miun.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ashraf, Shakeel
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Niskanen, Ilpo
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. University of Oulu, Finland.
    Kanyathare, Boniphace
    Electronics and Telecommunications Department, Dar es salaam Institute of Technology, Tanzania.
    Vartiainen, Erik
    LUT School of Engineering Science, Lappeenranta University of Technology, Finland.
    Mattsson, Claes
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Heikkilä, Rauno
    Faculty of Technology, Structures and Construction Technology, University of Oulu, Finland.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Determination of complex refractive index of SU-8 by Kramers-Kronig dispersion relation method at the wavelength range 2.5 – 22.0 μm2019In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 224, p. 309-311Article in journal (Refereed)
    Abstract [en]

    Accurate determination of the complex refractive index of SU-8 epoxy has significant for the wide variety of applications in optical sensor technology at IR range. The complex refractive index of SU-8 is determined by recording the transmission of light spectra for the wavelength range of 2.5 – 22.0 μm.  The data analysis is based on the Kramers-Kronig dispersion relation method. The method has several merits, such as ease of operation, non-contact technique, measurement accuracy, and rapid measurement. The present method is not restricted to the case of SU-8 but it is also proposed to be applicable across a broad range of applications, such as assessment of the optical properties of paints and biomedical samples.

  • 2.
    Brugés Martelo, Javier Mauricio
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Andersson, Mattias
    Andersson, Henrik
    Lundgren, Jan
    Surface topography characterization of high-quality PE coated paperboard using confocal chromatic microscope and3D SEM stereo-photogrammetry technique2017Conference paper (Refereed)
  • 3.
    Rydblom, Staffan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Thörnberg, Benny
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olsson, Esbjörn
    Swedish Meteorol & Hydrol Inst (SMHI), Sundsvall.
    Field Study of LWC and MVD Using the Droplet Imaging Instrument2019In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 68, no 2, p. 614-622Article in journal (Refereed)
    Abstract [en]

    The droplet imaging instrument (DII) is a new instrument for cost-effective in situ measurements of the size and concentration of water droplets. The droplet size distribution and the concentration of atmospheric liquid water are important for the prediction of icing on structures, such as wind turbines. To improve the predictions of icing, there is a need to explore cost-effective working solutions. Through imaging, a wide range of droplet sizes can be measured. This paper describes a study of the atmospheric liquid water content and the median volume diameter using the DII and a commercial reference instrument--the cloud droplet probe 2 from Droplet Measurement Technologies Inc. The measurement is done at a weather measurement station in mid-Sweden. For a second validation, the result is compared with predictions using a numerical weather prediction model. The size measurement of the DII is verified using polymer microspheres of four known size distributions. The study shows that the DII measurement is precise, but there is a systematic difference between the two compared instruments. It also shows that droplets larger than 50 μm in diameter are occasionally measured, which we believe is important for the prediction of icing.

  • 4.
    Vitucci, G.
    et al.
    Univ Milano Bicocca, Milan, Italy.
    Minniti, T.
    STFC Rutherford Appleton Lab, Berks, England.
    Angella, G.
    IENI CNR, Milan, Italy.
    Croci, G.
    Univ Milano Bicocca, Milan, Italy.
    Muraro, A.
    Univ Milano Bicocca, Milan, Italy.
    Hoglund, C.
    Linköping Univ, Linköping; European Spallat Source ERIC, Lund.
    Lai, C. C.
    European Spallat Source ERIC, Lund.
    Cippo, E. Perelli
    IFP CNR, Milan, Italy.
    Albani, G.
    Univ Milano Bicocca, Milan, Italy.
    Hall-Wilton, Richard
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. European Spallat Source ERIC, Lund.
    Robinson, Linda
    European Spallat Source ERIC, Lund.
    Grosso, G.
    IFP CNR, Milan, Italy.
    Tardocchi, M.
    IFP CNR, Milan, Italy.
    Gorini, G.
    Univ Milano Bicocca, Milan, Italy.
    Measurement of the thickness of B4C layers deposited over metallic grids via multi-angle neutron radiography2019In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 30, no 1, article id 015402Article in journal (Refereed)
    Abstract [en]

    At the present time, different kinds of thermal neutron detectors are under development at the European Spallation Source research facility, in order to overcome the well-known problem of the He-3 shortage. One of these new systems relies on the use of a 3D neutron convener cathode that consists of a stack of aluminum grids, covered by a 0.9 mu m B-10 enriched boron carbide layer ((B4C)-B-10). As the conversion efficiency is a function of the boron thickness and the mean free path of the charged particles produced in the neutron induced reaction, the characterization of the boron carbide layer uniformity over the grids becomes crucial. In this work, a non-destructive method to map the thickness distribution of the converter layer over the grids is shown. The measurements exploit the white-beam neutron radiography technique where the specimen is irradiated at different angles. This experiment has been performed at the IMAT beamline operating at the ISIS spallation neutron source (UK). The results confirm that this non-destructive, wide-ranging technique allows a reliable and fast sample characterization and that it may be exploited in similar analyses where equivalent requirements are requested.

  • 5.
    Zhang, Renyun
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Örtegren, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andersson, Henrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Interaction of the human body with triboelectric nanogenerators2019In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 57, p. 279-292Article in journal (Refereed)
    Abstract [en]

    The use of triboelectric nanogenerators (TENGs) is a new technique for energy harvesting at both small and large scales. Almost all types of mechanical energy can be harvested with TENGs by using four modes of operation that cover almost all mechanical motions. The interactions of the human body with TENGs range from energy harvesting, motion sensing, and biomedical applications to human-computer communications. Different types of TENGs have been developed to directly or indirectly involve the human body. This review will summarize the recent advances in the interaction of the human body with TENGs.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf