miun.sePublications
Change search
Refine search result
1 - 23 of 23
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alves, Luis
    et al.
    Univ Coimbra, Coimbra, Portugal.
    Medronho, Bruno
    Univ Algarve, Faro, Portugal.
    Filipe, Alexandra
    Univ Algarve, Faro, Portugal.
    Antunes, Filipe E.
    Univ Coimbra, Coimbra, Portugal.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. Univ Coimbra, Coimbra, Portugal; Lund Univ, Lund.
    Topgaard, Daniel
    Lund Univ, Lund.
    Davidovich, Irina
    Technion Israel Inst Technol, Haifa, Israel.
    Talmon, Yeshayahu
    Technion Israel Inst Technol, Haifa, Israel.
    New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali2018In: GELS, ISSN 2310-2861, Vol. 4, no 4, article id 87Article in journal (Refereed)
    Abstract [en]

    The gelation of cellulose in alkali solutions is quite relevant, but still a poorly understood process. Moreover, the role of certain additives, such as urea, is not consensual among the community. Therefore, in this work, an unusual set of characterization methods for cellulose solutions, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR) and diffusion wave spectroscopy (DWS) were employed to study the role of urea on the dissolution and gelation processes of cellulose in aqueous alkali. Cryo-TEM reveals that the addition of urea generally reduces the presence of undissolved cellulose fibrils in solution. These results are consistent with PTssNMR data, which show the reduction and in some cases the absence of crystalline portions of cellulose in solution, suggesting a pronounced positive effect of the urea on the dissolution efficiency of cellulose. Both conventional mechanical macrorheology and microrheology (DWS) indicate a significant delay of gelation induced by urea, being absent until ca. 60 degrees C for a system containing 5wt % cellulose, while a system without urea gels at a lower temperature. For higher cellulose concentrations, the samples containing urea form gels even at room temperature. It is argued that since urea facilitates cellulose dissolution, the high entanglement of the cellulose chains in solution (above the critical concentration, C*) results in a strong three-dimensional network.

  • 2.
    Bergström, Per
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Hossain, Shakhawath
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Scaling Behaviour of Strength of 3D-, Semi-flexible-, Cross-linked Fibre Network2019In: International Journal of Solids and Structures, ISSN 0020-7683, E-ISSN 1879-2146, Vol. 166, no July 2019, p. 68-74Article in journal (Refereed)
    Abstract [en]

    Anisotropic, semi-flexible, cross-linked, random fibre networks are ubiquitous both in nature and in a wide variety of industrial materials. Modelling mechanical properties of such networks have been done extensively in terms of criticality, mechanical stability, and scaling of network stiffnesses with structural parameters, such as density. However, strength of the network has received much less attention. In this work we have constructed 3D-planar fibre networks where fibres are, more or less, oriented in the in-plane direction, and we have investigated the scaling of network strength with density. Instead of modelling fibres as 1D element (e.g., a beam element with stretching, bending and/or shear stiffnesses), we have treated fibres as a 3D-entity by considering the features like twisting stiffness, transverse stiffness, and finite cross-link (or bond) strength in different deformation modes. We have reconfirmed the previous results of elastic modulus in the literature that, with increasing density, the network modulus indeed undergoes a transition from bending-dominated deformation to stretching-dominated with continuously varying scaling exponent. Network strength, on the other hand, scales with density with a constant exponent, i.e., showing no obvious transition phenomena. Using material parameters for wood fibres, we have found that the predicted results for stiffness and strength agree very well with experimental data of fibre networks of varying densities reported in the literature.

  • 3.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimadadi, Majid
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Olsen, Martin
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Effects of Geometry on Large-scale Tube-shear Exfoliation of Multilayer Graphene and Nanographite in Water2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1, article id 8966Article in journal (Refereed)
    Abstract [en]

    Industrially scalable methods for the production of graphene and other nanographites are needed to achieve cost-efficient commercial products. At present, there are several available routes for the production of these materials but few allow large-scale manufacturing and environmentally friendly low-cost solvents are rarely used. We have previously demonstrated a scalable and low-cost industrial route to produce nanographites by tube-shearing in water suspensions. However, for a deeper understanding of the exfoliation mechanism, how and where the actual exfoliation occurs must be known. This study investigates the effect of shear zone geometry, straight and helical coil tubes, on this system based on both numerical simulation and experimental data. The results show that the helical coil tube achieves a more efficient exfoliation with smaller and thinner flakes than the straight version. Furthermore, only the local wall shear stress in the turbulent flow is sufficient for exfoliation since the laminar flow contribution is well below the needed range, indicating that exfoliation occurs at the tube walls. This explains the exfoliation mechanism of water-based tube-shear exfoliation, which is needed to achieve scaling to industrial levels of few-layer graphene with known and consequent quality.

  • 4.
    Blomquist, Nicklas
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Koppolu, R.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Toivakka, M.
    Olin, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Influence of Substrate in Slot-die Coating of Nanographite/Nanocelluose Electrodes for SupercapacitorsManuscript (preprint) (Other academic)
  • 5.
    Cordova, Armando
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Alimohammadzadeh, Rana
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Sanhueza, Italo
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Tai, Cheuk-Wai
    Stockholm University, Stockholm.
    Osong, Sinke H.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    A sustainable strategy for production and functionalization of nanocelluloses2019In: Pure and Applied Chemistry, ISSN 0033-4545, E-ISSN 1365-3075, Vol. 91, no 5, p. 865-874Article in journal (Refereed)
    Abstract [en]

    A sustainable strategy for the neat production and surface functionalization of nanocellulose from wood pulp is disclosed. It is based on the combination of organocatalysis and click chemistry ("organoclick" chemistry) and starts with nanocellulose production by organic acid catalyzed hydrolysis and esterification of the pulp under neat conditions followed by homogenization. This nanocellulose fabrication route is scalable, reduces energy consumption and the organic acid can be efficiently recycled. Next, the surface is catalytically engineered by "organoclick" chemistry, which allows for selective and versatile attachment of different organic molecules (e.g. fluorescent probes, catalyst and pharmaceuticals). It also enables binding of metal ions and nanoparticles. This was exemplified by the fabrication of a heterogeneous nanocellulose-palladium nanoparticle catalyst, which is used for Suzuki cross-coupling transformations in water. The disclosed surface functionalization methodology is broad in scope and applicable to different nanocelluloses and cellulose based materials as well.

  • 6.
    Costa, Carolina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Mira, Isabel
    RISE, Stockholm.
    Benjamins, Jan-Willem
    RISE, Stockholm.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Interfacial activity and emulsion stabilization of dissolved cellulose2019In: Journal of Molecular Liquids, ISSN 0167-7322, E-ISSN 1873-3166, Vol. 292, article id 111325Article in journal (Refereed)
    Abstract [en]

    Some aspects of the interfacial behavior of cellulose dissolved in an aqueous solvent were investigated. Cellulose was found to significantly decrease the interfacial tension (IFT) between paraffin oil and 85 wt% phosphoric acid aqueous solutions. This decrease was similar in magnitude to that displayed by non-ionic cellulose derivatives. Cellulose's interfacial activity indicated a significant amphiphilic character and that the interfacial activity of cellulose derivatives is not only related to the derivatization but inherent in the cellulose backbone. This finding suggests that cellulose would have the ability of stabilizing dispersions, like oil-in-water emulsions in a similar way as a large number of cellulose derivatives. In its molecularly dissolved state, cellulose proved to be able to stabilize emulsions of paraffin in the polar solvent on a short-term. However, long-term stability against drop-coalescence was possible to achieve by a slight change in the amphiphilicity of cellulose, effected by a slight increase in pH. These emulsions exhibited excellent stability against coalescence/oiling-off over a period of one year. Ageing of the cellulose solution before emulsification (resulting in molecular weight reduction) was found to favour the creation of smaller droplets. 

  • 7.
    Eivazihollagh, Alireza
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Svanedal, Ida
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    On chelating surfactants: Molecular perspectives and application prospects2019In: Journal of Molecular Liquids, ISSN 0167-7322, E-ISSN 1873-3166, Vol. 278, p. 688-705Article in journal (Refereed)
    Abstract [en]

    Chelating agents, molecules that very strongly coordinates certain metal ions, are used industrially as well as in consumer products to minimize disturbances and increase performance of reactions and applications. The widely used sequestering agents, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) belong to this branch of readily water-soluble compounds. When these chemical structures also have hydrophobic parts, they are prone to adsorb at air-water interfaces and to self-assemble. Such bifunctional molecules can be called chelating surfactants and will have more extended utilization prospects than common chelating agents or ordinary ionic surfactants. The present review attempts to highlight the fundamental behavior of chelating surfactants in solution and at interfaces, and their very specific interactions with metal ions. Methods to recover chelating surfactants from metal chelates are also described. Moreover, utilization of chelating surfactants in applications for metal removal in environmental engineering and mineral processing, as well as for metal control in the fields of biology, chemistry and physics, is exemplified and discussed.

  • 8.
    Forsberg, Viviane
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. KTH, Stockholm; Wallenberg Wood Science Centre, Stockholm.
    Mašlík, Jan
    Tomas Bata University in Zlín, Zlín, Czech Republic.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Electronic performance of printed PEDOT:PSS lines correlated to the physical and chemical properties of coated inkjet papers2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 41, p. 23925-23938Article in journal (Refereed)
    Abstract [en]

    PEDOT:PSS organic printed electronics chemical interactions with the ink-receiving layer (IRL) of monopolar inkjet paper substrates and coating color composition were evaluated through Raman spectroscopy mapping in Z (depth) and (XY) direction, Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDS). Other evaluated properties of the IRLs were pore size distribution (PSD), surface roughness, ink de-wetting, surface energy and the impact of such characteristics on the electronics performance of the printed layers. Resin-coated inkjet papers were compared to a multilayer coated paper substrate that also contained an IRL but did not contain the plastic polyethylene (PE) resin layer. This substrate showed better electronic performance (i.e., lower sheet resistance), which we attributed to the inert coating composition, higher surface roughness and higher polarity of the surface which influenced the de-wetting of the ink. The novelty is that this substrate was rougher and with somewhat lower printing quality but with better electronic performance and the advantage of not having PE in their composite structure, which favors recycling. © 2019 The Royal Society of Chemistry.

  • 9.
    Hossain, Shakhawath
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. Uppsala university, Uppsala.
    Bergström, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Uesaka, Tetsu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Uniaxial Compression of Three-Dimensional Entangled Fibre Networks: Impacts of Contact Interactions2019In: Modelling and Simulation in Materials Science and Engineering, ISSN 0965-0393, E-ISSN 1361-651X, Vol. 27, no 1, article id 015006Article in journal (Other academic)
    Abstract [en]

    This paper concerns uniaxial compression of anisotropic fibre network, as typically seen in the end use of nonwoven and textile fibre assemblies. The constitutive relationship and deformation mechanism have been investigated by using a bead-model to represent the complex structures of the constituent fibres and the fibre networks. The compression stress shows a power-law dependency on the density with a threshold density for both experimental and numerical fibre networks. Unlike the widely studied tri-axial compression of the initially isotropic network, it was found that the contact interaction between the fibres, especially the fibre-fibre contact stiffness (or the transverse compression properties of fibres), has a large impact on all the constitutive parameters. In particular, the exponent values computed based on the softer contact stiffnesses agreed very well with the experimental values reported in the literature. The internal deformation mechanism was similar to the earlier studies that at low compression, the deformation is dominated by the low-energy-mode deformations (i.e. bending and shear), whereas at higher compression, the difference appears: the compression of fibre-fibre contacts, instead of the deformation in the fibre axial direction, takes over.

  • 10.
    Liu, Huihui
    et al.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.
    Chen, Yingquan
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.
    Yang, Haiping
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.
    Gentili, Francesco G.
    Swedish Univ Agr Sci, Umeå.
    Söderlind, Ulf
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Wang, Xianhua
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.
    Zhang, Wennan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Chen, Hanping
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.
    Hydrothermal carbonization of natural microalgae containing a high ash content2019In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 249, p. 441-448Article in journal (Refereed)
    Abstract [en]

    The potential to convert natural microalgae (Scenedesmus) into solid fuels by hydrothermal carbonization (HTC) was evaluated. The deashing microalgae (DA) were obtained by acid-washing natural microalgae (NM) with HCl. The deashing efficiency was high from 44.66% for NM to 14.45% for DA. HTC carried out at temperature in the range from 180 to 260 degrees C with this two types feedstock (i.e. NM and DA). The results showed that DA-derived hydrochars had good physicochemical and fuel properties compared with that of NM-derived hydrochars. HTC process of DA was mainly based on polymerization, and the hydrolysis process was short. The hydrochars obtained from DA at 220 degrees C (HC-D220) had the highest value of 51.86% with a carbon content and fixed carbon content 1.15 and 1.33 times, respectively, greater than that of DA. The high heating value (HHV) of HC-D220 reached 26.64 MJ/kg which is equivalent to medium-high calorific coal. The thermogravimetric analysis (TG) demonstrated that the hydrochars derived from DA have good combustion properties with stable at high temperature zones. They can easily mix with coal or replace coal in combustion application. The results of this study revealed that natural microalgae can be utilized by hydrothermal carbonization to generate renewable fuel resources.

  • 11.
    Owen Berghmark, Victor
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Investeringsunderlag för värmepump: Investeringsunderlag för ett byte från pelletspanna till värmepump i fastighet på södra Gotland2019Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    One of EU’s climate goals is to reduce the greenhouse gas emissions by 40% by the year of 2030. In Sweden the “building and real estate sector” stands for 21% of Sweden’s total pollution of greenhouse gas emissions. To reach EU’s goals by 2030 there must be a transformation to renewable sources for use in the heating of real estates.

    Region Gotland manages over 500 000 m2 of estates. Many of which uses pellet as the source of heating. This heating alternative requires regular deliveries of material and maintenance. Many of the estates in the care of Region Gotland are far away from both the supplier and maintenance team which creates great transport costs and gas emissions. The fire sta- tion in “Öja” is one of them and is the one used in this study. As there are many similar buildings the results here can be used as a foundation for those estates.

    This study is exploring if a conversion from pellet to a heating pump can lower the expenses and greenhouse gas emissions. By changing to a heat- ing pump from a pellet boiler the temperatures are reduced from 80/60°C to 55/45 °C in the system. This may cause problem with radiators, pumps and pipes. Because of this, radiators and pipes will also be inves- tigated, but pumps will be left out for another study.

    The heat needed to increase the temperature in the building to 21 °C at a DVUT of -8,7 °C was calculated using transmission losses calculations and a formula based on “graddagar” and earlier energy uses by the estate, to 23,8 kW. Based on the calculated heat, three heating pump solutions were created, all of whom included a new water heater with storage tank. The old storage tank is over 40 years by age and therefore has many short- comings.

    Using calculations to optimize the heat usage, the heat needed can be re- duced by 4kW at DVUT by lowering the temperature to 15 °C in the fan heated area of the building while still being within the laws of the Swe- dish work environment authority.

    An investigation was made to see if solar collectors could be used to heat the domestic hot water in the estate. The results showed that in this case

    it wouldn’t be economically justifiable due to low energy cost with a new heating pump.

    The calculations done for pipes and radiators showed that two pipes must be replaced but that the radiators are mostly fine with the new tempera- tures. A replacement of the radiators should be left till after the conver- sion. Calculations on the fan heaters showed that there is no need to re- place these.

    Calculations on greenhouse gas emissions showed that the emissions can be reduce by 2565 kg CO CO2-eq each year if the pellet boiler is replaced by a heating pump.

    The Pay-off method and LCC calculations was used to show the profita- bility in the three heating pump solutions. The Pay-off time for the solu- tions ranged from CTC’s air to water heating pumps at 3,9 years to 4,7 years for Thermia’s geothermal heating pump. The LCC calculations showed that changing to a heat pump could generate a saving of 879 000 SEK for Thermia’s solution to 966 000 SEK for CTC’s solution.

    The conclusion is therefore that the pellet boiler should be changed to a heating pump to save money and reduce the greenhouse gas emissions.

  • 12.
    Rahman, Hafizur
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Modification of softwood kraft pulp requiring less energy in tissue paper production2019Conference paper (Refereed)
    Abstract [en]

    Modification of softwood kraft pulp by the addition of either polysulfide (PS) or sodium borohydride (NaBH4) has been shown to increase pulp yield due to a higher retention of hemicellulose. The modified pulps showed higher tensile index, especially at lower refining. It also showed a greater porosity of the fibre wall, indicating an increase in the swelling potential of the fibres thus helping to increase fibre flexibility, increase joint strength between the fibres and to raise the tensile index. However, the swelling increase associated with the higher hemicellulose content could also make dewatering more challenging because of the higher water retention of pulp. But recent studies showed the positive influence of increase pulp yield dominates over the negative influence of the higher hemicellulose content on dewatering properties, especially at lower refining. Studies simulating full-scale tissue dewatering conditions showed that pulps with higher hemicellulose content had a higher tensile index at the same dryness which was achieved in a shorter dwell-time. A given tensile index was also achieved with less refining energy. Therefore modification of the kraft pulping process is now a way to give high quality fibres for tissue paper production with less refining energy and lower drying energy costs.

  • 13.
    Rahman, Hafizur
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    An, Siwen
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Norlin, Börje
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Fröjdh, Christer
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Persson, Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Maximized wood chip impregnation efficiency validated by new miniaturized X-ray fluorescence techniques2019Conference paper (Refereed)
    Abstract [en]

    Manufacturing of chemi-thermomechanical pulp (CTMP) is increasing due to increased demand for packaging materials such as cardboard as well as tissue and other hygiene products. Today high yield pulp (HYP) is produced from different wood species. It is well-known that chip-refining is normally responsible for more than 60% of the electric energy consumption in most high yield pulping process. There are opportunities to improve energy efficiency and quality stability in defibration processes by means of optimizing impregnation. Impregnation is a key unit operation in CTMP production as well as in all chemical pulping and biorefinery systems. The efficiency of the impregnation is known to be crucial (Ferritsius et al. 1985; Gorski et al. 2010). Early research showed difficulties to achieve even distribution of sulphite and sodium ions in wood chips resulting in inhomogeneous fibre properties (Bengtsson et al. 1988). Increased and homogenous sulphonation leads to reduced shive content, which is a key factor in all end product applications. To address this issue developing a new type miniaturized X-ray based technique (XRF) to measure local concentration of sulphur and sodium across wood chips and in individual fibres could become a key tool.

     

    The presence of elements as sulphur and sodium can be detected by X-ray fluorescence (XRF) or spectral absorption. At the XRF, images the surface of the sample using specific energies from K-shell or L-shell fluorescence. This method is investigated at the X-ray laboratory in Mid Sweden University research centre STC (Sensitive Things that Communicate) (Norlin et al. 2018). At the spectral absorption, images specific K-shell absorption energies in transmission X-ray images of the sample, a method widely used in medical diagnosis. This transmission method might also be further investigated for this application in the future (Frojdh et al. 2013; Reza et al. 2013). Both methods can be validated by using monoenergetic radiation from synchrotron facilities.

     

    An XRF imaging system uses a collimated X-ray source and a spectroscopic detector. The sample is scanned to make an image of the content of the substances of interest. A specific challenge in this case is that the low energy fluorescence photons from sulphur (S) and sodium (Na) are easily absorbed in air, which makes imaging in a different atmosphere necessary.

     

    The measurement setup has been simulated using MCNP (C. J. Werner, 2017) to validate the system setup and to select the correct, geometry, shielding, filtering and atmosphere for the measurement. The solution was to use a titanium box flooded with helium to minimise the absorption of fluorescence photons and to shield from scattered photons that might disturb the measurement, fig 1. A filter has been added to the X-ray source to make it nearly monoenergetic and to avoid emission of photons with energies close to the expected fluorescence. The system has been used to estimate sodium and sulphur content in low grammage handsheet (CTMP) or single wood chip samples. It is possible to build a laboratory instrument similar to the prototype setup to obtain the distribution of sodium and sulphur in XRF imaging.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Figure 1: Photograph of XRF measurement setup with of moveable Helium atmosphere Ti box

    However, the technique we are developing can become useful in mills to improve and control process efficiency, product properties and to find solutions to process problems in future. In addition, a more even distribution of the sulphonation can reduce specific energy demand in chip refining at certain shive content.

     

    References

     

    1.      Bengtsson, G., Simonson, R., Heitner, C., Beatson, R., and Ferguson, C. (1988): Chemimechanical pulping of birch wood chips, Part 2: Studies on impregnation of wood blocks using scanning electron microscopy and energy dispersive x-ray analysis, Nord. Pulp Paper Res. J. 3 (3), 132-138.

    2.      C. J. Werner, (2017): MCNP User's manual, Code Version 6.2, Los Alamos National Laboratory report, LA-UR-17-29981.

    3.      Ferritsius, O., and Moldenius, S. (1985): The effect of impregnation method on CTMP properties. In International Mechanical Pulping Conference Proceedings, SPCI, Stockholm (p. 91).

    4.      Frojdh, C., Norlin, B. and Frojdh, E. (2013): Spectral X-ray imaging with single photon processing detectors, Journal of Instrumentaion, Volume 8, Article number C02010.  

    5.      Gorski, D., Hill, J., Engstrand, P., and Johansson, L. (2010): Reduction of energy consumption in TMP refining through mechanical pre-treatment of wood chips, Nord. Pulp Paper Res. J, 25(2), 156-161.

    6.      Norlin, B., Reza, S., Fröjdh, C. and Nordin, T. (2018): Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence, Journal of Instrumentation, Volume: 13, Article number C01021.

    7.      Reza, S., Norlin, B. and Thim, J. (2013): Non-destructive method to resolve the core and the coating on paperboard by spectroscopic x-ray imaging, Nord. Pulp Paper Res. J. 28 (3), 439-442.

     

  • 14.
    Rahmani, Rizan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Structure elucidation of semiochemicals related to: Polygraphus poligraphus, Polygraphus punctifrons, Trioza apicalis, Whittleia retiella, Neodiprion edulicolus, Neodiprion scutellatus, Neodiprion knereri and Neodiprion virginianus2019Doctoral thesis, comprehensive summary (Other academic)
  • 15.
    Rahmani, Rizan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andersson, Fredrik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Andersson, Martin N.
    Lund university, Lund.
    Yuvaraj, Jothi Kumar
    Lund university, Lund.
    Anderbrant, Olle
    Lund university, Lund.
    Hedenström, Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Identification of sesquisabinene B in carrot (Daucus carota L.) leaves as a compound electrophysiologically active to the carrot psyllid (Trioza apicalis Forster)2019In: Chemoecology, ISSN 0937-7409, E-ISSN 1423-0445, Vol. 29, no 3, p. 103-110Article in journal (Refereed)
    Abstract [en]

    The Carrot psyllid, Trioza apicalis Forster (Homoptera: Psylloidea: Triozidae) is one of the major insect pests of carrots (Daucus carota L.) in parts of northern and central Europe. Gas chromatography-single-sensillum recording (GC-SSR) previously confirmed several active compounds in a carrot leaf extract, but the most active compound remained unidentified. Mass fragmentation patterns observed from the unidentified active compound when analyzed by gas chromatography and mass spectrometry (GC-MS) was used to propose -sesquiphellandrene and -cis-bergamotene to be candidates as the unidentified compound. The compounds were synthesized and their mass spectra were nearly identical with the unknown active compound. But, the retention times differed from the compound in the carrot leaf extract. Thus, to obtain the unidentified compound pure enough and in adequate amounts for nuclear magnetic resonance (NMR) analysis, preparative gas chromatography was applied to separate and concentrate this biologically active compound. Analysis by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF) confirmed the unidentified compound to be a compound with theformula of C15H24 and together with GC-MS, H-1 and C-13 NMR analysis sesquisabinene B was identified as the unidentified compound in the extract. GC-SSR was then used to finally confirm the biological activity of sesquisabinene B isolated from the carrot leaf extract via preparative GC.

  • 16.
    Rahmani, Rizan
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Wallin, Erika
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Viklund, Lina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Schroeder, Martin
    Swedish University of Agricultural Sciences, Uppsala.
    Hedenström, Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Identification and Field Assay of Two Aggregation Pheromone Components Emitted by Males of the Bark Beetle Polygraphus punctifrons (Coleoptera: Curculionidae)2019In: Journal of Chemical Ecology, ISSN 0098-0331, E-ISSN 1573-1561, Vol. 45, no 4, p. 356-365Article in journal (Refereed)
    Abstract [en]

    The bark beetle Polygraphus punctifrons (Coleoptera: Curculionidae) is a species that feeds on Norway spruce (Picea abies) and is found in the Northern parts of Europe and Russia. The release of volatile organic compounds (VOCs) produced by males and females of P. punctifrons when the beetles bore into spruce stem sections in a laboratory environment was studied using solid phase microextraction (SPME). The sampled VOCs emitted by boring beetles were analysed by gas chromatography and mass spectrometry (GCMS). (+)-2-[(1R,2S)-1-Methyl-2-(prop-1-en-2-yl)cyclobutyl]ethanol [(+)-(1R,2S)-grandisol] and (−)-(R)-1-isopropyl-4-methyl-3-cyclohexen-1-ol [(−)-(R)-terpinen-4-ol] were identified to be male specific volatiles. The identity of the compounds was confirmed by comparison with synthetic samples. Field trials with synthetic compounds in Sweden showed that racemic grandisol per se was strongly attractive for both males and females, while (−)-(R)-terpinen-4-ol was not. Further, when adding (−)-(R)-terpinen-4-ol to rac-grandisol, a synergistic effect was observed as the trap catch of P. punctifrons was fourfold. (−)-(R)-Terpinen-4-ol by its own did not attract P. punctifrons but Polygraphus poligraphus, and the latter was also attracted to traps baited with a 10:90 mixture of the two compounds. Thus, we have identified (+)-(1R,2S)-grandisol as a main component and (−)-(R)-terpinen-4-ol as a minor component of the aggregation pheromone of P. punctifrons. This opens future possibilities to monitor and, if necessary, manage populations of P. punctifrons. 

  • 17.
    Sandberg, Christer
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. Holmen Paper AB, Norrköping.
    Berg, Jan-Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Engstrand, Per
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Low Consistency Refining Combined with Screen Fractionation: Reduction of Mechanical Pulping Process Complexity2019In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 14, no 1, p. 882-894Article in journal (Refereed)
    Abstract [en]

    Process intensification is a process development methodology aimed at a considerable reduction in the energy consumption and process complexity. The approach has been applied to mechanical pulping process design. A process denoted as HC-LC-S consisting of single stage high consistency (HC) refining, followed by low consistency (LC) refining and screening was evaluated in mill trials at the Holmen Paper Braviken Mill in Sweden. After LC refining, the pulp was screened, and the reject fraction was fed back to LC refining. Two HC primary refiner types were evaluated, namely single disc (SD) and double disc (DD). Double disc chip refining was more suitable than SD refining for the HC-LC-S process because of the higher light scattering and lower shives content of the final pulp. The tensile index and shives content of the pulp produced with the DD-LC-S process was similar to that of the reference process, consisting of single stage DD refining and HC reject refining, but the fibre length and light scattering were somewhat lower. The specific refining energy was approximately 200 kWh/adt lower for the DD-LC-S process compared with the reference. Additionally, the auxiliary specific energy was 100 kWh/adt lower for the HC-LC-S processes, since a number of equipment units were omitted.

  • 18.
    Singh, Poonam
    et al.
    Univ Coimbra, Coimbra, Portugal.
    Magalhaes, Solange
    Univ Coimbra, Coimbra, Portugal.
    Alves, Luis
    Univ Coimbra, Coimbra, Portugal.
    Antunes, Filipe
    Univ Coimbra, Coimbra, Portugal.
    Miguel, Maria
    Univ Coimbra, Coimbra, Portugal.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Medronho, Bruno
    Univ Algarve, Faro, Portugal.
    Cellulose-based edible films for probiotic entrapment2019In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 88, p. 68-74Article in journal (Refereed)
    Abstract [en]

    Encapsulation with edible films is a promising approach that may solve the disadvantages associated with the use of bioactive compounds as food additives. This is particularly relevant in the case of probiotics, since their stability in food matrices and in the gastrointestinal tract may be rather poor. Therefore, new cellulose-based edible films have been successfully developed and characterized. Sodium carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC) were used for the film preparation and cross-linked with citric acid (CA) under reasonably mild conditions. Model probiotic bacteria (Lactobacillus rhamnosus GG) were incorporated in the films either during the film formation and casting or after the film synthesis, via bacteria diffusion and adsorption. The later approach could efficiently entrap and preserve viable bacteria. The mechanical properties and swelling ability could be tuned by varying the HEC/CMC ratio and the amount of CA. Moreover, the surface area and total pore volume of the films considerably decreased after cross-linking. Overall, these novel films are regarded as promising inexpensive and friendly matrices for food protection and packaging applications.

  • 19.
    Tang, Yu-xing
    et al.
    Zhejiang Univ, Hangzhou, Peoples R China.
    Luo, Zhong-yang
    Zhejiang Univ, Hangzhou, Peoples R China.
    Yu, Chun-jiang
    Zhejiang Univ, Hangzhou, Peoples R China.
    Cen, Jian-meng
    Zhejiang Univ, Hangzhou, Peoples R China.
    Chen, Qian-yuan
    Fudan Univ, Shanghai, Peoples R China; Minist Environm & Ecol, State Environm Protect Key Lab Radiat Monitoring, Hangzhou, Zhejiang, Peoples R China.
    Zhang, Wennan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Determination of biomass-coal blending ratio by C-14 measurement in co-firing flue gas2019In: Journal Of Zhejiang University-Science A, ISSN 1673-565X, Vol. 20, no 7, p. 475-486Article in journal (Refereed)
    Abstract [en]

    To verify the feasibility of using radiocarbon detection for the measurement of the biomass-coal blending ratio in co-firing heat and power plants, C-14 activity detection technology that uses benzene synthesis as the sample preparation method and a liquid scintillation counter as the detection instrument was studied. A benzene synthesis system was built to enrich carbon in the combustion flue gas in the form of benzene. The benzene sample was mixed with scintillator (butyl-PBD) and C-14 activity was measured using a liquid scintillation counter (Quantulus 1220). Three kinds of coal and six kinds of biomass were tested repeatedly. The measured C-14 activity was 0.3365 DPM/gC in Zhundong lignite, 0.2701 DPM/gC in Shenmu bitumite, and 0.3060 DPM/gC in Changzhi anthracite. These values were much higher than the instrument background activity. For the co-fired experiment, we used groups with biomass ratios (based on the carbon) of 6.51%, 12.95%, and 20.75%. A modified empirical expression to determine the biomass, coal blending ratio based on the C-14 activity measured in the co-firing flue gas, was proposed by analyzing and verifying measurement accuracy. From the C-14 measurements of the co-fired samples, the corresponding estimated biomass ratios were (5.540.48)%, (12.310.67)%, and (19.490.90)%. The absolute measurement error was around 1% for a typical biomass-coal co-firing application.

  • 20.
    Unger, Oskar
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Fjärrkyla i Sundsvall: Optimering av framledningskurva för akviferbaserad fjärrkyla2019Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    On behalf of Sundsvall Energi AB, FVB Sverige AB has initiated a preliminary study on the establishment of a district cooling system in Sundsvall. The main source for the cooling will be cool water drawn from the aquifer and a compressor chiller. The main purpose of this project has both been to provide the optimal supply temperature of the cooling network at different outdoor temperatures, and to find out to what extent the cool water from the aquifer can be used by itself as the cooling source. The project was initially focused on examining the climate and cooling demand in Sundsvall. The cooling demand was examined on the basis of six existing buildings that uses freshwater district cooling, and different types of climatesystems were then examined to ascertain what their requirements for the supply temperature are. Cooling coil batteries were found to be the component that requires the lowest supply temperature; therefore, the cooling power calculations were relied on them. The outcome of the cooling coil battery calculations was presumed to correspond to the cooling power of the network itself. By comparing the cooling power of the coil batteries at different supply temperatures and the cooling demand at different outdoor temperatures the main supply temperature for the district cooling network took shape. The aquifer is expected to maintain a temperature of approximately 7°C to 9°C, but in this project the temperature is set to exactly 9°C. On those premises the supply temperature of the cooling network could be set to 11°C for most of the year, but with a reduction of the supply temperature at outdoor temperatures around 21°C. Subsequently the supply temperature is reduced to 6°C at the outdoor temperature 25°C. Via the supply temperature curve, the aquifer cooling coverage ratio could be assessed. The result shows that if the supply temperature is raised between 0,5°C and 1,0°C in the distribution network the compressor chiller will have to be in operation for 159 hours per year. If instead the supply temperature is raised 1,5°C or 2,0°C, the compressor chiller must be in operation for 233 hours and 325 hours, respectively. In summary, all the goals and targets of the project have been completed.

  • 21.
    Viklund, Lina
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Rahmani, Rizan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Bång, Joakim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Schroeder, Martin
    SLU, Uppsala .
    Hedenström, Erik
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Optimizing the attractiveness of pheromone baits used for trapping the four-eyed spruce bark beetle Polygraphus poligraphus2019In: Journal of applied entomology, ISSN 0931-2048, E-ISSN 1439-0418, Vol. 143, no 7, p. 721-730Article in journal (Refereed)
    Abstract [en]

    Bark beetles have caused extensive damage to forests in central Sweden during the past decade, and the four-eyed spruce bark beetle, Polygraphus poligraphus, seems to be involved. However, its role in these bark beetle outbreaks is still not clear. The purpose of this study was to develop an efficient pheromone bait for P. poligraphus, which would make it possible to study the species more carefully and thereby contribute to protect exposed forests in an environmentally friendly way. Three field studies were conducted in 2015, 2016 and 2018 in Medelpad, county of Västernorrland, Sweden. The pheromone of P. poligraphus, (−)-terpinen-4-ol, was tested at different release rates and in different enantiomeric purities, to find the most attractive formulation for the beetles. It was also tested in combination with racemic frontalin, a compound which has previously been shown to produce a synergistic effect together with (−)-terpinen-4-ol of low enantiomeric purity; 52% ee. Other compounds, chosen based on responses from electroantennographic studies, were also tested in an attempt to find additional attractants and repellents for P. poligraphus. The most attractive treatment tested was enantiomerically pure (−)-terpinen-4-ol (99% ee). When the enantiomeric purity was lower (50% ee), the trap catches was lowered to levels comparable to the catches for unbaited control traps. A strong synergistic effect with frontalin was observed for (−)-terpinen-4-ol of low enantiomeric purity (50% ee) but not for the enantiomerically pure compound (99% ee). The release rate of (−)-terpinen-4-ol (99% ee) was shown to be an important factor. For the combination of frontalin and (−)-terpinen-4-ol (50% ee), the attraction seemed strongest when (−)-terpinen-4-ol was released at a higher rate than frontalin. An interesting and novel result was that a repellent compound, α-terpineol, was identified in our studies. Our results from field studies and electroantennography recordings also indicate that (+)-terpinen-4-ol is a repellent for P. poligraphus.

  • 22.
    Yang, Jiayi
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Dahlström, Christina
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Lindman, Björn
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 6, p. 3763-3776Article in journal (Refereed)
    Abstract [en]

    Cellulose–chitosan films were preparedusing a physical method in which cellulose andchitosan were separately dissolved via freeze thawingin LiOH/urea and mixed in different proportions, theresulting films being cast and regenerated in water/ethanol. X-ray diffraction and Fourier transforminfrared spectroscopy (FT-IR) spectroscopy verifiedthe composition changes in the nanocomposites due todifferent mixing ratios between the polymers. Tensilestress–strain measurements indicated that the mechan-ical performance of the cellulose–chitosan nanocom-posites slightly worsened with increasing chitosancontent compared with that of films comprisingcellulose alone. Field emission scanning electronmicroscopy revealed the spontaneous formation ofnanofibers in the films; these nanofibers were subse-quently ordered into lamellar structures. Water uptakeand microscopy analysis of film thickness changesindicated that the swelling dramatically increased atlower pH and with increasing chitosan content, thisbeing ascribed to the Gibbs–Donnan effect. Slowmaterial loss appeared at acidic pH, as indicated by aloss of weight, and quantitative FT-IR analysisconfirmed that chitosan was the main componentreleased.Asample containing 75% chitosan reached amaximum swelling ratio and weight loss of 1500%and 55 wt%, respectively, after 12 h at pH 3. Thestudy presents a novel way of preparing pH-responsivecellulose–chitosan nanocomposites with slow-releasecharacteristics using an environmentally friendlyprocedure and without any chemical reactions.

  • 23.
    Yang, Jiayi
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Zasadowski, Dariusz
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Edlund, Håkan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.
    Biorefining of Spruce TMP Process Water: Selective Fractionation of Lipophilic Extractives with Induced Air Flotation and Surface Active Additive2019In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 14, no 2, p. 4124-4135Article in journal (Refereed)
    Abstract [en]

    Lignocellulose biomass plays an important role in reducing thedependency on fossil fuels and ameliorating the dire consequences ofclimate change. It is therefore important that all the components oflignocellulose biomass are exploited. These components includehemicelluloses and extractives that are liberated and sterically stabilizedduring the thermomechanical pulping and that form the dissolved andcolloidal substance (DCS) in the process water. Biorefining of this processwater can extract these substances, which have a number of promisingapplications and can contribute to the full exploitation of lignocellulosebiomass. This paper presents a simple treatment of unbleached Norwayspruce (Picea abies) process water from TMP (thermomechanical pulping)production using induced air flotation (IAF) and cationic surfactant,dodecyl trimethylammonium chloride (DoTAC) to refine the extractivesand prepare the waters so that hemicellulose could be easily harvested ata later stage. By applying 80 ppm of DoTAC at a pH of 3.5 and 50 °Cbefore induced air flotation, 94% of the lipophilic extractives wererecovered from process water. Dissolved hemicellulose polysaccharideswere cleansed and left in the treated process water. The process enabledefficient biorefining of lipophilic extractives and purification of the processwater to enable more selective harvesting of hemicelluloses in subsequentsteps.

1 - 23 of 23
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf