miun.sePublikasjoner
Endre søk
Begrens søket
1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Dress, A.
    et al.
    Huber, K. T.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik.
    Moulton, Vincent
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik.
    Antipodal metrics and split systems2002Inngår i: European journal of combinatorics (Print), ISSN 0195-6698, E-ISSN 1095-9971, Vol. 23, nr 2, s. 187-200Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recall that a metric d on a finite set X is called antipodal if there exists a map sigma : X --> X: x --> (x) over bar so that d(x, (x) over bar) = d(x, y) + d(y, (x) over bar) holds for all x, y epsilon X. Antipodal metrics canonically arise as metrics induced on specific weighted graphs, although their abundance becomes clearer in light of the fact that any finite metric space can be isometrically embedded in a more or less canonical way into an antipodal metric space called its full antipodal extension. In this paper, we examine in some detail antipodal metrics that are, in addition, totally split decomposable. In particular, we give an explicit characterization of such metrics, and prove that-somewhat surprisingly-the full antipodal extension of a proper metric d on a finite set X is totally split decomposable if and only if d is linear or #X = 3 holds.

  • 2.
    Dress, A.
    et al.
    FSPM-Strukturbildungsprozesse, University of Bielefeld, D-33501 Bielefeld, Germany.
    Huber, Katharina T
    Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
    Koolen, J. H.
    FSPM-Strukturbildungsprozesse, University of Bielefeld, D-33501 Bielefeld, Germany.
    Moulton, Vincent
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik.
    Six points suffice: How to check for metric consistency2001Inngår i: European journal of combinatorics (Print), ISSN 0195-6698, E-ISSN 1095-9971, Vol. 22, nr 4, s. 465-474Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In many areas of data analysis, it is desirable to have tools at hand for analyzing the structure of distance tables-or, in more mathematical terms, of finite metric spaces. One such tool, known as split decomposition theory has proven particularly useful in this respect. Tbe class of so-called totally decomposable metrics forms a cornerstone for this theory, and much work has been devoted to their study. Recently, it has become apparent that a particular subclass of these metrics, the consistent metrics, are also of fundamental importance. In this paper, we give a six-point characterization of consistent metrics amongst the totally decomposable ones.

  • 3. Dress, A.
    et al.
    Koolen, J. H.
    Moulton, Vincent
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik.
    On line arrangements in the hyperbolic plane2002Inngår i: European journal of combinatorics (Print), ISSN 0195-6698, E-ISSN 1095-9971, Vol. 23, nr 5, s. 549-557Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Given a finite collection L of lines in the hyperbolic plane H, we denote by k = k(L) its Karzanov number, i.e., the maximal number of pairwise intersecting lines in L, and by C(L) and n = n(L) the set and the number, respectively, of those points at infinity that are incident with at least one line from L. By using purely combinatorial properties of cyclic seta:, it is shown that #L less than or equal to 2nk - ((2k+1)(2)) always holds and that #L equals 2nk - ((2k+1)(2)) if and only if there is no collection L' of lines in H with L subset of or equal to L', k(L') = k(L) and C(L') = C(L).

  • 4. Koolen, J H
    et al.
    Moulton, Vincent
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik.
    Hyperbolic bridged graphs2002Inngår i: European journal of combinatorics (Print), ISSN 0195-6698, E-ISSN 1095-9971, Vol. 23, nr 6, s. 683-699Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Given a connected graph G, we take, as usual, the distance xy between any two vertices x, y of G to be the length of some geodesic between x and y. The graph G is said to be delta-hyperbolic, for some 3 : 0, if for all vertices x, y, u, v in G the inequality xy + uv :5 max{xu + yv, xv + yu} + delta holds, and G is bridged if it contains no finite isometric cycles of length four or more. In this paper, we will show that a finite connected bridged graph is 1-hyperbolic if and only if it does not contain any of a list of six graphs as an isometric subgraph.

  • 5. Koolen, J.
    et al.
    Moulton, Vincent
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik.
    Tonges, U.
    A classification of the six-point prime metrics2000Inngår i: European journal of combinatorics (Print), ISSN 0195-6698, E-ISSN 1095-9971, Vol. 21, nr 6, s. 815-829Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The notion of a coherent decomposition of a metric on a finite set has proven fruitful, with applications to areas such as the geometry of metric cones and bioinformatics. In order to obtain a deeper insight into these decompositions it is important to improve our knowledge of those metrics which cannot be coherently decomposed in a non-trivial way, i.e.,the prime metrics. In this paper we classify the prime metrics on six points. (C) 2000 Academic Press.

1 - 5 of 5
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf