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MODELING DEPTH UNCERTAINTY OF DESYNCHRONIZED MULTI-CAMERA SYSTEMS

Elijs Dima, Marten Sjostrom, Roger Olsson

Dept. of Information Systems and Technologies, Mid Sweden University
SE-851 70 Sundsvall, Sweden

ABSTRACT

Accurately recording motion from multiple perspectives is relevant
for recording and processing immersive multi-media and virtual re-
ality content. However, synchronization errors between multiple
cameras limit the precision of scene depth reconstruction and ren-
dering. In order to quantify this limit, a relation between camera
de-synchronization, camera parameters, and scene element motion
has to be identified. In this paper, a parametric ray model describ-
ing depth uncertainty is derived and adapted for the pinhole cam-
era model. A two-camera scenario is simulated to investigate the
model behavior and how camera synchronization delay, scene el-
ement speed, and camera positions affect the system’s depth uncer-
tainty. Results reveal a linear relation between synchronization error,
element speed, and depth uncertainty. View convergence is shown to
affect mean depth uncertainty up to a factor of 10. Results also show
that depth uncertainty must be assessed on the full set of camera rays
instead of a central subset.

Index Terms— Camera synchronization, Synchronization error,
Depth estimation error, Multi-camera system

1. INTRODUCTION

Using multiple cameras to record video is increasingly relevant for
motion capture [1], multi-media production and post-processing [2}
3|], surveillance and computer vision [4], 3D-TV applications [3],
360-degree video [6], and virtual reality video [7]. In all such ap-
plications, accurate depth and 3D information is desirable, as it in-
creases the objective and subjective quality of any depth-dependent
composition, rendering and post-processing results.

Multi-camera capture is complicated due to synchronization
concerns. Camera sensor shutters can be unsynchronized (e.g. in
mobile, low-cost or drone-mounted multi-camera networks, or sys-
tems using Time-of-Flight depth sensors), or be synchronized only
up to a certain precision via nearest-frame video sequence alignment
[1]. This lack of accurate synchronization leads to an imprecise
recording and reconstruction of moving element positions in 3D
space. The importance of synchronization has been noted [[1} [2} 5],
however, this 3D position imprecision - which we call depth uncer-
tainty (Ad) - has not been modeled as a direct consequence of the
camera system properties and applications.

Although numerous single-camera models exist (surveyed in [8|
9, 110l)), there are few models describing multi-camera systems [3|
110 112, [13) 144 [15 [16]. These models describe the spatial rela-
tions between cameras, but do not treat camera synchronization error
(desynchronization) as a system parameter affecting depth uncer-
tainty. Parametrizing depth uncertainty from multi-camera system
and scene parameters enables determining whether a given camera
system can retain accurate scene depth while recording scenes with
moving elements.

The purpose of this paper is to investigate how desynchroniza-
tion and convergence between cameras influence the system’s depth
uncertainty. We introduce a parametric model of depth uncertainty,
and use it to answer the following two research questions:

1) How do changes in camera-to-camera desynchronization (At)
and maximum scene element speed (v) influence overall Ad ?

2) Do parallel-oriented cameras have lower overall Ad compared
to inward-rotated (toed-in) cameras?

Because the model’s computational cost scales with the number
of rays in the system, we also address a third question:

3) Does calculating Ad for all rays of one camera and only the prin-
cipal ray of another camera produce results equivalent to calculat-
ing Ad for all rays of both cameras?

The novelties of this paper are: 1) we introduce a parametric
model that relates depth uncertainties to synchronization errors and
camera properties, 2) we combine our ray-based model with the pin-
hole camera model, and 3) we use our model to show how cam-
era orientation and desynchronization affect the overall depth uncer-
tainty of a multi-camera system. The article is organized as follows:
Section [2] discusses camera synchronization, and defines depth un-
certainty. Section [3]introduces our model and its extension with the
pinhole camera model. Section |4 describes simulation scenarios.
Section[5]contains simulation results that address our research ques-
tions. We present our conclusions in section|[6]

2. SYNCHRONIZATION AND DEPTH UNCERTAINTY

The extent of desynchronization in multi-camera systems varies
based on whether hardware trigger synchronization or software-
based synchronization [17] is used. The ability to use hardware
synchronization is limited by cost [18]], but provides much higher
synchronization accuracy than any other method [19]. Several
multi-camera systems without hardware synchronization have had
rendering artifacts caused by lack of accurate synchronization
[20% 211 22} 23]

Synchronization of multiple cameras is commonly treated as a
video alignment problem. Sequences are aligned via image feature
correspondences 18] 24, [25| 26l 27], intensity-matching [28| [29],
or even time-stamp based stream buffering [17, [19]. However, all
these approaches estimate synchronization error and align videos to
the nearest-frame at the cost of post-processing computation time.
None of these papers have investigated exactly how large of a syn-
chronization improvement would be necessary to record sufficiently
accurate scene depth information.

Depth uncertainty exists whenever moving elements in the cap-
tured scene are recorded with imperfectly synchronized cameras.
Each recorded frame represents a point in time, where a moving ele-
ment’s position is well-known in two (transverse) directions relative
to the camera. The position in the third direction - depth - is only
defined by triangulation from frames of at least one other camera. If



Cj Trajectories of E that maximize Ad p

Trajectories of E that
maximize Ad Pj

Fig. 1. Depth uncertainty Ad in desynchronized cameras ¢, j at posi-
tions C;, C;. Left: Maximum Ad of moving element E, captured in
different positions by co-planar camera rays P;, P; at time instants
separated by At. Maximum movement speed is v. Movement direc-
tion of E is unknown. € = is the smallest angle between rays P;, P;.
Right: Same scenario in 3D space with P;, P; at different planes and
m as the shortest path (distance) from P; to P;.

the frames are captured at different times, the element’s distance to
each camera is uncertain, since each camera may have captured the
element at a different position. Depth uncertainty describes the max-
imum error between the true positions of scene elements at the time
of capture, and the positions recovered without considering desyn-
chronization. Thus, we define depth uncertainty as the maximum
difference of a moving element’s possible distances from each cam-
era, when observed by desynchronized cameras.

3. DEPTH UNCERTAINTY MODEL

3.1. General depth uncertainty model

In the general case, we treat depth uncertainty as an output param-
eter, given some a priori knowledge about the camera system (e.g.
camera positions, sensor & lens properties, expected synchroniza-
tion accuracy) and the typical observed scene (e.g. speed of scene
elements that the camera system must record).

Notation: The Cartesian (“z-axis”) depth of any element E from
the i-th camera’s viewpoint is directly related to the distance d be-

tween E and the center C; of the i-th camera, along the ray Ciﬁ (i.e.
d = |E — C;||). For convenience, hereafter we denote such rays by

P, e.g. C;E = P;. Further, the vector of the ray P; is denoted by
pi. We use two a priori parameters: v as the maximum speed of E,
and At as the synchronization offset (error) between cameras ¢, j.

Depth Uncertainty: Determining d is possible by triangulation
with at least one other camera j observing E from a different view-
point. As long as the cameras are synchronized, the intersection of
rays P;, P; connecting E, C; and C; is at a specific position of E.
Thus, the depth uncertainty Ad is 0. Note that the depth is, in this
work, calculated along the ray to the camera principal point, not to
the camera sensor plane.

If E is moving and the cameras ¢, j capture the scene at times
separated by At, we cannot determine a precise d at either camera’s
capture times. Instead we can have a range of possible d values
Ad = max(d) — min(d) around the intersection of P; and P;.

Figure[T](left) shows how Ad is found from coplanar rays P;, P;
(a 2D case). To maximize Ad along ray P;, we set a right-triangle
relation such that P; contains the triangle’s hypotenuse. The distance
covered by E is the edge vAt in a right-angled triangle. This edge is
opposite to angle 6 between rays P;, P;. Any other placement of the
trajectory of E would produce a lower Ad value. By constructing
the right triangle as shown in Figure[I] we make sure that we obtain

the maximum Ad for a given distance vAt. The hypotenuse along

P; corresponds to half of Ad, since the true trajectory is unknown

and E can reach P; from P; at either side of the ray intersection. In

the 2D case, Ad can be determined via the following expression:
vAt

Ad:2sm(9) . 1)

The same principle applies for the 3D scenario where P;, P;
may be non-coplanar, as shown in Figure right. To find Ad along
P;, we project P; to a ray Pj in P;’s plane via a shortest-distance
vector m, which is perpendicular to both F; and P;. The maximum
distance (vAt)’ covered by E in the plane of P;, P} can be found by
another right-angled triangle relation between m, (vAt)” and vAt.
Therefore, (vAt)” is determined by using the Pythagoras theorem:

(vAt) = \/(vAt)2 — |[m]f>. 2

In the 3D scenario, 6 is still determined between vectors pi, p;j,
since the vector p; of ray P; equals the vector of ray P]{ :

lIpsll lIps i

Combining (T) and (Z), and checking whether the rays ever come
close enough, gives a model for the depth uncertainty Ad:

6 = arccos (

21/ (vAt)® - [Jm]2
sin()
-undefined-

Ad = i (AL > [ml?, (g

otherwise.

The “undefined” case in @) occurs when E cannot traverse between
P; and P; (i.e. P;, P; cannot be the same E; this implies a wrong
prior assumption for At or v, or a false-positive correspondence
matching conclusion).

In case the rays P;, P; are co-planar, |m| = 0 if P;, P; are
convergent (otherwise ||m|| = ||C; — C;||) This case is in fact the
2D-case and Eq. (m) holds. If, on the other hand, P;, P; are not
co-planar, the nearest distance between two non-intersecting rays in
3D space can be calculated from the dot product, as the nearest dis-
tance between non-parallel rays. The vector m is simultaneously
perpendicular to the direction vectors of the two rays. By defining

the vector between two camera origins po = C;C;, we get:
(be — éd)p; — (aé — bd)p;

aé — b2

m = po+ , )

where & = pi-pi, b = pi'Pj, ¢ = P;*Pj, d = Pi*Po, € = P;'Po, a3
shown in [30]. To ensure that m in @) connects P;, P; and not just
their extended lines ”behind the camera”, the following conditions
must be satisfied:

be_deOandiL?_Z(jZO‘ ©®)

ac —

ac —
If (@) does not hold, the rays are at their closest at (or very near) the
origin, i.c m| = [[po].
In case of more than two cameras, the overall depth uncertainty
Ad for an element E is retrieved by investigating all depth uncer-
tainties between pairwise cameras (Ad;;). The smallest Ad;; rep-
resents the best available constraint on E’s true position. Therefore,
the two-camera case scales to the multi-camera case by computing
the minimum of all pairwise depth uncertainties:

Ad = min(Ad; ;), wherei,j € {1,2,...,n}. @)
i



Table 1. Fixed Experiment Parameters

ct (-250, 0, 0) | mm
(of} (250, 0, 0) | mm
773 0 320
K, Ko 0 773 240 | px
0 0 1
sensor resolution 640x480 pX
sensor width 22.3 mm
focal length 26.9
(35mm equivalent) (42.3) mm

Parallel view directions 20° view convergence

principal ray principal

S \\, 640 px
i >

22.3 mm

camera 773 px

convergence
angle ¢ =0° v

camera
convergence
angle ¢ = 20°

G & Cy

500 mm Cs

Fig. 2. Camera layout, showing parallel view directions (all param-
eters as shown in Table , and ¢ = 20° convergence scenario.

3.2. Adaptation for the pinhole camera model

Adapting (@) to use the pinhole camera model [31]] requires a map-
ping from camera and pixel coordinates to rays with origin and di-
rection, and ensuring that both v and the camera extrinsic parameters
are set in the same frame of reference.

We use the pinhole model’s 2D-to-3D back-projection method
to describe a ray P; of camera ¢ as:

P, =C; + AR 'K ¢ , 8)

where C; = (C,, Cy, )7 is the center of camera 4, R; and K; are
the rotation and intrinsic matrices of the camera i, ¢; is the (x, y, 1)
coordinate in the image plane for the pixel intersected by P;, and A
is a non-negative scaling factor defining a point along the ray P; (and
thereby setting the reference scale). Using (8) and setting A = {0, 1}
for P; start and end points, we can now describe the vectors pj, p;j
of rays P;, Pj as:

pi =R 'K/ e, ©)

pi =R; 'K '¢c;. (10

B
The vector po remains C,;C;. From here, we can find ||m||, 6 and

Ad by substituting (@) and (I0) into (), @ and ().
4. EXPERIMENTAL SETUP

To answer the three research questions from section[I] three experi-
ments were catried out. Several parameters (listed in Table E[) were
kept constant in all experiments. To represent a typical computer-
vision scenario, cameras were defined with 45° horizontal angle of
view and set 50 cm apart. Sensor width was set to 22.3 mm, equiva-
lent to commercial APS-C sensors. Synchronization error was set to
half of a frame interval, to represent a worst-case desynchronization
corrected only by nearest-frame alignment between recorded video
sequences. Sensor integration times or effects of a rolling shutter

= parallel view dir., obs. Cam2 principal ray

¢ toed-in view dir., obs. Cam2 principal ray
toed-in view dir., obs. all Cam2 rays

—a—parallel view dir., obs. all Cam2 rays
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Fig. 3. Depth uncertainty Ad, given varying camera desynchroniza-
tion (left), and varying maximum speed of scene elements (right),
for parallel and ¢ = 20° -convergent view directions.

were not considered, in order to reduce the amount of free variables
in the model and experiments.

Experiment 1 addressed the research question 1): How do
changes in camera-to-camera desynchronization (At) and maxi-
mum scene element speed (v) influence overall Ad? The parameter
At was varied from 4.125 ms to 25 ms, corresponding to a desyn-
chronization of up to half a frame interval at 120 to 20 frames
per second (fps), respectively. The “perfect synchronization” case
At = 0 was also included. For At = 16.5 ms (half frame interval
at 30 fps), the parameter v was varied from 0.7 m/s to 2.8 m/s,
equivalent to half and double of average human walking speed. The
experiment was done for parallel camera view directions (Figure [2]
left), and for camera convergence angle ¢ = 20° (Figure |2} right).
”Overall depth uncertainty” from research question 1 was calculated
as the mean of Ad; 2 for all possible rays P; of camera 1, and all
rays P> of camera 2. Additionally, for varying At, mean of Adi 2
was calculated for all possible P, and only the principal ray of
camera 2 as Ps.

Experiment 2 was set to answer research question 2) (do
parallel-oriented cameras have lower overall Ad compared to
inwards-rotated (toed-in) cameras). The camera convergence angle
¢, encoded by rotation matrices R, Ra, was varied between 0°
and 40°. Parameters At and v were set to 16.5 ms and 1.4 m/s,
respectively. Other parameters were kept as shown in Table[T} Over-
all depth uncertainty was calculated as the mean of Ad; o for all
possible rays Py of camera 1, and all rays P» of camera 2.

Experiment 3 addressed research question 3) by mapping Ad
for each ray P of camera 1, using two Ad estimations. Parame-
ters At and ¢ were varied using same steps as in experiment I and
experiment 2, respectively. In the first estimation, Ad of each P;
was calculated using only the principal ray of camera 2 as P». In
the second estimation, Ad of each P; was calculated as mean Ad
of all combinations of P, and P», for every ray of camera 2 as P.
P1, P> combinations where Ad = oo or Ad = "undefined” were
excluded. The number of possible P;, P> combinations was also
tracked, in order to assess the model’s computational cost, and to
investigate the need to use the first estimation of Ad instead of the
second estimation.

5. RESULTS AND ANALYSIS

The results discussed in this section are from simulations of a sce-
nario with cameras 1" and 2", following the experiments given in
section[d] All results show depth uncertainty with respect to camera
17, since the camera 2" results are symmetrically equivalent.
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Experiment 1: At 0 ms desynchronization between cameras, the
depth uncertainty is, as expected, 0. For non-zero delays between
cameras, the relation between At and Ad is nearly linear (see Fig-
ure ). While increased camera view convergence significantly de-
creases Ad (by about a factor of 10, with 20° convergence), the
relation still exhibits a linearity. A similar behavior is seen when al-
tering v instead of At. At near-0 At, Figure[3] (left) does not show a
linear behavior for parallel cameras - this may have been caused by
a decrease in ray combinations satisfying the prerequisite condition
ineq. @.

Experiment 2: Depth uncertainty peaks for parallel camera ori-
entations, and decreases by a factor of 4 at a ¢ = 2° camera conver-
gence, as shown in Figure ] Depth uncertainty reaches the lowest
values when the cameras are observing the scene at right angles to
each other (¢ = 90°), as that maximizes the average 6 between rays
of both cameras. However, going from ¢ = 30° to ¢ = 90° does not
significantly change Ad, whereas it does limit the observable scene
dimensions more and more due to decreasing view overlap volume.
Moreover, as shown in Figure 3and in Figure[7] in parallel-oriented
cameras Ad increases at a a faster rate compared to toed-in cam-
eras, given the same increases in At and v. Thus, a parallel-oriented
multi-camera configuration suffers significantly more from imper-
fect synchronization, and has a larger Ad than even slightly toed-in
camera arrays.

Experiment 3: Figure[5]shows how many rays of camera 2 sat-
isfy the condition in eq. (@), for each ray in camera 1 (i.e. how many
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Fig. 6. 1000-bin histograms of Ad values for individual camera 1
rays. ¢ = 20° convergent view directions. Left graph depicts the
case when only the principal ray of camera 2 is considered; right
graph depicts the case when all rays of camera 2 are considered.
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convergence (Figure@ right).
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possible interactions a ray from camera 1 has with rays from camera
2). The influence of At is linear for mean, minimum and maximum
ray counts, and therefore has a linear effect on computation require-
ments. Camera convergence also has a linear effect on mean and
maximum ray counts, however the minimum number of interactions
increases until a ¢ = 45° convergence. Both sides indicate that, for
each ray of camera 1, there is likely to be a significant number of
rays from camera 2 that contribute to the overall depth uncertainty,
with a directly proportional computational cost.

The Ad of camera 1 rays show different distributions in Figure
@ when estimated only the principal ray of camera 2 ("first estima-
tion” in sectiond] experiment 3) instead of using all rays of camera
2 (’second estimation”). Using only the principal ray to estimate
Ad is not an acceptable abstraction of the general depth uncertainty
model, as indicated by differences between the first and second es-
timations in sensor utilization and Ad values shown in Figure[7] in
the distributions seen in Figure [§] and in the Ad values plotted in

Figure[3]



6. CONCLUSIONS

In this paper, we highlighted the lack of a parametric relation be-
tween camera desynchronization, camera properties, scene element
depth capture, and motion. We defined a parametric model that de-
scribes this relation, and combined it with the pinhole camera model.
We used our model to investigate how desynchronization and con-
vergence between cameras affects depth uncertainty.

Simulations indicate that both desynchronization and scene ele-
ment speed have a linear relation with the system depth uncertainty.
In desynchronized camera systems, depth uncertainty is affected by
the angle of convergence between the involved cameras. In partic-
ular, parallel-oriented camera arrays have significantly worse depth
accuracy than toed-in cameras. Depth uncertainty has to be assessed
by considering not just the principal rays of the involved cameras,
but all rays on both cameras involved in the depth determination. We
also showed that, for overall system depth uncertainty estimations,
our model has a computational cost linear with both desynchroniza-
tion intervals and camera convergence.

The proposed model can be improved by extending the sup-
ported parameter set (e.g. sensor integration time, line-by-line time
offset due to rolling-shutter), and by considering depth to a camera
plane instead of camera center point. Furthermore, the model can
be included in a design or cost-analysis process for constructing or
evaluating a multi-camera system with given requirements on depth
recovery in moving scenes.
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