transition to β phase occurs when a certain
concentration is reached.
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The kinetic curves of hydrogen absorption at the temperature of 500 ◦C for the samples
produced under different parameters differ significantly. Under the experimental conditions, sample
S4 manufactured at the beam current 17 mA and SF 98 absorbed hydrogen most intensely. The specified
hydrogen concentration of 0.3 wt % was achieved in 170 min, whereas it took 270 min in sample
S1 produced with the beam current 17 mA and SF 85. There is the correlation between the sorption
rate and the microstructure of the EBM Ti-6Al-4V samples. Reduction of the α plate size leads to the
increase in the average hydrogen sorption rate.

The increase in the hydrogenation temperature to 650 ◦C leads to the significant increase in the
rate of hydrogen absorption by the samples (Figure 5b). In this case, the difference in the rate of
hydrogen absorption by the samples manufactured under different parameters practically disappears.

4. Discussion

The formation of the microstructure and the phase state of Ti-6Al-4V alloy occurs as the result
of powder melting at the temperature of 1900 ◦C and subsequent rapid cooling to the temperature
of ~700 ◦C followed by cooling to room temperature [24]. At the same time, Antonysamy [24] noted
that the growth rate, temperature gradient, melt pool shape, travel speed, undercooling, and alloy
constitution will all control the final microstructure of a solidifying melt pool in AM. The rapid cooling
of the lamellar structure below the β transus results in the formation of finer laths and smaller α

colonies, whereas slow cooling results in thick α laths and coarse α colonies, typically observed in
castings [38,39]. The increase in the speed function from 85 to 98 with the fixed beam current (17 mA)
leads to the decrease in the average size of α plates according to the microstructure studies carried out
and discussed in this paper. It has been established in [40] that the molten pool length was found to
decrease with the speed function index increase; the width appeared to decrease with increasing speed
function. Thus, the structure refinement performed within the present work with the increase of the
speed function is due to the decrease of the molten pool length, respectively. Meanwhile, the smaller
the melt pool width, the greater the cooling rate. It has been established in [41] that the highest beam
current results in the largest molten pool size. Thus, the reduction of the beam current from 17 to
13 mA with the fixed SF causes the decrease of the size of the α plates due to the lower molten pool
size and, correspondingly, higher cooling rate.

The structure formed as the result of electron beam melting has a significant effect on the kinetics of
hydrogen absorption by the samples (Figure 5a). The kinetics of hydrogen absorption by titanium alloys
is significantly affected by the grain size and shape and the fraction and distribution of the β phase.
Samples with fine grains absorb hydrogen more intensely than samples with large grains [42]. Titanium
having a structure consisting of elongated grains absorbs a predetermined amount of hydrogen several
times faster than titanium having an equiaxed structure [42,43]. Tal-Gutelmacher [44] reported that
the absorbed hydrogen concentration in the fully lamellar alloy is always higher than in the duplex
microstructure, irrespective of the hydrogen charging conditions. It has been shown that the diffusion
of hydrogen along grain boundaries (GBs) occurs much faster (by four orders of magnitude) compared
to α phase [45]. Gaddam et al. [46] supposed lower hydrogen diffusivity through EBM Ti-6Al-4V
with smaller α lamellar colonies and less continuous β phase compared to cast Ti-6Al-4V with long
continuous β phase. However, the effect of GBs (including boundaries between α platelets in colonies)
and β phase distribution on H diffusion in ultrafine microstructures has not been revealed. In the current
work, average hydrogen sorption rate is compared among EBM Ti-6Al-4V alloy samples with different
microstructures. The samples with finer microstructure demonstrate higher average hydrogen sorption
rate due to the decreased size of α plates and the corresponding distribution of β phase (increased
number of β rods between the α plates). Moreover, there is significant difference in the hydrogen
sorption behavior (Figure 5a), which could be affected by several factors: number of GBs, β phase
content, and distribution as well as size of α laths. In the α+β titanium alloys, the amount of β phase
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significantly affected the diffusion of hydrogen, even at low β phase content. The diffusion coefficient
of hydrogen in different titanium phases as the function of temperature was reported in [47,48]:

Dα = 3× 10−6 exp [
−14700± 650

RT
] (1)

Dβ = 1.95× 10−7 exp [
−6640± 500

RT
] (2)

where D is the diffusion coefficient (m2/s), R is the gas constant (cal mol−1 K−1), T is the
temperature (K). It has been noted that the diffusion of hydrogen in Ti-6Al-4V significantly depends on
microstructure and β phase content and could vary from 10−13 to 10−10 m2/s at 20 ◦C [49]. According
to these equations, the calculated values of H hydrogen diffusion in titanium at 500 ◦C (773 K) are
Dα = 2.1 × 10−10 m2/s and Dβ = 2.6 × 10−9 m2/s. Thus, hydrogen preferentially diffuses through
the β phase and interacts with α phase along the α/β boundaries. Nevertheless, we suppose that the
hydrogen also has a high diffusion rate not only for the GBs of primary β phase, but also between the
boundaries of α plates, which mainly consist of β phase rods. The visible change of hydrogenation
behavior (the curves shape demonstrated in Figure 4) indicates different sorption processes. At the
initial stage, hydrogen mainly diffuses through the β phase and GBs, with α phase reaching the
saturation concentration of αH+βH phases. Then, the transition of αH + βH→βH accompanied with the
increase in the hydrogen absorption rate (after plateau in Figure 5) is observed. A similar observation
was reported in [14]. It is supposed that the difference between the hydrogen concentration of phase
transition αH + βH→βH is caused by β phase content and defect structure of the material, while the
dimensions of α phase plates and β phase distribution are caused by the width of phase transition.
In other words, smaller α plates and developed β boundaries (β rods) between the α plates can
promote fast diffusion of hydrogen and saturation of individual α plates. Thus, the width of phase
transition is higher in the sample with coarse microstructure (1) and negligible in the sample with
fine microstructure (4). With the temperature increase to 650 ◦C, change in the behavior of kinetic
curves of hydrogen absorption can be explained by significant increase of the diffusion rate in α

phase (Dα = 1 × 10−9 m2/s), while the diffusion rate in β phase comprises Dβ = 5.3 × 10−9 m2/s.
The change in the hydrogen sorption behavior with increasing hydrogenation temperature to 650 ◦C is
attributed to enhanced hydrogen diffusion in α phase (Dα = 1 × 10−9 m2/s), while the diffusion in the
β phase is Dβ = 5.3× 10−9 m2/s. The increase of the temperature to 650 ◦C reduces the transformation
time of αH + βH→βH, which is confirmed by disappearance of the plateau on the kinetic curves
(Figure 5b). Moreover, the given concentration of hydrogen is achieved in a short time (2–3 min.).
Thus, at the temperatures of 650 ◦C and above, the difference in the microstructure of the samples does
not significantly affect the kinetics of hydrogen absorption.

5. Conclusions

The influence of manufacturing parameters (beam current and speed function) on microstructure,
phase composition, and hydrogen sorption kinetics of the Ti-6Al-4V parts produced by electron beam
melting has been investigated. The following points have been highlighted:

1. The average α lath width decreases with the increase of the speed function at the fixed beam
current (17 mA). At the fixed speed function, the decrease of the α lath width also occurs when
changing the beam current from 17 to 13 mA. Finer microstructure has been formed at the beam
current (BC) 17 mA and speed function 98, while coarser microstructure has been formed at
17 mA and 85, respectively. The bcc β phase in EBM Ti-6Al-4V has been formed as discrete flat
rods embedded in the continuous hcp α phase. The phase composition of the samples changes
insignificantly at the varied parameters. The content of β phase varies from 2.4 to 3.1 vol %.

2. Microstructure has significantly affected hydrogen sorption kinetics of EBM Ti-6Al-4V parts
during the gas-phase hydrogenation at 500 ◦C. The average hydrogen sorption rate was higher
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in the sample manufactured at BC 17 mA and SF 98 due to finer microstructure (finer α lath)
and distribution of β phase. Lower hydrogen sorption was demonstrated in the sample with BC
17 mA and SF 85. The shape of the kinetics curves indicates the phase transition αH + βH→βH,
which depends on the dimensions of α plates and β phase content and distribution.

3. Hydrogen sorption kinetics at 650 ◦C has not significantly changed at the indicated manufacturing
parameters due to the increase of hydrogen diffusion in α phase. Thus, the transition αH +
βH→βH proceeds rapidly as compared to hydrogenation at 500 ◦C. The hydrogenation time to
0.3 wt % is about 2–3 min.
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