miun.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Reza, Salim
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Wong, Winnie
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Fröjdh, Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Norlin, Börje
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Fröjdh, Christer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thungstörm, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Thim, Jan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Smart dosimetry by pattern recognition using a single photon counting detector system in time over threshold mode2012In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 7, no 1, p. Art. no. C01027-Article in journal (Refereed)
    Abstract [en]

    The function of a dosimeter is to determine the absorbed dose of radiation, for those cases in which, generally, the particular type of radiation is already known. Lately, a number of applications have emerged in which all kinds of radiation are absorbed and are sorted by pattern recognition, such as the Medipix2 application in [1]. This form of smart dosimetry enables measurements where not only the total dosage is measured, but also the contributions of different types of radiation impacting upon the detector surface. Furthermore, the use of a photon counting system, where the energy deposition can be measured in each individual pixel, ensures measurements with a high degree of accuracy in relation to the pattern recognition. In this article a Timepix [2] detector system has been used in the creation of a smart dosimeter for Alpha, Beta and Gamma radiation. When a radioactive particle hits the detector surface it generates charge clusters and those impacting upon the detector surface are read out and image processing algorithms are then used to classify each charge cluster. The individual clusters are calculated and as a result, the dosage for each type of radiation is given. In some cases, several particles can impact in roughly the same place, forming overlapping clusters. In order to handle this problem, a cluster separation method has been added to the pattern recognition algorithm. When the clusters have been separated, they are classified by shape and sorted into the correct type of radiation. The algorithms and methods used in this dosimeter have been developed so as to be simple and computationally effective, in order to enable implementation on a portable device. © 2012 IOP Publishing Ltd and SISSA.

  • 2.
    Tourancheau, Sylvain
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Sjöström, Mårten
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Olsson, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
    Persson, Anders
    Center for Medical Image Science and Visualization, Linköping University, Sweden.
    Ericson, Thomas
    Setred AB, Stockholm, Sweden.
    Rudling, Johan
    Center for Medical Image Science and Visualization, Linköping University, Sweden.
    Norén, Bengt
    Dept. of Radiology, Linköping University Hospital, Sweden.
    Subjective evaluation of user experience in interactive 3D-visualization in a medical context2012In: Proceedings of the SPIE, vol 8318: Conference on Image Perception, Observer Performance, and Technology Assessment, San Diego, CA, USA, 4 - 9 February 2012, SPIE - International Society for Optical Engineering, 2012, p. Art. no. 831814-Conference paper (Refereed)
    Abstract [en]

    New display technologies enable the usage of 3D-visualization in a medical context. Even though user performance seems to be enhanced with respect to 2D thanks to the addition of recreated depth cues, human factors, and more particularly visual comfort and visual fatigue can still be a bridle to the widespread use of these systems. This study aimed at evaluating and comparing two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of quality of experience (QoE), in the context of interactive medical visualization. An adapted methodology was designed in order to subjectively evaluate the experience of users. 14 medical doctors and 15 medical students took part in the experiment. After solving different tasks using the 3D reconstruction of a phantom object, they were asked to judge their quality of the experience, according to specific features. They were also asked to give their opinion about the influence of 3D-systems on their work conditions. Results suggest that medical doctors are opened to 3D-visualization techniques and are confident concerning their beneficial influence on their work. However, visual comfort and visual fatigue are still an issue of 3D-displays. Results obtained with the multi-view display suggest that the use of continuous horizontal parallax might be the future response to these current limitations.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf