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As geographers, Sosius, crowd into the edges of their maps
parts of the world which they do not know about, adding notes
in the margin to the effect, that beyond this lies nothing but
sandy deserts full of wild beasts, unapproachable bogs, Scythian
ice, or a frozen sea, so, in this work of mine, in which I have
compared the lives of the greatest men with one another, after
passing through those periods which probable reasoning can
reach to and real history find a footing in, I might very well
say of those that are farther off, beyond this there is nothing
but prodigies and fictions, the only inhabitants are the poets
and inventors of fables; there is no credit, or certainty any farther.

- Plutarch, Lives of the Noble Greeks and Romans

DON’T PANIC!

- Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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Abstract

The digital camera is the technological counterpart to the human eye, enabling the
observation and recording of events in the natural world. Since modern life increas-
ingly depends on digital systems, cameras and especially multiple-camera systems
are being widely used in applications that affect our society, ranging from multime-
dia production and surveillance to self-driving robot localization. The rising interest
in multi-camera systems is mirrored by the rising activity in Light Field research,
where multi-camera systems are used to capture Light Fields - the angular and spa-
tial information about light rays within a 3D space.

The purpose of this work is to gain a more comprehensive understanding of how
cameras collaborate and produce consistent data as a multi-camera system, and to
build a multi-camera Light Field evaluation system. This work addresses three prob-
lems related to the process of multi-camera capture: first, whether multi-camera cal-
ibration methods can reliably estimate the true camera parameters; second, what
are the consequences of synchronization errors in a multi-camera system; and third,
how to ensure data consistency in a multi-camera system that records data with syn-
chronization errors. Furthermore, this work addresses the problem of designing a
flexible multi-camera system that can serve as a Light Field capture testbed.

The first problem is solved by conducting a comparative assessment of widely
available multi-camera calibration methods. A special dataset is recorded, giving
known constraints on camera ground-truth parameters to use as reference for cali-
bration estimates. The second problem is addressed by introducing a depth uncer-
tainty model that links the pinhole camera model and synchronization error to the
geometric error in the 3D projections of recorded data. The third problem is solved
for the color-and-depth multi-camera scenario, by using a proposed estimation of the
depth camera synchronization error and correction of the recorded depth maps via
tensor-based interpolation. The problem of designing a Light Field capture testbed is
addressed empirically, by constructing and presenting a multi-camera system based
on off-the-shelf hardware and a modular software framework.

The calibration assessment reveals that target-based and certain target-less cali-
bration methods are relatively similar at estimating the true camera parameters. The
results imply that for general-purpose multi-camera systems, target-less calibration
is an acceptable choice. For high-accuracy scenarios, even commonly used target-
based calibration approaches are insufficiently accurate. The proposed depth uncer-

vii



viii

tainty model is used to show that converged multi-camera arrays are less sensitive
to synchronization errors. The mean depth uncertainty of a camera system corre-
lates to the rendered result in depth-based reprojection, as long as the camera cali-
bration matrices are accurate. The proposed depthmap synchronization method is
used to produce a consistent, synchronized color-and-depth dataset for unsynchro-
nized recordings without altering the depthmap properties. Therefore, the method
serves as a compatibility layer between unsynchronized multi-camera systems and
applications that require synchronized color-and-depth data. Finally, the presented
multi-camera system demonstrates a flexible, de-centralized framework where data
processing is possible in the camera, in the cloud, and on the data consumer’s side.
The multi-camera system is able to act as a Light Field capture testbed and as a com-
ponent in Light Field communication systems, because of the general-purpose com-
puting and network connectivity support for each sensor, small sensor size, flexible
mounts, hardware and software synchronization, and a segmented software frame-
work.
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Mathematical Notation

The notation basis, using "a" as placeholder variable, is as follows:

a Scalar "a"
a⃗ Vector "a"
−→a Ray "a"
A Matrix "A"
∆a Variable related to "a".
max a Maximum of "a"
a ̸= A Likewise, a⃗ ̸= A⃗,−→a ̸=

−→
A,a ̸= A,∆a ̸= ∆a

The following terms are used in this work:

c⃗ Pixel coordinate point in the form (x, y, 1)T

C⃗i Spatial position of camera i (defined by camera’s optical center
point) in a 3D coordinate system

E⃗ A moving point (object) in 3D space, recorded by a camera or
array of cameras

E⃗i,n 3D position of the point E⃗, as recorded by camera i in its n-th
frame

fx, fy Focal lengths of a lens in the x and y axis scales, respectively
H Homography matrix in projective geometry
i, j Indices of cameras recording a scene
In Image (frame) recorded at time tn
k Index with local meaning
Ki The intrinsic matrix of camera i

m⃗ Shortest vector connecting two rays −→p j ,
−→p i

n Index with local meaning
−→p i Ray with origin at optical center of camera i

p⃗i Vector with normalized magnitude and same direction as ray −→p i

Pi Projective matrix of camera i

Ri The rotation matrix of camera i

s Skew factor between the x and y axes of a camera sensor
t Time
ti,n Time (t) when camera i records the n-th image (frame)
ti,n,n+1 Time between camera i’s recordings of the n-th and (n + 1)-th

frames
T Transpose operator
v Speed
max vE⃗ Maximum possible speed of E⃗
Vn,n+1 A tensor describing how an image recorded at tn changes to an

image recorded at tn+1
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Vn,n+1(x, y) A vector [∆x,∆y,∆z] located at position (x, y) in the tensor Vn,n+1

Vn,n+1(x, y, 1) The first component of the vector given by Vn,n+1(x, y)

x, y Coordinates in a two-dimensional system
x0, y0 The x and y position of a camera’s principal point on the camera

sensor
X,Y, Z Coordinates in a three-dimensional system
z Value (magnitude) of a pixel
δn Normalized time difference between two adjacent frames, n and

n+ 1

∆d Depth uncertainty (amplitude of possible distances between the
camera and E⃗)

∆d Mean depth uncertainty
∆t Synchronization offset (error) between cameras recording E⃗

∆x,∆y Difference in x, y position of a moving pixel
∆z Difference in z value of a moving pixel
θ Angle between two rays recording E⃗

λ Scale factor relating a coordinate system unit to a real-world dis-
tance unit

νi Framerate of camera i



Chapter 1

Introduction

For humans, a fundamental way of understanding the world is through sight and
observation; visual information is one of the main inputs for the human mind to
interpret events of the real world. As human technology advances, so do the tools
with which the real world is observed. Cameras, which serve as artificial counter-
parts to the eyes, have found application in all aspects of modern life - work, study,
entertainment. In particular, systems of multiple cameras (multi-camera systems) have
become prevalent in such wide-ranging fields as multimedia production, scientific
research, surveillance, and robotics.

Multi-camera systems form a significant area for research. They have advanced
rapidly, driven by improvements in digital camera technology, progress in computer
vision, developments in computer engineering and Light Field theory, and the rising
popularity of Virtual Reality (VR) and Three-Dimensional (3D) media entertainment
[Zon12, Fit12]. This chapter explains why investigating multi-camera systems is im-
portant, introduces the purpose and scope of this investigation into multi-camera
systems, and lists the goals and contributions of this work.

1.1 Motivation

1.1.1 Applications of Multi-Camera Systems

Multimedia, surveillance, machine vision, and behavioral science - there can be no
doubt that all these fields have a significant impact on modern life. Visual me-
dia entertainment not only provides one of the primary ways to spend free time
[SWR96, BBRP12], but also greatly affects how "alive" devices such as computers
and television sets seem to the human mind [RN96]. Surveillance, for better or for
worse, is fast becoming a de-facto standard in public spaces, affecting the social and
criminal dynamics of modern cities [BAW13, KA14, Yes06]. Machine vision is set
to permanently become a mainstay of everyday life, by virtue of self-driving cars
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2 Introduction

[LFP13, HD14] and face-recognizing smartphones [HHSP07]. Behavioral science is
the study of human and animal interactions and behavior, and can explain daily hu-
man activities [MHT11, JWK09]. These fields provide examples for the application
of multi-camera systems:

• In surveillance, the use of multi-camera systems provides multi-viewpoint cap-
ture to record events behind occlusions, improve observed area coverage, and
increase the level of recorded detail [OLS+15]. Virtual reconstruction of real
environments is likewise a driving factor for using multi-camera systems in
the context of surveillance [DBV16].

• In robot and machine vision, Simultaneous Localization and Mapping (SLAM)
methods tend to use systems of imaging and range-finding sensors to both
map the environment [HKH+12] and localize the moving system’s position
[KDBO+05, KSC15], thereby enabling autonomous movement or flight [HLP15,
LFP13].

• In non-imaging research contexts, multi-camera systems are used to record hu-
man activities and movements in order to analyze social behavior [JLT+15a]
and improve human activity classification [OCK+13]. In addition, multi-camera
systems are employed to discreetly record the movement of animals in 3D
space [SBND10, TFJ+14].

• Last but not least, in entertainment and media production, multi-camera sys-
tems are used for purposes ranging from visual effects editing and cinematic
capture [LMJH+11, ZEM+15] to producing 360-degree video content for VR
via commercial products such as PanoCam3D [Pan17], Vuze 3D [tL17], Face-
book Surround 360 [Fac17] and Google Jump [Goo17].

As these examples demonstrate, multi-camera systems find use in fields that
have a significant and clear impact on society. Specific end-user applications may
change; however the need for multi-camera systems themselves is unlikely to dis-
appear in the foreseeable future, given the sheer variety of applications enabled by
multi-camera systems. Moreover, multi-camera systems share a set of common prop-
erties and processes that can be investigated and improved upon. As long as inves-
tigations are focused on multi-camera systems themselves, the context and potential
impact of the research remains connected to the broad range of end-user applications
and through them, to society at large.

1.1.2 Light Fields and Plenoptic Capture

Research on multi-camera systems is most closely connected to Light Fields [LH96,
GGSC96] and the plenoptic function [AB91], both of which present ways to model
and represent the data recorded by multi-camera systems as a continuous whole.
The plenoptic function is a light-ray based model that represents the full visual in-
formation that can be recorded about a 3D space. The plenoptic function describes
the intensity of light rays at any 3D position, in any direction, at any time, and at
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any light wavelength. A single camera can record a subset of the plenoptic function
- a range of wavelengths at specific time instants, in a range of directions, cross-
ing a single position in space. Recorded wavelength range can be changed by us-
ing different filters and detector technologies. The rate of sampling time (camera
framerate) can be varied depending on sensor and shutter technology. The range
of observed light ray directions can be affected by the choice of lenses. However,
multi-position recording is possible by increasing the number of cameras, i.e. by
using a multi-camera system, or by using special optical structures implemented in
plenoptic cameras [NLB+05].

The Light Field [LH96] and the Lumigraph [GGSC96] are two similar parameter-
izations of a four-dimensional subset of the plenoptic function, encoding the set of
light rays crossing a space between two Two-Dimensional (2D) planes. With grow-
ing commercial interest in 3D Television (3DTV) and VR, advances in Light Field
research have led to advances in multi-camera system development for Light Field
capture. Moreover, the focus on Light Fields has led to treating sets of multiple cam-
eras as larger singular entities, namely, multi-camera systems.

1.2 Purpose Statement

Multi-camera systems are important tools in a wide range of research and engineer-
ing disciplines. However, the functionality of multi-camera systems covers more
than just the in-camera data recording. There are a number of operations and pro-
cesses that take place before and after the recording. These processes are related to
designing and constructing multi-camera systems, ensuring that components in the
system operate in collaboration with each other, and ensuring information consis-
tency in the recorded data. Without such processes, there are merely sets of indi-
vidual cameras, not dataset-producing multi-camera systems. The overall purpose
of this work is to contribute to a more comprehensive understanding of how cam-
eras can collaborate and produce consistent data, and how pre-recording and post-
recording processes contribute to the design and operation of multi-camera systems
used for Light Field capture.

1.3 Scope

This work is conducted within the empirical, post-positivist research paradigm, and
relies on quantitative research methods. The scientific field of this work is 3D and
Light Field research: an intersectional research area situated between computer en-
gineering, computer vision, and multimedia signal processing. The surrounding
context of this work is the design of a Light Field Communication System, for which
this thesis considers a limited number of research problems related to 3D and Light
Field acquisition. Problems related to Light Field representation, encoding, distribu-
tion and displaying are beyond the scope of this thesis. Figure 1.1 (top) illustrates
the high-level structure of a 3D and Light Field communication system. The parts of
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Figure 1.1: Graphical representation of end-to-end Light Field systems, where scene acquisi-
tion is performed by multi-camera systems. Color highlights show the focus of this study.

the system that are are within the scope of this work are highlighted.

This study focuses on multi-camera systems as the technology for 3D scene ac-
quisition, specifically considering video recording with Color-only (RGB) and depth
cameras. There exist alternatives for Light Field data capture, such as plenoptic cam-
eras [NLB+05, LG09] and cameras mounted on moving gantries [VDS+15]; such al-
ternatives are outside the scope of this thesis.

Figure 1.1 reveals how multi-camera systems fit into the context of end-to-end
Light Field systems. End-to-end Light Field systems are systems that record a 3D
scene and create its replica. Multi-camera systems consist of the sensors together
with supporting hardware, which provide the environment for data acquisition and
storage (recording). Besides the recording process, there are pre-recording and post-
recording operations that enable data production with the multi-camera system.

This thesis is centered on the construction of a multi-camera system, and on spe-
cific processes within the pre-recording and post-recording blocks. Investigations
into multi-camera system construction are focused on advances in the system’s log-
ical and software framework. The system hardware is limited to commonly avail-
able sensors, computers, and data transmission technologies. Investigations into the
pre-recording and post-recording processes are focused on camera calibration and
synchronization, due to the importance of both processes in the operation of multi-
camera systems. The thesis does not seek to introduce new camera calibration meth-
ods, given the abundance of existing solutions in numerous, standardized computer
vision libraries and frameworks. In this work, multi-camera calibration is addressed
as a pre-recording operation, and multi-camera system synchronization is addressed
through discrete pre-recording and post-recording processes.

1.4 Concrete and Verifiable Goals

In order to fulfill the purpose stated in section 1.2 and produce knowledge on multi-
camera systems within the work’s scope, goals are defined according within three
areas of research: multi-camera system construction, multi-camera calibration, and
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Goal 1: Multi-Camera System Testbed Design & Construction

Goal 2: Camera Calibration

Goal 3: Consequences of

Synchronization Errors

Goal 4: Solution for 

Synchronization Errors

Figure 1.2: A graphical representation of the goals defined for this thesis. Full arrows show
explicit influence between goals, and dashed arrows show indirect influence.

multi-camera synchronization. The primary goal of this work is to design and con-
struct a Light Field Evaluation System. This system has to be a multi-camera setup
that is flexible in its construction, in order to allow investigations and assessments
of Light Field capture and communication. Achieving this goal fulfills the research
purpose stated in section 1.2, and produces a testbed system that enables further
research in Light Field capture. The primary goal is defined as follows:

• Goal 1: Design and construct a flexible multi-camera system testbed.

The calibration and synchronization research directions are pursued in parallel
with Goal 1, and are designed to contribute to the main goal (Goal 1) of multi-camera
system development. Figure 1.2 shows the relation between the main goal and the
parallel goals (Goal 2, Goal 3, Goal 4). Each of the parallel goals is a separate inves-
tigation. The goals related to calibration and synchronization are defined as follows:

• Goal 2: Investigate the advantages and drawbacks of multi-camera calibration
solutions, and assess the ability to recover the true camera parameters via cali-
bration. This goal is addressed through the following research questions:

– Research question 2.1: How good are the commonly used calibration
methods at recovering the true camera parameters that are represented
by the pinhole camera model?

– Research question 2.2: Can targetless calibration methods recover the
true camera parameters as effectively as target-based calibration meth-
ods?

• Goal 3: Investigate the consequences of inaccurate synchronization before or
during recording in a multi-camera system. This goal is addressed through the
following research questions:

– Research question 3.1: How do errors in camera-to-camera synchroniza-
tion affect the multi-camera system’s ability to record scene depth?

– Research question 3.2: Is the effect of synchronization errors compounded
by camera positioning?
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• Goal 4: Propose a multi-camera synchronization solution for scenarios when
accurate synchronization before or during recording is not possible. This goal
is addressed through the following research questions:

– Research question 4.1: How accurately can the true synchronization error
in a multi-camera system be estimated?

– Research question 4.2: Can the re-synchronization process correct the
recorded data, and thereby sufficiently approximate synchronously recorded
data, by compensating the estimated synchronization error?

1.5 Outline

This thesis is structured as follows. A background to multi-camera systems is pro-
vided in Chapter 2. Investigations into selected parts of multi-camera capture -
synchronization, calibration, re-synchronization - are described in Chapters 3, 4,
and 5. These three chapters include the individual problem descriptions and pro-
posed solutions that relate to the goals of this thesis and the contributions of this
work. Chapter 6 details the Light Field Evaluation (LIFE) system implementation
and framework. The results of the LIFE system and the three investigations are noted
in Chapter 7, organized according to the respective contributions. Finally, Chapter
8 concludes the thesis, covering the outcomes, impact, and future directions of the
presented work.

1.6 Contributions

The contributions on which this dissertation is based are the previously listed pa-
pers, included in full at the end of this work. As the first author of papers I, II, III
and IV, I am responsible for the ideas, methods, test setup, implementations, anal-
yses, writing, and presentation of the research work and results. For paper III, Y.
Gao as the second author shared responsibility for implementation of synchroniza-
tion methods, test dataset production, result analysis, and presentation of sections
related to the test datasets and test setup calibration. For paper IV, M. Kjellqvist and
I worked together on the software implementation. Z. Zhang and L. Litwic devel-
oped the cloud system and contributed to the communication interface definitions
for the implemented system. The remaining co-authors contributed with advice and
guidance throughout the research process of the respective papers. Details concern-
ing the authors’ roles and contribution are given in Chapter 7. The general purpose
of each contribution is as follows:

Paper I presents a new method for modeling consequences of camera synchro-
nization errors, and uses the new model to address general multi-camera system
setup questions. Paper II investigates the performance of several widely available
multi-camera calibration methods. Paper III returns to the question of camera syn-
chronization, and presents a method for estimating and correcting the results of in-
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correctly synchronized multi-camera recordings. Paper IV introduces the high-level
framework for a flexible end-to-end Light Field testbed (LIFE system), and provides
the details about implementation of the LIFE system.



8



Chapter 2

Multi-Camera Capture

The previous chapter discussed the scope of this thesis, and mentioned how multi-
camera systems are used for various applications, from surveillance and autonomous
machine vision to entertainment and scientific data production. This chapter de-
scribes multi-camera systems, and the different stages of the capture process. More-
over, multi-camera systems rely on the pinhole camera model to enable geometric
projection of recorded images. The pinhole camera model is therefore also described
in this chapter.

2.1 Multi-Camera Systems

A multi-camera system is a collection of cameras recording the same scene from
multiple viewpoints. Because the cameras are coordinated, the recorded data are
consistent and the same scene is observed by all the cameras. The use and research
of multi-camera systems began shortly after the introduction of consumer digital
cameras in the 1990s. Two notable early multi-camera systems were the "3D Dome"
[KRN97], designed to record an enclosed scene from all directions, and the "Sea of
Cameras" room for virtual teleconferencing [FBA+94]. These enclosed-space camera
configurations were soon replaced by planar arrays of homogeneous cameras, exem-
plified by the Light Field video cameras of Wilburn et al. [WSLH01] and Yang et al.
[YEBM02]. The change in camera layout also introduced a change in the purpose of
multi-camera systems. The inward-facing multi-camera systems were designed for
digitizing an enclosed scene as a 3D model, whereas the planar camera arrays were
designed to record Light Fields from one general direction.

These multi-camera systems were stand-alone devices, designed to record im-
ages and video to local storage for subsequent processing and use. Another class of
3D recording systems were the end-to-end systems, such as [YEBM02, MP04, BK10].
These end-to-end systems combined multi-camera systems and various 3D presen-
tation devices to show a "live" system with 3D scene input and 3D output.

9
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Figure 2.1: Capture process in multi-camera systems, from 3D scene to a dataset.

The next stage in the development of multi-camera systems was characterized by
a greater variety in sensor types, placements, and system applications. Multi-camera
systems have been created from surveillance cameras [FBLF08], 2D cameras com-
bined with infrared-pattern and Time-of-Flight (ToF) based depth sensors [GČH12,
BMNK13, MBM16], and imaging sensors mounted on mobile phones [SSS06]. The
end-to-end systems were adapted for flying platforms, using lightweight, low-cost
imaging sensors [HLP15]. The brief interest in 3DTV [KSM+07] also fuelled the use
of flat or arc-based arrays of high-quality cameras spaced at regular intervals, for
multi-view video acquisition [DDM+15, FBK10].

As mentioned in Section 1.1.1, multi-camera systems have applications outside
of research laboratories. These systems are now embedded in smartphones [Mö18]
and self-driving vehicles [HHL+17], and have recently been turned into commercial
products [tL17, Pan17, Inc17] and open-source design instructions [Fac17, Goo17].
This demonstrates the level of contemporary interest in multi-camera systems and
the change in multi-camera system purposes. Instead of 3D object scanning and
3DTV, multi-camera systems are used in embedded applications, photography, VR,
Augmented Reality (AR), 360-degree video, surveillance, and autonomous vehicles,
as mentioned in section 1.1.1.

2.2 The Capture Process

The capture process is the set of operations necessary to enable the functionality of
multi-camera systems. These operations can be grouped into three stages, based
on multi-camera capture descriptions in [HTWM04, SAB+07, NRL+13, ZMDM+16].
These stages are the pre-recording, recording, and post-recording stage.

Figure 2.1 shows how these three stages help convert a 3D scene into a dataset.
The pre-recording stage defines how discrete cameras are combined to form a multi-
camera system. A significant element of the pre-recording stage is camera calibra-
tion: a process that estimates the camera parameters using a mathematical model of
the camera with ray geometry. Calibration that is more accurate implies smaller er-
rors in the processing of data from multiple cameras, as demonstrated by Schwarz et
al. [SSO14]. The recording stage is the act of capturing image sequences with the sys-
tem’s sensors and recording them to local camera memory. A significant part of the
recording stage is camera synchronization, as indicated by Stoykova et al. [SAB+07].
Synchronization during recording ensures that all cameras record images at the same
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Figure 2.2: Pinhole camera model: projection from 3D scene to 2D image.

time, thereby capturing the same 3D scene. Finally, the post-recording stage con-
sists of activities that convert the recorded sequences into datasets. A dataset is the
consistent information from all cameras that can be jointly used by applications no
longer part of the multi-camera system. The 3D information in the dataset can be
encoded as a Light Field, as multiview sequences, as Multi-View plus Depth (MVD),
or as some other format. The conversion from raw camera sequences to the selected
dataset format is one example of an operation in the post-recording stage.

2.3 Pinhole Camera Model

When recording scenes from different viewpoints with multiple cameras, there is a
need to map the 2D image from the camera sensor onto the 3D scene. In the context
of 3D recording, this is achieved by using the mathematical framework of projective
geometry [HZ03]. The projective geometry framework defines a mathematical cam-
era model called the pinhole camera model. The pinhole camera models is so called
because instead of describing the camera aperture or lens system, it assumes that
each point on the camera sensor is projected into the world in a straight line crossing
the camera optical center, as seen in Figure 2.2. The pinhole camera model describes
cameras by two matrices: the intrinsic matrix and the extrinsic matrix.

The intrinsic matrix K describes the internal parameters of one camera. The inter-
nal parameters are the focal lengths fx, fy , principal point offsets x0, y0, and the skew
factor s between the sensor’s horizontal and vertical axes. The focal lengths fx, fy
are scaled to the camera’s pixel width and height, respectively, from the camera focal
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length f . These parameters form the intrinsic matrix:

K =

fx s x0

0 fy y0
0 0 1

 . (2.1)

The principal point offset describes where the camera sensor is intersected by the
optical axis: a line perpendicular to the sensor and passing through the pinhole. The
focal length denotes the distance between the sensor and the optical center (pinhole)
of the camera. The Gaussian lens model [Hec87] uses focal length to describe the
magnification power of a lens, by matching the image size rendered by the lens with
the image size produced by a pinhole camera with the given focal length. The pin-
hole camera model does not incorporate the Gaussian lens model.

The extrinsic matrix describes the 3D position and orientation of one camera. In
multi-camera systems, the camera extrinsic matrices are defined in a common co-
ordinate system. The common coordinate system may be aligned to the world co-
ordinate system, or one of the cameras is used as the coordinate system origin and
orientation reference. The camera position is encoded as the 3D point C⃗, and cam-
era rotation is recorded in the rotation matrix R. The extrinsic matrix is commonly
denoted by the combination of the camera rotation and translation:

[R| −RC⃗] . (2.2)

Together with K, the extrinsic matrix [R| − RC⃗] allows for the creation of the
4-by-3 camera matrix P:

P = K[R| −RC⃗] . (2.3)

The camera matrix is the projective geometry basis for projecting a 3D point with
coordinates X,Y, Z to the 2D camera sensor plane at coordinates x, y:

λ

xy
1

 = [K|03]
[
R −RC⃗
0T
3 1

]XY
Z

 . (2.4)



Chapter 3

Synchronization and Depth
Uncertainty Modeling

Section 2.1 mentioned that multi-camera systems are used to record consistent data
from multiple perspectives. The consistency of recorded data is influenced by how
well the cameras are synchronized. Perfect synchronization in a multi-camera sys-
tem occurs when all cameras take a single sample of the scene at the same time. Perfect syn-
chronization is not a guaranteed property of a multi-camera system due to technical
or cost-based limitations of the system’s components. The lack of perfect synchro-
nization causes inconsistent sampling of a scene that changes over time. Therefore,
synchronization errors affect the consistency of data recorded by a multi-camera sys-
tem. Since synchronization error is an independent factor in a multi-camera system,
it must be possible to model the influence of synchronization on the capabilities of
a multi-camera system. This chapter describes how synchronization errors affect
camera systems and geometry estimation (Section 3.1), and how this influence is
expressed in a parametric model (Section 3.2).

3.1 Synchronization and the Reason for Depth Uncer-
tainty

Synchronization between cameras can be achieved by supporting external synchro-
nization signaling in the camera hardware, or by signaling through software instruc-
tions via the camera Application Programming Interface (API) [LZT06]. In both
cases, perfect synchronization cannot be guaranteed unless the signaling bypasses
all on-camera processing and directly triggers the camera shutter. Hardware sup-
port for an external control signal allows for more accurate synchronization than
any other method [LHVS14], but tends to increase the unit cost of the sensors and
therefore the total cost of the camera system [PM10]. Moreover, restricting a cam-
era system to hardware-synchronized sensors can result in a lower scene sampling

13
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Figure 3.1: Geometric basis for deriving depth uncertainty ∆d.

rate [ESH+12] or prevent the use of entire categories of cameras, such as affordable
ToF depth cameras that allow capture control only through the camera API [SLK15].
Thus, any decision about the required accuracy of synchronization in a multi-camera
system affects the system’s design and cost. These in turn affect the system’s suit-
ability for a given application scenario.

Scenarios like motion capture [BRS+11], cinematic effect production [ZEM+15]
and human activity recognition [JLT+15b] (see Section 1.1) have an implicit aim of
using the scene geometry. If the scene contains moving elements, multi-camera
systems with imperfect synchronization will induce errors in the geometric recon-
struction of the moving elements. This occurs because the geometry recorded by
the sensors is not recorded at the same time instant. The permissible range of ge-
ometry reconstruction error varies depending on the use case - for example, the
pose-prediction based system in [JLT+15b] is less sensitive to geometric noise than
the depth-based per-pixel cinematic lighting effects of [ZEM+15]. These errors are
present in camera setups with global sensor shutters. Rolling shutters are likely to
increase the error even further, since rolling shutter systems require synchronization
between scanlines rather than sensors.

The specific use-cases impose requirements on maximum permitted geometric
error, which in turn sets the level of the required synchronization accuracy. This
influences the system design and cost. This relation between synchronization ac-
curacy and geometric error must be modeled, in order to predict the extent of ge-
ometry errors arising from synchronization errors. To keep the model in context of
multi-camera systems, the geometric error can be described via depth uncertainty.

3.2 Definition of Depth Uncertainty

In a multi-camera system, the 3D position of a scene point is determined by triangu-
lation: pinpointing how far along a camera ray the scene point is located. Without
perfect synchronization, triangulation produces an incorrect position; the unknown
true position may lie elsewhere on the camera ray, at a different depth. Depth uncer-
tainty is the error between the nearest and farthest possible true positions, a measure
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of how large the interval is in which we are certain that the scene point must be.

Figure 3.1 shows the principle for deriving depth uncertainty. Let i and j be two
cameras that sample a scene, in which a moving element E⃗ exists. Each camera’s
data only states that, at the moment when i, j sample the scene, E⃗ must lie some-
where along the respective rays −→p i,

−→p j . If i and j are perfectly synchronized, the 3D
position E⃗ must be at the intersection of rays −→p i and −→p j . If the synchronization is
not perfect, then E⃗ has enough time (t) to move from a position on −→p j to a position
on −→p i, with neither position being the intersection of −→p i and −→p j . The difference be-
tween the true position of E⃗ and the estimated position (intersection of −→p i and −→p j)
is the geometric error induced by the synchronization error ∆t. At this point, ∆t is
the time between shutter activation on camera i and camera j.

While a single "true" position of E⃗ cannot be known, as long as E⃗ has a maximum
speed max vE⃗ , there exists a limit to how far E⃗’s true position on −→p i can be from the
intersection. In other words, the position of E⃗ is fixed in two lateral dimensions by
the ray −→p i and can vary between a minimum and maximum distance from i. The
difference between these distances is the depth uncertainty ∆d.

If the rays −→p i and −→p j are not co-planar, ∆d can be found by assuming two linear
trajectories of distance max vE⃗∆t that maximize ∆d, as shown in Fig. 3.1 (right), and
calculating:

∆d =
2

√(
max vE⃗∆t

)2 − ∥m⃗∥2

sin(θ)
, (3.1)

where θ is the angle between −→p i and −→p j , given by:

θ = arccos
( p⃗i · p⃗j
∥p⃗i∥ ∥p⃗j∥

)
, (3.2)

and ∥m⃗∥ is the nearest distance between −→p i and −→p j . The vectors p⃗i, p⃗j denote the
directions of the respective rays.

Equation (3.1) describes a discrete case involving only two rays with one possi-
ble intersection. We call the combination of rays −→pi ,−→pj "valid", if the rays get close
enough to each other and equation (3.1) produces a real, non-negative ∆d. Depth
uncertainty can be used as a general property of a multi-camera system, by assess-
ing all possible combinations of rays, for which one ray belongs to one camera and
another ray to another camera. We define the general depth uncertainty ∆di,j for
cameras i, j as the mean of all valid n combinations of rays −→pi ,−→pj in:

∆di,j =
1

n

n∑
k=1

∆dk , where ∆dk ∈ {∆d | ∀ (−→pi ,−→pj =⇒ ∆d) } . (3.3)

To make the model in Equation (3.3) practical, the camera and ray definitions
are expressed via a standard way of modelling cameras: the pinhole camera model
[HZ03] described in Section 2.3. In the pinhole camera model, a 3-by-3 matrix K
represents the camera sensor and lens properties, a 3-by-3 matrix R represents the
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camera rotation, and the 3D point C⃗ represents the camera position. If a ray −→p n

starts at the center of camera n and intersects the camera sensor at pixel coordinate
c⃗n = (x, y, 1)T, then −→p n can be described by:

−→p n = C⃗n + λR−1
n K−1

n c⃗n , (3.4)

where λ is a positive, real, arbitrary scale factor. Equation (3.3) is defined for a cam-
era pair. In a multi-camera context with n′ cameras, Equation (3.3) is applied to all
pairwise camera combinations, and the best pairwise result determines the system’s
overall depth uncertainty:

∆d = min
i,j

(∆di,j), where i, j ∈ {1, 2, . . . , n′}. (3.5)

Thus, Equation (3.3) models the connection between a multi-camera system’s
synchronization accuracy and resulting geometric errors, without foreknowledge of
object motion and position probabilities. The depth uncertainty model relies on a
common camera model and a context-derived scene value (the maximum speed of
objects in a scene). The depth uncertainty model is defined for the pinhole camera,
which in synchronization terms is equivalent to a global shutter camera.



Chapter 4

Multi-Camera Calibration

Section 2.1 described multi-camera systems, and Section 2.3 explained the pinhole
camera model. In addition, Section 2.2 also described the capture process and how
calibration is a significant element of the pre-recording stage in multi-camera sys-
tems. This chapter covers the definition of geometric camera calibration, describes
the differences between target-based and targetless geometric calibration, and dis-
cusses calibration quality.

4.1 Geometric Camera Calibration

Geometric camera calibration is a process that estimates camera positions, view di-
rections, and lens and sensor properties [KHB08]. In multi-camera systems, calibra-
tion also ensures that the camera positions and orientations are described in the same
coordinate system. The output of calibration is a set of parameters, defined by the
pinhole camera model and a lens distortion model. These parameters are required
for any geometric operations involving the data produced by the camera system, be-
cause they define how color and intensity values project from the 2D camera sensor
into the 3D scene space. As a result, errors in these parameters have a direct effect
on how well the recorded data from multiple cameras can be fused in a consistent
way [SSO14].

In the context of the pinhole camera model (Section 2.3), camera calibration is
separated into two discrete stages: intrinsic and extrinsic calibration. These stages
are related to the intrinsic and extrinsic matrices, respectively. Intrinsic calibration
is a process that estimates parameters describing the camera sensor and the basic
optical system. In addition to the intrinsic matrix K, intrinsic calibration methods
also estimate lens distortion parameters, to better relate actual cameras to the pin-
hole camera model. The common calibration methods [Zha00, Bou16] and routines
in computer vision libraries such as OpenCV [Bra00, Gab17] estimate radial and tan-
gential distortion parameters of the Brown-Conrady distortion model [Bro66]. Ex-

17
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trinsic calibration is a process that estimates parameters describing relative positions
of the cameras. One camera is commonly selected as the coordinate system origin, al-
though there also exist methods that place the coordinate system origin at the center
of the correspondence points found during the calibration process [SMP05]. While
these stages are usually distinguished from each other, in the case of multi-camera
systems, intrinsic and extrinsic calibration is commonly conducted in a joint calibra-
tion process.

4.2 Target-based and Targetless Calibration

The process of calibration has been implemented by a number of methods that use
the pinhole camera model. Despite differences in realization, the calibration methods
tend to follow the same three-step high-level template. (1) Corresponding scene
points are located in the camera images. These correspondence points are locations
in the scene that can be uniquely identified in camera images, regardless of where
in image the point is seen. (2) Correspondence point coordinates are used together
with projective geometry to construct a system of equations. Within this system,
camera parameters are the unknown variables. (3) The equation system is solved by
combining an analytical solution and a maximum-likelihood-based optimization of
camera parameter estimates.

A significant difference between various calibration methods lies in the first step:
selection of corresponding scene points. Based on this selection, calibration meth-
ods are classified as target-based or targetless calibration. The high-level advantage of
target-based methods is that the corresponding scene points provide not only rela-
tive camera parameter constraints, but also information about the world’s coordinate
system scale and orientation. Targetless calibration methods, on the other hand, are
easier to automate, do not require a specially constructed object in the scene, and can
therefore be applied to a wider variety of scenes.

4.2.1 Target-based Calibration

Target-based calibration methods assume that the scene contains an object with known
dimensions and a shape or texture that highlights specific points on the object. Such
an object is called a "calibration target", and is often artificially introduced into the
scene. The key property of a calibration target is that it imposes additional con-
straints on the in-scene layout and distribution of correspondence points. Figure 4.1
presents an example of an artificially placed calibration target in a scene.

The most influential and most cited target-based calibration method is [Zha00].
This method defines the calibration target as a black-and-white checkerboard printed
on a flat 2D surface. The corners of the checkerboard squares are the correspondence
points. By reformulating the pinhole camera equation for 3D to 2D projection (Equa-
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Figure 4.1: An example of a calibration scene from multiple camera views. The scene contains
a calibration target (checkerboard) for target-based methods, and a sufficient number of edges
and textures for targetless calibration.

tion (2.4), this calibration method establishes a homography H:

λ

xy
1

 = K[R]
[
R −RC⃗

] 
X
Y
0
1

 = H

XY
1

 . (4.1)

The homography is based on the camera intrinsic and extrinsic matrices, and defines
how a 2D surface (such as the checkerboard) is projected onto the camera’s 2D image
plane. Equation (4.1) allows to establish a closed-form solution. With three or more
checkerboard observations at different positions, the closed-form solution has a sin-
gle unique solution, up to a scale factor. The known distances between checkerboard
squares are used to resolve the unknown scale factor. Once the intrinsic and extrinsic
parameters are estimated, they are refined together with lens distortion parameters.
This refinement is done by minimizing the distance between all checkerboard points
in recorded images and their projected locations based on the estimated parameters.
The lens distortion is modeled using the first few parameters in the Brown-Conrady
[Bro66] distortion model.

The calibration method by Zhang et al. [Zha00] has been adapted into reusable
toolboxes [Bou16] and incorporated in widely-used image processing tools such as
Matlab [Mat17] and OpenCV [Bra00, Gab17]. A subset of target-based calibration
methods adapts Zhang et al.’s method by specifying a different target, such as a
unique, pre-generated noise pattern [LHKP13], regular patterns [LS12], 3D corners
[GMCS12], and spheres [RK12]. The change of calibration target allows for better
identification of the correspondence points, or provides more constraints on camera
parameters by adding more relations between the correspondence points and their
possible projections.
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4.2.2 Targetless Calibration

Targetless calibration methods, also known as self-calibration methods, use the three-
step approach described in Section 4.2. There are two significant differences between
targetless and target-based calibration methods. First, targetless calibration methods
use random, uniquely identifiable scene features as correspondence points. Second,
due to the absence of a known reference for distances, the targetless calibration meth-
ods can estimate camera parameters up to a scale factor. If necessary, the scale factor
is resolved based on an additional constraint on the camera parameters provided by
the context in which the method is applied.

In targetless calibration methods, the correspondence points in camera images
are generated by detecting locations in the scene that generate local maxima re-
sponses from a target-detection algorithm. A number of targetless calibration meth-
ods [BEMN09, SSS06, GML+14, DEGH12] use generic feature detection and descrip-
tion algorithms such as the Scale-Invariant Feature Transform (SIFT) [Low99], Speed-
ed-Up Robust Features (SURF) [BETVG08], Oriented FAST and Rotated BRIEF (ORB)
[RRKB11] algorithms. In part, the use of such generic feature-detection algorithms
is motivated by scenarios where pre-seeding the scene with artificial features is im-
possible. Alternatively, self-calibration methods such as [SMP05] pre-seed the scene
with artificial features, such as a small, manually-moved light source. This allows for
the use of a custom-made feature detection algorithm, thereby reducing the likeli-
hood of incorrect correspondence identification. However, such features do not con-
stitute a calibration target, because the relative positions of all such artificial points
are not known. This means that such feature points do not provide a real-world scale,
nor a reference to a "correct" correspondence point structure. Therefore, in targetless
calibration methods, the closed-form analytical solution is constructed based on the
rigidity of the correspondence points, when observed from several viewpoints. In
targetless calibration methods, Random Sample Consensus (RANSAC) is usually in-
corporated in the parameter optimization step, in order to reject incorrectly detected
correspondence points that act as outliers during reprojection.

4.3 Calibration Quality and Reprojection Error

Calibration methods have to self-assess the quality of their camera parameter esti-
mations, because these methods often rely on likelihood-based optimization. This
optimization is necessary because input errors are bound to be present in the data
on which cameras are calibrated, i.e. camera images. One source of input errors
is the incorrect detection and matching of correspondence points. Another input
error source is the non-linear distortion caused by the camera lens system. Calibra-
tion methods commonly use the Brown-Conrady lens model [Bro66], which does not
represent such lens properties as defocus, chromatic aberration [ESGMRA11], coma,
field curvature, astigmatism [Mac06], flare, glare and ghosting [TAHL07, RV14].
Moreover, the architecture of digital sensors leads to noise in the camera [HK94,
SKKS14] which affects the scene sampling and therefore the accuracy of feature
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detection in the scene. The common sensor types in visible-spectrum cameras are
Charge-Coupled Device (CCD) and Complementary Metal Oxide Semiconductor
(CMOS) sensors. CMOS and CCD sensors suffer from temporally fluctuating noise
and fixed-pattern noise [BCFS06, HK94]. Examples of the temporal noise sources
in CMOS and CCD sensors are the quantum uncertainty of light, the free electron
generation from thermal energy in silicon, the gain and analog-to-digital conver-
sion during sensor readout. CCD sensors also suffer from charge overflow between
nearby pixels [BCFS06], and CMOS sensors are affected by thermal MOS device
noise [HK94]. In addition to temporal noise, CCD and CMOS sensors are affected
by fixed pattern noise, which is a fixed variation of output between pixels, given the
same input, and is caused by variations of each pixel’s quantum efficiency [HK94].

The existing calibration methods estimate camera parameters up to a certain
threshold of accuracy, since input errors are unavoidable in the current calibration
processes. Since constraints on camera parameters are given by equation systems
based on projective geometry, the corresponding quality assessment is also usually
based on projective geometry. The accuracy of calibration is often measured by the
correspondence point reprojection error: the difference in positions between where
a correspondence point is observed in one image, and where the same point is pro-
jected into the image from another camera’s observation.

As Schwarz et al. demonstrate in [SSO14], processes that depend on calibration
data, such as reprojection of image points, are highly sensitive to errors in both intrin-
sic and extrinsic camera parameters. Thus, it is important to know how accurately
these parameters can be identified using different methods. Using the correspon-
dence point reprojection error as the quality metric for camera calibration is a funda-
mentally problematic, because this metric is not directly based on the real-world pa-
rameters that the calibration process is supposed to recover. Correspondence points
are affected by input errors at the capture stage, therefore the evaluation metric is
also affected by these errors. Multi-camera calibration methods rely on the pinhole
camera model and Brown-Conrady distortion model, and thus do not model all in-
put error sources in the camera system. While commonly used calibration methods
compute the calibration accuracy from the reprojection error, the accuracy of these
methods remains unknown with respect to the ground truth - the physical properties
of the camera system.
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Chapter 5

Re-Synchronization of
Recorded Data

Chapters 3 and 4 described camera calibration and theoretical modeling of the con-
sequences of synchronization. Both these topics relate to the pre-recording stage of
the capture process (see Figure 1.1 in Chapter 1) and not to direct manipulation of the
recorded data. Non-synchronized multi-camera systems exist because of technology,
cost, or other limitations, as demonstrated by [TTN08, YEBM02, YTJ+14, HBNF15].
In particular, the use of any camera that cannot be synchronized, such as the low-
cost Kinect ToF camera, leads to non-synchronized multi-camera systems. Since such
non-synchronized systems exist, there is an implicit need to address synchronization
errors. These errors can be addressed in the post-recording stage of the capture pro-
cess (see Section 2.2), by applying an error-compensation solution on the recorded
data, rather than affecting the multi-camera system design.

5.1 Synchronization and Camera Models

Synchronization of cameras is commonly considered as a separate aspect of multi-
camera systems, not as in integral part of the multi-camera system model. It is not
a parameter in the pinhole camera model (see Section 2.3) nor in dedicated multi-
camera models such as [GNN15, LLZC14, SSL13, SFHT16, LSFW14, WWDG13, Ple03].
Surveys on multi-camera system pipelines tend to avoid explicit discussion of syn-
chronization [NRL+13, ZMDM+16]. Moreover, standard applications using multi-
camera data assume that the data are synchronous (i.e. have been recorded by syn-
chronous cameras). For example, the expectation of perfect synchronicity is evident
in the treatment and formulation of multi-view geometry [HZ03]: no parameter ex-
ists to describe the temporal difference between the involved cameras. Likewise,
the fundamental methods of Depth-Image Based Rendering (DIBR) [Feh04] do not
parametrize the difference of capture times between camera images and depthmaps.
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The requirement for synchronized data is a property assumed to be true by default,
unless explicitly stated otherwise. Therefore, non-synchronized camera systems re-
quire post-recording synchronization in order to satisfy this default assumption of
synchronicity in datasets.

5.2 Post-Recording Synchronization

Research on post-recording synchronization can be split into two categories - video
sequence alignment and implicit synchronization. Video sequence alignment is com-
monly achieved by determining a temporal offset between two frames with the same
identifier in the sequences. In such cases, the temporal offset is equal to the synchro-
nization error. Implicit synchronization is achieved by modifying data consumer
applications to explicitly compensate for synchronization errors.

Sequence alignment methods use various cues to establish a temporal correspon-
dence between video sequences. A few of these methods rely on meta-information
such as audio tracks [SBW07], encoded bit-rate patterns [SSE+13], or environmental
in-scene signals [SWBS06]. These methods assume the same frame speed between
sequences. Most methods, however, operate on arbitrary scene content by minimiz-
ing differences in either image intensity [DPSL11, CI02] or feature point trajectories
[LY06, TVG04, LM13, EB13, PM10, DZL06, PCSK10]. The common factor among all
forms of video sequence alignment is that the final output is the synchronization
offset parameter, not a synchronized dataset. As a result, the problem of using an
estimated offset is deferred to an as-yet undefined later-stage process.

Implicit synchronization has been treated in the literature as a side component
of solutions to other research problems related to multi-camera systems. Works such
as [KSC15, RKLM12, AKF+17a, NK07, NS09] all define late-stage applications (so-
lutions) that explicitly address the lack of synchronization in input data. In par-
ticular, [RKLM12] avoids synchronization by treating non-synchronized depthmap
sequences as a low-resolution guide to reduce search space for image-to-image cor-
respondence mapping. High-resolution refinement and new image rendering is con-
ducted only from the synchronous image data. While [RKLM12] defines a rendering
process, [KSC15] uses two non-synchronized cameras to reconstruct the system’s
movement trajectory through a static environment. Synchronization errors are com-
pensated for during the sensor-to-sensor reprojection process, wherein the origin of
one sensor is displaced from the origin of the other sensor along the estimated tra-
jectory. Finally, [AKF+17a, NK07, NS09] describe methods to estimate the camera
geometry (the extrinsic parameters mentioned in Section 4.1). Non-synchronicity
between the cameras is treated by using feature point trajectories instead of discrete
positions as the basis for the polynomial reprojection equation system. In addition
to estimating extrinsic parameters, [AKF+17a, AKF+17b] can also be used as a video
sequence alignment method to only output the synchronization offset.

Implicit synchronization methods are application-specific, and cannot easily be
transferred from the context of one problem to another. However, these methods do
address the effects of synchronization error within the context of their applications.
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Figure 5.1: A moving point E⃗ observed by two non-synchronized cameras.

On the other hand, video sequence alignment methods stop short of applying a cor-
rective change on the recorded data. While these methods are used to estimate the
synchronization error, they do not manage or compensate for its effect. A process
that does apply a correction on non-synchronized datasets would serve as a bridge
between non-synchronized multi-camera systems and applications that are based on
the default assumption of synchronicity.

5.3 Re-Synchronization

Synchronization errors matter only if there is movement in the recorded scene, as
described in Section 3.1. Therefore, re-synchronization is defined in the context
of at least two non-synchronized cameras recording the same moving object. Re-
synchronization is a two-part process: (1) estimation of the synchronization error,
and (2) compensation of the synchronization error. The first part is equivalent to
video sequence alignment from Section 5.2, and the second part addresses the gap
between video sequence alignment and implicit synchronization. Estimation of the
synchronization error is mentioned here because the compensation step requires this
error to be a known quantity.

5.3.1 Synchronization Error Estimation

In order to compensate for the synchronization error ∆t, the error must first be a
known quantity. This section demonstrates how to determine ∆t using an alter-
native to video sequence alignment methods. The same assumption is used as in
[TVG04, PM10, AKF+17b]: under small timescales, objects in real scenes have an
approximately linear movement along a constant direction. This assumption allows
for the modeling of ∆t from the observed difference in position of the moving object
E⃗, as illustrated in Figure 5.1.

If E⃗i,n is the 3D position of the object E⃗ recorded in the n-th frame of camera i,
then given two sensors i and j and a three-frame recording window, the synchro-
nization error ∆tn between the n-th frame of camera i and n-th frame of camera j
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Figure 5.2: a) Correcting synchronization error by tensor-based interpolation. b) Constructing
the tensor between adjacent frames.

can be found as follows:

s1
s1 + s2

=
max vE⃗∆tn

max vE⃗∥ti,n − ti,n−1∥
=

∆tn
1/νi

=⇒ ∆tn =
s1

(s1 + s2)νi
, (5.1)

... where s1 = ∥E⃗j,n − E⃗i,n∥ , s2 = ∥E⃗j,n − E⃗i,n−1∥ .

In this equation, νi is the recording framerate of camera i, and ∆tin indicates the time
when the n-th frame was recorded in camera i. Equation (5.1) works as long as the
motion of the object is not directly toward or away from a camera. In other words,
both cameras need to observe that the object is moving. The 3D positions of E⃗ can be
determined by finding such trajectory that satisfies the following constraints:

∥E⃗i,n−1 − E⃗i,n∥
∥E⃗i,n − E⃗i,n+1∥

=
∥ti,n−1 − ti,n∥
∥ti,n − ti,n+1∥

and
∥E⃗j,n−1 − E⃗j,n∥
∥E⃗i,n−1 − E⃗i,n∥

=
∥tj,n−1 − tj,n∥
∥ti,n−1 − ti,n∥

. (5.2)

The constraints given in Equation (5.2) are related to the projections of the object in
the recorded frames, described by the 3D to 2D pinhole camera projection Equation
(2.4) in Section 2.3.

5.3.2 Synchronization Error Compensation

Figure 5.2 demonstrates the compensation principle applicable to a depthmap se-
quence. The positions of all objects need to be compensated, which can be achieved
by creating an image synchronized at time tn+∆tn from the recorded images In, In+1.
The time tn+∆tn is when a corresponding n-th reference frame was recorded in an-
other camera, to which this sequence is being synchronized. From this point onward,
the synchronization error ∆tn is assumed to be known.

The synchronization error ∆tn is expressed as a time-based ratio δn. The changes
between the recorded images In and In+1 are encoded at a pixel-by-pixel level in the
tensor Vn,n+1:

δn =
∆tn

∆tn + 1
νi

−∆tn+1

;Vn,n+1(x, y) = [∆x,∆y,∆z] . (5.3)
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Figure 5.3: A 2D view of tensor interpolation between two frames with a static background and
a moving foreground segment. Solid lines display how scene points are mapped from image
to image by the tensor. Dashed lines indicate mappings that do not exist in the tensor.

The tensor Vn,n+1 describes how the position (x, y) and value (z) changes for ev-
ery single scene point from image In to In+1. These changes are represented by
∆x,∆y,∆z, respectively. The tensor Vn,n+1 can also be considered as a matrix of
size x by y by 3. Each frame in the non-synchronized sequence is warped according
to Equation (5.4):

Itn+∆tn(x, y) =

{
In(x

′, y′) + δnVn,n+1(x
′, y′, 3), if △;

In+1(x, y), otherwise.

△: ∃
(
x′

y′

)
s.t.

(
x
y

)
=

(
x′ + δnVn,n+1(x

′, y′, 1)
y′ + δnVn,n+1(x

′, y′, 2)

)
(5.4)

The conditional nature of Equation (5.4) is due to the background overlap caused by
moving foreground segments. Figure 5.3 illustrates a one-line example of an inter-
polation with a static background and a moving foreground segment, with blue lines
demonstrating how points are mapped from image In to In+1 in the tensor Vn,n+1.
In the interpolated image, there are pixels which do not have an associated mapping
from In. Since these areas correspond to a revealed background, the value for these
pixels must be taken directly from In+1.

The tensor Vn,n+1 is equivalent to a dense optical flow map between n and n+1
frames. An optical flow map for feature-rich images can be created by using optical
flow estimation algorithms such as [Far03]. However, these algorithms become un-
reliable in images with few features and textures, such as depthmaps. An approach
for estimating Vn,n+1 in depthmaps is outlined in Figure 5.4. This approach consists
of (1) depthmap segmentation, (2) coarse segment motion mapping, (3) dense pixel
motion mapping, and (4) the depthmap correction through interpolation.

1: Segmentation is begun by detecting object edges as depth discontinuities in
both In and In+1, using the difference map In+1− In. The pixels at the edge are used
as seed points for iteratively adding neighbouring pixels that belong to the same
object surface as these seed points.

2: After the depthmap is segmented, the segments from In are matched with
segments in In+1 based on overlap, position, and similarity in size. Coarse motion is
estimated as the difference between center positions of the matched segments, and
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Figure 5.4: A process to correct synchronization errors.

does not describe how each pixel of the segment has moved from frame n to frame
n+ 1.

3: Dense motion is the individual motion of pixels in each segment, between
frames n and n + 1. This motion is estimated based on the coarse motion of each
segment. For each segment, an edge correspondence search is performed to find the
opposite edges of a segment along a search direction. All pixels along the search
direction that lie between the corresponding edges, must belong to the segment.
The direction of the correspondence search is determined by the coarse motion of
the segment. Each pixel of each segment thus gets the [∆x,∆y,∆z] vector, thereby
producing Vn,n+1.

4: Finally, when the tensor Vn,n+1 is known, the synchronized depthmap can be
generated using Equation (5.4). Steps 1 to 3 use In and In+1 to estimate Vn,n+1. In
case In+1 is not available, Vn,n+1 is instead predicted from the preceding frames, as
shown in Figure 5.4, using Equation (5.5):

Vn,n+1 = −(
Vn,n−1

2
+

Vn,n−2

2
) . (5.5)



Chapter 6

The LIFE System Framework
and Testbed

The preceding chapters covered multi-camera synchronization and calibration - im-
portant and highly specific processes within multi-camera systems. This chapter
covers the design and implementation of the LIFE system, which is a multi-camera
based end-to-end testbed for 3D and Light Field recording, streaming and presenta-
tion. The LIFE system was developed at Mid Sweden University in conjunction with
the theoretical work described in the preceding chapters. The LIFE system provides
for the recording, processing, distribution and presentation of 3D data.

6.1 Overview

The concept behind the LIFE system is that it should serve as a testbed for evaluat-
ing aspects of Light Field capture. As such, flexibility and ease of modification were
important goals throughout the development of this system. A number of existing
multi-camera based systems [MP04, YEBM02, BK10] are designed to support a spe-
cific Light Field processing chain with homogeneous camera arrays and direct con-
nection between cameras and rendering computers. The LIFE system, in contrast,
supports diverse camera configurations and distributed processing, and separates
recording of data from streaming, processing and presenting.

The system is based on a high-level framework, illustrated in Figure 6.1. The
framework describes an end-to-end Light Field system, which includes recording,
sending and presenting of 3D information. The LIFE framework follows a seg-
mented scheme, isolating all devices and software processes into component blocks
and system domains. This segmentation ensures that the system is implemented in a
modular way. The modular implementation of domains also ensures that the system
can adapt various configurations and represent not only fixed multi-camera systems,
but also smart-camera and distributed camera networks.
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Figure 6.1: High-level view of the LIFE framework, presenting its three high-bandwidth do-
mains and five component types.

6.2 High-Level Framework

The framework shown in Figure 6.1 consists of three domains. Each domain is an
environment where devices and processes can exchange data over high bandwidth
with low latency. Between domains, communication bandwidth is reduced, and
latency is increased. The three domains are identified by their purposes and the de-
vices they contain. The near-camera domain is focused on recording, and includes the
cameras and other sensors. The cloud domain, which focuses solely on processing, in-
cludes larger computational resources than the other two domains. The near-display
domain focuses on presentation, and includes the displays and rendering solutions.

The software and hardware modules in each domain are grouped into one of five
possible components: Capture Component (CapC), Transmission Component (TrC),
Processing Component (ProC), and Presentation Component (PreC). The CapC is
unique to the near-camera domain, and includes all the cameras, as well as the soft-
ware and hardware necessary to control the cameras and access the recorded frames.
The TrC contains the software and hardware required for distributing data across the
domains. The ProC contains processes that either generate new information from
the recorded data, or change the recorded data. As seen in Figure 6.1, all three do-
mains share ProC and TrC. Finally, the PreC is unique to the near-display domain,
and contains the presentation devices, the software and hardware used to control
these devices, and the rendering process. The division of responsibilities and hard-
ware dependencies among components ensures that software or hardware changes
within one component do not affect the other components.

6.3 Testbed Implementation

The testbed covers all three domains of the LIFE framework. The focus of this sec-
tion is on the implementation of the near-camera domain, as shown in Figure 6.2.
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Figure 6.2: Implementation of a multi-camera system in the LIFE testbed. Architecture of the
near-camera domain (left), and the camera and computer hardware (right).

This domain is implemented as a multi-camera system with color and depth cam-
eras, dedicated computers, and a flexible software stack. The multi-camera system is
described in Section 6.3.1, and the implementation of the other two LIFE framework
domains is briefly discussed in Section 6.3.2.

6.3.1 Multi-Camera System

The multi-camera system makes up the near-camera domain of the LIFE framework.
In order to support the processing and transmission components, the multi-camera
system consists of cameras paired to dedicated single-board computers. This al-
lows each computer to serve as the host for processing and transmission software.
Moreover, the camera and computer pairing allows for encapsulating the camera
API into a generic interface for configuring cameras and retrieving images. This
approach also provides larger bandwidth for each camera, unlike in multicamera
systems such as [YEBM02, MP04, BK10] which force several cameras to share band-
width to a connected computer. The processing power of the camera-paired com-
puters in this multi-camera system allows to compress the raw camera images for
further streaming over shared network connections. Streaming over the Internet is
enabled by embedding the open-source GStreamer framework [Dev18] into the LIFE
framework’s transmission component.

The system uses ten Basler daA1600-60uc cameras [AG17], which have a 1.92
megapixel sensor and a USB 3.0 interface in a compact (7.2 mm x 27 mm x 27 mm)
housing. The global shutter sensor and a synchronization signal input mean that the
cameras can be perfectly synchronized from an external periodic signal generator. By
using several external generators, a controlled synchronization can be introduced
into the system. The CS-type lens mount allows for a wide variety of lenses with
different apertures, focal lengths, and resolutions. The system also uses a Microsoft
Kinect v2 depth camera [Mic18], which provides a 2.07 megapixel 2D color image
and a 0.22 megapixel depthmap. The cameras are each connected to one of eleven
Nvidia Jetson TK1 single-board computers [Cor18]. These computers are chosen
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because of their compact size, high-bandwidth interfaces, Linux operating system,
and the on-board processor and Programmable Graphics Processing Unit (PGPU).
A twelfth Jetson TK1 is included for software component testing purposes. Figure
6.2 shows the implementation’s logical structure (left) and physical hardware (right).
The hardware choices ensure that the already supported cameras are reconfigurable,
and that adding a new camera into the system only requires adding another Linux-
capable computer and providing the camera API encapsulation to the generic LIFE
framework interface. In this way, adding or replacing cameras does not affect the
processing and streaming software on the paired computers.

6.3.2 Distribution and Presentation Systems

The cloud domain is implemented as a cloud-based video stream distribution sys-
tem, using virtual instances in a parallel computing data center. The primary pur-
pose of this distribution system is to provide a video processing environment and
a video transcoding service. This cloud-based system relies on one master instance
to receive and decode incoming video streams, and on a pool of slave instances for
re-encoding, processing, and sending video streams to the presentation system. This
presentation system is implemented on a regular computer connected to a display
device, receiving video data via GStreamer’s standard components. The presenta-
tion system can receive streams from both the multi-camera system and the distribu-
tion system, because the same stream format is used for all cross-system interfaces.



Chapter 7

Contributions

In previous chapters, components of the multi-camera capture process have been
described, including problems, research questions, and proposed theories related
to synchronization, calibration, and depthmap correction. These problems and re-
search questions have been addressed by the contributions that underpin this dis-
sertation. This chapter presents the novelties and evaluation results of the following
contributions, which investigate components of the capture process and present a
framework for Light Field system evaluation. Each contribution is a separate paper
with its own experimental setup, aims, and results. In total, the contribution list is
as follows:

I. Contribution I - Modeling Depth Uncertainty of Desynchronized Multi-Camera
Systems.

II. Contribution II - Assessment of Multi-Camera Calibration Algorithms for Two-
Dimensional Camera Arrays Relative to Ground Truth Position and Direction.

III. Contribution III - Estimation and Post-Capture Compensation of Synchroniza-
tion Error in Unsynchronized Multi-Camera Systems.

IV. Contribution IV - LIFE: A Flexible Testbed for Light Field Evaluation.

7.1 Contribution I

Modeling Depth Uncertainty of Desynchronized Multi-Camera Systems

Contribution I introduces the concept of depth uncertainty in unsynchronized
multi-camera systems. A model is presented to describe depth uncertainty, using
general parameters of the camera system and the recorded scene. This contribution
covers the concepts introduced in Chapter 3.

33



34 Contributions

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Δt, ms

M
ea

n 
Δ

d,
 m

m

 0.5 1 1.5 2 2.5 3
0

200

400

600

800

Max v, m/s

M
ea

n 
Δ

d,
 m

m

 

parallel view dir., obs. Cam2 principal ray
toed−in view dir., obs. Cam2 principal ray
toed−in view dir., obs. all Cam2 rays
parallel view dir., obs. all Cam2 rays

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

Camera rotation ϕ/2, degrees

M
ea

n 
Δ
d,

 m
m

Figure 7.1: Left: Depth uncertainty ∆d, given varying camera desynchronization and vary-
ing maximum speed of scene elements for parallel and ϕ = 20◦ -convergent view directions.
Right: Mean ∆d along all rays of camera 1, for varying convergence ϕ of both cameras (indi-
cated rotation ϕ/2 for camera 1, with simultaneous negative rotation −ϕ/2 on camera 2).

7.1.1 Novelty

The novelty of this contribution lies in (1) revealing and using a new model that re-
lates camera system parameters and synchronization errors to the extent of possible
errors in depth estimation, and (2) introducing the concept of depth uncertainty - a
quantifiable metric describing a property of a multi-camera system.

7.1.2 Evaluation and Results

Two types of experiments were performed as part of this work. The first experiment
type focused on using the depth uncertainty model to demonstrate how synchro-
nization and rotation affect the depth uncertainty of a multi-camera system. The
second experiment type examined the depth uncertainty model for computational
shortcuts, i.e. viability of using a subset of camera rays instead of the whole set. For
the experiments, a two-camera setup was modeled using realistic parameters (sen-
sor resolution, view angle, camera placement, synchronization error) that described
a basic multi-camera system. The two-camera scenario was used because the model
in this contribution relies on depth uncertainty minimization across camera pairs.

The results of the simulations, illustrated in Fig. 7.1, showed that synchroniza-
tion error and scene element speed have a linear relation to the system’s depth un-
certainty. Convergence between cameras was seen to have a non-linear effect on
mean depth uncertainty. It was concluded that a multi-camera system with paral-
lel camera view directions is significantly more affected by synchronization errors,
compared to a camera system with converged camera view directions. This conclu-
sion also served as a reason for using the depth uncertainty model to examine the
capabilities of a multi-camera capture system.

During depth uncertainty simulations, the computational shortcut tests showed
significant differences in the depth uncertainty results. The ray-based depth uncer-
tainties generated during the test had both different distributions and different mag-
nitudes between the whole ray set and the ray subset scenarios. This implies that,
in order to compute the depth uncertainty, the proposed depth uncertainty model
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requires that all ray interactions in the camera system are computed.

7.1.3 Author Contribution

Elijs Dima originally proposed the idea of the depth uncertainty model, derived the
model, and initiated the idea to investigate computational shortcuts by using ray set
reduction. He is the main author of the article. Prof. Mårten Sjöström and Dr. Roger
Olsson provided feedback during the process of deriving the model, suggested cor-
rections to the manuscript, and contributed advice on creating article content and
addressing reviewer feedback.

7.2 Contribution II

Assessment of Multi-Camera Calibration Algorithms for Two-Dimensional Camera
Arrays Relative to Ground Truth Position and Direction

Contribution I described a model for which camera parameters are the input data.
Typically, camera parameters are obtained by performing camera calibration. Con-
tribution II examines a number of publicly available multi-camera system calibra-
tion tools that characterize target-based and targetless calibration. The aim of this
contribution is to verify the accuracy of calibration tools by using a custom dataset
with externally obtained ground truth for camera parameters, and to assess whether
self-calibration tools can match the accuracy of checkerboard based calibration tools.
This contribution utilizes the concepts presented in Chapter 4.

7.2.1 Novelty

The novelty of this research work lies in the following: (1) the assessment of sev-
eral freely available and popular calibration tools based on their correspondence to
ground truth camera parameters instead of self-reported reprojection errors of op-
portunistically selected points; (2) the introduction and use of a calibration dataset
that has strict a priori constraints on the ground truth of camera parameters. These
constraints are produced as a result of the dataset generation method, are fundamen-
tal to the dataset, and allow for clear classification of correct and incorrect parameter
estimates from calibration methods.

7.2.2 Evaluation and Results

The dataset used for evaluation was produced by setting three cameras on a cali-
brated motorized dolly, to take images from 15 different viewpoints. For the calibra-
tion methods, the dataset was presented as if recorded by a different camera at each
viewpoint, and the camera positions were verified with a laser rangefinder. This
provided ground truth constraints for camera lens parameters, principal point, and
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Figure 7.2: Comparison of target-based (AMCC [Zha00]) and targetless (Bundler, VisualSFM,
BlueCCal [SSS06, Wu13, SMP05]) camera calibration methods, measured on a rigid 3-
camera rig. Left: estimated distances between camera centers. Circle shows ground truth.
Right: estimated rotation difference a1 between rigidly mounted cameras 1 and 2, and a2 be-
tween cameras 2 and 3. Box plots show median, 25th and 75th percentile, whiskers show
minimum and maximum.

positions, all of which are key contributors to rendering errors in multi-camera sys-
tems [SSO14]. The target-based calibration was represented by the method of Zhang
et al. [Zha00], which forms the basis for camera calibration processes in Matlab and
OpenCV software. Zhang et al’s target-based method was compared with Snavely’s
[SSS06], Svoboda’s [SMP05] and Wu’s [Wu13] targetless calibration methods.

An analysis of the calibration results (shown in Figure 7.2) indicated that the two
targetless Structure from Motion (SfM) calibration methods [SSS06, Wu13] outper-
formed the third targetless calibration method [SMP05], especially when estimating
camera position and rotation. Moreover, the accuracy levels of estimates for camera
position and rotation were quite similar in the target-based method and the two SfM
methods. Furthermore, the estimation of lens distortion coefficients was equally ac-
curate in both the checkerboard and SfM-based methods. However, the target-based
method did estimate an additional parameter - the location of the principal point on
the camera sensor plane.

Overall, the results indicate that the tested SfM methods perform equally well
with and without a checkerboard target present in the scene. The scene is shown
in Chapter 4.2, Figure 4.1. The scene contains objects with texture and clear edges
at multiple depths and positions. Checkerboard placement is the only factor that
changes across multiple captures of the scene. Moreover, except for estimating the
principal point, the SfM methods perform as well as the checkerboard calibration
method.

7.2.3 Author Contribution

Elijs Dima is the main author of the article. Prof. Mårten Sjöström proposed the idea
of comparing calibration methods. Elijs Dima proposed and produced the dataset
with ground truth constraints, selected and applied the calibration methods, con-
ducted the experiments, analyzed the results, and wrote the article. Prof. Mårten
Sjöström provided advice on organizing the tests and analysing the results, and
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played a correctional role in manuscript writing and addressing reviewer feedback.
Dr. Roger Olsson contributed advice on the content and structure of the article.

7.3 Contribution III

Estimation and Post-Capture Compensation of Synchronization Error in Unsyn-
chronized Multi-Camera Systems

Contribution III addresses the need for correcting depth data in a multi-camera
system with incorrect synchronization between cameras, on the basis of the depth
uncertainty model introduced in Contribution I. This contribution further introduces
a method for detecting and compensating synchronization errors in multi-camera
systems. The primary focus is on multi-camera systems consisting of RGB and depth
cameras. The contribution utilizes the concepts presented in Chapters 3 and 5.

7.3.1 Novelty

The novelty of this work is twofold: (1) the depth uncertainty model from Con-
tribution I is extended and demonstrated to correlate with rendered image qual-
ity; (2) a new method for estimating and compensating synchronization errors in
Color and Depth (RGB-D) systems is introduced, consisting of two discrete parts:
a correspondence-based estimation of synchronization error, and a weighted frame
interpolation approach for non-destructive depthmap re-synchronization.

7.3.2 Evaluation and Results

Three experiments were performed in this work. The first experiment aimed to val-
idate the depth uncertainty model by examining whether there is a correlation be-
tween depth uncertainty and objective measurements of rendered virtual images.
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Figure 7.4: Synchronization error estimation accuracy for datasets with synchronization error
∆tn between a color camera and a depth camera at frame n. Left: both cameras have con-
stant framerate at 7.5 Hz. Ground truth known with 10 ms accuracy. Middle: same camera
system with longer exposure time. Right: synchronized multiview-plus-depth dataset, with
∆t = 80 ms obtained by frame offset between color and depth images. "Truth": ground truth
interval. "PM": proposed method. "AM": method from [AKF+17b].

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Mean
Squared Error (MSE) were used as objective image quality metrics.

Results from the first experiment, shown in Figure 7.3, revealed that an increase
in content-independent depth uncertainty correlates with a decrease in quality of re-
projected images. The experiment relies on the assumption that the camera calibra-
tion parameters are correct. Besides calibration, the reprojection quality is affected by
four other factors: synchronization error, reprojection baseline, disocclusion inpaint-
ing, and the direction (future or past) of the temporal offset between reprojection
target and source. Of these factors, synchronization error affects the depth uncer-
tainty. On the tested datasets, synchronization error had a greater effect (by 2 to 3 dB
PSNR) on image quality than reprojection baseline or temporal offset direction, but
a smaller effect than disocclusion inpainting. Disocclusion inpainting has a greater
effect than synchronization error due to the pixel-based nature of objective quality
metrics such as PSNR, SSIM, and MSE.

The second experiment assessed the proposed method for estimating synchro-
nization error on RGB-D datasets, and compared it against a state-of-the-art existing
method. According to the results shown in Figure 7.4, the proposed method was
more reliable, with an average offset estimation accuracy of 83% to 95% of the true
offset in the datasets. Unlike the state-of-the-art method, the proposed method did
not require temporally long trajectories or rapidly changing in-scene motion.

The third experiment assessed the proposed method for synchronization error
compensation together with four other methods based on optical flow estimation
[KRN97, Far03], image morphing [SD96] and displacement field interpolation [Thi98].
The improvement gained from the proposed synchronization error compensation
process was also demonstrated by comparing the reprojection and foreground iso-
lation results, as shown in Figure 7.5. The depthmaps corrected using the proposed
compensation method produced as good results as synchronous depthmaps, when
used for foreground texture isolation and view reprojection. In contrast, uncorrected
(unsynchronized) depthmaps caused notable errors in foreground-to-texture align-
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Figure 7.5: Impact of using unsynchronized, compensated, and synchronized depth in depth-
based foreground isolation and view reprojection.

ment and incorrect disocclusion positions in reprojected images.

7.3.3 Author Contribution

Elijs Dima is the main author of the article, responsible for the idea of compensating
the synchronization error in RGB-D systems, proposing the correction method, and
implementating it. He is also responsible for running the experiments, analyzing the
results, writing the article, and addressing reviewer feedback. Yuan Gao, the second
author of the article, contributed calibration data for a test dataset and is responsible
for initial implementation of synchronization estimation, and writing about moti-
vation and test data production in an early version of the manuscript. Prof. Mårten
Sjöström and Prof. Reinhard Koch contributed with feedback on the overall idea and
experimentation requirements, and suggested corrections to the manuscript. Prof.
Sjöström also provided advice regarding the necessity for additional development
and experimentation, and on addressing reviewer feedback. Dr. Roger Olsson and
Dr. Sandro Esquivel contributed with advice on the article content and suggested
corrections to the manuscript.

7.4 Contribution IV

LIFE: A Flexible Testbed for Light Field Evaluation

Contribution IV introduces the LIFE framework - a high-level framework for or-
ganizing hardware and software components into a flexible end-to-end Light Field
system. The contribution also presents implementation details and preliminary eval-
uation of the system’s real-time ability.
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Figure 7.6: Cumulative latency for frame processing. Red line shows average frame latency,
dots show individual frame latency measurements.

7.4.1 Novelty

This work is novel in two ways. First, the new LIFE framework is designed to en-
courage modularity and flexibility in the system, and can be implemented to cover a
wide range of capture, distribution, and presentation system configurations. Second,
the presented system is the first existing implementation of the LIFE framework and
is used to both develop the framework and demonstrate the framework’s features
and viability. The implementation is also a novel testbed, designed specifically to
enable the evaluations of Light Field capture, distribution, and presentation.

7.4.2 Evaluation and Results

To evaluate the framework, the system’s real-time ability was measured for imple-
mentation of two system domains: the near-camera domain and the near-display
domain. Both domains are described in Chapter 6. The real-time limit was set at 40
ms, based on the maximum camera recording rate of 25 Hz at the highest supported
sensor resolution. The processing latency was measured for each component of a
live stream from camera to display over a public IP network.

The results, shown in Figure 7.6, revealed that video stream coding, processing,
and network encapsulation had a cumulative latency of less than 40 ms in each do-
main. In the near-display domain, this included sending the frame to the display
driver. In the near-camera domain, this included accessing the camera buffer, but
did not include the time that the camera itself took to expose the sensor (9.5 ms) and
de-bayer the recorded image (20 ms). Within both domains, the formatting and cod-
ing of the frame had the largest impact on latency (approximately 10 to 20 ms), and
the stream formatting components added negligible latency.

7.4.3 Author Contribution

Elijs Dima contributed to the planning and design of the LIFE framework; the plan-
ning, component selection, construction, and software development for the near-
camera prototype; interface planning between the near-camera and cloud proto-
types; and performance of the preliminary recording and streaming tests. M. Kjel-
lqvist contributed to the planning and software development for implementation of
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the near-camera domain. Z. Zhang and L. Litwic contributed to the planning, devel-
opment and tests of the connected cloud transcoding prototype, and to drafting the
section on cloud domain in the article. M. Sjöström and R. Olsson managed the re-
source allocation and prioritization of implementation work, and provided feedback
on writing the article. L. Rasmusson and L. Flodén contributed with advice on smart
camera systems and distributed, networked surveillance camera technologies.



42



Chapter 8

Conclusion and Outlook

The previous chapters summarized the contributions of research papers and pro-
vided an overview of the developed multi-camera system. This chapter presents an
overview of this thesis, reviews the link between the completed work and the ini-
tial purpose and goals, and discusses directions for future research and the potential
impact of the contributions of this work.

8.1 Overview

This work and its contributions are aimed at extending the knowledge of 3D scene
capture using multi-camera systems. To this end, investigations were conducted on
camera calibration and synchronization methods, in conjunction with the develop-
ment of a multi-camera system for future Light Field evaluations.

Investigations into camera calibration identified the discrepancy between the
usual assessment of calibration quality, and the ability of widely-used calibration
methods to recover camera parameters. One of the contributions of this work was
to compare the ability of various calibration methods to estimate the true camera
parameters, and to compare the ability of self-calibration methods to match target-
based calibration methods.

Investigations into synchronization led to the proposal of a new model of depth
uncertainty, detailing how synchronization error affects the capture results in multi-
camera systems. The model was experimentally tested and used to reach conclusions
on how a camera system’s layout and synchronization affects its ability to accurately
estimate the positions of moving objects. Furthermore, a re-synchronization method
was proposed for solving synchronization errors in RGB-D camera systems during
the post-recording stages instead of during recording. The proposed method was
experimentally shown to improve the fusion of depth and color data in datasets
with real and simulated synchronization errors.

The development of a multi-camera system led to the introduction of the LIFE

43



44 Conclusion and Outlook

system framework and testbed implementation, which includes the multi-camera
system as the component for scene acquisition. The multi-camera system was de-
signed to be easily re-configurable and modifiable. Each camera was paired with a
dedicated computer and a modular software stack, to allow for the general-purpose
processing and streaming of recorded data. The system was able to record, encode,
and stream out the camera views within real-time latency constraints.

8.2 Outcome

The specific goals of this work were outlined in Section 1.4. Presented here is a
summary of the outcomes with respect to each goal.

Goal 1: Design and construct a flexible multi-camera system testbed.

The LIFE framework and the multi-camera based implementation from Contri-
bution 4 were developed in parallel with the other goals. The resulting system con-
tains not only a multi-camera system, but also a cloud processing prototype and a
light-weight presentation system. The multi-camera system is able to record and also
process and stream live camera data over the Internet.

Early findings on synchronization in Contribution 1 led to the decision of us-
ing cameras with support for an external synchronization signal, due to a lack of
ready-to-use solutions for software synchronization of data. During system plan-
ning and construction, it was determined that available ToF sensors do not support
synchronization, thereby reinforcing the need to compensate synchronization errors
specifically in recorded depth data. This requirement was addressed in Contribution
3.

Investigations on calibration in Contribution 2 resulted in the decision to sepa-
rate calibration into a stand-alone software module within the system’s control layer.
This enables seamless transition between calibration methods and non-autonomous
tools that could not be deployed on the general-purpose computers connected di-
rectly to the cameras. The LIFE framework’s design and the computational power
of the general-purpose computers allow for the future development of autonomous,
on-device calibration.

The flexibility of the developed multi-camera system is evident through several
aspects: (1) Processes and devices of the multi-camera system are separated into
framework domains and components. This allows for the change of system capa-
bilities at a hardware and software level with low implementation overhead. (2)
The presence of per-camera computers and full Internet connectivity allows for the
distribution of processing operations. Video and image processing can occur in the
camera system itself, in a connected cloud, or in a connected end-user system. It can
also be distributed among all three equally. (3) The multi-camera system uses off-the-
shelf cameras, computers, and an open source streaming framework. This increases
the potential for compatibility between this multi-camera system and third-party
processing or utility applications. (4) The multi-camera system supports hardware
and software synchronization, per-camera computing, and has adjustable camera
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mounts and small camera sizes. Therefore, it is possible to use the LIFE multi-camera
system as a stand-in for various acquisition systems, ranging from sparse surveil-
lance camera networks to small and dense 360-video camera systems. The devel-
oped multi-camera system is not only flexible, but also able to serve as a testbed for
Light Field capture.

Goal 2: Investigate the advantages and drawbacks of multi-camera calibration solutions,
and assess the ability to recover the true camera parameters via calibration.

The field of camera calibration was found to be relatively mature, with several
widely accepted and widely used methods already built into standard image pro-
cessing tool collections. A research gap was identified by the lack of strict com-
parisons between self-calibration and target-calibration methods, and by the lack of
calibration result comparisons against ground truth of camera parameters. A com-
parison of methods was conducted based on ground truth, and the results were pub-
lished in Contribution 2. The results revealed the relative capabilities of target-based
and targetless calibration methods, and the performance of freely available calibra-
tion methods with regard to their accuracy in estimating camera parameters. Further
development of new calibration methods was considered to be outside the scope of
this work, given the maturity of the field and the abundance of existing methods
being commonly used.

Goal 3: Investigate the consequences of inaccurate synchronization before or during
recording in a multi-camera system.

The field of camera synchronization was investigated and it was found that syn-
chronization is a less explored field than calibration, with notable research gaps in
relating synchronization to geometric multi-camera models. A model for mapping
synchronization error to depth estimation error was presented in Contribution 1. The
proposed model links synchronization error to the geometric pinhole camera model.
This facilitates the modeling of synchronization error consequences in multi-camera
system design and construction stages.

Goal 4: Propose a multi-camera synchronization solution for scenarios when accurate
synchronization before or during recording is not possible.

A research gap was identified in connecting outputs of unsynchronized camera
systems to the inputs of standard multi-view geometry applications. In particular,
depth-sensing cameras were found to often be a source of synchronization error in
multi-camera systems. Contribution 3 presented a new method for ensuring post-
recording synchronization between depth and color data recorded by separate cam-
eras. The proposed model estimates the synchronization error between depth and
color cameras, and compensates the error in depth data in order to bring the depth
data to a synchronized state.

Purpose: Contribute to the knowledge and understanding of multi-camera systems within
the context of Light Field acquisition.

This purpose has been achieved in two ways. First, through completion of Goals
2, 3, and 4, new knowledge has been contributed to the pre-recording and post-
recording stages of the process of multi-camera Light Field capture. Second, through
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completion of Goal 1, the constructed LIFE system serves not only as an example of
a decentralized, distributed-processing camera system, but also as a research testbed
using which further investigations into Light Field acquisition can be conducted.

8.3 Impact

Since this work is grounded in computing research, there is a responsibility to se-
riously consider both the positive and negative impact of the produced knowledge
[HWB+18]. This work likely has both direct and indirect consequences. The direct
consequences mainly relate to the scientific impact of this work, and the indirect
consequences mainly encompass the social and ethical impact of the knowledge de-
veloped in this work.

8.3.1 Scientific Impact

The potential scientific impact relates to the immediate contributions to multi-camera
systems, which are detailed in terms of multi-camera system construction, depth un-
certainty estimation, camera calibration, and synchronization. The proposed frame-
work for a Light Field evaluation system serves as a template and a reference for de-
veloping flexible multi-camera based systems. Such systems can be used as testbeds
for Light Field research and therefore accelerate such research. The proposed depth
uncertainty model parametrizes the cost of synchronization error in a multi-camera
system. This cost can be used in the planning stages of future multi-camera systems,
to ensure that the camera system implementation matches the context requirements.
As regards calibration, the difference between the ground truth of camera parame-
ters and the standard quality metric for calibration (the reprojection error) has been
highlighted. This can lead to an evaluation of the approaches used in calibration
methods and the development of metrics more closely correlated with the true cam-
era parameters. Finally, the proposed re-synchronization method can be used to
make non-synchronized multi-camera systems compatible with a wide range of ap-
plications that require synchronized datasets.

8.3.2 Ethical and Social Impact

The indirect consequences of this work are potential changes in any field and ap-
plication that relies on multi-camera systems. Section 1.1.1 described how multi-
camera systems are applied in surveillance [OLS+15, DBV16], robot and machine
vision [HKH+12, KDBO+05, KSC15, HLP15, LFP13], human and group behavior
analysis [JLT+15a, OCK+13], and multimedia entertainment production [LMJH+11,
ZEM+15, Pan17, tL17, Fac17, Goo17]. At a higher abstraction level, any system
with a camera may gain more information about what is being observed if more cam-
eras are added into the system. The trend of turning single-camera systems into
multi-camera systems is evident from the use of multi-camera based photography
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effects [Mö18] and depth-based facial profiling [deA17] in modern smartphones. It
is evident that contributions to multi-camera systems can have far-reaching conse-
quences.

The overall purpose of this work is to expand the existing knowledge on multi-
camera systems. More importantly, parts of this work contribute to the use of multi-
camera systems and on-camera processing, and to the ability to recover highly syn-
chronized multi-view and depth data from unsynchronized cameras.

On the one hand, these aspects can benefit surveillance camera systems, since
these systems often rely on low-cost, unsynchronized cameras while being used for
vehicle and people tracking. Moreover, on-camera processing allows surveillance
camera systems to avoid privacy laws: while it may be illegal to record and store
video footage of people in public spaces, it may be legal to record a video, analyze it
on a camera, and only store results of the analysis, such as the total number of people
seen in an area or group behavior patterns at different times. As multi-camera sys-
tems and surveillance camera networks become increasingly present, communities
and governments will need to strictly define which kinds of image analysis results
are too specific, and whether the benefit of using surveillance systems is justified.
It may be necessary to ensure that implementations of on-camera processing do not
breach the European Union’s General Data Protection Regulation (GDPR) [Alb16].

On the other hand, these aspects have a positive effect in several contexts. The
investigations into the consequences of synchronization error may improve the de-
sign of multi-camera systems, and reduce the use of needlessly expensive cameras.
This will improve the cost efficiency of multi-camera systems used in manufacturing
and entertainment, without a reduction in human jobs. The multi-camera systems
will still need to be designed and constructed, just with more specific hardware re-
quirements. Multi-camera systems are already widely used in systems such as self-
driving vehicles, where the accuracy of recorded data has a direct effect on human
safety. Such systems could benefit from an increased focus on camera synchroniza-
tion and accuracy in 3D estimation of recorded objects. Moreover, the LIFE testbed
can be used to accelerate research on multi-camera and Light Field systems. This
implies that improvements in current multi-camera systems and Light Fields may
occur sooner and be incorporated into multimedia production, VR, AR, and indus-
trial monitoring applications.

8.4 Future Work

Given the definition of the capture process and the applications of multi-camera
systems mentioned in Section 1.1, the scope for future work is vast. With a func-
tioning multi-camera based Light Field evaluation testbed, directions for potential
research are numerous. They include optimization of camera placement, manage-
ment of inter-system and system-to-client communications, and distributed image-
and-depth processing on compute modules. Likewise, the proposed synchroniza-
tion model can be extended by parametrizing the camera shutter speed and motion
blur, or using the model in a cost function for multi-camera layout optimization.



48 Conclusion and Outlook

Furthermore, due to the LIFE testbed’s Internet-connected design and capability to
record and transmit data simultaneously, it can be used as a component in a larger
Light Field communication system, enabling research on Light Field transmission,
coding, and presentation. Moreover, the flexibility of the testbed opens possibilities
for research on other 3D-related applications, such as 360 video production, depth-
enhanced photography, and augmented reality.
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