miun.sePublications
Change search
Refine search result
12 51 - 52 of 52
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Swarén, Mikael
    et al.
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    Stöggl, Thomas
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    Kalmendal, Christian
    Björklund, Glenn
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences.
    How do custom made insoles affect the pressure distribution under the feet in alpine skiing?2016Conference paper (Refereed)
    Abstract [en]

    Introduction Elite alpine skiers frequently adjust insoles, boots and skis to optimize skiing performance. There are numerous different constructions of custom made insoles. However, nobody has, to the authors’ knowledge, investigated the mechanisms behind a plausible performance increase. The purpose of the study was therefore to investigate the potential difference in pressure distribution under the feet when skiing with regular insoles compared to custom made insoles. Method A pre-study investigated differently constructed insoles and their possible effects on the pressure distribution under the feet. One test subject performed different squat and fly-wheel exercises with six differently constructed insoles. Kinetics and 3D-kinematics were collected to identify possible differences. One insole construction, with a flat bottom and a semi-soft upper layer, was thereafter chosen to be used for field tests. Nine professional skiers, including both race skiers and full time ski instructors, were recruited for the field tests. Each skier performed in a randomized order, three runs with a standard insole and three runs with a custom made insole. Plantar pressure under the feet was measured with the Pedar Mobile System at 100 Hz, for eight consecutive carving turns. The skiers were instructed to have the smallest possible time difference between all runs. The three runs for each situation were synchronized and the mean total, forefoot and midfoot pressure distributions were calculated. Results The pre-study results show that the pressure distribution between foot and insole and between insole and ski-boot depends on the insole construction. The mean time for all 54 runs was 26.62 ± 2.41 s and the mean individual time difference between the fastest and the slowest runs was 0.62 ± 0.33 s. All skiers showed large individual differences in percentage of “used” area under the feet, between the two types of insoles (5-80%). When skiing with the custom made insole, the total mean difference in percentage usage of the forefoot was -17 ± 19% and 8 ± 12% for the midfoot. Discussion The results show that the pressure distribution under the feet depends on the type of insole. However, the effect of a custom made insole is very individual. Hence, when performing studies of skiing kinetics and/or equipment, it is of vast importance that all subjects use similarly constructed custom made insoles. It can also be hypothesized that e.g., different canting angles of the ski-boot, affect the skier differently depending on the type of insole. Our suggestion is therefore to perform measurements to optimize the insoles before investigating and optimizing canting angles. The results also show that custom made insoles can assist the skier to utilize different areas of the foot. However, future studies are needed to investigate whether the decreased usage of the forefoot affects the overall aggressiveness of the setup and whether custom made insoles have a positive effect on skiing performance.

  • 52.
    Swarén, Mikael
    et al.
    Kungliga Tekniska Högskolan; Swedish Olympic Academy; Dalarna University.
    Söhnlein, Quirin
    University of Salzburg, Austria.
    Stöggl, Thomas
    University of Salzburg, Austria.
    Björklund, Glenn
    Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences. Swedish Sports Confederation, Stockholm.
    Using 3D Motion Capture to Analyse Ice Hockey Shooting Technique on Ice2019In: Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support - Volume 1: icSPORTS, SciTePress, 2019, Vol. 1, p. 204-208Conference paper (Refereed)
    Abstract [en]

    This study investigates the feasibility to use a passive marker motion capture system on ice to collect 3D kinematics of slap shots and one timers. Kinematic data were collected within a volume of 40x15x2 m by 20 motion capture cameras at 300 Hz, a resolution of 12 megapixels and a mean residual for all cameras of 3.4±2.5 mm, at a distance of 11.6 m. Puck velocity, blade velocity, ice contact time and distance to the puck were analysed for ten consecutive shots for each technique, for two professional ice hockey players. The total mean puck velocity was 38.0 ± 2.7 m/s vs. 36.4 ± 1.0 m/s. (p=0.053), for one timers and slap shots respectively. One player had higher puck velocity with one timers compared to slap shots 40.5 ± 1.0 m/s vs. 36.9 ± 1.0 m/s (p=0.001). Puck contact time was longer for slap shots than for one timers, 0.020 ± 0.002 s vs. 0.015 ± 0.002 s, (p<0.001). The motion capture system allowed continuous kinematic analyses of the puck and blade velocities, ice contact times and detailed stance information. The results demonstrate the possibilities to use motion capture systems to collect and analyse shooting kinematics on ice, in detail.

12 51 - 52 of 52
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf