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ABSTRACT

Recording and imaging the 3D world has led to the use of light

fields. Capturing, distributing and presenting light field data is

challenging, and requires an evaluation platform. We define a

framework for real-time processing, and present the design and

implementation of a light field evaluation system. In order to serve

as a testbed, the system is designed to be flexible, scalable, and

able to model various end-to-end light field systems. This flexibil-

ity is achieved by encapsulating processes and devices in discrete

framework systems. The modular capture system supports mul-

tiple camera types, general-purpose data processing, and stream-

ing to network interfaces. The cloud system allows for parallel

transcoding and distribution of streams. The presentation system

encapsulates rendering and display specifics. The real-time ability

was tested in a latency measurement; the capture and presentation

systems process and stream frames within a 40 ms limit.

Index Terms — Multiview, 3DTV, Light field, Distributed

surveillance, 360 video

1. INTRODUCTION

Light is the most important medium through which people per-

ceive the 3D world [1]. However, conventional photography and

displays can only represent a 2D projection of the 3D world. The

effort to record and replicate the world’s 3D information through

has led to the plenoptic function [2], 3DTV, 360 video, and light

fields [3]. Recording, distributing and presenting light field data

poses unique challenges in device management and data process-

ing. In order to address these challenges, there is a need for flexi-

ble light field test systems on which different solutions for record-

ing, distributing and presenting light fields can be evaluated.

As Wu et al. show [1], the plenoptic and light field research

areas contain problems related to capture, processing, distribution

and presentation. Capture of spatial and angular light informa-

tion requires special cameras or camera systems, which impose

resolution tradeoffs and uneven sampling rates. The processing

and distribution of light fields is complicated by the recorded data

quantities, limited bandwidths, lacking format standards, and the

use of intermediate data such as depthmaps. The presentation of

light fields is also affected by the bandwidth requirements and the

variety of image rendering methods and devices.

In this paper, we describe the Light Field Evaluation (LIFE)

system: a multi-camera array and data processing and streaming

framework designed for investigating the above problems. This

framework has been designed to be modular in hardware and soft-

ware domains, and to serve as a test-bed for light field capture,

processing, distribution and presentation. We detail the LIFE sys-

tem’s components and present the 11-camera, 11-computer, 1-

cloud prototype implementation as shown in Fig. 1.

Figure 1. Prototype of the LIFE multi-camera capture array (left) and

near-camera processing cluster (right).

2. RELATED WORK

We define end-to-end light field systems as systems that include

capture, distribution and presentation of 360-degree, 3D or light

field data. The required data can be recorded by plenoptic cam-

eras [4] and multi-camera systems [5, 6]. Plenoptic cameras pro-

duce a scene sampling that closely matches the four-dimensional

parametrization of light field [3]. However, plenoptic cameras are

seldom used in end-to-end systems, due to the spatial-angular res-

olution tradeoff and high data bandwidth [1]. Multi-camera sys-

tems avoid the bandwidth limits of plenoptic cameras, and there-

fore are used in end-to-end systems. Such systems have variously

been presented as 3D-TV [7] or light field [5, 6] systems, depend-

ing on the choice of data format and application.

The 3D-TV system in [7] uses 16 cameras controlled by 8

computers, which compress the video using MPEG-2. The com-

pressed data is sent to a cluster of rendering computers which de-

code and provide frame data to the renderer. The renderer is de-

scribed as either a direct per-camera input to a projector, or as a

linear pixel value interpolation process that uses a lookup table of

input-to-output pixel mapping. The mapping is based on a pre-

capture calibration and view selection. Cameras are hardware-

synchronized. However, the system does not allow to vary the

camera positioning, does not support multiple camera types, and

does not allow any data processing besides encoding, decoding,

and lookup-table based rendering.

The light field system by Yang et al. [5] uses six computers to

receive data from 64 cameras. A seventh computer is tasked with

rendering the captured light field to a 2D display. The render-

ing algorithm projects sections of images from all cameras onto

a pre-specified focal plane, and renders the output image by focal

plane projection. Calibration is achieved off-line, and synchro-

nization is based on computer clock equalization. Bandwidth is

limited by sending image parts which project into the output im-

age. However, the system lacks the possibility to have a sparse

camera spacing, to vary the camera layout, and to transfer the en-
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Figure 2. High-level framework of the LIFE system. Capture (red), pro-

cessing (green), transmission (blue) and presentation (purple) components

are distributed in three domains with high internal bandwidth. Arrows

indicate flow of recorded data.

tire light field to the renderer and display devices.

Balogh et al. [6] use 27 2D cameras controlled by a single

computer. This computer is directly connected to a 3-computer

cluster that drives a micro-projector based display. Bandwidth is

reduced by in-camera hardware Motion-JPEG compression. In

the computing cluster, each camera has a dedicated CPU thread

for decompression. The decompressed data is sent to a GPU for

rendering. The rendering consists of mapping the recorded light

rays from cameras to the emitted light rays on the projector dis-

play. Camera calibration is done off-line, and synchronization is

based on computer clock equalization. However, the system lacks

the possibility to vary camera type and layout, to synchronize the

acquisition, and to support several display technologies.

All of these systems stick to homogeneous arrays of off-the-

shelf cameras. All use rendering methods that are tuned for the

display technology, and rely on pixel-to-pixel mapping. Connec-

tion between capture and presentation devices is direct. Scalability

is achieved by copying the existing components. The design does

not consider processing the recorded data or modifying hardware

and software components.

3. LIGHT FIELD EVALUATION SYSTEM FRAMEWORK

In this section we describe the flexible high-level framework of

the LIFE system. The framework is based on three domains:

near-camera, cloud and near-display domain, as shown in Fig. 2.

Each domain is an environment with low-delay, large-bandwidth

communication. Across domain borders, communication has less

bandwidth and more latency. Each domain is distinguished by

containing cameras, cloud computers, or presentation displays.

Within the domains, devices and processes are grouped in four

components: Capture, Processing, Transmission, and Presenta-

tion. Fig. 2 shows the component and domain grouping.

The component-based design of the LIFE framework achieves

two important goals: ability to model diverse light field systems,

and system flexibility, which are key requirements for a light field

testbed. System flexibility ensures that these configurations can be

implemented, and that changes in one component do not require a

full system reimplementation.

The Capture Component (CapC) in Fig. 2 consists of the sys-

tem’s cameras and camera control devices. The CapC is defined

only in the near-camera domain. Camera interaction processes,

including synchronization, image acquisition and camera control,

are contained in the CapC. The CapC is responsible for supply-

ing recorded data to the processing and transmission components

using non-camera-specific formats. By abstracting the camera in-

teraction, the LIFE system becomes flexible with respect to new
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Figure 3. Implementation of near-camera domain of the LIFE framework.

Arrows show main data flow.

camera hardware, because camera changes only affect the CapC.

This abstraction also ensures that camera choice does not force a

specific distribution and rendering model.

The Processing Component (ProC) contains processes for

two kinds of operations: ones that generate new information from

the recorded data, and ones that significantly alter the existing in-

formation. The ProC is defined and found in all three domains of

the LIFE system. In the near-camera domain, the ProC can take

advantage of the low-latency availability of the data. In the cloud

domain, the ProC can make use of computational resources of net-

worked computer clusters, typically unavailable in near-camera or

near-display domains. In the near-display domain, the ProC can

provide the last-step computation required for rendering and pre-

sentation. Distributing the processing (e.g. calibration, depth esti-

mation, transcoding) between the domains allows the LIFE frame-

work to model and implement a variety of light field systems.

The Transmission Component (TrC) consists of the data dis-

tribution mechanisms, including networking, data stream forming,

compression and decompression. The TrC is responsible for data

flow between domains via links with possible bandwidth and la-

tency constraints. In this way, the TrC allows the LIFE system to

support and model various distribution methods and technologies.

The Presentation Component (PreC) consists of the render-

ing process, display hardware, and display control processes and

the display, and so is only defined in the near-display domain. The

PrC includes the rendering process, because in practice the display

technology tends to strictly enforce the use of a specific rendering

approach. This abstraction of display technology allows the LIFE

system to have non-display-specific implementations, and scale

from 2D, via stereoscopic, to light field presentation without sig-

nificant changes in the preceding components.

4. IMPLEMENTATION

In this section we describe the implementation of the LIFE system

components.

4.1. Near-Camera Domain

The near-camera domain is shown in Fig. 1 and 3. The imple-

mentation is made up of functionally parallel units, each with one

camera and one computer. This unit-based approach improves

upon the light field systems mentioned in section 2, by allocating

more processing resources and bandwidth per camera. As a result,

the LIFE system can be used to try out concepts for smart-camera

systems used in surveillance to provide in-camera processing. As

shown in Fig. 3, the cameras are the hardware part of CapC, and

the computers are the hardware platform for running the CapC,

ProC and TrC software.

The hardware is based on camera-computer units. Each unit

consists of a General-Purpose Computer (GPC) and a camera de-
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vice. We use the NVidia Jetson TK1 computers as GPCs, because

they have a range of high-bandwidth interfaces, a multi-core CPU

and GPU, and a Linux Ubuntu operating system with full sup-

port for generic applications. We capture light position and angle

with ten Basler daA1600-60uc cameras, and one Kinect v2 is used

for 2D and depth sensing. The Basler cameras have a small form

factor, allowing wide-baseline and narrow-baseline configurations

for parallel, converged and diverged view directions. The im-

plementation supports both hardware and software synchroniza-

tion. This enables to simulate different applications and the con-

sequence synchronization errors have on data consistency [8]. We

use a signal generator to provide a synchronization signal to the

Basler cameras, and the GPCs are software-synchronized using

Network Time Protocol. The GPCs are connected to each other

by a local GigE network, with a gateway to the Internet to stream

data to the cloud and to a received with a display.

Software implements the Capture, Processing and Transmis-

sion components in application modules (applets) on each GPC,

see Fig. 4. The implementation merges custom LIFE applets

with standard applets in the GStreamer [9] framework. The four

main processes are image streaming, depth streaming, camera

calibration and configuration. Calibration and configuration are

offline processes, disabled during video recording. Output from

these processes is stored in local files, which are accessed by

other applets during recording. The offline, target-based calibra-

tion method is chosen via assessments in [10].

The image streaming pipeline applets in Fig. 4 are image

grabber, format converter, H.264 encoder, stream packer, and sinks.

The image grabber uses camera-specific API, saves a timestamp

for each frame, and provides the frame through a GStreamer source

element. Each recorded frame is converted to the input format

of the GStreamer-based H.264 encoder. The stream packer ap-

pends the recorded frame, timestamp and camera calibration meta-

data to the videostream. GStreamer sinks are used to send the

videostream across the local network or to local storage. The

depth streaming pipeline splits from the image streaming pipeline

after the image grabber applet. In a multiview-plus-depth case,

depth data is generated by the depth estimation applet in the depth

streaming pipeline. The depth estimation applet is simulated by

image filtering to a 16-bit grayscale matrix.

4.2. Cloud Domain

A private Ericsson Research data center is used to implement the

LIFE cloud domain. The data center serves as a cloud research

laboratory, and provides a compute platform for data analytics and

simulations. The data center is equipped with 1000+ servers and

100+ GPUs, connected via 100-Gigabit network into an Open-

Stack cloud service. The prototype cloud is used to transcode

high-bitrate video streams from the near-camera domain to stan-
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dard bitrate streams for end consumers. Other uses include dis-

tributed depth estimation, view rendering, and end-to-end deliv-

ery optimization. The prototype implementation is based on vir-

tual computer instances, and uses a master instance, a file-system

data cache instance, and a pool of slave instances to process video

streams as shown in Fig. 5.

The master instance acts as the cloud controller and the end-

point for video streams inbound from near-camera domain. A

TCP-based service is constantly listening for HTTP-request based

instructions for stream configuration, monitoring and launching.

Upon stream launch, the master instance sets up the requested

number of GStreamer stream decoder threads as shown in Fig.

5, and starts a slave instance for each stream. Slave instances are

directly controlled by master instance via HTTP requests. During

streaming, incoming video data is decoded on the master instance,

and stream metadata and raw frames and are are cached to the

Network File System Cache (NFSC). The NFSC allows to bypass

network protocol overheads and reduces the master-to-slave data

transmission time.

Each slave instance is listening to file system events on the

NFSC. When a raw video frame is available in the assigned stream,

the slave instance uses local encoder settings and configuration

from the master to re-encode the video. Due to the computing re-

source availability, the re-encoded stream can have a better qual-

ity to compression ratio and different data format. The encoded

video is re-packed into a Real-Time-Protocol stream with the orig-

inal metadata, and sent through a dedicated exit gateway. The

transcoding process on each slave instance can be stopped and

restarted at will. When re-started, the process returns to encoding

and streaming the newest frame in the NFSC, in order to allow

the restarted slave instance to keep up with other active slave in-

stances. The parallel streaming architecture allows each outgoing

stream to have a different bitrate and encoding quality. Moreover,

per-stream processing tasks can be deployed on slave instances

without affecting stream management and transcoding organiza-

tion.

4.3. Near-Display Domain

The near-display domain is implemented on a generic computer,

connected to an autostereoscopic display seen in Fig. 1. Transmis-

sion is handled by the GStreamer network source components and

video decoder. A GStreamer video sink element serves as the pro-

totype presentation component. It is foreseen to further develop

the near-display domain in the future.

5. PRELIMINARY RESULTS

The Basler cameras generate YUV422 video at 25 Frames Per

Second (FPS), at the maximum sensor resolution of 1600 by 1200
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Figure 6. Streamed video frame processing latency in our system’s near-camera and near-display domains. Displayed latency is cumulative. Frames are

processed by the modules listed on x-axes. Red line shows average frame latency, dots show individual frame latency observations.

pixels. We measured the cumulative latency for frame processing

in near-camera and near-display domains, to verify that the frame-

work is able to process and transmit the video data. Domains were

connected via a public network, in order to create realistic condi-

tions for the transmission components. The results shown in Fig. 6

demonstrate that both near-camera and near-display domains can

operate within the real-time requirement of 40 ms, set by the 25

FPS recording rate. The cameras take 9.5 ms to expose the sen-

sor, and 20 ms to read out and debayer the recorded frame at full

resolution. Because this process is only camera-dependent, we

do not consider the in-camera exposure and debayering time as

framework processing latency.

In near-camera domain, the H.264 encoder runs on the GPU

and the remaining components occupy one CPU core, leaving

three cores available for the framework’s processing modules such

as depth estimation and depth streaming. The significant sources

of latency are the H.264 encoder and the frame format converter,

used to change from interleaved (YUYV) to planar (I420) frame

format. The H.264 encoder latency includes moving data between

CPU and GPU memory. In the near-display domain, the only no-

table latency is incurred by the H.264 decoder. In both domains,

network control overheads are negligible.

6. CONCLUSIONS AND FUTURE WORK

We have presented a flexible Light Field Evaluation framework,

and an implementation covering the framework domains. The

framework is designed to allow modelling various light field end-

to-end systems, by classifying components into near-camera, cloud,

and near-display domains. Processing of recorded light field data

can be located on any domain.

The near-camera domain prototype has been implemented as

a model of a smart camera system. Every camera is paired to a

general-purpose computation device, able to process, encode and

stream the recorded data to the cloud domain or presentation de-

vices. This design allows to support various camera types and

avoid near-camera bandwidth restrictions. Small camera form and

flexible mounts support various multi-camera arrangements. The

near-camera prototype has been shown to handle recorded frame

processing and sending within real-time constraints imposed by

the recording camera framerate, at full sensor resolution. The

cloud domain prototype has been implemented in an Ericsson Re-

search data center as a scalable master-slave architecture. The

cloud platform gives access to massively-parallel computing re-

sources for light field processing and video stream transcoding.

Future work is focused on developing the processing com-

ponents of the framework, such as near-camera depth estimation

and cloud-assisted light field rendering. Various cameras and dis-

play technologies will be included as supported modules within

the end-to-end system. The system will be used as a testbed for

research and evaluation of light field and multiview capture, pro-

cessing, distribution and presentation.
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[8] Elijs Dima, Mårten Sjöström, and Roger Olsson, “Modeling

depth uncertainty of desynchronized multi-camera systems,”

in 2017 International Conference on 3D Immersion (IC3D).

IEEE, 2017, pp. 1–6.

[9] GStreamer Developers, “GStreamer: open source multime-

dia framework,” 2018, https://gstreamer.freedesktop.org/.
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