miun.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Tang, Yu
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
    Feature Extraction for the Cardiovascular Disease Diagnosis2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Cardiovascular disease is a serious life-threatening disease. It can occur suddenly and progresses rapidly. Finding the right disease features in the early stage is important to decrease the number of deaths and to make sure that the patient can fully recover. Though there are several methods of examination, describing heart activities in signal form is the most cost-effective way. In this case, ECG is the best choice because it can record heart activity in signal form and it is safer, faster and more convenient than other methods of examination. However, there are still problems involved in the ECG. For example, not all the ECG features are clear and easily understood. In addition, the frequency features are not present in the traditional ECG. To solve these problems, the project uses the optimized CWT algorithm to transform data from the time domain into the time-frequency domain. The result is evaluated by three data mining algorithms with different mechanisms. The evaluation proves that the features in the ECG are successfully extracted and important diagnostic information in the ECG is preserved. A user interface is designed increasing efficiency, which facilitates the implementation.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf