miun.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Becker, J.
    et al.
    Bianco, L.
    Gottlicher, P.
    Graafsma, Heinz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Hirsemann, H.
    Jack, S.
    Klyuev, A.
    Marras, A.
    Trunk, U.
    Klanner, R.
    Schwandt, J.
    Zhang, J.
    Dinapoli, R.
    Greiffenberg, D.
    Henrich, B.
    Mozzanica, A.
    Schmitt, B.
    Shi, X.
    Gronewald, M.
    Kruger, H.
    Architecture and design of the AGIPD detector for the European XFEL2012Conference paper (Refereed)
    Abstract [en]

    AGIPD is a hybrid pixel detector developed by DESY, PSI, the University of Bonn and the University of Hamburg. The detector is targeted for use at the European XFEL, a source with unique properties: a bunch train of 2700 pulses with > 1012 photons of 12 keV each, only 100 fs long and with a 220 ns spacing, is repeated at a 10Hz rate. This puts up very demanding requirements: dynamic range has to cover the detection of single photons and extend up to > 104 photons/pixel in the same image, and as many images, as possible have to be recorded in the pixel to be read out between pulse trains. The high photon flux impinging on the detector also calls for a very radiation hard design of sensor and ASIC. The detector will consist of 16 Sensor modules arranged around a central hole for the direct beam. Each made of a single sensor bump-bonded to 2 × 8 readout chips of 64 × 64 pixels in a grid of 200 μm pitch. Each pixel of these ASICs contains a charge sensitive preamplifier featuring adaptive gain switching, changing sensitivity in three ranges, and a buffer to provide correlated double sampling (in the highest sensitivity mode). Most of the pixel area, albeit, is used for an analogue memory to record 352 frames. It is operated in random-access mode: data containing bad frames can be overwritten and the memory can be used in the most efficient way. The readout between two bunch trains is arranged via 4 ports: Data from pixels of one row is read in parallel and serialised by 4 multiplexers at the end of the pixel columns and driven off-chip as differential signals. The operation of the ASIC is controlled via a three-line serial interface, using a command based protocol. It is also used to configure the chip's operational parameters and internal timings. © 2012 IEEE.

  • 2.
    Reza, Salim
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Wong, Winnie
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Fröjdh, Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Norlin, Börje
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Fröjdh, Christer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungstörm, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Smart dosimetry by pattern recognition using a single photon counting detector system in time over threshold mode2012In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 7, no 1, p. Art. no. C01027-Article in journal (Refereed)
    Abstract [en]

    The function of a dosimeter is to determine the absorbed dose of radiation, for those cases in which, generally, the particular type of radiation is already known. Lately, a number of applications have emerged in which all kinds of radiation are absorbed and are sorted by pattern recognition, such as the Medipix2 application in [1]. This form of smart dosimetry enables measurements where not only the total dosage is measured, but also the contributions of different types of radiation impacting upon the detector surface. Furthermore, the use of a photon counting system, where the energy deposition can be measured in each individual pixel, ensures measurements with a high degree of accuracy in relation to the pattern recognition. In this article a Timepix [2] detector system has been used in the creation of a smart dosimeter for Alpha, Beta and Gamma radiation. When a radioactive particle hits the detector surface it generates charge clusters and those impacting upon the detector surface are read out and image processing algorithms are then used to classify each charge cluster. The individual clusters are calculated and as a result, the dosage for each type of radiation is given. In some cases, several particles can impact in roughly the same place, forming overlapping clusters. In order to handle this problem, a cluster separation method has been added to the pattern recognition algorithm. When the clusters have been separated, they are classified by shape and sorted into the correct type of radiation. The algorithms and methods used in this dosimeter have been developed so as to be simple and computationally effective, in order to enable implementation on a portable device. © 2012 IOP Publishing Ltd and SISSA.

  • 3.
    Tourancheau, Sylvain
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sjöström, Mårten
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Persson, Anders
    CMIV, Linköpings universitet, Linköping, Sweden.
    Ericson, Thomas
    Setred AB, Stockhlom, Sweden.
    Evaluation of quality of experience in interactive 3D visualization: methodology and results2012In: Proceedings of SPIE - The International Society for Optical Engineering, SPIE - International Society for Optical Engineering, 2012, p. Art. no. 82880O-Conference paper (Refereed)
    Abstract [en]

    Human factors are of high importance in 3D visualization, but subjective evaluation of 3D displays is not easy because of a high variability among users. This study aimed to evaluate and compare two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of task performance and quality of experience (QoE), in the context of interactive visualization. An adapted methodology has been designed in order to focus on 3D differences and to reduce the influence of all other factors. 36 subjects took part in an experiment during which they were asked to solve different tasks in a synthetic 3D scene. After the experiment, they were asked to judge the quality of their experience, according to specific features. Results showed that scene understanding and precision was significantly better on the multi-view display. Concerning the quality of experience, visual comfort was judged significantly better on the multi-view display and visual fatigue was reported by 52% of the subjects on the stereoscopic display. This study has permitted to identify some factors influencing QoE such as prior experience and stereopsis threshold.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf