miun.sePublikasjoner
Endre søk
Begrens søket
1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Botero, Carlos
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Bäckström, Mikael
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Rännar, Lars-Erik
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Roos, Stefan
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Koptyug, Andrey
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Åsvik, Kenneth
    Uddeholms AB.
    Şelte, A
    Uddeholms AB.
    Ramsperger, Markus
    Arcam AB.
    Additive Manufacturing of a cold work steel using Electron Beam Melting2019Inngår i: Proceedings of Conference:  Tooling 2019, 2019, Vol. MayKonferansepaper (Fagfellevurdert)
  • 2.
    Botero Vega, Carlos Alberto
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitets- och maskinteknik.
    Jiménez-Piqué, Emilio
    Universitat Politècnica de Catalunya, Barcelona.
    Roos, Stefan
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitets- och maskinteknik.
    Skoglund, Per
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitets- och maskinteknik.
    Koptioug, Andrei
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitets- och maskinteknik.
    Rännar, Lars-Erik
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitets- och maskinteknik.
    Bäckström, Mikael
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitets- och maskinteknik.
    Nanoindentation: a suitable tool in metal Additive Manufacturing2018Konferansepaper (Fagfellevurdert)
  • 3.
    Botero Vega, Carlos Alberto
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Ramsperger, Markus
    Arcam AB, Mölnlycke.
    Selte, Aydin
    Uddeholms AB, Hagfors.
    Åsvik, Kenneth
    Uddeholms AB, Hagfors.
    Koptioug, Andrei
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Skoglund, Per
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Roos, Stefan
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Rännar, Lars-Erik
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Bäckström, Mikael
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Additive Manufacturing of a Cold-Work Tool Steel using Electron Beam Melting2019Inngår i: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, s. 1-6, artikkel-id 1900448Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Metal additive manufacturing (AM) is on its way to industrialization. One of the most promising techniques within this field, electron beam melting (EBM), is nowadays used mostly for the fabrication of high‐performance Ti‐based alloy components for the aerospace and medical industry. Among the industrial applications envisioned for the future of EBM, the fabrication of high carbon steels for the tooling industry is of great interest. In this context, the process windows for dense and crack‐free specimens for a highly alloyed (Cr–Mo–V) cold‐work steel powder are presented in this article. High‐solidification rates during EBM processing lead to very fine and homogeneous microstructures. The influence of process parameters on the resulting microstructure and the chemical composition is investigated. In addition, preliminary results show very promising mechanical properties regarding the as‐built and heat‐treated microstructure of the obtained material.

  • 4.
    Roos, Stefan
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Process Development for Electron Beam Melting of 316LN Stainless Steel2019Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Additive manufacturing (AM) is a technology that inverts the procedure of traditional machining. Instead of starting with a billet of material and removing unwanted parts, the AM manufacturing process starts with an empty workspace and proceeds to fill this workspace with material where it is desired, often in a layer-by-layer fashion. Materials available for AM processing include polymers, concrete, metals, ceramics, paper, photopolymers, and resins. This thesis is concerned with electron beam melting (EBM), which is a powder bed fusion technology that uses an electron beam to selectively melt a feedstock of fine powder to form geometries based on a computer-aided design file input. There are significant differences between EBM and conventional machining. Apart from the process differences, the ability to manufacture extremely complex parts almost as easily as a square block of material gives engineers the freedom to disregard complexity as a cost-driving factor. The engineering benefits of AM also include manufacturing geometries which were previously almost impossible, such as curved internal channels and complex lattice structures. Lattices are lightweight structures comprising a network of thin beams built up by multiplication of a three-dimensional template cell, or unit cell. By altering the dimensions and type of the unit cell, one can tailor the properties of the lattice to give it the desired behavior. Lattices can be made stiff or elastic, brittle or ductile, and even anisotropic, with different properties in different directions. This thesis focuses on alleviating one of the problems with EBM and AM, namely the relatively few materials available for processing. The method is to take a closer look at the widely used stainless steel 316LN, and investigate the possibility of processing 316LN powder via the EBM process into both lattices and solid material. The results show that 316LN is suitable for EBM processing, and a processing window is presented. The results also show that some additional work is needed to optimize the process parameters for increased tensile strength if the EBM-processed material is to match the yield strength of additively laser-processed 316L material.

  • 5.
    Roos, Stefan
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Process window for electron beam melting of 316LN stainless steelManuskript (preprint) (Annet vitenskapelig)
  • 6.
    Roos, Stefan
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Botero Vega, Carlos Alberto
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Danvind, Jonas
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Koptioug, Andrei
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Rännar, Lars-Erik
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för kvalitets- och maskinteknik.
    Macro- and Micromechanical Behavior of 316LN Lattice Structures Manufactured by Electron Beam Melting2019Inngår i: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 28, nr 12, s. 7290-7301Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This work focuses on the possibility of processing stainless steel 316LN powder into lightweight structures using electron beam melting and investigates mechanical and microstructural properties in the material of processed components. Lattice structures conforming to ISO13314:2011 were manufactured using varying process parameters. Microstructure was examined using a scanning electron microscope. Compression testing was used to understand the effect of process parameters on the lattice mechanical properties, and nanoindentation was used to determine the material hardness. Lattices manufactured from 316L using EBM show smooth compression characteristics without collapsing layers and shear planes. The material has uniform hardness in strut shear planes, a microstructure resembling that of solid 316LN material but with significantly finer grain size, although slightly coarser sub-grain size. Grains appear to be growing along the lattice struts (e.g., along the heat transfer direction) and not in the build direction. Energy-dispersive x-ray spectroscopy analysis reveals boundary precipitates with increased levels of chromium, molybdenum and silicon. Studies clearly show that the 316LN grains in the material microstructure are elongated along the dominating heat transfer paths, which may or may not coincide with the build direction. Lattices made from a relatively ductile material, like 316LN, are much less susceptible to catastrophic collapse and show an extended range of elastic and plastic deformation. Tests indicate that EBM process for 316LN is stable allowing for both solid and lightweight (lattice) structures.

  • 7.
    Roos, Stefan
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Rännar, Lars-Erik
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Koptioug, Andrei
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Danvind, Jonas
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kvalitetsteknik, maskinteknik och matematik.
    Characterization of 316ln lattice structures fabricated via electron beam melting2017Inngår i: Materials Science and Technology Conference and Exhibition 2017, MS and T 2017, Association for Iron and Steel Technology, AISTECH , 2017, s. 336-343Konferansepaper (Fagfellevurdert)
    Abstract [en]

    One of the promising application areas of additive manufacturing (AM) relates to light weight structures, including complex near net shape geometries and lattices. So far one of the limiting factors hampering wider industrial usage of AM technologies is the limited availability of processed materials. The aim of present study was to expand the previous success in electron beam melting (EBM®) manufacturing of 316LN bulk materials into thinner lattice structures thus further widening the application areas available for the method. Present paper reports on the initial results where lattice structures with octagonal basic cells were manufactured using EBM® and characterized using microscopy and compression testing. 

1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf