miun.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bujtar, Peter
    et al.
    Southern General Hospital, Glasgow.
    Simonovics, Janos
    Southern General Hospital, Glasgow.
    Koptyug, Andrey
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Sustainable Building Engineering.
    George, Sandor
    Southern General Hospital, Glasgow.
    Varadi, Karoly
    Southern General Hospital, Glasgow.
    Emerging manufacturing bioengineering technologies 2: Scaffold designing experiment using titanium scaffolds2014In: British Journal of Oral & Maxillofacial Surgery, ISSN 0266-4356, E-ISSN 1532-1940, Vol. 52, no 8, p. e60-e61Article in journal (Refereed)
    Abstract [en]

    Substantial volume defects of the head and neck oftenrequire customized solutions to improve quality of life likefree flap transfers.Titanium and its alloys are versatile materialsproviding the feature of osteointegration. The conditionswhich facilitate the deposition of lamellar bone are underextensive research. Our project aimed to determine whethertitanium can function as a scaffold - unlike simple plates - toenhance bone regeneration for load bearing structures. Thereaction of stem cells to scaffolds with varying stiffness willbe presented.Additive manufacturing were used to produce a variety ofscaffolds to optimize titanium structures. Electric beam melting(EBM) manufacturing allowed us to optimize the elasticmodulus (Young) of the titanium to match with cadaveric 

    bone from a previous project. Multidirectional mechanicaltests were performed on the various designs of titanium cellstructures (n=80). The predictability and quality of manufacturingwas assessed statistically and also with scanningelectron microscope (SEM).The results demonstrated structures matching the mechanicalproperties of bone and even anisotropy as our resultssuggest 3GPa elasticity. This allows the possibility to buildregenerating bone with predictable properties. In addition,predictable patterning - unlike etching and sandblasting - ofmicroscopic (nano) features found to be significant and nonhomogenous simple repetitive patterns provide better cellularresponse.The benefit that tissue engineering techniques offer isdecreased morbidity, relative independence from donor site,with a highly specific and customized shape. Titanium basedreconstruction constructs seems to offer an alternative futurefor bony reconstruction.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf