Mid Sweden University

miun.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gustavsson, Leif
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Poudel, Bishnu Chandra
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development. Swedish Univ. of Agricultural Sciences.
    Sathre, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Bergh, Johan
    Climate change induced forest production in north-central Sweden and potential substitution effects2010Conference paper (Refereed)
  • 2.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Sathre, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Bergh, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Gustavsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Forest biomass residues and their use to mitigate climate change in north-central Sweden2011In: 19th European Biomass Conference and Exhibition, Berlin, Germany, June 6-10, 2011, 2011Conference paper (Other academic)
  • 3.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Sathre, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Bergh, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Gustavsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Lundström, Anders
    Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Hyvönen, Riitta
    Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Potential effects of intensive forestry on biomass production and total carbon balance in north-central Sweden2012In: Environmental Science and Policy, ISSN 1462-9011, E-ISSN 1873-6416, Vol. 15, no 1, p. 106-124Article in journal (Refereed)
    Abstract [en]

    We quantify the potential effects of intensive forest management activities on forest production in north-central Sweden over the next 100 years, and calculate the potential climate change mitigation feedback effect due to the resulting increased carbon stock and increased use of forest products. We analyze and compare four different forest management scenarios (Reference, Environment, Production, and Maximum), all of which include the expected effects of climate change based on SRES B2 scenario. Forest management practices are intensified in Production scenario, and further intensified in Maximum scenario. Four different models, BIOMASS, HUGIN, Q-model, and Substitution model, were used to quantify net primary production, forest production and harvest potential, soil carbon, and biomass substitution of fossil fuels and non-wood materials, respectively. After integrating the models, our results show that intensive forestry may increase forest production by up to 26% and annual harvest by up to 19%, compared to the Reference scenario. The greatest single effect on the carbon balance is from using increased biomass production to substitute for fossil fuels and energy intensive materials. Carbon stocks in living tree biomass, forest soil and wood products also increase. In total, a net carbon emission reduction of up to 132 Tg (for Maximum scenario) is possible during the next 100 years due to intensive forest management in two Swedish counties, Jämtland and Västernorrland. 

  • 4.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Ecotechnology and Sustainable Building Engineering. Swedish Univ. of Agricultural Sciences.
    Sathre, Roger
    Bergh, Johan
    Nordin, Annika
    Lundmark, Tomas
    Forest biomass production potential and its implications for total carbon balance2013Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 5.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Sathre, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Gustavsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Bergh, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Climate change mitigation through increased biomass production and substitution: A case study in north-central Sweden2011In: World Renewable Energy Congress 2011, Linköping, Sweden, May 8-11, 2011Conference paper (Refereed)
  • 6.
    Poudel, Bishnu Chandra
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Sathre, Roger
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Gustavsson, Leif
    Linnaeus University, Växjö, Sweden .
    Bergh, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Lundström, Anders
    Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Hyvönen, Riitta
    Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Effects of climate change on biomass production and substitution in north-central Sweden2011In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 35, no 10, p. 4340-4355Article in journal (Refereed)
    Abstract [en]

    In this study we estimate the effects of climate change on forest production in north-central Sweden, as well as the potential climate changemitigation feedback effects of the resulting increased carbon stock and forest product use. Our results show that an average regional temperature rise of 4 °C over the next 100 years may increase annual forest production by 33% and potential annual harvest by 32%, compared to a reference case without climate change. This increased biomass production, if used to substitute fossil fuels and energy-intensive materials, can result in a significant net carbon emission reduction. We find that carbon stock in forest biomass, forest soils, and wood products also increase, but this effect is less significant than biomass substitution. A total net reduction in carbon emissions of up to 104 Tg of carbon can occur over 100 years, depending on harvest level and reference fossil fuel. © 2011 Elsevier Ltd.

  • 7.
    Sathre, Roger
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Gustavsson, Leif
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Bergh, Johan
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering and Sustainable Development.
    Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization2010In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 34, no 4, p. 572-581Article in journal (Refereed)
    Abstract [en]

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf