miun.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Niskanen, Ilpo
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. University of Oulu, Oulu, Finland.
    Forsberg, Viviane
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. KTH.
    Zakrisson, Daniel
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Reza, Salim
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Hummelgård, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Andres, Britta
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Fedorov, Igor
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Suopajärvi, Terhi
    University of Oulu, Oulu, Finland.
    Liimatainen, Henrikki
    University of Oulu, Oulu, Finland.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Determination of nanoparticle size using Rayleigh approximation and Mie theory2019In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 201, no 29, p. 222-229Article in journal (Refereed)
    Abstract [en]

    Accurate determination of the size of nanoparticles has an important role in many different scientific and industrial purposes, such as in material, medical and environment sciences, colloidal chemistry and astrophysics. We describe an effective optical method to determine the size of nanoparticles by analysis of transmission and scattering of visible spectral range data from a designed UV-Vis multi-spectrophotometer. The size of the nanoparticles was calculated from the extinction cross section of the particles using Rayleigh approximation and Mie theory. We validated the method using polystyrene nanospheres, cellulose nanofibrils, and cellulose nanocrystals. A good agreement was achieved through graphical analysis between measured extinction cross section values and theoretical Rayleigh approximation and Mie theory predictions for the sizes of polystyrene nanospheres at wavelength range 450 - 750 nm. Provided that Rayleigh approximation's forward scattering (FS)/back scattering (BS) ratio was smaller than 1.3 and Mie theory's FS/BS ratio was smaller than 1.8. A good fit for the hydrodynamic diameter of nanocellulose was achieved using the Mie theory and Rayleigh approximation. However, due to the high aspect ratio of nanocellulose, the obtained results do not directly reflect the actual cross-sectional diameters of the nanocellulose. Overall, the method is a fast, relatively easy, and simple technique to determine the size of a particle by a spectrophotometer. Consequently, the method can be utilized for example in production and quality control purposes as well as for research and development applications.

  • 2.
    Soetedjo, Hariyadi
    et al.
    The University of Ahmad Dahlan,Yogyakarta, Indonesia.
    Niskanen, Ilpo
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. University of Oulu, Oulu, Finland.
    Rautkari, Lauri
    Aalto University, Aalto, Finland.
    Altgen, Michael
    Aalto University, Aalto, Finland.
    Hiltunen, Eero
    Aalto University, Aalto, Finland.
    Thungström, Göran
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Zakrisson, Daniel
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Räty, Jukka
    University of Oulu, Kajaani, Finland.
    Determining the degree of heat treatment of wood by light polarization technique2018In: European Journal of Wood and Wood Products, ISSN 0018-3768, E-ISSN 1436-736X, Vol. 76, no 4, p. 1359-1362Article in journal (Refereed)
    Abstract [en]

    Thermal modification of wood enables the use of non-durable wood species in exterior applications, but quality control methods are required to monitor the product variability. This study tests the potential of a light polarization technique where visible light (400–500 nm) is directed through a linear polarizer to the surface of thermally modified wood to measure the reflectance. Besides an effect of the grain direction, the reflectance decreased with increasing temperature during the thermal modification process. The technique could be used for quality control, but further studies are required to understand its modes of action. 

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf