miun.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eivazihollagh, Alireza
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Svanedal, Ida
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    On chelating surfactants: Molecular perspectives and application prospects2019In: Journal of Molecular Liquids, ISSN 0167-7322, E-ISSN 1873-3166, Vol. 278, p. 688-705Article in journal (Refereed)
    Abstract [en]

    Chelating agents, molecules that very strongly coordinates certain metal ions, are used industrially as well as in consumer products to minimize disturbances and increase performance of reactions and applications. The widely used sequestering agents, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) belong to this branch of readily water-soluble compounds. When these chemical structures also have hydrophobic parts, they are prone to adsorb at air-water interfaces and to self-assemble. Such bifunctional molecules can be called chelating surfactants and will have more extended utilization prospects than common chelating agents or ordinary ionic surfactants. The present review attempts to highlight the fundamental behavior of chelating surfactants in solution and at interfaces, and their very specific interactions with metal ions. Methods to recover chelating surfactants from metal chelates are also described. Moreover, utilization of chelating surfactants in applications for metal removal in environmental engineering and mineral processing, as well as for metal control in the fields of biology, chemistry and physics, is exemplified and discussed.

  • 2.
    Hossain, Shakhawath
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. Uppsala university, Uppsala.
    Bergström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Uniaxial Compression of Three-Dimensional Entangled Fibre Networks: Impacts of Contact Interactions2019In: Modelling and Simulation in Materials Science and Engineering, ISSN 0965-0393, E-ISSN 1361-651X, Vol. 27, no 1, article id 015006Article in journal (Other academic)
    Abstract [en]

    This paper concerns uniaxial compression of anisotropic fibre network, as typically seen in the end use of nonwoven and textile fibre assemblies. The constitutive relationship and deformation mechanism have been investigated by using a bead-model to represent the complex structures of the constituent fibres and the fibre networks. The compression stress shows a power-law dependency on the density with a threshold density for both experimental and numerical fibre networks. Unlike the widely studied tri-axial compression of the initially isotropic network, it was found that the contact interaction between the fibres, especially the fibre-fibre contact stiffness (or the transverse compression properties of fibres), has a large impact on all the constitutive parameters. In particular, the exponent values computed based on the softer contact stiffnesses agreed very well with the experimental values reported in the literature. The internal deformation mechanism was similar to the earlier studies that at low compression, the deformation is dominated by the low-energy-mode deformations (i.e. bending and shear), whereas at higher compression, the difference appears: the compression of fibre-fibre contacts, instead of the deformation in the fibre axial direction, takes over.

  • 3.
    Rahmani, Rizan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Wallin, Erika
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Viklund, Lina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Schroeder, Martin
    Swedish University of Agricultural Sciences, Uppsala.
    Hedenström, Erik
    Identification and Field Assay of Two Aggregation Pheromone Components Emitted by Males of the Bark Beetle Polygraphus punctifrons (Coleoptera: Curculionidae)2019In: Journal of Chemical Ecology, ISSN 0098-0331, E-ISSN 1573-1561Article in journal (Refereed)
    Abstract [en]

    The bark beetle Polygraphus punctifrons (Coleoptera: Curculionidae) is a species that feeds on Norway spruce (Picea abies) and is found in the Northern parts of Europe and Russia. The release of volatile organic compounds (VOCs) produced by males and females of P. punctifrons when the beetles bore into spruce stem sections in a laboratory environment was studied using solid phase microextraction (SPME). The sampled VOCs emitted by boring beetles were analysed by gas chromatography and mass spectrometry (GCMS). (+)-2-[(1R,2S)-1-Methyl-2-(prop-1-en-2-yl)cyclobutyl]ethanol [(+)-(1R,2S)-grandisol] and (−)-(R)-1-isopropyl-4-methyl-3-cyclohexen-1-ol [(−)-(R)-terpinen-4-ol] were identified to be male specific volatiles. The identity of the compounds was confirmed by comparison with synthetic samples. Field trials with synthetic compounds in Sweden showed that racemic grandisol per se was strongly attractive for both males and females, while (−)-(R)-terpinen-4-ol was not. Further, when adding (−)-(R)-terpinen-4-ol to rac-grandisol, a synergistic effect was observed as the trap catch of P. punctifrons was fourfold. (−)-(R)-Terpinen-4-ol by its own did not attract P. punctifrons but Polygraphus poligraphus, and the latter was also attracted to traps baited with a 10:90 mixture of the two compounds. Thus, we have identified (+)-(1R,2S)-grandisol as a main component and (−)-(R)-terpinen-4-ol as a minor component of the aggregation pheromone of P. punctifrons. This opens future possibilities to monitor and, if necessary, manage populations of P. punctifrons. 

  • 4.
    Sandberg, Christer
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. Holmen Paper AB, Norrköping.
    Berg, Jan-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Low Consistency Refining Combined with Screen Fractionation: Reduction of Mechanical Pulping Process Complexity2019In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 14, no 1, p. 882-894Article in journal (Refereed)
    Abstract [en]

    Process intensification is a process development methodology aimed at a considerable reduction in the energy consumption and process complexity. The approach has been applied to mechanical pulping process design. A process denoted as HC-LC-S consisting of single stage high consistency (HC) refining, followed by low consistency (LC) refining and screening was evaluated in mill trials at the Holmen Paper Braviken Mill in Sweden. After LC refining, the pulp was screened, and the reject fraction was fed back to LC refining. Two HC primary refiner types were evaluated, namely single disc (SD) and double disc (DD). Double disc chip refining was more suitable than SD refining for the HC-LC-S process because of the higher light scattering and lower shives content of the final pulp. The tensile index and shives content of the pulp produced with the DD-LC-S process was similar to that of the reference process, consisting of single stage DD refining and HC reject refining, but the fibre length and light scattering were somewhat lower. The specific refining energy was approximately 200 kWh/adt lower for the DD-LC-S process compared with the reference. Additionally, the auxiliary specific energy was 100 kWh/adt lower for the HC-LC-S processes, since a number of equipment units were omitted.

  • 5.
    Singh, Poonam
    et al.
    Univ Coimbra, Coimbra, Portugal.
    Magalhaes, Solange
    Univ Coimbra, Coimbra, Portugal.
    Alves, Luis
    Univ Coimbra, Coimbra, Portugal.
    Antunes, Filipe
    Univ Coimbra, Coimbra, Portugal.
    Miguel, Maria
    Univ Coimbra, Coimbra, Portugal.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Medronho, Bruno
    Univ Algarve, Faro, Portugal.
    Cellulose-based edible films for probiotic entrapment2019In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 88, p. 68-74Article in journal (Refereed)
    Abstract [en]

    Encapsulation with edible films is a promising approach that may solve the disadvantages associated with the use of bioactive compounds as food additives. This is particularly relevant in the case of probiotics, since their stability in food matrices and in the gastrointestinal tract may be rather poor. Therefore, new cellulose-based edible films have been successfully developed and characterized. Sodium carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC) were used for the film preparation and cross-linked with citric acid (CA) under reasonably mild conditions. Model probiotic bacteria (Lactobacillus rhamnosus GG) were incorporated in the films either during the film formation and casting or after the film synthesis, via bacteria diffusion and adsorption. The later approach could efficiently entrap and preserve viable bacteria. The mechanical properties and swelling ability could be tuned by varying the HEC/CMC ratio and the amount of CA. Moreover, the surface area and total pore volume of the films considerably decreased after cross-linking. Overall, these novel films are regarded as promising inexpensive and friendly matrices for food protection and packaging applications.

  • 6.
    Yang, Jiayi
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882XArticle in journal (Refereed)
    Abstract [en]

    Cellulose–chitosan films were preparedusing a physical method in which cellulose andchitosan were separately dissolved via freeze thawingin LiOH/urea and mixed in different proportions, theresulting films being cast and regenerated in water/ethanol. X-ray diffraction and Fourier transforminfrared spectroscopy (FT-IR) spectroscopy verifiedthe composition changes in the nanocomposites due todifferent mixing ratios between the polymers. Tensilestress–strain measurements indicated that the mechan-ical performance of the cellulose–chitosan nanocom-posites slightly worsened with increasing chitosancontent compared with that of films comprisingcellulose alone. Field emission scanning electronmicroscopy revealed the spontaneous formation ofnanofibers in the films; these nanofibers were subse-quently ordered into lamellar structures. Water uptakeand microscopy analysis of film thickness changesindicated that the swelling dramatically increased atlower pH and with increasing chitosan content, thisbeing ascribed to the Gibbs–Donnan effect. Slowmaterial loss appeared at acidic pH, as indicated by aloss of weight, and quantitative FT-IR analysisconfirmed that chitosan was the main componentreleased.Asample containing 75% chitosan reached amaximum swelling ratio and weight loss of 1500%and 55 wt%, respectively, after 12 h at pH 3. Thestudy presents a novel way of preparing pH-responsivecellulose–chitosan nanocomposites with slow-releasecharacteristics using an environmentally friendlyprocedure and without any chemical reactions.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf